1º teste A - 5/11/2014: (resolução)

Q1 (3,0 + 3,5 valores) – Álgebra de Boole e Tabelas de Verdade

a) Determine, por tabela de verdade, a veracidade da seguinte igualdade a + (b.c) = (a + b).(a + c):

	Α	В	С	a + (b.c)	(a+b).(a+c)
,	0	0	0	0	0
	0	0	1	0	0
	0	1	0	0	0
	0	1	1	1	1
	1	0	0	1	1
	1	0	1	1	1
	1	1	0	1	1
	1	1	1	1	1
			,		

As tabelas de verdade são obtidas substituindo os valores das variáveis em cada linha da tabela.

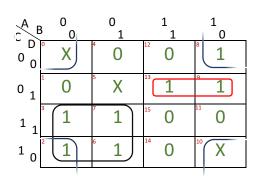
b) Considere que tem dois pontos P₁ e P₂ no espaço cartesiano, dados por P₁(X₁,Y₁) e P₂(X₂,Y₂) e sendo que as variáveis X₁, Y₁, X₂, Y₂ só podem admitir o valor decimal 0 e 1, representado pelo valor lógico '0' e '1' correspondente. Quer-se então que <u>represente, através de uma tabela de verdade</u>, a função booleana F(X₁,Y₁,X₂,Y₂) que toma o valor lógico de '1' sempre que a distância euclidiana entre os pontos P1 e P2 <u>seja maior do que uma unidade</u>; e '0' em caso contrário. *Nota: a distância euclidiana, ou distância métrica, é definida como distância entre dois quaisquer pontos no espaço.*

X_1	Y_1	X_2 Y_2		F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Q2 (3,5 + 3,0 valores) – Mapas Karnaugh, Representação binária números c/sinal

a) Considere a função $f(A, B, C, D) = \prod (2,3,6,7,8,9,13) + d(0,5,10)$. Obtenha a expressão mais simplificada na forma de somas de produtos através da utilização de mapa de Karnaugh.

Α	В	С	D	F
0	0	0	0	Χ
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	Х
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Χ
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0



$$F(A, B, C, D) = \overline{A} \cdot C + \overline{B} \cdot \overline{D} + A \cdot \overline{C} \cdot D$$

b) Considere uma representação binária de números com sinal a 7 bits; considere os códigos 1100100 e 0111111. Refira que números decimais estão representados quando considerada uma representação em complemento-para-2 e em representação em complemento-para-1.

	1100100	0111111
Comppara-1	-27	63
Comppara-2	-28	63

Q3 (3,5 + 3,5 valores) – Descodificadores, Aritmética e Composição Modular

a) Considere a função $f(A,B,C,D) = \prod (0,1,7,8,12,13,14)$. Implemente a função utilizando um e só um descodificador com três entradas de seleção/endereço (para oito linhas de saída) e a lógica adicional elementar que considerar necessária.

	Α	В	С	D	F	_	
•	0	0	0	0	0	<u> </u>	
	0	0	0	1	0	$F_0 = 0$	
-	0	0	1	0	1	-	D0 — c
	0	0	1	1	1	F ₁ =1	C A0 D2
-	0	1	0	0	1	_	B A1 D3 AND2B1
	0	1	0	1	1	F ₂ =1	A A2 D5
-	0	1	1	0	1	_	D6 B AND2 OR6
	0	1	1	1	0	$F_3 = \overline{D}$	
-	1	0	0	0	0	_	AND2
	1	0	0	1	1	F ₄ = <i>D</i>	
-	1	0	1	0	1	F ₅ =1	D
	1	0	1	1	1		
-	1	1	0	0	0	-	
	1	1	0	1	0	F ₆ =0	
-	1	1	1	0	0	_	
	1	1	1	1	1	F ₇ = <i>D</i>	

b) Considere três números A, B e C, representados em binário com A e B de um bit e $C:[C_1C_0]$ de dois bits de representação (índice 1 = bit mais significativo; índice 0 = bit

menos significativo). Pretende-se construir um sistema capaz de realizar a operação aritmética A+B+C, i.e. A+B+[C_1C_0]. Tendo disponíveis blocos semi-somadores somadores-completos, apresente justifique um diagrama de blocos que realize a operação descrita, privilegiando a solução com menor número de recursos (considerando que o número de portas de um somador-completo é de 5 e de um semisomador é de 2).

