1º teste B - 5/11/2014: (resolução)

Q1 (3,0 + 3,5 valores) – Álgebra de Boole e Tabelas de Verdade

a) Determine, por tabela de verdade, a veracidade da seguinte igualdade a + (b.c) = (a + b).(a + c):

Α	В	С	a.(b+c)	(a.b) + (a.c)
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
		-		

As tabelas de verdade são obtidas substituindo os valores das variáveis em cada linha da tabela.

b) Considere que tem dois pontos P₁ e P₂ no espaço cartesiano, dados por P₁(X₁,Y₁) e P₂(X₂,Y₂) e sendo que as variáveis X₁, Y₁, X₂, Y₂ só podem admitir o valor decimal 0 e 1, representado pelo valor lógico '0' e '1' correspondente. Quer-se então que <u>represente, através de uma tabela de verdade</u>, a função booleana F(X₁,Y₁,X₂,Y₂) que toma o valor lógico de '1' sempre que a distância euclidiana entre os pontos P1 e P2 <u>seja maior do que uma unidade</u>; e '0' em caso contrário. *Nota: a distância euclidiana, ou distância métrica, é definida como distância entre dois quaisquer pontos no espaço.*

	X_1	Y_1	X_2	Y_2	F
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
•	0	0	1	1	0
	0	1	0	0	1
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	0
				Į	

Q2 (3,5 + 3,0 valores) – Mapas Karnaugh, Representação binária números c/sinal

a) Considere a função $f(A, B, C, D) = \prod (1,4,5,11,12,14) + d(2,7,8,15)$. Obtenha a expressão mais simplificada na forma de somas de produtos através da utilização de mapa de Karnaugh.

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	Х
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	Χ
1	0	0	0	Χ
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	Х

C B O	0 1	1	1 0
	0	0	⁸ X
0 1 0	5 0	1	1
1 1 1	X	15 X	0
1 0 X	⁶ 1	0	10 1

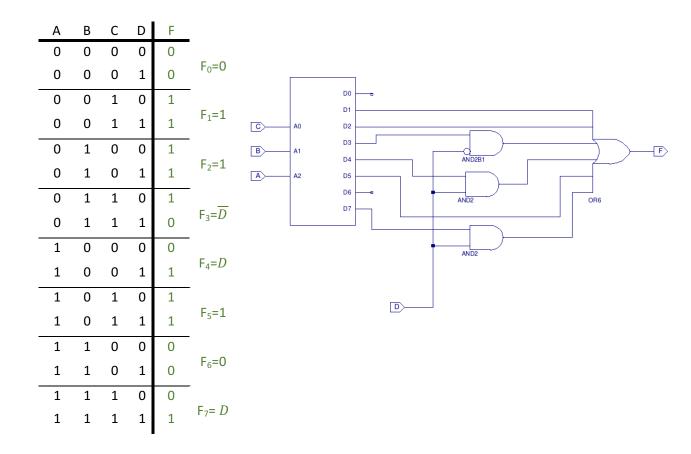
$$F(A, B, C, D) = \overline{A} \cdot C + \overline{B} \cdot \overline{D} + A \cdot \overline{C} \cdot D$$

 b) Considere uma representação binária de números com sinal a 8 bits; considere os códigos 11100100 e 00111111. Refira que números decimais estão representados quando considerada uma representação em complemento-para-2 e em representação em complemento-para-1.

	11100100	00111111
Comppara-1	-27	63
Comppara-2	-28	63

<u>Q3 (3,5 + 3,5 valores)</u> – Descodificadores, Aritmética e Composição Modular

a) Considere a função $f(A, B, C, D) = \sum (2,3,4,5,6,9,10,11,15)$. Implemente a função utilizando um e só um descodificador com três entradas de seleção/endereço (para oito linhas de saída) e a lógica adicional elementar que considerar necessária.



b) Considere três números X, Y e Z, representados em binário com X e Z de um bit e Y: $[Y_1Y_0]$ de dois bits de representação (índice 1 = bit mais significativo; índice 0 = bit menos

significativo). Pretende-se construir um sistema capaz de realizar a operação aritmética X+Y+Z, i.e. X +[Y₁Y₀] +Z. Tendo disponíveis blocos semi-somadores e somadores-completos, apresente e justifique um diagrama de blocos que realize a operação descrita, privilegiando a solução com menor número de recursos (considerando que o número de portas de um somador-completo é de 5 e de um semi-somador é de 2).

