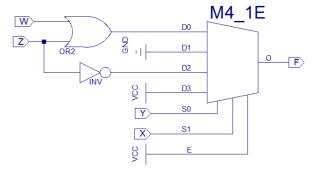


Departamento de Engenharia Eletrotécnica

Mestrado integrado em Engenharia Informática

Disciplina de Sistemas Lógicos — 1° teste — 11/11/2017

Duração: 1h 20mn | Tolerância: 10mn | Sem consulta


Importante: numere as folhas que entregar (ex. 1 de 4) e identifique-se em todas elas Responda em folhas separadas aos três grupos de questões

Q1(2,5 + 2,5 valores)

- a) Apresente uma expressão equivalente utilizando só NORs de 2 entradas, que implemente a função $f(a,b,c) = \bar{a}.\bar{b} + \bar{a}.\bar{c} + \bar{b}.\bar{c}$.
- b) Considere que se pretende especificar um sistema de controlo de luzes de um veículo automóvel, de modo a que as luzes médias se acendam (valor de saída ativo a 1) sempre que o veículo esteja com o motor ligado (M=1), o interruptor de luzes automáticas esteja acionado (I=1) e a luminosidade ambiente seja pelo menos escura (fornecida por um sensor com dois bits de saída codificando o nível de luminosidade, L₁L₀, em que L₁L₀=00 corresponde a muito escuro, L₁L₀=01 escuro, L₁L₀=10 claro e L₁L₀=11 muito claro). Apresente a tabela de verdade da função MEDIOS(M,I,L₁,L₀).

Q2 (3 + 3 + 3 valores)

- a) Considere a função: $f(A, B, C, D) = \Sigma(0,5,7,8,13) + d(1,2,3,10)$. Obtenha uma expressão simplificada na forma de <u>Soma de Produtos</u> através de mapa de Karnaugh.
- b) Considere o seguinte circuito lógico que implementa a função F(X,Y,W,Z). Caraterize a função através da lista de mintermos associada.
- c) Considere que tem disponíveis blocos comparadores de dois números (A e B), cada um com 2 bits, e que fornecem duas saídas: Menor (A<B) e Igual (A=B). Com base nos comparadores referidos e alguma lógica adicional que considere necessária, apresente e justifique um diagrama de blocos que realize um

comparador de dois números X e Y de 4 bits cada, recebendo como entradas os dois numeros $[X_3X_2X_1X_0]$ e $[Y_3Y_2Y_1Y_0]$, e produzindo a saída MaiorOuIgual $(X \ge Y)$.

Q3 (3+3 valores)

- a) Considere as seguintes representações de números em complemento-para-2 e em complemento-para-1 com 6 bits. Refira quais os números decimais representado por (111110)⁽²⁾, (101111)⁽¹⁾, (000111)⁽²⁾ e (110011)⁽¹⁾? Represente também o número –18 em complemento-para-2 e em complemento-para-1 com 6 bits.
- b) Pretende-se construir um sistema para realizar uma operação aritmética envolvendo três números de entrada, A, B e C, em que A tem dois bits (A₁ e A₀) e B e C têm 1 bit cada. A operação pretendida é A×C+B×C = [A₁A₀]×C+B×C (em que × representa a operação aritmética de multiplicação, + representa a operação aritmética de adição e, como esperado, a multiplicação tem prioridade em relação à adição). Caracterize a saída do sistema (quantos bits de saída) de modo a representar adequadamente o resultado, e apresente um diagrama de blocos recorrendo a blocos do tipo somador completo, semi-somador e alguma lógica adicional. *Nota: um bloco semi-somador possui dois bits de entrada e dois bits de saída que correspondem à soma e transporte dos bits de entrada; um bloco somador completo possui três bits de entrada e dois bits de saída que correspondem à soma e transporte dos bits de entrada.*