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LIMITS AND

CONTINUITY

The problem of defining and calculating instantaneous rates

such as speed and acceleration attracted almost all the

mathematicians of the seventeenth century.

—Morris Kline

he development of calculus in the seventeenth cen-

tury by Newton and Leibniz provided scientists with their

first real understanding of what is meant by an “instanta-

neous rate of change” such as velocity and acceleration.

Once the idea was understood conceptually, efficient com-

putational methods followed, and science took a quantum

leap forward. The fundamental building block on which

rates of change rest is the concept of a “limit,” an idea that

is so important that all other calculus concepts are now

based on it.

In this chapter we will develop the concept of a limit in

stages, proceeding from an informal, intuitive notion to a

precise mathematical definition. We will also develop the-

orems and procedures for calculating limits, and we will

conclude the chapter by using the limits to study “contin-

uous” curves.
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108 Limits and Continuity

2.1 LIMITS (AN INTUITIVE APPROACH)

The concept of a limit is the fundamental building block on which all other calculus

concepts are based. In this section we will study limits informally, with the goal of

developing an “intuitive feel ” for the basic ideas. In the following three sections we

will focus on the computational methods and precise definitions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INSTANTANEOUS VELOCITY AND
THE SLOPE OF A CURVE

Recall from Formula (11) of Section 1.5 that if a particle moves along an s-axis, then the

average velocity vave over the time interval from t0 to t1 is defined as

vave =
�s

�t
=

s1 − s0

t1 − t0
(1)

where s0 and s1 are the s-coordinates of the particle at times t0 and t1, respectively. Geo-

metrically, vave is the slope of the line joining the points (t0, s0) and (t1, s1) on the position

versus time curve for the particle (Figure 2.1.1).
Slop

e =
 v ave

t0 t1

t1 – t0
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Figure 2.1.2

Suppose, however, that we are not interested in average velocity over a time interval,

but rather the velocity vinst at a specific instant in time. It is not a simple matter of applying

Formula (1), since the displacement and the elapsed time in an instant are both zero. How-

ever, intuition suggests that the velocity at an instant t = t0 can be approximated by finding

the position of the particle at a time t1 just before, or just after, time t0 and computing the

average velocity over the brief time interval between the two moments. That is,

vinst ≈ vave =
s1 − s0

t1 − t0
(2)

provided�t = t1−t0 is small. Moreover, if we are able to make very precise measurements,

the closer t1 is to t0, the better vave approximates vinst. That is, as we sample at times t1,

closer and closer to t0, vave approaches a limiting value that we understand to be vinst.

Example 1 Suppose that a ball is thrown vertically upward and the height in feet of the

ball t seconds after its release is modeled by the function

s(t) = −16t2 + 29t + 6, 0 ≤ t ≤ 2

What is a reasonable estimate for the instantaneous velocity of the ball at time t = 0.5 s?

Solution. At any time 0 ≤ t ≤ 2 we may envision the height s(t) of the ball as a position

on a (vertical) s-axis, where s = 0 corresponds to ground level (Figure 2.1.2). The height

of the ball at time t = 0.5 s is s(0.5) = 16.5 ft, and the height of the ball 0.01 s later is

s(0.51) = 16.6284 ft. Therefore, the average velocity of the ball over the time interval from

t = 0.5 to t = 0.51 is

vave =
16.6284 − 16.5

0.51 − 0.5
=

0.1284

0.01
= 12.84 ft/s

Similarly, the height of the ball 0.49 s after its release is s(0.49) = 16.3684 ft, and the

average velocity of the ball over the time interval from t = 0.49 to t = 0.5 is

vave =
16.3684 − 16.5

0.49 − 0.5
=

−0.1316

−0.01
= 13.16 ft/s

Consequently, we would expect the instantaneous velocity of the ball at time t = 0.5 to be

between 12.84 ft/s and 13.16 ft/s. To improve our estimate of this instantaneous velocity,

we can compute the average velocity

vave(t1) =
s(t1) − 16.5

t1 − 0.5
=

−16t2
1 + 29t1 + 6 − 16.5

t1 − 0.5
=

−16t2
1 + 29t1 − 10.5

t1 − 0.5

for values of t1 even closer to 0.5. Table 2.1.1 displays the results of several such computa-
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Table 2.1.1

0.5010

0.5005

0.5001

0.4999

0.4995

0.4990

12.9840

12.9920

12.9984

13.0016

13.0080

13.0160

vave(t1) =time t1 (s) (ft/s)
–16t1

2 + 29t1 – 10.5

t1 – 0.5

tions. It appears from these computations that a reasonable estimate for the instantaneous

velocity of the ball at time t = 0.5 s is 13 ft/s. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. The domain of the height function s(t) = −16t2 +29t+6 in Example

1 is the closed interval [0, 2]. Why do we not consider values of t less than 0 or greater than

2 for this function? In Table 2.1.1, why is there not a value of vave(t1) for t1 = 0.5?

We can interpret vinst geometrically from the interpretation of vave as the slope of the

line joining the points (t0, s0) and (t1, s1) on the position versus time curve for the particle.

When �t = t1 − t0 is small, the points (t0, s0) and (t1, s1) are very close to each other on

the curve. As the sampling point (t1, s1) is selected closer to our anchoring point (t0, s0),

the slope vave more nearly approximates what we might reasonably call the slope of the

position curve at time t = t0. Thus, vinst can be viewed as the slope of the position curve at

time t = t0 (Figure 2.1.3). We will explore this connection more fully in Section 3.1.

Slop
e =

 v ave

t0 t1

t

s
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= 
v
in

st

Figure 2.1.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS
In Example 1 it appeared that choosing values of t1 close to (but not equal to) 0.5 resulted

in values of vave(t1) that were close to 13. One way of describing this behavior is to say that

the limiting value of vave(t1) as t1 approaches 0.5 is 13 or, equivalently, that 13 is the limit

of vave(t1) as t1 approaches 0.5. More generally, we will see that the concept of the limit of

a function provides a foundation for the tools of calculus. Thus, it is appropriate to start a

study of calculus by focusing on the limit concept itself.

The most basic use of limits is to describe how a function behaves as the independent

variable approaches a given value. For example, let us examine the behavior of the function

f(x) = x2 − x + 1

for x-values closer and closer to 2. It is evident from the graph and table in Figure 2.1.4 that

the values of f(x) get closer and closer to 3 as values of x are selected closer and closer

to 2 on either the left or the right side of 2. We describe this by saying that the “limit of

x2 − x + 1 is 3 as x approaches 2 from either side,” and we write

lim
x→2

(x2 − x + 1) = 3 (3)

Observe that in our investigation of limx→2 (x
2 − x + 1) we are only concerned with the

values of f(x) near x = 2 and not the value of f(x) at x = 2.

This leads us to the following general idea.

2.1.1 LIMITS (AN INFORMAL VIEW). If the values of f(x) can be made as close as

we like to L by taking values of x sufficiently close to a (but not equal to a), then we

write

lim
x→a

f(x) = L (4)

which is read “the limit of f(x) as x approaches a is L.”
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2

3

x

y

xx

f (x)

f (x)

y = f (x) = x2 – x + 1

x

f (x)

1.0

1.000000

1.5

1.750000

1.9

2.710000

1.95

2.852500

1.99

2.970100

1.995

2.985025

1.999

2.997001

2.05

3.152500

2.005

3.015025

2.001

3.003001

2.1

3.310000

2.5

4.750000

3.0

7.000000

2 2.01

3.030100

Left side Right side

Figure 2.1.4

Equation (4) is also commonly written as

f(x)→L as x→a

With this notation we can express (3) as

x2 − x + 1→3 as x→2

In order to investigate limx→a f(x), we ask ourselves the question, “If x is close to,

but different from, a, is there a particular number to which f(x) is close?” This question

presumes that the function f is defined “everywhere near a,” in other words, that f is

defined at all points x in some open interval containing a, except possibly at x = a. The

value of f at a, if it exists at all, is not relevant to the determination of limx→a f(x). Many

important applications of the limit concept involve contexts in which the domain of the

function excludes a. Indeed, our discussion of instantaneous velocity concluded that vinst

could be interpreted as a limit of the average velocities, even though the average velocity

at an instant is not defined.

The process of determining a limit generally involves a discovery phase, followed by

a verification phase. The discovery phase begins with sampled x-values, and ends with

a conjecture for the limit. Figure 2.1.4 illustrates the discovery phase for the problem of

finding the value of limx→2 (x
2 − x + 1). We sampled values for x near 2 and found that

the corresponding values of f(x) were close to 3. Indeed, values of x nearer to 2 produced

values of f(x) closer to 3. Our conjecture that limx→2 (x
2 − x + 1) = 3 concluded the

discovery phase for this limit. However, a complete treatment of any limit also involves a

verification phase in which it is shown that the conjectured limit is actually correct. For

example, consider our conjecture that limx→2 (x
2 − x + 1) = 3. We can only sample a

relatively few values of x near 2, even by using a graphing utility. We cannot sample all

values of x near 2, for no matter how close to 2 we take an x-value, there are infinitely

many values of x nearer yet to 2. To verify that limx→2 (x
2 − x + 1) is indeed 3, we need

to resort to an analysis that can overcome this dilemma. This analysis will require a more

mathematically precise definition of limit and is the focus of Section 2.4. In this section,

we concentrate on the discovery phase for limit problems.

Example 2 Make a conjecture about the value of the limit

lim
x→0

x
√
x + 1 − 1

(5)
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Solution. Observe that the function

f(x) =
x

√
x + 1 − 1

is not defined at x = 0. However, f is defined for x > −1, x 	= 0, so the domain of f con-

tains values of x “everywhere near 0.” Table 2.1.2 shows samples of x-values approaching

0 from the left side and from the right side. In both cases the values of f(x), calculated to

six decimal places, appear to get closer and closer to 2, and hence we conjecture that

lim
x→0

x
√
x + 1 − 1

= 2 (6)

A graphing utility could be used to produce Figure 2.1.5, providing more evidence in support

of our conjecture. In the next section we will see that the graph of f(x) is identical to that

of y =
√
x + 1 + 1, except for a hole at (0, 2). ◭

-1 1
x x

1

2

x

y

Figure 2.1.5

Table 2.1.2

–0.01

1.994987

–0.001

1.999500

–0.0001

1.999950

–0.00001

1.999995

0.00001

2.000005

0.0001

2.000050

0.001

2.000500

0.01

2.004988

0x

f (x)

Left side Right side

•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Using a graphing utility, find a window about x = 0 in which all values

of f(x) are within 0.5 of y = 2. Find a window in which all values of f(x) are within 0.1

of y = 2.

Example 3 Make a conjecture about the value of the limit

lim
x→0

sin x

x
(7)

Solution. The function f(x) = (sin x)/x is not defined at x = 0, but, as discussed pre-

viously, this has no bearing on the limit. With the help of a calculating utility set in radian

mode, we obtain the table in Figure 2.1.6.

lim
x→0

sin x

x
= 1 (8)

The result is consistent with the graph of f(x) = (sin x)/x shown in the figure. Later in this

chapter we will give a geometric argument to prove that our conjecture is correct. ◭

1

x 0 x

f(x)
y = f (x) =  

sin x
x

As x approaches 0 from the left

or right, f(x) approaches 1.

x

y

±1.0

±0.9

±0.8

±0.7

±0.6

±0.5

±0.4

±0.3

±0.2

±0.1

±0.01

0.84147

0.87036

0.89670

0.92031

0.94107

0.95885

0.97355

0.98507

0.99335

0.99833

0.99998

sin x
xy = 

x
(radians)

Figure 2.1.6
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•
•
•
•
•
•
•
•

FOR THE READER. Use a calculating utility to sample x-values closer to 0 than in Table ??.

Does the limit change if x is in degrees?

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SAMPLING PITFALLS
Although numerical and graphical evidence is helpful for guessing at limits, we can be

misled by an insufficient or poorly selected sample. For example, the table in Figure 2.1.7

shows values of f(x) = sin(π/x) at selected values of x on both sides of 0. The data

incorrectly suggest that

lim
x→0

sin
(π

x

)

= 0

The fact that this is incorrect is evidenced by the graph of f shown in the figure. This graph

indicates that as x→0, the values of f oscillate between −1 and 1 with increasing rapidity,

and hence do not approach a limit. The data are deceiving because the table consists only

of sample values of x that are x-intercepts for f(x).

-1 1

-1

1

y = sin (   )x
p

x

y

x = ±1

x = ±0.1

x = ±0.01

x = ±0.001

x = ±0.0001

sin(±p) = 0

sin(±10p) = 0

sin(±100p) = 0

sin(±1000p) = 0

sin(±10,000p) = 0

±p

±10p

±100p

±1000p

±10,000p

x
p

x
p

f (x) = sin (  )
x

(radians)

.

.

.

.

.

.

.

.

.

Figure 2.1.7

Numerical evidence can lead to incorrect conclusions about limits because of roundoff

error or because the sample of values used is not extensive enough to give a good indication

of the behavior of the function. Thus, when a limit is conjectured from a table of values, it

is important to look for corroborating evidence to support the conjecture.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ONE-SIDED LIMITS
The limit in (4) is commonly called a two-sided limit because it requires the values of f(x)

to get closer and closer to L as values of x are taken from either side of x = a. However,

some functions exhibit different behaviors on the two sides of an x-value a, in which case

it is necessary to distinguish whether values of x near a are on the left side or on the right

side of a for purposes of investigating limiting behavior. For example, consider the function

f(x) =
|x|
x

=

{

1, x > 0

−1, x < 0

(Figure 2.1.8). Note that x-values approaching 0 and to the right of 0 produce f(x) values

that approach 1 (in fact, they are exactly 1 for all such values of x). On the other hand, x-

values approaching 0 and to the left of 0 produce f(x) values that approach −1. We describe

these two statements by saying that “the limit of f(x) = |x|/x is 1 as x approaches 0 from

the right” and that “the limit of f(x) = |x|/x is −1 as x approaches 0 from the left.” We

denote these limits by writing

lim
x→0+

|x|
x

= 1 and lim
x→0−

|x|
x

= −1 (9–10)

With this notation, the superscript “+” indicates a limit from the right and the superscript

“−” indicates a limit from the left.

This leads to the following general idea.

-1

1

x

y

y =
|x |
x

Figure 2.1.8
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2.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW). If the values of f(x) can be made

as close as we like to L by taking values of x sufficiently close to a (but greater than a),

then we write

lim
x→a+

f(x) = L (11)

which is read “the limit of f(x) as x approaches a from the right is L.” Similarly, if the

values of f(x) can be made as close as we like to L by taking values of x sufficiently

close to a (but less than a), then we write

lim
x→a−

f(x) = L (12)

which is read “the limit of f(x) as x approaches a from the left is L.”

Expressions (11) and (12), which are called one-sided limits, are also commonly written as

f(x)→L as x→a+ and f(x)→L as x→a−

respectively. With this notation (9) and (10) can be expressed as

|x|
x

→1 as x→0+ and
|x|
x

→−1 as x→0−

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE RELATIONSHIP BETWEEN
ONE-SIDED LIMITS AND
TWO-SIDED LIMITS

In general, there is no guarantee that a function will have a limit at a specified location. If

the values of f(x) do not get closer and closer to some single number L as x → a, then

we say that the limit of f(x) as x approaches a does not exist (and similarly for one-sided

limits). For example, the two-sided limit limx→0 |x|/x does not exist because the values of

f(x) do not approach a single number as x→0; the values approach −1 from the left and

1 from the right.

In general, the following condition must be satisfied for the two-sided limit of a function

to exist.

2.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS. The two-

sided limit of a function f(x) exists at a if and only if both of the one-sided limits exist

at a and have the same value; that is,

lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L = lim
x→a+

f(x)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Sometimes, one or both of the one-sided limits may fail to exist (which, in

turn, implies that the two-sided limit does not exist). For example, we saw earlier that the

one-sided limits of f(x) = sin(π/x) do not exist as x approaches 0 because the function

keeps oscillating between −1 and 1, failing to settle on a single value. This implies that the

two-sided limit does not exist as x approaches 0.

Example 4 For the functions in Figure 2.1.9, find the one-sided and two-sided limits at

x = a if they exist.

x

y

2

3

1

a

x

y

2

3

1

a

x

y

2

3

1

a

y = f (x) y = f (x) y = f (x)

Figure 2.1.9
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Solution. The functions in all three figures have the same one-sided limits as x→a, since

the functions are identical, except at x = a. These limits are

lim
x→a+

f(x) = 3 and lim
x→a−

f(x) = 1

In all three cases the two-sided limit does not exist as x → a because the one-sided limits

are not equal. ◭

Example 5 For the functions in Figure 2.1.10, find the one-sided and two-sided limits

at x = a if they exist.

x

y

2

3

1

a a a

x

y

2

3

1

x

y

2

3

1

y = f (x) y = f (x) y = f (x)

Figure 2.1.10

Solution. As in the preceding example, the value of f at x = a has no bearing on the

limits as x→a, so that in all three cases we have

lim
x→a+

f(x) = 2 and lim
x→a−

f(x) = 2

Since the one-sided limits are equal, the two-sided limit exists and

lim
x→a

f(x) = 2 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INFINITE LIMITS AND VERTICAL
ASYMPTOTES

Sometimes one-sided or two-sided limits will fail to exist because the values of the function

increase or decrease indefinitely. For example, consider the behavior of the function f(x) =
1/x for values of x near 0. It is evident from the table and graph in Figure 2.1.11 that as

x-values are taken closer and closer to 0 from the right, the values of f(x) = 1/x are

positive and increase indefinitely; and as x-values are taken closer and closer to 0 from the

left, the values of f(x) = 1/x are negative and decrease indefinitely. We describe these

x

y

x

y = 1
x

1
x

x→0+ 
lim = + ∞1

x

x

y

y  = 1
x

1
x

x

x→0− 
lim = −∞1

x

–1

–1

–0.1

–10

–0.01

–100

–0.0001

–10,000

0.0001

10,000

0.001

1000

0.01

100

0.1

10

0x –0.001

–1000

1

1

Left side Right side

1
x

Figure 2.1.11
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limiting behaviors by writing

lim
x→0+

1

x
= +� and lim

x→0−

1

x
= −�

More generally:

2.1.4 INFINITE LIMITS (AN INFORMAL VIEW). If the values of f(x) increase indefi-

nitely as x approaches a from the right or left, then we write

lim
x→a+

f(x) = +� or lim
x→a−

f(x) = +�

as appropriate, and we say that f(x) increases without bound, or f(x) approaches

+�, as x→a+ or as x→a−. Similarly, if the values of f(x) decrease indefinitely as x

approaches a from the right or left, then we write

lim
x→a+

f(x) = −� or lim
x→a−

f(x) = −�

as appropriate, and say that f(x) decreases without bound, or f(x) approaches −�, as

x→a+ or as x→a−. Moreover, if both one-sided limits are +�, then we write

lim
x→a

f(x) = +�

and if both one-sided limits are −�, then we write

lim
x→a

f(x) = −�

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It should be emphasized that the symbols +� and −� are not real numbers. The

phrase “f(x) approaches +�” is akin to saying that “f(x) approaches the unapproachable”;

it is a colloquialism for “f(x) increases without bound.” The symbols +� and −� are used

here to encapsulate a particular way in which limits fail to exist. To say, for example, that

f(x)→ +� as x → a+ is to indicate that limx→a+ f(x) does not exist, and to say further

that this limit fails to exist because values of f(x) increase without bound as x approaches

a from the right. Furthermore, since +� and −� are not numbers, it is inappropriate to

manipulate these symbols using rules of algebra. For example, it is not correct to write

(+�) − (+�) = 0.

Example 6 For the functions in Figure 2.1.12, describe the limits at x = a in appropriate

limit notation.

x

y

x

y

x

y

x

y

1
x – a f (x) =

1

(x – a)2
f (x) =

–1
x – a

f (x) =
–1

(x – a)2
f (x) =

(a) (b) (c) (d)

a a a a

Figure 2.1.12

Solution (a). In Figure 2.1.12a, the function increases indefinitely as x approaches a from

the right and decreases indefinitely as x approaches a from the left. Thus,

lim
x→a+

1

x − a
= +� and lim

x→a−

1

x − a
= −�
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Solution (b). In Figure 2.1.12b, the function increases indefinitely as x approaches a from

both the left and right. Thus,

lim
x→a

1

(x − a)2
= lim

x→a+

1

(x − a)2
= lim

x→a−

1

(x − a)2
= +�

Solution (c). In Figure 2.1.12c, the function decreases indefinitely as x approaches a from

the right and increases indefinitely as x approaches a from the left. Thus,

lim
x→a+

−1

x − a
= −� and lim

x→a−

−1

x − a
= +�

Solution (d ). In Figure 2.1.12d, the function decreases indefinitely as x approaches a

from both the left and right. Thus,

lim
x→a

−1

(x − a)2
= lim

x→a+

−1

(x − a)2
= lim

x→a−

−1

(x − a)2
= −� ◭

Geometrically, if f(x)→+� as x → a− or x → a+, then the graph of y = f(x) rises

without bound and squeezes closer to the vertical line x = a on the indicated side of x = a.

If f(x)→−� as x→a− or x→a+, then the graph of y = f(x) falls without bound and

squeezes closer to the vertical line x = a on the indicated side of x = a. In these cases, we

call the line x = a a vertical asymptote. (“Asymptote” comes from the Greek asymptotos,

meaning “nonintersecting.” We will soon see that taking “asymptote” to be synonymous

with “nonintersecting” is a bit misleading.)

2.1.5 DEFINITION. A line x = a is called a vertical asymptote of the graph of a

function f if f(x)→+� or f(x)→−� as x approaches a from the left or right.

Example 7 The four functions graphed in Figure 2.1.12 all have a vertical asymptote at

x = a, which is indicated by the dashed vertical lines in the figure. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS AT INFINITY AND
HORIZONTAL ASYMPTOTES

Thus far, we have used limits to describe the behavior of f(x) as x approaches a. However,

sometimes we will not be concerned with the behavior of f(x) near a specific x-value, but

rather with how the values of f(x) behave as x increases without bound or decreases without

bound. This is sometimes called the end behavior of the function because it describes how

the function behaves for values of x that are far from the origin. For example, it is evident

from the table and graph in Figure 2.1.13 that as x increases without bound, the values of

–10,000

–0.0001

–1000

–0.001

–100

–0.01

–1

–1

–10

–0.1

x decreasing without bound

x

f (x)

1

1

10

0.1

100

0.01

1000

0.001

10,000

0.0001

x increasing without bound

x

f (x)

x

y

x

y = 1
x

1
x

x→+∞ 
lim = 01

x

x

y

y  = 1
x

1
x

x

x→−∞ 
lim = 01

x

. . . . . .

. . .. . .

Figure 2.1.13
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f(x) = 1/x are positive, but get closer and closer to 0; and as x decreases without bound,

the values of f(x) = 1/x are negative, and also get closer and closer to 0. We indicate these

limiting behaviors by writing

lim
x→+�

1

x
= 0 and lim

x→−�

1

x
= 0

More generally:

2.1.6 LIMITS AT INFINITY (AN INFORMAL VIEW). If the values of f(x) eventually get

closer and closer to a number L as x increases without bound, then we write

lim
x→+�

f(x) = L or f(x)→L as x→+� (13)

Similarly, if the values of f(x) eventually get closer and closer to a number L as x

decreases without bound, then we write

lim
x→−�

f(x) = L or f(x)→L as x→−� (14)

Geometrically, if f(x)→L as x→+�, then the graph of y = f(x) eventually gets

closer and closer to the line y = L as the graph is traversed in the positive direction (Fig-

ure 2.1.14a); and if f(x)→L as x→−�, then the graph of y = f(x) eventually gets

closer and closer to the line y = L as the graph is traversed in the negative x-direction

(Figure 2.1.14b). In either case we call the line y = L a horizontal asymptote of the graph

of f . For example, the function in Figure 2.1.13 all have y = 0 as a horizontal asymptote.

x

y

y = LHorizontal asymptote

x

y

y = LHorizontal asymptote

(a) (b)

Figure 2.1.14

2.1.7 DEFINITION. A line y = L is called a horizontal asymptote of the graph of a

function f if

lim
x→+�

f(x) = L or lim
x→−�

f(x) = L

x

y

y = 3

y = 
3x + 1

x

3

Figure 2.1.15

Sometimes the existence of a horizontal asymptote of a functionf will be readily apparent

from the formula for f . For example, it is evident that the function

f(x) =
3x + 1

x
= 3 +

1

x

has a horizontal asymptote at y = 3 (Figure 2.1.15), since the value of 1/x approaches 0 as

x →+� or x →−�. For more complicated functions, algebraic manipulations or special

techniques that we will study in the next section may have to be applied to confirm the

existence of horizontal asymptotes.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

HOW LIMITS AT INFINITY CAN FAIL
TO EXIST

Limits at infinity can fail to exist for various reasons. One possibility is that the values of

f(x) may increase or decrease without bound as x→+� or as x→−�. For example, the

values of f(x) = x3 increase without bound as x → +� and decrease without bound as
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x→−�; and for f(x) = −x3 the values decrease without bound as x→+� and increase

without bound as x→−� (Figure 2.1.16). We denote this by writing

lim
x→+�

x3 = +�, lim
x→−�

x3 = −�, lim
x→+�

(−x3) = −�, lim
x→−�

(−x3) = +�

x

y

x

y

y = x3

y = –x3

Decreases

without

bound

Decreases

without

bound

Increases

without

bound

Increases

without

bound

Figure 2.1.16

More generally:

2.1.8 INFINITE LIMITS AT INFINITY (AN INFORMAL VIEW). If the values of f(x) in-

crease without bound as x→+� or as x→−�, then we write

lim
x→+�

f(x) = +� or lim
x→−�

f(x) = +�

as appropriate; and if the values of f(x) decrease without bound as x → +� or as

x→−�, then we write

lim
x→+�

f(x) = −� or lim
x→−�

f(x) = −�

as appropriate.

Limits at infinity can also fail to exist because the graph of the function oscillates indef-

initely in such a way that the values of the function do not approach a fixed number and do

not increase or decrease without bound; the trigonometric functions sin x and cos x have

this property, for example (Figure 2.1.17). In such cases we say that the limit fails to exist

because of oscillation.

x

y
y = sin x

There is no limit as

x → +∞ or x → –∞.

Figure 2.1.17

EXERCISE SET 2.1 Graphing Calculator C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. For the function f graphed in the accompanying figure, find

(a) lim
x→3−

f(x) (b) lim
x→3+

f(x) (c) lim
x→3

f(x)

(d) f(3) (e) lim
x→−�

f(x) (f ) lim
x→+�

f(x).

3

x

y

10

y = f (x)

Figure Ex-1

2. For the function f graphed in the accompanying figure, find

(a) lim
x→2−

f(x) (b) lim
x→2+

f(x) (c) lim
x→2

f(x)

(d) f(2) (e) lim
x→−�

f(x) (f ) lim
x→+�

f(x).

2

2

x

y y = f (x)

Figure Ex-2

3. For the function g graphed in the accompanying figure, find

(a) lim
x→4−

g(x) (b) lim
x→4+

g(x) (c) lim
x→4

g(x)

(d) g(4) (e) lim
x→−�

g(x) (f ) lim
x→+�

g(x).

4

1
x

y y = g(x)

Figure Ex-3

4. For the function g graphed in the accompanying figure, find

(a) lim
x→0−

g(x) (b) lim
x→0+

g(x) (c) lim
x→0

g(x)

(d) g(0) (e) lim
x→−�

g(x) (f ) lim
x→+�

g(x).

4

x

y

5–5

y = g(x)

Figure Ex-4
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5. For the functionF graphed in the accompanying figure, find

(a) lim
x→−2−

F(x) (b) lim
x→−2+

F(x) (c) lim
x→−2

F(x)

(d) F(−2) (e) lim
x→−�

F(x) (f ) lim
x→+�

F(x).

-2

3

x

y y = F(x)

Figure Ex-5

6. For the functionF graphed in the accompanying figure, find

(a) lim
x→3−

F(x) (b) lim
x→3+

F(x) (c) lim
x→3

F(x)

(d) F(3) (e) lim
x→−�

F(x) (f ) lim
x→+�

F(x).

3

3

x

y y = F(x)

Figure Ex-6

7. For the function φ graphed in the accompanying figure, find

(a) lim
x→−2−

φ(x) (b) lim
x→−2+

φ(x) (c) lim
x→−2

φ(x)

(d) φ(−2) (e) lim
x→−�

φ(x) (f ) lim
x→+�

φ(x).

–2

2
x

y y = f(x)

Figure Ex-7

8. For the function φ graphed in the accompanying figure, find

(a) lim
x→4−

φ(x) (b) lim
x→4+

φ(x) (c) lim
x→4

φ(x)

(d) φ(4) (e) lim
x→−�

φ(x) (f ) lim
x→+�

φ(x).

4

4

x

y y = f(x)

Figure Ex-8

9. For the function f graphed in the accompanying figure, find

(a) lim
x→3−

f(x) (b) lim
x→3+

f(x) (c) lim
x→3

f(x)

(d) f(3) (e) lim
x→−�

f(x) (f ) lim
x→+�

f(x).

3

4

x

y y = f (x)

Figure Ex-9

10. For the function f graphed in the accompanying figure, find

(a) lim
x→0−

f(x) (b) lim
x→0+

f(x) (c) lim
x→0

f(x)

(d) f(0) (e) lim
x→−�

f(x) (f ) lim
x→+�

f(x).

3

-2

x

y y = f (x)

Figure Ex-10

11. For the functionG graphed in the accompanying figure, find

(a) lim
x→0−

G(x) (b) lim
x→0+

G(x) (c) lim
x→0

G(x)

(d) G(0) (e) lim
x→−�

G(x) (f ) lim
x→+�

G(x).

1

2

x

y y = G(x)

Figure Ex-11

12. For the functionG graphed in the accompanying figure, find

(a) lim
x→0−

G(x) (b) lim
x→0+

G(x) (c) lim
x→0

G(x)

(d) G(0) (e) lim
x→−�

G(x) (f ) lim
x→+�

G(x).

4

4

x

y y = G(x)

Figure Ex-12
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13. Consider the function g graphed in the accompanying fig-

ure. For what values of x0 does lim
x→x0

g(x) exist?

2–4

2

x

y y = g(x)

Figure Ex-13

14. Consider the function f graphed in the accompanying fig-

ure. For what values of x0 does lim
x→x0

f(x) exist?

3

4

x

y y = f (x)

Figure Ex-14

In Exercises 15–18, sketch a possible graph for a function f

with the specified properties. (Many different solutions are

possible.)

15. (i) f(0) = 2 and f(2) = 1

(ii) lim
x→1−

f(x) = +� and lim
x→1+

f(x) = −�

(iii) lim
x→+�

f(x) = 0 and lim
x→−�

f(x) = +�

16. (i) f(0) = f(2) = 1

(ii) lim
x→2−

f(x) = +� and lim
x→2+

f(x) = 0

(iii) lim
x→−1−

f(x) = −� and lim
x→−1+

f(x) = +�

(iv) lim
x→+�

f(x) = 2 and lim
x→−�

f(x) = +�

17. (i) f(x) = 0 if x is an integer and f(x) 	= 0 if x is not an

integer

(ii) lim
x→+�

f(x) = 0 and lim
x→−�

f(x) = 0

18. (i) f(x) = 1 if x is a positive integer and f(x) 	= 1 if

x > 0 is not a positive integer

(ii) f(x) = −1 if x is a negative integer and f(x) 	= −1

if x < 0 is not a negative integer

(iii) lim
x→+�

f(x) = 1 and lim
x→−�

f(x) = −1

In Exercises 19–22: (i) Make a guess at the limit (if it ex-

ists) by evaluating the function at the specified x-values.

(ii) Confirm your conclusions about the limit by graphing

the function over an appropriate interval. (iii) If you have a

CAS, then use it to find the limit. [Note: For the trigonomet-

ric functions, be sure to set your calculating and graphing

utilities to the radian mode.]

C 19. (a) lim
x→1

x − 1

x3 − 1
; x = 2, 1.5, 1.1, 1.01, 1.001, 0, 0.5, 0.9,

0.99, 0.999

(b) lim
x→1+

x + 1

x3 − 1
; x = 2, 1.5, 1.1, 1.01, 1.001, 1.0001

(c) lim
x→1−

x + 1

x3 − 1
; x = 0, 0.5, 0.9, 0.99, 0.999, 0.9999

C 20. (a) lim
x→0

√
x + 1 − 1

x
; x = ±0.25,±0.1,±0.001,

±0.0001

(b) lim
x→0+

√
x + 1 + 1

x
; x = 0.25, 0.1, 0.001, 0.0001

(c) lim
x→0−

√
x + 1 + 1

x
; x = −0.25,−0.1, −0.001,

−0.0001

C 21. (a) lim
x→0

sin 3x

x
; x = ±0.25,±0.1,±0.001,±0.0001

(b) lim
x→−1

cos x

x + 1
; x = 0,−0.5,−0.9,−0.99,−0.999,

−1.5,−1.1,−1.01,−1.001

C 22. (a) lim
x→−1

tan(x + 1)

x + 1
; x = 0,−0.5,−0.9,−0.99,−0.999,

−1.5,−1.1,−1.01,−1.001

(b) lim
x→0

sin(5x)

sin(2x)
; x = ±0.25,±0.1,±0.001,±0.0001

23. Consider the motion of the ball described in Example 1. By

interpreting instantaneous velocity as a limit of average ve-

locity, make a conjecture for the value of the instantaneous

velocity of the ball 0.25 s after its release.

24. Consider the motion of the ball described in Example 1. By

interpreting instantaneous velocity as a limit of average ve-

locity, make a conjecture for the value of the instantaneous

velocity of the ball 0.75 s after its release.

In Exercises 25 and 26: (i) Approximate the y-coordinates

of all horizontal asymptotes of y = f(x) by evaluat-

ing f at the x-values ±10,±100,±1000,±100,000, and

±100,000,000. (ii) Confirm your conclusions by graphing

y = f(x) over an appropriate interval. (iii) If you have a

CAS, then use it to find the horizontal asymptotes.

C 25. (a) f(x) =
2x + 3

x + 4
(b) f(x) =

(

1 +
3

x

)x

(c) f(x) =
x2 + 1

x + 1
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C 26. (a) f(x) =
x2 − 1

5x2 + 1
(b) f(x) =

(

2 +
1

x

)x

(c) f(x) =
sin x

x

27. Assume that a particle is accelerated by a constant force.

The two curves v = n(t) and v = e(t) in the accompanying

figure provide velocity versus time curves for the particle

as predicted by classical physics and by the special theory

of relativity, respectively. The parameter c designates the

speed of light. Using the language of limits, describe the

differences in the long-term predictions of the two theories.

Time

v = n(t)
(Classical)

v = e(t)
(Relativity)

c

V
e
lo

c
it

y

v

t

Figure Ex-27

28. Let T = f(t) denote the temperature of a baked potato t

minutes after it has been removed from a hot oven. The ac-

companying figure shows the temperature versus time curve

for the potato, where r is the temperature of the room.

(a) What is the physical significance of lim
t→0+

f(t)?

(b) What is the physical significance of lim
t→+�

f(t)?

Time (min)

T = f (t )

T
e
m

p
e
ra

tu
re

 (
°
F
)

T

t

400

r

Figure Ex-28

In Exercises 29 and 30: (i) Conjecture a limit from numerical

evidence. (ii) Use the substitution t = 1/x to express the

limit as an equivalent limit in which t → 0+ or t → 0−, as

appropriate. (iii) Use a graphing utility to make a conjecture

about your limit in (ii).

29. (a) lim
x→+�

x sin

(

1

x

)

(b) lim
x→+�

1 − x

1 + x

(c) lim
x→−�

(

1 +
2

x

)x

30. (a) lim
x→+�

cos(π/x)

π/x
(b) lim

x→+�

x

1 + x

(c) lim
x→−�

(1 − 2x)1/x

31. Suppose that f(x) denotes a function such that

lim
t→0

f(1/t) = L

What can be said about

lim
x→+�

f(x) and lim
x→−�

f(x)?

32. (a) Do any of the trigonometric functions, sin x, cos x,

tan x, cot x, sec x, csc x, have horizontal asymptotes?

(b) Do any of them have vertical asymptotes? Where?

33. (a) Let

f(x) =
(

1 + x2
)1.1/x2

Graph f in the window [−1, 1]× [2.5, 3.5] and use the

calculator’s trace feature to make a conjecture about the

limit of f as x→0.

(b) Graphf in the window [−0.001, 0.001]×[2.5, 3.5] and

use the calculator’s trace feature to make a conjecture

about the limit of f as x→0.

(c) Graph f in the window [−0.000001, 0.000001] ×
[2.5, 3.5] and use the calculator’s trace feature to make

a conjecture about the limit of f as x→0.

(d) Later we will be able to show that

lim
x→0

(

1 + x2
)1.1/x2

≈ 3.00416602

What flaw do your graphs reveal about using numerical

evidence (as revealed by the graphs you obtained) to

make conjectures about limits?

Roundoff error is one source of inaccuracy in calculator

and computer computations. Another source of error, called

catastrophic subtraction, occurs when two nearly equal num-

bers are subtracted, and the result is used as part of another

calculation. For example, by hand calculation we have

(0.123456789012345 − 0.123456789012344) × 1015 = 1

However, a calculator that can only store 14 decimal digits

produces a value of 0 for this computation, since the num-

bers being subtracted are identical in the first 14 digits. Catas-

trophic subtraction can sometimes be avoided by rearranging

formulas algebraically, but your best defense is to be aware

that it can occur. Watch out for it in the next exercise.

C 34. (a) Let

f(x) =
x − sin x

x3

Make a conjecture about the limit of f as x → 0+ by

evaluating f(x) at x = 0.1, 0.01, 0.001, 0.0001.

(b) Evaluate f(x) at x = 0.000001, 0.0000001,

0.00000001, 0.000000001, 0.0000000001, and make

another conjecture.

(c) What flaw does this reveal about using numerical evi-

dence to make conjectures about limits?

(d) If you have a CAS, use it to show that the exact value

of the limit is 1
6
.
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35. (a) The accompanying figure shows two different views of

the graph of the function in Exercise 34, as generated

by Mathematica. What is happening?

(b) Use your graphing utility to generate the graphs, and

see whether the same problem occurs.

(c) Would you expect a similar problem to occur in the

vicinity of x = 0 for the function

f(x) =
1 − cos x

x
?

See if it does.

-0.001 -0.0005 0.0005 0.001

0.166667

0.166667

0.166667

0.166667

0.166667

-0.01 -0.005 0.005 0.01

0.166666

0.166666

0.166666

0.166667

Erratic graph generated by Mathematica

Figure Ex-35

2.2 COMPUTING LIMITS

In this section we will discuss algebraic techniques for computing limits of many func-

tions. We base these results on the informal development of the limit concept discussed

in the preceding section. A more formal derivation of these results is possible after

Section 2.4.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOME BASIC LIMITS
Our strategy for finding limits algebraically has two parts:

• First we will obtain the limits of some simple functions.

• Then we will develop a repertoire of theorems that will enable us to use the limits

of those simple functions as building blocks for finding limits of more complicated

functions.

We start with the cases of a constant function f(x) = k, the identity function f(x) = x,

and the reciprocal function f(x) = 1/x.

2.2.1 THEOREM. Let a and k be real numbers.

lim
x→a

k = k lim
x→a

x = a

lim
x→0−

1

x
= −� lim

x→0+

1

x
= +�

The four limits in Theorem 2.2.1 should be evident from inspection of the function graphs

shown in Figure 2.2.1.

In the case of the constant function f(x) = k, the values of f(x) do not change as x

varies, so the limit of f(x) is k, regardless of at which number a the limit is taken. For

example,

lim
x→−25

3 = 3, lim
x→0

3 = 3, lim
x→π

3 = 3
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y = x

x a x

a

f (x) = x

f (x) = x

x

y

x

y

x

y

x

y

x a x

x → a  
lim k = k

x →a  
lim x = a

y = f (x) = k
k

x

y  = 1
xy = 1

x

1
x

1
x

x

x→0+ 
lim = +∞1

x
x→0− 
lim = −∞1

x

Figure 2.2.1

Since the identity function f(x) = x just echoes its input, it is clear that f(x) = x→a

as x→a. In terms of our informal definition of limits (2.1.1), if we decide just how close

to a we would like the value of f(x) = x to be, we need only restrict its input x to be just

as close to a.

The one-sided limits of the reciprocal function f(x) = 1/x about 0 should conform

with your experience with fractions: making the denominator closer to zero increases the

magnitude of the fraction (i.e., increases its absolute value). This is illustrated in Table 2.2.1.

Table 2.2.1

values conclusion

–1

–1

1

1

x

1/x

x

1/x

  – 0.1

  –10

    0.1

    10

  – 0.01

  –100

    0.01

    100

  – 0.001

  –1000

    0.001

    1000

  – 0.0001

  –10,000

    0.0001

    10,000

. . .

. . .

. . .

. . .

As  x → 0– the value of 1/x 

decreases without bound.

As  x → 0+ the value of 1/x 

increases without bound. 

The following theorem, parts of which are proved in Appendix G, will be our basic tool

for finding limits algebraically.

2.2.2 THEOREM. Let a be a real number, and suppose that

lim
x→a

f(x) = L1 and lim
x→a

g(x) = L2

That is, the limits exist and have values L1 and L2, respectively. Then,

(a) lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x) = L1 + L2

(b) lim
x→a

[f(x) − g(x)] = lim
x→a

f(x) − lim
x→a

g(x) = L1 − L2

(c) lim
x→a

[f(x)g(x)] =
(

lim
x→a

f(x)
) (

lim
x→a

g(x)
)

= L1L2

(d ) lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
=

L1

L2

, provided L2 	= 0

(e) lim
x→a

n
√

f(x) = n

√

lim
x→a

f(x) = n
√

L1, provided L1 > 0 if n is even.

Moreover, these statements are also true for one-sided limits.
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A casual restatement of this theorem is as follows:

(a) The limit of a sum is the sum of the limits.

(b) The limit of a difference is the difference of the limits.

(c) The limit of a product is the product of the limits.

(d ) The limit of a quotient is the quotient of the limits, provided the limit of the denom-

inator is not zero.

(e) The limit of an nth root is the nth root of the limit.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
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•
•
•
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•
•
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•
•
•
•
•
•
•
•
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•
•

REMARK. Although results (a) and (c) in Theorem 2.2.2 are stated for two functions, they

hold for any finite number of functions. For example, if the limits of f(x), g(x), and h(x)

exist as x→a, then the limit of their sum and the limit of their product also exist as x→a

and are given by the formulas

lim
x→a

[f(x) + g(x) + h(x)] = lim
x→a

f(x) + lim
x→a

g(x) + lim
x→a

h(x)

lim
x→a

[f(x)g(x)h(x)] =
(

lim
x→a

f(x)
) (

lim
x→a

g(x)
) (

lim
x→a

h(x)
)

In particular, if f(x) = g(x) = h(x), then this yields

lim
x→a

[f(x)]3 =
(

lim
x→a

f(x)
)3

More generally, if n is a positive integer, then the limit of the nth power of a function is the

nth power of the function’s limit. Thus,

lim
x→a

xn =
(

lim
x→a

x
)n

= an (1)

For example,

lim
x→3

x4 = 34 = 81

Another useful result follows from part (c) of Theorem 2.2.2 in the special case when

one of the factors is a constant k:

lim
x→a

(k · f(x)) =
(

lim
x→a

k
)

·
(

lim
x→a

f(x)
)

= k ·
(

lim
x→a

f(x)
)

(2)

and similarly for limx→a replaced by a one-sided limit, limx→a+ or limx→a− . Rephrased,

this last statement says:

A constant factor can be moved through a limit symbol.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS OF POLYNOMIALS AND
RATIONAL FUNCTIONS AS x → a

Example 1 Find lim
x→5

(x2 − 4x + 3) and justify each step.

Solution. First note that limx→5 x
2 = 52 = 25 by Equation (1). Also, from Equation (2),

limx→5 4x = 4(limx→5 x) = 4(5) = 20. Since limx→5 3 = 3 by Theorem 2.2.1, we may

appeal to Theorem 2.2.2(a) and (b) to write

lim
x→5

(x2 − 4x + 3) = lim
x→5

x2 − lim
x→5

4x + lim
x→5

3 = 25 − 20 + 3 = 8

However, for conciseness, it is common to reverse the order of this argument and simply
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write

lim
x→5

(x2 − 4x + 3) = lim
x→5

x2 − lim
x→5

4x + lim
x→5

3 Theorem 2.2.2(a), (b)

=
(

lim
x→5

x
)2

− 4 lim
x→5

x + lim
x→5

3 Equations (1), (2)

= 52 − 4(5) + 3 Theorem 2.2.1

= 8 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In our presentation of limit arguments, we will adopt the convention of providing

just a concise, reverse argument, bearing in mind that the validity of each equality may be

conditional upon the successful resolution of the remaining limits.

Our next result will show that the limit of a polynomial p(x) at x = a is the same as

the value of the polynomial at x = a. This greatly simplifies the computation of limits of

polynomials by allowing us to simply evaluate the polynomial.

2.2.3 THEOREM. For any polynomial

p(x) = c0 + c1x + · · · + cnx
n

and any real number a,

lim
x→a

p(x) = c0 + c1a + · · · + cna
n = p(a)

Proof.

lim
x→a

p(x) = lim
x→a

(

c0 + c1x + · · · + cnx
n
)

= lim
x→a

c0 + lim
x→a

c1x + · · · + lim
x→a

cnx
n

= lim
x→a

c0 + c1 lim
x→a

x + · · · + cn lim
x→a

xn

= c0 + c1a + · · · + cna
n = p(a)

Recall that a rational function is a ratio of two polynomials. Theorem 2.2.3 and Theorem

2.2.2(d) can often be used in combination to compute limits of rational functions.

Example 2 Find lim
x→2

5x3 + 4

x − 3
.

Solution.

lim
x→2

5x3 + 4

x − 3
=

lim
x→2

(5x3 + 4)

lim
x→2

(x − 3)
Theorem 2.2.2(d )

=
5 · 23 + 4

2 − 3
= −44 Theorem 2.2.3 ◭

2.2.4 THEOREM. Consider the rational function

f(x) =
n(x)

d(x)

where n(x) and d(x) are polynomials. For any real number a,

(a) if d(a) 	= 0, then lim
x→a

f(x) = f(a).

(b) if d(a) = 0 but n(a) 	= 0, then lim
x→a

f(x) does not exist.
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Proof. If d(a) 	= 0, then

lim
x→a

f(x) = lim
x→a

n(x)

d(x)

=
lim
x→a

n(x)

lim
x→a

d(x)
Theorem 2.2.2(d )

=
n(a)

d(a)
= f(a) Theorem 2.2.3

If d(a) = 0 and n(a) 	= 0, then we again appeal to your experience with fractions. For

values of x sufficiently near a, the value of n(x) will be near n(a) and not zero. Thus, since

0 = d(a) = limx→a d(x), as values of x approach a, the magnitude (absolute value) of the

fraction n(x)/d(x) will increase without bound, so limx→a f(x) does not exist.

As an illustration of part (b) of Theorem 2.2.4, consider

lim
x→3

5x3 + 4

x − 3

Note that limx→3(5x
3 + 4) = 5 · 33 + 4 = 139 and limx→3(x − 3) = 3 − 3 = 0. It is

evident from Table 2.2.2 that

lim
x→3

5x3 + 4

x − 3

does not exist.

Table 2.2.2

values conclusion

  2.99

–13,765.45

  2.999

–138,865.04

  2.9999

–1,389,865.00

. . .

. . .

  3.01

  14,035.45

  3.001

  139,135.05

  3.0001

  1,390,135.00

x

5x3 + 4
x – 3

5x3 + 4
x – 3

5x3 + 4
x – 3

x

5x3 + 4
x – 3

. . .

. . .

The value of                decreases

without bound as  x → 3–.

The value of                increases

without bound as  x → 3+.

In Theorem 2.2.4(b), where the limit of the denominator is zero but the limit of the

numerator is not zero, the response “does not exist” can be elaborated upon in one of the

following three ways.

• The limit may be −�.

• The limit may be +�.

• The limit may be −� from one side and +� from the other.

Figure 2.2.2 illustrates these three possibilities graphically for rational functions of the form

1/(x − a), 1/(x − a)2, and −1/(x − a)2.

Example 3 Find

(a) lim
x→4−

2 − x

(x − 4)(x + 2)
(b) lim

x→4+

2 − x

(x − 4)(x + 2)
(c) lim

x→4

2 − x

(x − 4)(x + 2)

Solution. With n(x) = 2 − x and d(x) = (x − 4)(x + 2), we see that n(4) = −2 and

d(4) = 0. By Theorem 2.2.4(b), each of the limits does not exist. To be more specific, we
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x xx

a a a

y = 
1

x – a
y = 

1

(x – a)2
y = –

1

(x – a)2

1
x – a

x→ a+
lim            = +∞

1
x – a

x→ a–
lim            = −∞

1

(x – a)2
x→ a

lim               = +∞ 1

(x – a)2
x→ a

lim −             = −∞

Figure 2.2.2

analyze the sign of the ratio n(x)/d(x) near x = 4. The sign of the ratio, which is given

in Figure 2.2.3, is determined by the signs of 2 − x, x − 4, and x + 2. (The method of

test values, discussed in Appendix A, provides a simple way of finding the sign of the ratio

here.) It follows from this figure that as x approaches 4 from the left, the ratio is always

positive; and as x approaches 4 from the right, the ratio is always negative. Thus,

lim
x→4−

2 − x

(x − 4)(x + 2)
= +� and lim

x→4+

2 − x

(x − 4)(x + 2)
= −�

Because the one-sided limits have opposite signs, all we can say about the two-sided limit

is that it does not exist. ◭

–2 2 4

0+ + + – – – – – – –+ +

Sign of
2 − x

(x − 4)(x + 2)

x

Figure 2.2.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INDETERMINATE FORMS OF TYPE
0/0

The missing case in Theorem 2.2.4 is when both the numerator and the denominator of a

rational function f(x) = n(x)/d(x) have a zero at x = a. In this case, n(x) and d(x) will

each have a factor of x − a, and canceling this factor may result in a rational function to

which Theorem 2.2.4 applies.

Example 4 Find lim
x→2

x2 − 4

x − 2
.

Solution. Since 2 is a zero of both the numerator and denominator, they share a common

factor of x − 2. The limit can be obtained as follows:

lim
x→2

x2 − 4

x − 2
= lim

x→2

(x − 2)(x + 2)

x − 2
= lim

x→2
(x + 2) = 4 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Although correct, the second equality in the preceding computation needs some

justification, since canceling the factor x − 2 alters the function by expanding its domain.

However, as discussed in Example 5 of Section 1.2, the two functions are identical, except at

x = 2 (Figure 1.2.9). From our discussions in the last section, we know that this difference

has no effect on the limit as x approaches 2.

Example 5 Find

(a) lim
x→3

x2 − 6x + 9

x − 3
(b) lim

x→−4

2x + 8

x2 + x − 12
(c) lim

x→5

x2 − 3x − 10

x2 − 10x + 25

Solution (a). The numerator and the denominator both have a zero at x = 3, so there is a

common factor of x − 3. Then,

lim
x→3

x2 − 6x + 9

x − 3
= lim

x→3

(x − 3)2

x − 3
= lim

x→3
(x − 3) = 0
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Solution (b). The numerator and the denominator both have a zero at x = −4, so there is

a common factor of x − (−4) = x + 4. Then,

lim
x→−4

2x + 8

x2 + x − 12
= lim

x→−4

2(x + 4)

(x + 4)(x − 3)
= lim

x→−4

2

x − 3
= −

2

7

Solution (c). The numerator and the denominator both have a zero at x = 5, so there is a

common factor of x − 5. Then,

lim
x→5

x2 − 3x − 10

x2 − 10x + 25
= lim

x→5

(x − 5)(x + 2)

(x − 5)(x − 5)
= lim

x→5

x + 2

x − 5

However,

lim
x→5

(x + 2) = 7 	= 0 and lim
x→5

(x − 5) = 0

By Theorem 2.2.4(b),

lim
x→5

x2 − 3x − 10

x2 − 10x + 25
= lim

x→5

x + 2

x − 5

does not exist. ◭

The case of a limit of a quotient,

lim
x→a

f(x)

g(x)

where limx→a f(x) = 0 and limx→a g(x) = 0, is called an indeterminate form of type

0/0. Note that the limits in Examples 4 and 5 produced a variety of answers. The word

“indeterminate” here refers to the fact that the limiting behavior of the quotient cannot

be determined without further study. The expression “0/0” is just a mnemonic device

to describe the circumstance of a limit of a quotient in which both the numerator and

denominator approach 0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS INVOLVING RADICALS
Example 6 Find lim

x→0

x
√
x + 1 − 1

.

Solution. Recall that in Example 2 of Section 2.1 we conjectured this limit to be 2. Note

that this limit expression is an indeterminate form of type 0/0, so Theorem 2.2.2(d) does

not apply. One strategy for resolving this limit is to first rationalize the denominator of the

function. This yields

x
√
x + 1 − 1

=
x(

√
x + 1 + 1)

(x + 1) − 1
=

√
x + 1 + 1, x 	= 0

Therefore,

lim
x→0

x
√
x + 1 − 1

= lim
x→0

(
√
x + 1 + 1) = 2 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS OF PIECEWISE-DEFINED
FUNCTIONS

For functions that are defined piecewise, a two-sided limit at an x-value where the formula

changes is best obtained by first finding the one-sided limits at that number.

Example 7 Let

f(x) =









1/(x + 2), x < −2

x2 − 5, −2 < x ≤ 3
√
x + 13, x > 3

Find

(a) lim
x→−2

f(x) (b) lim
x→0

f(x) (c) lim
x→3

f(x)
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Solution (a). As x approaches −2 from the left, the formula for f is

f(x) =
1

x + 2

so that

lim
x→2−

f(x) = lim
x→2−

1

x + 2
= −�

As x approaches −2 from the right, the formula for f is

f(x) = x2 − 5

so that

lim
x→−2+

f(x) = lim
x→2+

(x2 − 5) = (−2)2 − 5 = −1

Thus, limx→−2 f(x) does not exist.

Solution (b). As x approaches 0 from either the left or the right, the formula for f is

f(x) = x2 − 5

Thus,

lim
x→0

f(x) = lim
x→0

(x2 − 5) = 02 − 5 = −5

Solution (c). As x approaches 3 from the left, the formula for f is

f(x) = x2 − 5

so that

lim
x→3−

f(x) = lim
x→3−

(x2 − 5) = 32 − 5 = 4

As x approaches 3 from the right, the formula for f is

f(x) =
√
x + 13

so that

lim
x→3+

f(x) = lim
x→3+

√
x + 13 =

√

lim
x→3+

(x + 13) =
√

3 + 13 = 4

Since the one-sided limits are equal, we have

lim
x→3

f(x) = 4 ◭

EXERCISE SET 2.2
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find the limit by inspection.

(a) lim
x→8

7 (b) lim
x→0+

π

(c) lim
x→−2

3x (d) lim
y→3+

12y

2. In each part, find the stated limit of f(x) = x/|x| by in-

spection.

(a) lim
x→5

f(x) (b) lim
x→−5

f(x)

(c) lim
x→0+

f(x) (d) lim
x→0−

f(x)

3. Given that

lim
x→a

f(x) = 2, lim
x→a

g(x) = −4, lim
x→a

h(x) = 0

find the limits that exist. If the limit does not exist, explain

why.

(a) lim
x→a

[f(x) + 2g(x)] (b) lim
x→a

[h(x) − 3g(x) + 1]

(c) lim
x→a

[f(x)g(x)] (d) lim
x→a

[g(x)]2

(e) lim
x→a

3
√

6 + f(x) (f ) lim
x→a

2

g(x)

(g) lim
x→a

3f(x) − 8g(x)

h(x)
(h) lim

x→a

7g(x)

2f(x) + g(x)

4. Use the graphs of f and g in the accompanying figure to

find the limits that exist. If the limit does not exist, explain

why.
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(a) lim
x→2

[f(x) + g(x)] (b) lim
x→0

[f(x) + g(x)]

(c) lim
x→0+

[f(x) + g(x)] (d) lim
x→0−

[f(x) + g(x)]

(e) lim
x→2

f(x)

1 + g(x)
(f ) lim

x→2

1 + g(x)

f(x)

(g) lim
x→0+

√

f(x) (h) lim
x→0−

√

f(x)

1

1

x

y

1

1

x

y
y = f (x) y = g(x)

Figure Ex-4

In Exercises 5–30, find the limits.

5. lim
y→2−

(y − 1)(y − 2)

y + 1
6. lim

x→3

x2 − 2x

x + 1

7. lim
x→4

x2 − 16

x − 4
8. lim

x→0

6x − 9

x3 − 12x + 3

9. lim
x→1+

x4 − 1

x − 1
10. lim

t→−2

t3 + 8

t + 2

11. lim
x→−1

x2 + 6x + 5

x2 − 3x − 4
12. lim

x→2

x2 − 4x + 4

x2 + x − 6

13. lim
t→2

t3 + 3t2 − 12t + 4

t3 − 4t
14. lim

t→1

t3 + t2 − 5t + 3

t3 − 3t + 2

15. lim
x→3+

x

x − 3
16. lim

x→3−

x

x − 3

17. lim
x→3

x

x − 3
18. lim

x→2+

x

x2 − 4

19. lim
x→2−

x

x2 − 4
20. lim

x→2

x

x2 − 4

21. lim
y→6+

y + 6

y2 − 36
22. lim

y→6−

y + 6

y2 − 36

23. lim
y→6

y + 6

y2 − 36
24. lim

x→4+

3 − x

x2 − 2x − 8

25. lim
x→4−

3 − x

x2 − 2x − 8
26. lim

x→4

3 − x

x2 − 2x − 8

27. lim
x→2+

1

|2 − x|
28. lim

x→3−

1

|x − 3|

29. lim
x→9

x − 9
√
x − 3

30. lim
y→4

4 − y

2 − √
y

31. Verify the limit in Example 1 of Section 2.1. That is, find

lim
t1 →0.5

−16t2
1 + 29t1 − 10.5

t1 − 0.5

32. Let s(t) = −16t2 + 29t + 6. Find

lim
t→1.5

s(t) − s(1.5)

t − 1.5

33. Let

f(x) =

�
x − 1, x ≤ 3

3x − 7, x > 3

Find

(a) lim
x→3−

f(x) (b) lim
x→3+

f(x) (c) lim
x→3

f(x).

34. Let

g(t) =
{
t2, t ≥ 0

t − 2, t < 0

Find

(a) lim
t→0−

g(t) (b) lim
t→0+

g(t) (c) lim
t→0

g(t).

35. Let f(x) =
x3 − 1

x − 1
.

(a) Find lim
x→1

f(x).

(b) Sketch the graph of y = f(x).

36. Let

f(x) =









x2 − 9

x + 3
, x 	= −3

k, x = −3

(a) Find k so that f (−3) = lim
x→−3

f (x).

(b) With k assigned the value limx→−3 f (x), show that

f (x) can be expressed as a polynomial.

37. (a) Explain why the following calculation is incorrect.

lim
x→0+�1x −

1

x2�= lim
x→0+

1

x
− lim

x→0+

1

x2

= +� − (+�) = 0

(b) Show that lim
x→0+�1x −

1

x2�= −�.

38. Find lim
x→0−�1x +

1

x2�.
In Exercises 39 and 40, first rationalize the numerator, then

find the limit.

39. lim
x→0

√
x + 4 − 2

x
40. lim

x→0

√

x2 + 4 − 2

x

41. Let p(x) and q(x) be polynomials, and suppose q(x0) = 0.

Discuss the behavior of the graph of y = p(x)/q(x) in the

vicinity of x = x0. Give examples to support your conclu-

sions.
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2.3 COMPUTING LIMITS: END BEHAVIOR

In this section we will discuss algebraic techniques for computing limits at ±� for

many functions. We base these results on the informal development of the limit concept

discussed in Section 2.1. A more formal development of these results is possible after

Section 2.4.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOME BASIC LIMITS
The behavior of a function toward the extremes of its domain is sometimes called its end

behavior. Here we will use limits to investigate the end behavior of a function as x→−� or

as x→+�. As in the last section, we will begin by obtaining limits of some simple functions

and then use these as building blocks for finding limits of more complicated functions.

2.3.1 THEOREM. Let k be a real number.

lim
x→−�

k = k lim
x→+�

k = k

lim
x→−�

x = −� lim
x→+�

x = +�

lim
x→−�

1

x
= 0 lim

x→+�

1

x
= 0

The six limits in Theorem 2.3.1 should be evident from inspection of the function graphs

in Figure 2.3.1.

x →−∞  
lim x = −∞

x →+∞  
lim x = +∞

y = x

x

f (x) = x

y = x

x

f (x) = x

x

y

x

y

x

y

x

y

x

y

x x

k
y = f (x) = k

x → +∞
lim  k = k,   lim  k = k 

 x → −∞

y = 1
x

1
x

y  = 1
x

1
x

x

x

x→+∞ 
lim = 01

x
x→−∞ 
lim = 01

x

Figure 2.3.1
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The limits of the reciprocal function f (x) = 1/x should make sense to you intuitively,

based on your experience with fractions: increasing the magnitude of x makes its reciprocal

closer to zero. This is illustrated in Table 2.3.1.

Table 2.3.1

values conclusion

–1

–1

 1

 1

x

1/x

x

1/x

  –10

  –0.1

    10

    0.1

  –100

  –0.01

    100

    0.01

  –1000

  –0.001

    1000

    0.001

  –10,000

  –0.0001

    10,000

    0.0001

. . .

. . .

. . .

. . .

As  x → –∞ the value of 1/x 

increases toward zero.

As  x → +∞ the value of 1/x 

decreases toward zero.

The following theorem mirrors Theorem 2.2.2 as our tool for finding limits at ±� alge-

braically. (The proof is similar to that of the portions of Theorem 2.2.2 that are proved in

Appendix G.)

2.3.2 THEOREM. Suppose that

lim
x→+�

f(x) = L1 and lim
x→+�

g(x) = L2

That is, the limits exist and have values L1 and L2, respectively. Then,

(a) lim
x→+�

[f(x) + g(x)] = lim
x→+�

f(x) + lim
x→+�

g(x) = L1 + L2

(b) lim
x→+�

[f(x) − g(x)] = lim
x→+�

f(x) − lim
x→+�

g(x) = L1 − L2

(c) lim
x→+�

[f(x)g(x)] =
(

lim
x→+�

f(x)

) (

lim
x→+�

g(x)

)

= L1L2

(d ) lim
x→+�

f(x)

g(x)
=

lim
x→+�

f(x)

lim
x→+�

g(x)
=

L1

L2

, provided L2 	= 0

(e) lim
x→+�

n
√

f(x) = n

√

lim
x→+�

f(x) = n
√

L1, provided L1 > 0 if n is even.

Moreover, these statements are also true if x→−�.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. As in the remark following Theorem 2.2.2, results (a) and (c) can be extended to

sums or products of any finite number of functions. In particular, for any positive integer n,

lim
x→+�

(f(x))n =
(

lim
x→+�

f(x)

)n

lim
x→−�

(f(x))n =
(

lim
x→−�

f(x)

)n

Also, since limx→+�
(1/x) = 0, if n is a positive integer, then

lim
x→+�

1

xn
=

(

lim
x→+�

1

x

)n

= 0 lim
x→−�

1

xn
=

(

lim
x→−�

1

x

)n

= 0 (1)

For example,

lim
x→+�

1

x4
= 0 and lim

x→−�

1

x4
= 0

Another useful result follows from part (c) of Theorem 2.3.2 in the special case where

one of the factors is a constant k:

lim
x→+�

(k · f(x)) =
(

lim
x→+�

k

)

·
(

lim
x→+�

f(x)

)

= k ·
(

lim
x→+�

f(x)

)

(2)
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

and similarly, for limx→+�
replaced by limx→−�

. Rephrased, this last statement says:

A constant factor can be moved through a limit symbol.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS OF x
n AS x → ±∞

In Figure 2.3.2 we have graphed the polynomials of the form xn for n = 1, 2, 3, and 4.

Below each figure we have indicated the limits as x→+� and as x→−�. The results in

the figure are special cases of the following general results:

lim
x→+�

xn = +�, n = 1, 2, 3, . . . (3)

lim
x→−�

xn =

{

−�, n = 1, 3, 5, . . .

+�, n = 2, 4, 6, . . .
(4)

-4 4

-8

8

y = x

x→+∞ 
lim  x = +∞

x→−∞ 
lim  x = −∞

x→+∞ 
lim  x2 = +∞

x→−∞ 
lim  x2 = +∞

x→+∞ 
lim  x4 = +∞

x→−∞ 
lim  x4 = +∞

x→+∞ 
lim  x3 = +∞

x→−∞ 
lim  x3 = −∞

-4 4

-8

8

y = x2

-4 4

-8

8 y = x3

-4 4

-8

8
y = x4

x

y

x

y

x

y

x

y

Figure 2.3.2

Multiplying xn by a positive real number does not affect limits (3) and (4), but multiplying

by a negative real number reverses the sign.

Example 1

lim
x→+�

2x5 = +�, lim
x→−�

2x5 = −�

lim
x→+�

−7x6 = −�, lim
x→−�

−7x6 = −� ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS OF POLYNOMIALS AS
x → ±∞

There is a useful principle about polynomials which, expressed informally, states that:

The end behavior of a polynomial matches the end behavior of its highest degree term.

More precisely, if cn 	= 0 then

lim
x→−�

(

c0 + c1x + · · · + cnx
n
)

= lim
x→−�

cnx
n (5)

lim
x→+�

(

c0 + c1x + · · · + cnx
n
)

= lim
x→+�

cnx
n (6)

We can motivate these results by factoring out the highest power of x from the polynomial
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and examining the limit of the factored expression. Thus,

c0 + c1x + · · · + cnx
n = xn

(

c0

xn
+

c1

xn−1
+ · · · + cn

)

As x→−� or x→+�, it follows from (1) that all of the terms with positive powers of x

in the denominator approach 0, so (5) and (6) are certainly plausible.

Example 2

lim
x→−�

(7x5 − 4x3 + 2x − 9) = lim
x→−�

7x5 = −�

lim
x→−�

(−4x8 + 17x3 − 5x + 1) = lim
x→−�

−4x8 = −� ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS OF RATIONAL FUNCTIONS
AS x → ±∞

A useful technique for determining the end behavior of a rational functionf(x) = n(x)/d(x)

is to factor and cancel the highest power of x that occurs in the denominator d(x) from

both n(x) and d(x). The denominator of the resulting fraction then has a (nonzero) limit

equal to the leading coefficient of d(x), so the limit of the resulting fraction can be quickly

determined using (1), (5), and (6). The following examples illustrate this technique.

Example 3 Find lim
x→+�

3x + 5

6x − 8
.

Solution. Divide the numerator and denominator by the highest power of x that occurs

in the denominator; that is, x1 = x. We obtain

lim
x→+�

3x + 5

6x − 8
= lim

x→+�

x(3 + 5/x)

x(6 − 8/x)
= lim

x→+�

3 + 5/x

6 − 8/x
=

lim
x→+�

(3 + 5/x)

lim
x→+�

(6 − 8/x)

=
lim

x→+�

3 + lim
x→+�

5/x

lim
x→+�

6 − lim
x→+�

8/x
=

3 + 5 lim
x→+�

1/x

6 − 8 lim
x→+�

1/x

=
3 + (5 · 0)

6 − (8 · 0)
=

1

2
◭

Example 4 Find

(a) lim
x→−�

4x2 − x

2x3 − 5
(b) lim

x→−�

5x3 − 2x2 + 1

3x + 5

Solution (a). Divide the numerator and denominator by the highest power of x that occurs

in the denominator, namely x3. We obtain

lim
x→−�

4x2 − x

2x3 − 5
= lim

x→−�

x3(4/x − 1/x2)

x3(2 − 5/x3)
= lim

x→−�

4/x − 1/x2

2 − 5/x3

=
lim

x→−�

(4/x − 1/x2)

lim
x→−�

(2 − 5/x3)
=

(4 · 0) − 0

2 − (5 · 0)
=

0

2
= 0

Solution (b). Divide the numerator and denominator by x to obtain

lim
x→−�

5x3 − 2x2 + 1

3x + 5
= lim

x→−�

5x2 − 2x + 1/x

3 + 5/x
= +�

where the final step is justified by the fact that

5x2 − 2x→+�,
1

x
→0, and 3 +

5

x
→3

as x→−�. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS INVOLVING RADICALS
Example 5 Find lim

x→+�

3

√

3x + 5

6x − 8
.

Solution.

lim
x→+�

3

√

3x + 5

6x − 8
= 3

√

lim
x→+�

3x + 5

6x − 8
Theorem 2.3.2(e)

= 3

√

1

2
Example 3 ◭

Example 6 Find

(a) lim
x→+�

√

x2 + 2

3x − 6
(b) lim

x→−�

√

x2 + 2

3x − 6

In both parts it would be helpful to manipulate the function so that the powers of x are

transformed to powers of 1/x. This can be achieved in both cases by dividing the numerator

and denominator by |x| and using the fact that
√
x2 = |x|.

Solution (a). As x → +�, the values of x under consideration are positive, so we can

replace |x| by x where helpful. We obtain

lim
x→+�

√

x2 + 2

3x − 6
= lim

x→+�

√

x2 + 2/|x|
(3x − 6)/|x|

= lim
x→+�

√

x2 + 2/
√
x2

(3x − 6)/x

= lim
x→+�

√

1 + 2/x2

3 − 6/x
=

lim
x→+�

√

1 + 2/x2

lim
x→+�

(3 − 6/x)

=

√

lim
x→+�

(1 + 2/x2)

lim
x→+�

(3 − 6/x)
=

√�
lim

x→+�

1
�

+
�

2 lim
x→+�

1/x2

��
lim

x→+�

3
�

−
�

6 lim
x→+�

1/x
�

=
√

1 + (2 · 0)

3 − (6 · 0)
=

1

3

Solution (b). As x → −�, the values of x under consideration are negative, so we can

replace |x| by −x where helpful. We obtain

lim
x→−�

√

x2 + 2

3x − 6
= lim

x→−�

√

x2 + 2/|x|
(3x − 6)/|x|

= lim
x→−�

√

x2 + 2/
√
x2

(3x − 6)/(−x)

= lim
x→−�

√

1 + 2/x2

−3 + 6/x
= −

1

3
◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Use a graphing utility to explore the end behavior of

f(x) =
√
x2 + 2

3x − 6

Your investigation should support the results of Example 6.

-2 -1 1 2 3 4

-1

1

2

3

4

x

y

y = √x6 + 5 – x3

-1 1 2 3 4

-1

1

2

3

4

x

y

y = 2.5

y = √x6 + 5x3 – x3, x ≥ 0

(a)

(b)

Figure 2.3.3

Example 7 Find

(a) lim
x→+�

(
√

x6 + 5 − x3) (b) lim
x→+�

(
√

x6 + 5x3 − x3)

Solution. Graphs of the functions f(x) =
√
x6 + 5−x3 and g(x) =

√
x6 + 5x3 −x3 for

x ≥ 0 are shown in Figure 2.3.3. From the graphs we might conjecture that the limits are 0

and 2.5, respectively. To confirm this, we treat each function as a fraction with denominator
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1 and rationalize the numerator.

lim
x→+�

(
√

x6 + 5 − x3) = lim
x→+�

(
√

x6 + 5 − x3)

(√
x6 + 5 + x3

√
x6 + 5 + x3

)

= lim
x→+�

(x6 + 5) − x6

√
x6 + 5 + x3

= lim
x→+�

5
√
x6 + 5 + x3

= lim
x→+�

5/x3

√
1 + 5/x6 + 1

√
x6 = x3 for x > 0

=
0

√
1 + 0 + 1

= 0

lim
x→+�

(
√

x6 + 5x3 − x3) = lim
x→+�

(
√

x6 + 5x3 − x3)

(√
x6 + 5x3 + x3

√
x6 + 5x3 + x3

)

= lim
x→+�

(x6 + 5x3) − x6

√
x6 + 5x3 + x3

= lim
x→+�

5x3

√
x6 + 5x3 + x3

= lim
x→+�

5
√

1 + 5/x3 + 1

√
x6 = x3 for x > 0

=
5

√
1 + 0 + 1

=
5

2
◭

•
•
•
•
•
•
•
•

REMARK. Example 7 illustrates an indeterminate form of type ∞ – ∞. Exercises 31–34

explore more examples of this type.

EXERCISE SET 2.3 Graphing Calculator
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find the limit by inspection.

(a) lim
x→−�

(−3) (b) lim
h→+�

(−2h)

2. In each part, find the stated limit of f(x) = x/|x| by in-

spection.

(a) lim
x→+�

f(x) (b) lim
x→−�

f(x)

3. Given that

lim
x→+�

f(x) = 3, lim
x→+�

g(x) = −5, lim
x→+�

h(x) = 0

find the limits that exist. If the limit does not exist, explain

why.

(a) lim
x→+�

[f(x) + 3g(x)] (b) lim
x→+�

[h(x)− 4g(x)+ 1]

(c) lim
x→+�

[f(x)g(x)] (d) lim
x→+�

[g(x)]2

(e) lim
x→+�

3
√

5 + f(x) (f ) lim
x→+�

3

g(x)

(g) lim
x→+�

3h(x) + 4

x2
(h) lim

x→+�

6f(x)

5f(x) + 3g(x)

4. Given that

lim
x→−�

f(x) = 7, lim
x→−�

g(x) = −6

find the limits that exist. If the limit does not exist, explain

why.

(a) lim
x→−�

[2f(x) − g(x)] (b) lim
x→−�

[6f(x) + 7g(x)]

(c) lim
x→−�

[x2 + g(x)] (d) lim
x→−�

[x2g(x)]

(e) lim
x→−�

3
√

f(x)g(x) (f ) lim
x→−�

g(x)

f(x)

(g) lim
x→−�

[

f(x) +
g(x)

x

]

(h) lim
x→−�

xf(x)

(2x + 3)g(x)

In Exercises 5–28, find the limits.

5. lim
x→−�

(3 − x) 6. lim
x→−��5 −

1

x�
7. lim

x→+�

(1 + 2x − 3x5) 8. lim
x→+�

(2x3−100x+5)

9. lim
x→+�

√
x 10. lim

x→−�

√
5 − x

11. lim
x→+�

3x + 1

2x − 5
12. lim

x→+�

5x2 − 4x

2x2 + 3

13. lim
y→−�

3

y + 4
14. lim

x→+�

1

x − 12

15. lim
x→−�

x − 2

x2 + 2x + 1
16. lim

x→+�

5x2 + 7

3x2 − x

17. lim
x→+�

3

√

2 + 3x − 5x2

1 + 8x2
18. lim

s→+�

3

√

3s7 − 4s5

2s7 + 1
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19. lim
x→−�

√

5x2 − 2

x + 3
20. lim

x→+�

√

5x2 − 2

x + 3

21. lim
y→−�

2 − y
√

7 + 6y2
22. lim

y→+�

2 − y
√

7 + 6y2

23. lim
x→−�

√

3x4 + x

x2 − 8
24. lim

x→+�

√

3x4 + x

x2 − 8

25. lim
x→+�

7 − 6x5

x + 3
26. lim

t→−�

5 − 2t3

t2 + 1

27. lim
t→+�

6 − t3

7t3 + 3
28. lim

x→−�

x + 4x3

1 − x2 + 7x3

29. Let

f(x) =







2x2 + 5, x < 0

3 − 5x3

1 + 4x + x3
, x ≥ 0

Find

(a) lim
x→−�

f(x) (b) lim
x→+�

f(x).

30. Let

g(t) =











2 + 3t

5t2 + 6
, t < 1,000,000

√
36t2 − 100

5 − t
, t > 1,000,000

Find

(a) lim
t→−�

g(t) (b) lim
t→+�

g(t).

In Exercises 31–34, find the limits.

31. lim
x→+�

(
√

x2 + 3 − x) 32. lim
x→+�

(
√

x2 − 3x − x)

33. lim
x→+�

(
√

x2 + ax − x)

34. lim
x→+�

(
√

x2 + ax −
√

x2 + bx)

35. Discuss the limits of p(x) = (1 − x)n as x → +� and

x→−� for positive integer values of n.

36. Let p(x) = (1 − x)n and q(x) = (1 − x)m. Discuss the

limits of p(x)/q(x) as x → +� and x → −� for positive

integer values of m and n.

37. Let p(x) be a polynomial of degree n. Discuss the limits

of p(x)/xm as x → +� and x → −� for positive integer

values of m.

38. In each part, find examples of polynomials p(x) and q(x)

that satisfy the stated condition and such that p(x)→ +�

and q(x)→+� as x→+�.

(a) lim
x→+�

p(x)

q(x)
= 1 (b) lim

x→+�

p(x)

q(x)
= 0

(c) lim
x→+�

p(x)

q(x)
= +� (d) lim

x→+�

[p(x) − q(x)] = 3

39. Assuming that m and n are positive integers, find

lim
x→−�

2 + 3xn

1 − xm

[Hint: Your answer will depend on whether m < n, m = n,

or m > n.]

40. Find

lim
x→+�

c0 + c1x + · · · + cnx
n

d0 + d1x + · · · + dmxm

where cn 	= 0 and dm 	= 0. [Hint: Your answer will depend

on whether m < n, m = n, or m > n.]

The notion of an asymptote can be extended to include curves

as well as lines. Specifically, we say that f(x) is asymptotic

to g(x) as x → +∞ if

lim
x→+�

[f(x) − g(x)] = 0

and that f(x) is asymptotic to g(x) as x → –∞ if

lim
x→−�

[f(x) − g(x)] = 0

Informally stated, if f(x) is asymptotic to g(x) as x→+�,

then the graph of y = f(x) gets closer and closer to the graph

of y = g(x) as x→+�, and if f(x) is asymptotic to g(x) as

x →−�, then the graph of y = f(x) gets closer and closer

to the graph of y = g(x) as x→−�. For example, if

f(x) = x2 +
2

x − 1
and g(x) = x2

then f(x) is asymptotic to g(x) as x →+� and as x →−�

since

lim
x→+�

[f(x) − g(x)] = lim
x→+�

1

x − 1
= 0

lim
x→−�

[f(x) − g(x)] = lim
x→−�

1

x − 1
= 0

This asymptotic behavior is illustrated in the following figure,

which also shows the vertical asymptote of f(x) at x = 1.

-4 -3 -2 -1 2 3 4

-10

-5

5

10

15

20

x

y

y = f (x)

y = g(x)

In Exercises 41–46, determine a function g(x) to which f(x)

is asymptotic as x→+� or x→−�. Use a graphing utility

to generate the graphs of y = f(x) and y = g(x) and identify

all vertical asymptotes.

41. f(x) =
x2 − 2

x − 2
42. f(x) =

x3 − x + 3

x

43. f(x) =
−x3 + 3x2 + x − 1

x − 3

44. f(x) =
x5 − x3 + 3

x2 − 1

45. f(x) = sin x +
1

x − 1
46. f(x) =

√

x3 − x2 + 2

x − 1



January 10, 2001 13:09 g65-ch2 Sheet number 32 Page number 138 cyan magenta yellow black

138 Limits and Continuity

2.4 LIMITS (DISCUSSED MORE RIGOROUSLY)

Thus far, our discussion of limits has been based on our intuitive feeling of what it

means for the values of a function to get closer and closer to a limiting value. How-

ever, this level of informality can only take us so far, so our goal in this section is to

define limits precisely. From a purely mathematical point of view these definitions are

needed to establish limits with certainty and to prove theorems about them. However,

they will also provide us with a deeper understanding of the limit concept, making it

possible for us to visualize some of the more subtle properties of functions.

In Sections 2.1 to 2.3 our emphasis was on the discovery of values of limits, either through the

sampling of selected x-values or through the application of limit theorems. In the preceding

sections we interpreted limx→a f(x) = L to mean that the values of f(x) can be made

as close as we like to L by selecting x-values sufficiently close to a (but not equal to a).

Although this informal definition is sufficient for many purposes, we need a more precise

definition to verify that a conjectured limit is actually correct, or to prove the limit theorems

in Sections 2.2 and 2.3. One of our goals in this section is to give the informal phrases “as

close as we like to L” and “sufficiently close to a” a precise mathematical interpretation.

This will enable us to replace the informal definition of limit given in Definition 2.1.1 with

a more fully developed version that may be used in proofs.

To start, consider the function f graphed in Figure 2.4.1a for which f(x)→L as x→a.

We have intentionally placed a hole in the graph at x = a to emphasize that the function

f need not be defined at x = a to have a limit there. Also, to simplify the discussion, we

have chosen a function that is increasing on an open interval containing a.

a x1 x1x0 x0

L − ǫ

L + ǫ

L

a x

L − ǫ

L + ǫ

L

y =  f (x)y = f (x)y =  f (x)

x

y

x

y

a

L

x

y

(a) (b) (c)

Figure 2.4.1

To motivate an appropriate definition for a two-sided limit, suppose that we choose any

positive number, say ǫ, and draw horizontal lines from L+ ǫ and L− ǫ on the y-axis to the

curve y = f(x) and then draw vertical lines from those points on the curve to the x-axis. As

shown in Figure 2.4.1b, let x0 and x1 be points where the vertical lines intersect the x-axis.

Next, imagine that x gets closer and closer to a (from either side). Eventually, x will

lie inside the interval (x0, x1), which is marked in green in Figure 2.4.1c; and when this

happens, the value of f(x) will fall between L − ǫ and L + ǫ, marked in red in the figure.

Thus, we conclude:

If f(x)→L as x → a, then for any positive number ǫ, we can find an open interval

(x0, x1) on the x-axis that contains a and has the property that for each x in that

interval (except possibly for x = a), the value of f(x) is between L − ǫ and L + ǫ.

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Consider the limit, limx→0(sin x)/x, conjectured to be 1 in Example

3 of Section 2.1. Draw a figure similar to Figure 2.4.1 that illustrates the preceding analysis

for this limit.



January 10, 2001 13:09 g65-ch2 Sheet number 33 Page number 139 cyan magenta yellow black

2.4 Limits (Discussed More Rigorously) 139

What is important about this result is that it holds no matter how small we make ǫ.

However, making ǫ smaller and smaller forces f(x) closer and closer to L—which is

precisely the concept we were trying to capture mathematically.

Observe that in Figure 2.4.1c the interval (x0, x1) extends farther on the right side of a

than on the left side. However, for many purposes it is preferable to have an interval that

extends the same distance on both sides of a. For this purpose, let us choose any positive

number δ that is smaller than both x1 −a and a−x0, and consider the interval (a−δ, a+δ).

This interval extends the same distance δ on both sides of a and lies inside of the interval

(x0, x1) (Figure 2.4.2). Moreover, the condition L − ǫ < f(x) < L + ǫ holds for every

x in this interval (except possibly x = a), since this condition holds on the larger interval

(x0, x1). This is illustrated by graphing f in the window (a− δ, a+ δ)× (L− ǫ, L+ ǫ) and

observing that the graph “exits” the window at the sides, not at the top or bottom (except

possibly at x = a).

a – d a + d

a – d a + d

ax0 x1

x
( ( ((

d d

x1x0 a

L − ǫ

L + ǫ

L

y = f (x)

x

y

Figure 2.4.2

Example 1 Let f(x) = 1
2
x + 1

4
sin(πx/2). It can be shown that lim

x→1
f(x) = L = 0.75.

Let ǫ = 0.05.

(a) Use a graphing utility to find an open interval (x0, x1) containing a = 1 such that for

each x in this interval, f(x) is between L − ǫ = 0.75 − ǫ = 0.75 − 0.05 = 0.70 and

L + ǫ = 0.75 + ǫ = 0.75 + 0.05 = 0.80.

(b) Find a value of δ such that f(x) is between 0.70 and 0.80 for every x in the interval

(1 − δ, 1 + δ).

Solution (a). Figure 2.4.3 displays the graph of f . With a graphing utility, we discover

that (to five decimal places) the points (0.90769, 0.70122) and (1.09231, 0.79353) are

on the graph of f . Suppose that we take x0 = 0.908 and x1 = 1.09. Since the graph

of f rises from left to right, we see that for x0 = 0.908 < x < 1.090 = x1, we have

0.90769 < x < 1.09231 and therefore 0.7 < 0.70122 < f(x) < 0.79353 < 0.8.

Solution (b). Since x1 −a = 1.09−1 = 0.09 and a−x0 = 1−0.908 = 0.902, any value

or δ that is less than 0.09 will be acceptable. For example, for δ = 0.08, if x belongs to the

interval (1 − δ, 1 + δ) = (0.92, 1.08), then f(x) will lie between 0.70 and 0.80. ◭

0 0.5 1

0

0.5

1

x

y

y =    x +    sin(   )
1

2

px

2
1

4

Figure 2.4.3

Note that the condition L − ǫ < f(x) < L + ǫ can be expressed as

|f(x) − L| < ǫ

and the condition that x lies in the interval (a − δ, a + δ), but x 	= a, can be expressed as

0 < |x − a| < δ

Thus, we can summarize this discussion in the following definition.

2.4.1 LIMIT DEFINITION. Let f(x) be defined for all x in some open interval con-

taining the number a, with the possible exception that f(x) need not be defined at a. We

will write

lim
x→a

f(x) = L

if given any number ǫ > 0 we can find a number δ > 0 such that

|f(x) − L| < ǫ if 0 < |x − a| < δ

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. With this definition we have made the transition from informal to formal in

the definition of a two-sided limit. The phrase “as close as we like to L” has been given

quantitative meaning by the number ǫ > 0, and the phrase “sufficiently close to a” has been
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

made precise by the number δ > 0. Commonly known as the “ǫ-δ definition” of a limit,

Definition 2.4.1 was developed primarily by the German mathematician Karl Weierstrass
∗

in the nineteenth century.

The definitions for one-sided limits are similar to Definition 2.4.1. For example, in the

definition of limx→a+ f(x) we assume that f(x) is defined for all x in an interval of the

form (a, b) and replace the condition 0 < |x − a| < δ by the condition a < x < a + δ.

Comparable changes are made in the definition of limx→a− f(x).

In the preceding sections we illustrated various numerical and graphical methods for

guessing at limits. Now that we have a precise definition to work with, we can actually

confirm the validity of those guesses with mathematical proof. Here is a typical example of

such a proof.

Example 2 Use Definition 2.4.1 to prove that lim
x→2

(3x − 5) = 1.

Solution. We must show that given any positive number ǫ, we can find a positive number

δ such that

| (3x − 5)
︸ ︷︷ ︸

f(x)

− 1
︸︷︷︸

L

| < ǫ if 0 < |x − 2
︸︷︷︸

a

| < δ (1)

There are two things to do. First, we must discover a value of δ for which this statement

holds, and then we must prove that the statement holds for that δ. For the discovery part we

begin by simplifying (1) and writing it as

|3x − 6| < ǫ if 0 < |x − 2| < δ

Next, we will rewrite this statement in a form that will facilitate the discovery of an appro-

priate δ:

3|x − 2| < ǫ if 0 < |x − 2| < δ

|x − 2| < ǫ/3 if 0 < |x − 2| < δ
(2)

It should be self-evident that this last statement holds if δ = ǫ/3, which completes the

discovery portion of our work. Now we need to prove that (1) holds for this choice of δ.

However, statement (1) is equivalent to (2), and (2) holds with δ = ǫ/3, so (1) also holds

with δ = ǫ/3. This proves that limx→2 (3x − 5) = 1. ◭

∗
KARL WEIERSTRASS (1815–1897). Weierstrass, the son of a customs officer, was born in Ostenfelde, Germany.

As a youth Weierstrass showed outstanding skills in languages and mathematics. However, at the urging of his

dominant father, Weierstrass entered the law and commerce program at the University of Bonn. To the chagrin of

his family, the rugged and congenial young man concentrated instead on fencing and beer drinking. Four years

later he returned home without a degree. In 1839 Weierstrass entered the Academy of Münster to study for a career

in secondary education, and he met and studied under an excellent mathematician named Christof Gudermann.

Gudermann’s ideas greatly influenced the work of Weierstrass. After receiving his teaching certificate, Weierstrass

spent the next 15 years in secondary education teaching German, geography, and mathematics. In addition, he

taught handwriting to small children. During this period much of Weierstrass’s mathematical work was ignored

because he was a secondary schoolteacher and not a college professor. Then, in 1854, he published a paper of

major importance that created a sensation in the mathematics world and catapulted him to international fame

overnight. He was immediately given an honorary Doctorate at the University of Königsberg and began a new

career in college teaching at the University of Berlin in 1856. In 1859 the strain of his mathematical research

caused a temporary nervous breakdown and led to spells of dizziness that plagued him for the rest of his life.

Weierstrass was a brilliant teacher and his classes overflowed with multitudes of auditors. In spite of his fame,

he never lost his early beer-drinking congeniality and was always in the company of students, both ordinary and

brilliant. Weierstrass was acknowledged as the leading mathematical analyst in the world. He and his students

opened the door to the modern school of mathematical analysis.
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REMARK. This example illustrates the general form of a limit proof: We assume that we

are given a positive number ǫ, and we try to prove that we can find a positive number δ such

that

|f(x) − L| < ǫ if 0 < |x − a| < δ (3)

This is done by first discovering δ, and then proving that the discovered δ works. Since

the argument has to be general enough to work for all positive values of ǫ, the quantity

δ has to be expressed as a function of ǫ. In Example 2 we found the function δ = ǫ/3

by some simple algebra; however, most limit proofs require a little more algebraic and

logical ingenuity. Thus, if you find our ensuing discussion of “ǫ-δ” proofs challenging, do

not become discouraged; the concepts and techniques are intrinsically difficult. In fact, a

precise understanding of limits evaded the finest mathematical minds for more than 150

years after the basic concepts of calculus were discovered.

Example 3 Prove that lim
x→0+

√
x = 0.

Solution. Note that the domain of
√
x is 0 ≤ x, so it is valid to discuss the limit as x→0+.

We must show that given ǫ > 0, there exists a δ > 0 such that

|
√
x − 0| < ǫ if 0 < x < 0 + δ

or more simply,
√
x < ǫ if 0 < x < δ (4)

But, by squaring both sides of the inequality
√
x < ǫ, we can rewrite (4) as

x < ǫ2 if 0 < x < δ (5)

It should be self-evident that (5) is true if δ = ǫ2; and since (5) is a reformulation of (4), we

have shown that (4) holds with δ = ǫ2. This proves that limx→0+
√
x = 0. ◭

•
•
•
•
•
•
•
•

REMARK. In this example the limit from the left and the two-sided limit do not exist at

x = 0 because the domain of
√
x includes no numbers to the left of 0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE VALUE OF δ IS NOT UNIQUE
In preparation for our next example, we note that the value of δ in Definition 2.4.1 is not

unique; once we have found a value of δ that fulfills the requirements of the definition, then

any smaller positive number δ1 will also fulfill those requirements. That is, if it is true that

|f(x) − L| < ǫ if 0 < |x − a| < δ

then it will also be true that

|f(x) − L| < ǫ if 0 < |x − a| < δ1

This is because {x : 0 < |x − a| < δ1} is a subset of {x : 0 < |x − a| < δ} (Figure 2.4.4),

and hence if |f(x)−L| < ǫ is satisfied for all x in the larger set, then it will automatically

be satisfied for all x in the subset. Thus, in Example 2, where we used δ = ǫ/3, we could

have used any smaller value of δ such as δ = ǫ/4, δ = ǫ/5, or δ = ǫ/6.

a – d1 a + d1a

x
(

a – d
( (

a + d
(

Figure 2.4.4

Example 4 Prove that lim
x→3

x2 = 9.

Solution. We must show that given any positive number ǫ, we can find a positive number

δ such that

|x2 − 9| < ǫ if 0 < |x − 3| < δ (6)

Because |x − 3| occurs on the right side of this “if statement,” it will be helpful to factor the

left side to introduce a factor of |x − 3|. This yields the following alternative form of (6)

|x + 3||x − 3| < ǫ if 0 < |x − 3| < δ (7)
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Using the triangle inequality, we see that

|x + 3| = |(x − 3) + 6| ≤ |x − 3| + 6

Therefore, if 0 < |x − 3| < δ then

|x + 3||x − 3| ≤ (|x − 3| + 6)|x − 3| < (δ + 6)δ

It follows that (7) will be satisfied for any positive value of δ such that (δ + 6)δ ≤ ǫ. Let

us agree to restrict our attention to positive values of δ such that δ ≤ 1. (This is justified

because of our earlier observation that once a value of δ is found, then any smaller positive

value of δ can be used.) With this restriction, (δ + 6)δ ≤ 7δ, so that (7) will be satisfied as

long as it is also the case that 7δ ≤ ǫ. We can achieve this by taking δ to be the minimum

of the numbers ǫ/7 and 1, which is sometimes written as δ = min(ǫ/7, 1). This proves that

limx→3 x
2 = 9. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. You may have wondered how we knew to make the restriction δ ≤ 1 (as opposed

to δ ≤ 1
2

or δ ≤ 5, for example). Actually, it does not matter; any restriction of the form

δ ≤ c would work equally well.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS AS x → ±∞

In Section 2.1 we discussed the limits

lim
x→+�

f(x) = L and lim
x→−�

f(x) = L

from an intuitive viewpoint. We interpreted the first statement to mean that the values of

f(x) eventually get closer and closer to L as x increases indefinitely, and we interpreted the

second statement to mean that the values of f(x) eventually get closer and closer to L as x

decreases indefinitely. These ideas are captured more precisely in the following definitions

and are illustrated in Figure 2.4.5.

2.4.2 DEFINITION. Let f(x) be defined for all x in some infinite open interval ex-

tending in the positive x-direction. We will write

lim
x→+�

f(x) = L

if given any number ǫ > 0, there corresponds a positive number N such that

|f(x) − L| < ǫ if x > N

2.4.3 DEFINITION. Let f(x) be defined for all x in some infinite open interval ex-

tending in the negative x-direction. We will write

lim
x→−�

f(x) = L

if given any number ǫ > 0, there corresponds a negative number N such that

|f(x) − L| < ǫ if x < N

To see how these definitions relate to our informal concepts of these limits, suppose

that f(x) → L as x → +�, and for a given ǫ let N be the positive number described in

Definition 2.4.2. If x is allowed to increase indefinitely, then eventually x will lie in the

interval (N,+�), which is marked in green in Figure 2.4.5a; when this happens, the value

of f(x) will fall between L− ǫ and L+ ǫ, marked in red in the figure. Since this is true for

all positive values of ǫ (no matter how small), we can force the values of f(x) as close as

we like to L by making N sufficiently large. This agrees with our informal concept of this

limit. Similarly, Figure 2.4.5b illustrates Definition 2.4.3.
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N

L − e

L + e

L

| f (x) − L| < e if x > N | f (x) − L| < e if x < N

N

L − e

L + e

L

xx

yy

f (x) f (x)

(a) (b)

x x

Figure 2.4.5

Example 5 Prove that lim
x→+�

1

x
= 0.

Solution. Applying Definition 2.4.2 with f(x) = 1/x and L = 0, we must show that

given ǫ > 0, we can find a number N > 0 such that
∣
∣
∣
∣

1

x
− 0

∣
∣
∣
∣
< ǫ if x > N (8)

Because x→+� we can assume that x > 0. Thus, we can eliminate the absolute values in

this statement and rewrite it as

1

x
< ǫ if x > N

or, on taking reciprocals,

x >
1

ǫ
if x > N (9)

It is self-evident that N = 1/ǫ satisfies this requirement, and since (9) is equivalent to (8)

for x > 0, the proof is complete. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INFINITE LIMITS
In Section 2.1 we discussed limits of the following type from an intuitive viewpoint:

lim
x→a

f(x) = +�, lim
x→a

f(x) = −� (10)

lim
x→a+

f(x) = +�, lim
x→a+

f(x) = −� (11)

lim
x→a−

f(x) = +�, lim
x→a−

f(x) = −� (12)

Recall that each of these expressions describes a particular way in which the limit fails to

exist. The +� indicates that the limit fails to exist because f(x) increases without bound,

and the −� indicates that the limit fails to exist because f(x) decreases without bound.

These ideas are captured more precisely in the following definitions and are illustrated in

Figure 2.4.6.

2.4.4 DEFINITION. Let f(x) be defined for all x in some open interval containing a,

except that f(x) need not be defined at a. We will write

lim
x→a

f(x) = +�

if given any positive number M , we can find a number δ > 0 such that f(x) satisfies

f(x) > M if 0 < |x − a| < δ
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x

y

a – d a + d

M

x

y

a – d a + d

M

f (x) > M if 0 < |x − a | < d f (x) < M if 0 < |x − a | < d

(a) (b)

Figure 2.4.6

2.4.5 DEFINITION. Let f(x) be defined for all x in some open interval containing a,

except that f(x) need not be defined at a. We will write

lim
x→a

f(x) = −�

if given any negative number M , we can find a number δ > 0 such that f(x) satisfies

f(x) < M if 0 < |x − a| < δ

To see how these definitions relate to our informal concepts of these limits, suppose

that f(x)→ +� as x → a, and for a given M let δ be the corresponding positive number

described in Definition 2.4.4. Next, imagine that x gets closer and closer to a (from either

side). Eventually, x will lie in the interval (a − δ, a + δ), which is marked in green in

Figure 2.4.6a; when this happens the value of f(x) will be greater than M , marked in red in

the figure. Since this is true for any positive value of M (no matter how large), we can force

the values of f(x) to be as large as we like by making x sufficiently close to a. This agrees

with our informal concept of this limit. Similarly, Figure 2.4.6b illustrates Definition 2.4.5.

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The definitions for the one-sided limits are similar. For example, in the definition

of limx→a− f(x) = +� we assume that f(x) is defined for all x in some interval of the

form (c, a) and replace the condition 0 < |x − a| < δ by the condition a − δ < x < a.

Example 6 Prove that lim
x→0

1

x2
= +�.

Solution. Applying Definition 2.4.4 with f(x) = 1/x2 and a = 0, we must show that

given a number M > 0, we can find a number δ > 0 such that

1

x2
> M if 0 < |x − 0| < δ (13)

or, on taking reciprocals and simplifying,

x2 <
1

M
if 0 < |x| < δ (14)

But x2 < 1/M if |x| < 1/
√
M , so that δ = 1/

√
M satisfies (14). Since (13) is equivalent

to (14), the proof is complete. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. How would you define

lim
x→+�

f(x) = +�, lim
x→+�

f(x) = −�

lim
x→−�

f(x) = +�, lim
x→−�

f(x) = −�?
(15)
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EXERCISE SET 2.4 Graphing Calculator
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. (a) Find the largest open interval, centered at the origin on

the x-axis, such that for each x in the interval the value

of the function f(x) = x + 2 is within 0.1 unit of the

number f(0) = 2.

(b) Find the largest open interval, centered at x = 3, such

that for each x in the interval the value of the func-

tion f(x) = 4x − 5 is within 0.01 unit of the number

f(3) = 7.

(c) Find the largest open interval, centered at x = 4, such

that for each x in the interval the value of the func-

tion f(x) = x2 is within 0.001 unit of the number

f(4) = 16.

2. In each part, find the largest open interval, centered at

x = 0, such that for each x in the interval the value of

f(x) = 2x + 3 is within ǫ units of the number f(0) = 3.

(a) ǫ = 0.1 (b) ǫ = 0.01

(c) ǫ = 0.0012

3. (a) Find the values of x1 and x2 in the accompanying figure.

(b) Find a positive number δ such that |
√
x − 2| < 0.05 if

0 < |x − 4| < δ.

4x1 x2

2 – 0.05

2 + 0.05

2

x

y

Not drawn to scale

y = √x

Figure Ex-3

4. (a) Find the values of x1 and x2 in the accompanying figure.

(b) Find a positive number δ such that |(1/x)− 1| < 0.1 if

0 < |x − 1| < δ.

1

1 – 0.1

1 + 0.1

1

x

y

x
1

x
2

Not drawn to scale

y = 1
x

Figure Ex-4

5. Generate the graph of f(x) = x3 − 4x + 5 with a graph-

ing utility, and use the graph to find a number δ such that

|f(x) − 2| < 0.05 if 0 < |x − 1| < δ. [Hint: Show

that the inequality |f(x) − 2| < 0.05 can be rewritten as

1.95 < x3 − 4x + 5 < 2.05, and estimate the values of x

for which x3 − 4x + 5 = 1.95 and x3 − 4x + 5 = 2.05.]

6. Use the method of Exercise 5 to find a number δ such that

|
√

5x + 1 − 4| < 0.5 if 0 < |x − 3| < δ.

7. Let f(x) = x+
√
x with L = limx→1 f(x) and let ǫ = 0.2.

Use a graphing utility and its trace feature to find a positive

number δ such that |f(x) − L| < ǫ if 0 < |x − 1| < δ.

8. Let f(x) = (sin 2x)/x and use a graphing utility to conjec-

ture the value of L = limx→0 f(x). Then let ǫ = 0.1 and

use the graphing utility and its trace feature to find a positive

number δ such that |f(x) − L| < ǫ if 0 < |x| < δ.

In Exercises 9–18, a positive number ǫ and the limit L of

a function f at a are given. Find a number δ such that

|f(x) − L| < ǫ if 0 < |x − a| < δ.

9. lim
x→4

2x = 8; ǫ = 0.1 10. lim
x→−2

1

2
x = −1; ǫ = 0.1

11. lim
x→−1

(7x + 5) = −2; ǫ = 0.01

12. lim
x→3

(5x − 2) = 13; ǫ = 0.01

13. lim
x→2

x2 − 4

x − 2
= 4; ǫ = 0.05

14. lim
x→−1

x2 − 1

x + 1
= −2; ǫ = 0.05

15. lim
x→4

x2 = 16; ǫ = 0.001 16. lim
x→9

√
x = 3; ǫ = 0.001

17. lim
x→5

1

x
=

1

5
; ǫ = 0.05 18. lim

x→0
|x| = 0; ǫ = 0.05

In Exercises 19–32, use Definition 2.4.1 to prove that the

stated limit is correct.

19. lim
x→5

3x = 15 20. lim
x→3

(4x − 5) = 7

21. lim
x→2

(2x − 7) = −3 22. lim
x→−1

(2 − 3x) = 5

23. lim
x→0

x2 + x

x
= 1 24. lim

x→−3

x2 − 9

x + 3
= −6

25. lim
x→1

2x2 = 2 26. lim
x→3

(x2 − 5) = 4

27. lim
x→1/3

1

x
= 3 28. lim

x→−2

1

x + 1
= −1

29. lim
x→4

√
x = 2 30. lim

x→6

√
x + 3 = 3

31. lim
x→1

f(x) = 3, where f(x) =

{

x + 2, x 	= 1

10, x = 1

32. lim
x→2

(x2 + 3x − 1) = 9

33. (a) Find the smallest positive number N such that for each

x in the interval (N,+�), the value of the function

f(x) = 1/x2 is within 0.1 unit of L = 0.
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(b) Find the smallest positive number N such that for each

x in the interval (N,+�), the value off(x) = x/(x+1)

is within 0.01 unit of L = 1.

(c) Find the largest negative number N such that for each

x in the interval (−�, N), the value of the function

f(x) = 1/x3 is within 0.001 unit of L = 0.

(d) Find the largest negative number N such that for each

x in the interval (−�, N), the value of the function

f(x) = x/(x + 1) is within 0.01 unit of L = 1.

34. In each part, find the smallest positive value of N such that

for each x in the interval (N,+�), the functionf(x) = 1/x3

is within ǫ units of the number L = 0.

(a) ǫ = 0.1 (b) ǫ = 0.01 (c) ǫ = 0.001

35. (a) Find the values of x1 and x2 in the accompanying figure.

(b) Find a positive number N such that

∣
∣
∣
∣

x2

1 + x2
− 1

∣
∣
∣
∣
< ǫ

for x > N .

(c) Find a negative number N such that

∣
∣
∣
∣

x2

1 + x2
− 1

∣
∣
∣
∣
< ǫ

for x < N .

x

y

ǫ

1

x1 x2

Not drawn to scale

y = x2

1 + x2

Figure Ex-35

36. (a) Find the values of x1 and x2 in the accompanying figure.

(b) Find a positive number N such that

∣
∣
∣
∣

1
3
√
x

− 0

∣
∣
∣
∣
=

∣
∣
∣
∣

1
3
√
x

∣
∣
∣
∣
< ǫ

for x > N .

(c) Find a negative number N such that

∣
∣
∣
∣

1
3
√
x

− 0

∣
∣
∣
∣
=

∣
∣
∣
∣

1
3
√
x

∣
∣
∣
∣
< ǫ

for x < N .

x

y

y = 
√x
3

1

ǫ

ǫx1

x2

Figure Ex-36

In Exercises 37–40, a positive number ǫ and the limit L of a

function f at +� are given. Find a positive number N such

that |f(x) − L| < ǫ if x > N .

37. lim
x→+�

1

x2
= 0; ǫ = 0.01

38. lim
x→+�

1

x + 2
= 0; ǫ = 0.005

39. lim
x→+�

x

x + 1
= 1; ǫ = 0.001

40. lim
x→+�

4x − 1

2x + 5
= 2; ǫ = 0.1

In Exercises 41–44, a positive number ǫ and the limit L of a

function f at −� are given. Find a negative number N such

that |f(x) − L| < ǫ if x < N .

41. lim
x→−�

1

x + 2
= 0; ǫ = 0.005

42. lim
x→−�

1

x2
= 0; ǫ = 0.01

43. lim
x→−�

4x − 1

2x + 5
= 2; ǫ = 0.1

44. lim
x→−�

x

x + 1
= 1; ǫ = 0.001

In Exercises 45–52, use Definition 2.4.2 or 2.4.3 to prove that

the stated limit is correct.

45. lim
x→+�

1

x2
= 0 46. lim

x→−�

1

x
= 0

47. lim
x→−�

1

x + 2
= 0 48. lim

x→+�

1

x + 2
= 0

49. lim
x→+�

x

x + 1
= 1 50. lim

x→−�

x

x + 1
= 1

51. lim
x→−�

4x − 1

2x + 5
= 2 52. lim

x→+�

4x − 1

2x + 5
= 2

53. (a) Find the largest open interval, centered at the origin on

the x-axis, such that for each x in the interval, other
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than the center, the values of f(x) = 1/x2 are greater

than 100.
(b) Find the largest open interval, centered at x = 1, such

that for each x in the interval, other than the center, the

values of the function

f(x) = 1/|x − 1|

are greater than 1000.
(c) Find the largest open interval, centered at x = 3, such

that for each x in the interval, other than the center, the

values of the function

f(x) = −1/(x − 3)2

are less than −1000.
(d) Find the largest open interval, centered at the origin on

the x-axis, such that for each x in the interval, other

than the center, the values of f(x) = −1/x4 are less

than −10,000.

54. In each part, find the largest open interval, centered at

x = 1, such that for each x in the interval the value of

f(x) = 1/(x − 1)2 is greater than M .

(a) M = 10 (b) M = 1000 (c) M = 100,000

In Exercises 55–60, use Definition 2.4.4 or 2.4.5 to prove that

the stated limit is correct.

55. lim
x→3

1

(x − 3)2
= +� 56. lim

x→3

−1

(x − 3)2
= −�

57. lim
x→0

1

|x|
= +� 58. lim

x→1

1

|x − 1|
= +�

59. lim
x→0

(

−
1

x4

)

= −� 60. lim
x→0

1

x4
= +�

In Exercises 61–66, use the remark following Definition 2.4.1

to prove that the stated limit is correct.

61. lim
x→2+

(x + 1) = 3 62. lim
x→1−

(3x + 2) = 5

63. lim
x→4+

√
x − 4 = 0 64. lim

x→0−

√
−x = 0

65. lim
x→2+

f(x) = 2, where f(x) =

{

x, x > 2

3x, x ≤ 2

66. lim
x→2−

f(x) = 6, where f(x) =

{

x, x > 2

3x, x ≤ 2

In Exercises 67 and 68, use the remark following Definitions

2.4.4 and 2.4.5 to prove that the stated limit is correct.

67. (a) lim
x→1+

1

1 − x
= −� (b) lim

x→1−

1

1 − x
= +�

68. (a) lim
x→0+

1

x
= +� (b) lim

x→0−

1

x
= −�

For Exercises 69 and 70, write out definitions of the four lim-

its in (18), and use your definitions to prove that the stated

limits are correct.

69. (a) lim
x→+�

(x + 1) = +� (b) lim
x→−�

(x + 1) = −�

70. (a) lim
x→+�

(x2 − 3) = +� (b) lim
x→−�

(x3 + 5) = −�

71. Prove the result in Example 4 under the assumption that

δ ≤ 2 rather than δ ≤ 1.

72. (a) In Definition 2.4.1 there is a condition requiring that

f(x) be defined for all x in some open interval contain-

ing a, except possibly at a itself. What is the purpose

of this requirement?

(b) Why is lim
x→0

√
x = 0 an incorrect statement?

(c) Is lim
x→0.01

√
x = 0.1 a correct statement?

2.5 CONTINUITY

A moving object cannot vanish at some point and reappear someplace else to con-

tinue its motion. Thus, we perceive the path of a moving object as an unbroken curve,

without gaps, breaks, or holes. In this section, we translate “unbroken curve” into a

precise mathematical formulation called continuity, and develop some fundamental

properties of continuous curves.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF CONTINUITY
Recall from Theorem 2.2.3 that if p(x) is a polynomial and c is a real number, then

limx→c p(x) = p(c) (see Figure 2.5.1). Together with Theorem 2.2.2, we are able to

calculate limits of a variety of combinations of functions by evaluating the combination.

That is, we saw many examples of functions f (x) such that limx→c f(x) = f (c) if f(x)

is defined on an interval containing a number c. In this case, function values f(x) can be

guaranteed to be near f(c) for any x-value selected close enough to c. (See Exercise 53 for

a precise formulation of this statement.)



January 10, 2001 13:09 g65-ch2 Sheet number 42 Page number 148 cyan magenta yellow black

148 Limits and Continuity

c

p(c)
x→ c
lim p(x) =  p(c)

Figure 2.5.1

On the other hand, we have also seen functions for which this nice property is not true.

For example,

f(x) =
{

sin(π/x), x 	= 0

0, x = 0

does not satisfy limx→0 f(x) = f (0), since limx→0 f(x) fails to exist.

-1 1

-1

1

x

y

Figure 2.5.2

The term continuous is used to describe the useful circumstance where the calculation

of a limit can be accomplished by mere evaluation of the function.

2.5.1 DEFINITION. A function f is said to be continuous at x = c provided the

following conditions are satisfied:

1. f(c) is defined.

2. lim
x→c

f(x) exists.

3. lim
x→c

f(x) = f(c).

If one or more of the conditions of this definition fails to hold, then we will say that f

has a discontinuity at x = c. Each function drawn in Figure 2.5.3 illustrates a discontinuity

at x = c. In Figure 2.5.3a, the function is not defined at c, violating the first condition

of Definition 2.5.1. In Figures 2.5.3b and 2.5.3c, limx→c f(x) does not exist, violating

the second condition of Definition 2.5.1. In Figure 2.5.3d, the function is defined at c and

limx→c f(x) exists, but these two values are not equal, violating the third condition of

Definition 2.5.1.

From such graphs we can develop an intuitive, geometric feel for where a function is

continuous and where it is discontinuous. Observe that continuity at c may fail due to a

“break” in the graph of the function, either due to a hole or to a jump as in Figure 2.5.3, or

perhaps due to a wild oscillation as in Figure 2.5.2. Although the intuitive interpretation of

“f is continuous at c” as “the graph of f is unbroken at c” lacks precision, it is a useful

guide in most circumstances.
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x

y

y = f (x)

(b)

c

x

y

y = f (x)

(c)

c

x

y

y = f (x)

(d)

c

x

y

y = f (x)

(a)

c

Figure 2.5.3

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Note that the third condition of Definition 2.5.1 really implies the first two

conditions, since it is understood in the statement limx→c f(x) = f (c) that the limit on

the left exists, the expression f(c) on the right is defined and has a finite value, and that

quantitites on the two sides are equal. Thus, when we want to establish continuity of a

function at a point our usual procedure will be to establish the validity of the third condition

only.

Example 1 Determine whether the following functions are continuous at x = 2.

f(x) =
x2 − 4

x − 2
, g(x) =









x2 − 4

x − 2
, x 	= 2

3, x = 2,

h(x) =









x2 − 4

x − 2
, x 	= 2

4, x = 2

Solution. In each case we must determine whether the limit of the function as x → 2 is

the same as the value of the function at x = 2. In all three cases the functions are identical,

except at x = 2, and hence all three have the same limit at x = 2, namely

lim
x→2

f(x) = lim
x→2

g(x) = lim
x→2

h(x) = lim
x→2

x2 − 4

x − 2
= lim

x→2
(x + 2) = 4

The function f is undefined at x = 2, and hence is not continuous at x = 2 (Figure 2.5.4a).

The function g is defined at x = 2, but its value there is g(2) = 3, which is not the same as

the limit as x approaches z; hence, g is also not continuous at x = 2 (Figure 2.5.4b). The

value of the function h at x = 2 is h(2) = 4, which is the same as the limit as x approaches

z; hence, h is continuous at x = 2 (Figure 2.5.4c). (Note that the function h could have

been written more simply as h(x) = x + 2, but we wrote it in piecewise form to emphasize

its relationship to f and g.) ◭

2

4

x

y

y = f (x)

2

3

x

y

y = g(x)

2

4

x

y

y = h (x)

(a) (b) (c)

Figure 2.5.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONTINUITY IN APPLICATIONS
In applications, discontinuities often signal the occurrence of important physical phenom-

ena. For example, Figure 2.5.5a is a graph of voltage versus time for an underground cable

that is accidentally cut by a work crew at time t = t0 (the voltage drops to zero when the line
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t

V (Voltage)

(a)

t

y (Units of inventory)

(b)

t0Line
cut Restocking occurs

y0

y1

Figure 2.5.5

is cut). Figure 2.5.5b shows the graph of inventory versus time for a company that restocks

its warehouse to y1 units when the inventory falls to y0 units. The discontinuities occur at

those times when restocking occurs.

Given the possible physical significance of discontinuities, it is important to be able to

identify discontinuities for specific functions, and to be able to make general statements

about the continuity properties of entire families of functions. This is our next goal.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONTINUITY ON AN INTERVAL AND
CONTINUITY OF POLYNOMIALS

If a function f is continuous at each number in an open interval (a, b), then we say that f is

continuous on (a, b). This definition applies to infinite open intervals of the form (a,+�),

(−�, b), and (−�,+�). In the case where f is continuous on (−�,+�), we will say that

f is continuous everywhere.

The general procedure for showing that a function is continuous everywhere is to show

that it is continuous at an arbitrary real number. For example, we showed in Theorem 2.2.3

that if p(x) is a polynomial and a is any real number, then

lim
x→a

p(x) = p(a)

Thus, we have the following result.

2.5.2 THEOREM. Polynomials are continuous everywhere.

Example 2 Show that |x| is continuous everywhere (Figure 1.2.5).

Solution. We can write |x| as

|x| =









x if x > 0

0 if x = 0

−x if x < 0

so |x| is the same as the polynomial x on the interval (0,+�) and is the same as the

polynomial −x on the interval (−�, 0). But polynomials are continuous everywhere, so

x = 0 is the only possible discontinuity for |x|. Since |0| = 0, to prove the continuity at

x = 0 we must show that

lim
x→0

|x| = 0 (1)

Because the formula for |x| changes at 0, it will be helpful to consider the one-sided limits

at 0 rather than the two-sided limit. We obtain

lim
x→0+

|x| = lim
x→0+

x = 0 and lim
x→0−

|x| = lim
x→0−

(−x) = 0

Thus, (1) holds and |x| is continuous at x = 0. ◭



January 10, 2001 13:09 g65-ch2 Sheet number 45 Page number 151 cyan magenta yellow black

2.5 Continuity 151

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOME PROPERTIES OF
CONTINUOUS FUNCTIONS

The following theorem, which is a consequence of Theorem 2.2.2, will enable us to reach

conclusions about the continuity of functions that are obtained by adding, subtracting,

multiplying, and dividing continuous functions.

2.5.3 THEOREM. If the functions f and g are continuous at c, then

(a) f + g is continuous at c.

(b) f − g is continuous at c.

(c) fg is continuous at c.

(d ) f /g is continuous at c if g(c) 	= 0 and has a discontinuity at c if g(c) = 0.

We will prove part (d ). The remaining proofs are similar and will be omitted.

Proof. First, consider the case where g(c) = 0. In this case f(c)/g(c) is undefined, so

the function f /g has a discontinuity at c.

Next, consider the case where g(c) 	= 0. To prove that f /g is continuous at c, we must

show that

lim
x→c

f(x)

g(x)
=

f(c)

g(c)
(2)

Since f and g are continuous at c,

lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c)

Thus, by Theorem 2.2.2(d )

lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)
=

f(c)

g(c)

which proves (2).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONTINUITY OF RATIONAL
FUNCTIONS

Since polynomials are continuous everywhere, and since rational functions are ratios of

polynomials, part (d ) of Theorem 2.5.3 yields the following result.

2.5.4 THEOREM. A rational function is continuous at every number where the de-

nominator is nonzero.

Example 3 For what values of x is there a hole or a gap in the graph of

y =
x2 − 9

x2 − 5x + 6
?

Solution. The function being graphed is a rational function, and hence is continuous at

every number where the denominator is nonzero. Solving the equation

x2 − 5x + 6 = 0

yields discontinuities at x = 2 and at x = 3. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. If you use a graphing utility to generate the graph of the equation in

this example, then there is a good chance that you will see the discontinuity at x = 2 but

not at x = 3. Try it, and explain what you think is happening.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONTINUITY OF COMPOSITIONS
The following theorem, whose proof is given in Appendix G, will be useful for calculating

limits of compositions of functions.
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2.5.5 THEOREM. If limx→c g(x) = L and if the function f is continuous at L, then

limx→c f(g(x)) = f(L). That is,

lim
x→c

f(g(x)) = f
(

lim
x→c

g(x)
)

This equality remains valid if limx→c is replaced everywhere by one of limx→c+ ,

limx→c− , limx→+�
, or limx→−�

.

In words, this theorem states:

A limit symbol can be moved through a function sign provided the limit of the expres-

sion inside the function sign exists and the function is continuous at this limit.

Example 4 We know from Example 2 that the function |x| is continuous everywhere;

thus, it follows that if limx→a g(x) exists, then

lim
x→a

|g(x)| =
∣

∣

∣
lim
x→a

g(x)

∣

∣

∣
(3)

That is, a limit symbol can be moved through an absolute value sign, provided the limit of

the expression inside the absolute value signs exists. For example,

lim
x→3

|5 − x2| =
∣

∣

∣
lim
x→3

(5 − x2)

∣

∣

∣
= | − 4| = 4 ◭

The following theorem is concerned with the continuity of compositions of functions;

the first part deals with continuity at a specific number, and the second part with continuity

everywhere.

2.5.6 THEOREM.

(a) If the function g is continuous at c, and the function f is continuous at g(c), then

the composition f ◦g is continuous at c.

(b) If the function g is continuous everywhere and the function f is continuous every-

where, then the composition f ◦g is continuous everywhere.

Proof. We will prove part (a) only; the proof of part (b) can be obtained by applying part

(a) at an arbitrary number c. To prove that f ◦g is continuous at c, we must show that the

value of f ◦g and the value of its limit are the same at x = c. But this is so, since we can

write

lim
x→c

(f ◦g)(x) = lim
x→c

f(g(x)) = f( lim
x→c

g(x)) = f(g(c)) = (f ◦g)(c)

Theorem 2.5.5 g is continuous at c.

We know from Example 2 that the function |x| is continuous everywhere. Thus, if g(x)

is continuous at c, then by part (a) of Theorem 2.5.6, the function |g(x)| must also be

continuous at c; and, more generally, if g(x) is continuous everywhere, then so is |g(x)|.
Stated informally:

The absolute value of a continuous function is continuous.

For example, the polynomial g(x) = 4 − x2 is continuous everywhere, so we can conclude

that the function |4 − x2| is also continuous everywhere (Figure 2.5.6).

-4 -3 -2 -1 1 2 3 4

1

2

3

4

5

x

y y = |4 – x2|

Figure 2.5.6

•
•
•
•
•
•
•
•

FOR THE READER. Can the absolute value of a function that is not continuous be contin-

uous? Justify your answer.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONTINUITY FROM THE LEFT
AND RIGHT

Because Definition 2.5.1 involves a two-sided limit, that definition does not generally apply

at the endpoints of a closed interval [a, b] or at the endpoint of an interval of the form

[a, b), (a, b], (−�, b], or [a,+�). To remedy this problem, we will agree that a function

is continuous at an endpoint of an interval if its value at the endpoint is equal to the appro-

priate one-sided limit at that endpoint. For example, the function graphed in Figure 2.5.7 is

continuous at the right endpoint of the interval [a, b] because

lim
x→b−

f(x) = f(b)

but it is not continuous at the left endpoint because

lim
x→a+

f(x) 	= f(a)

In general, we will say a function f is continuous from the left at c if

lim
x→c−

f(x) = f(c)

and is continuous from the right at c if

lim
x→c+

f(x) = f(c)

Using this terminology we define continuity on a closed interval as follows.

x

y

y = f (x)

a b

Figure 2.5.7

2.5.7 DEFINITION. A function f is said to be continuous on a closed interval [a, b]

if the following conditions are satisfied:

1. f is continuous on (a, b).

2. f is continuous from the right at a.

3. f is continuous from the left at b.

•
•
•
•
•
•
•
•

FOR THE READER. We leave it for you to modify this definition appropriately so that it

applies to intervals of the form [a,+�), (−�, b], (a, b], and [a, b).

Example 5 What can you say about the continuity of the function f(x) =
√

9 − x2?

Solution. Because the natural domain of this function is the closed interval [−3, 3], we

will need to investigate the continuity of f on the open interval (−3, 3) and at the two

endpoints. If c is any number in the interval (−3, 3), then it follows from Theorem 2.2.2(e)

that

lim
x→c

f(x) = lim
x→c

√

9 − x2 =
√

lim
x→c

(9 − x2) =
√

9 − c2 = f(c)

which proves f is continuous at each number in the interval (−3, 3). The function f is also

continuous at the endpoints since

lim
x→3−

f(x) = lim
x→3−

√

9 − x2 =
√

lim
x→3−

(9 − x2) = 0 = f(3)

lim
x→−3+

f(x) = lim
x→−3+

√

9 − x2 =
√

lim
x→−3+

(9 − x2) = 0 = f(−3)

Thus, f is continuous on the closed interval [−3, 3]. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE INTERMEDIATE-VALUE
THEOREM

Figure 2.5.8 shows the graph of a function that is continuous on the closed interval [a, b].

The figure suggests that if we draw any horizontal line y = k, where k is between f(a)

and f(b), then that line will cross the curve y = f(x) at least once over the interval [a, b].

Stated in numerical terms, if f is continuous on [a, b], then the function f must take on

every value k between f(a) and f(b) at least once as x varies from a to b. For example,

the polynomial p(x) = x5 − x + 3 has a value of 3 at x = 1 and a value of 33 at x = 2.

Thus, it follows from the continuity of p that the equation x5 − x + 3 = k has at least one



January 10, 2001 13:09 g65-ch2 Sheet number 48 Page number 154 cyan magenta yellow black

154 Limits and Continuity

solution in the interval [1, 2] for every value of k between 3 and 33. This idea is stated more

precisely in the following theorem.

2.5.8 THEOREM (Intermediate-Value Theorem). If f is continuous on a closed interval

[a, b] and k is any number between f(a) and f(b), inclusive, then there is at least one

number x in the interval [a, b] such that f(x) = k.

x

y

f (a)

k

f (b)

a bx

Figure 2.5.8

Although this theorem is intuitively obvious, its proof depends on a mathematically precise

development of the real number system, which is beyond the scope of this text.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING ROOTS USING
THE INTERMEDIATE-VALUE
THEOREM

A variety of problems can be reduced to solving an equation f(x) = 0 for its roots. Some-

times it is possible to solve for the roots exactly using algebra, but often this is not possible

and one must settle for decimal approximations of the roots. One procedure for approxi-

mating roots is based on the following consequence of the Intermediate-Value Theorem.

2.5.9 THEOREM. If f is continuous on [a, b], and if f(a) and f(b) are nonzero and

have opposite signs, then there is at least one solution of the equation f(x) = 0 in the

interval (a, b).

This result, which is illustrated in Figure 2.5.9, can be proved as follows.

x

y

f (a) > 0

f (b) < 0

f (x) = 0

a

b

Figure 2.5.9

Proof. Since f(a) and f(b) have opposite signs, 0 is between f(a) and f(b). Thus, by

the Intermediate-Value Theorem there is at least one number x in the interval [a, b] such

that f(x) = 0. However, f(a) and f(b) are nonzero, so x must lie in the interval (a, b),

which completes the proof.

Before we illustrate how this theorem can be used to approximate roots, it will be helpful

to discuss some standard terminology for describing errors in approximations. If x is an

approximation to a quantity x0, then we call

ǫ = |x − x0|

the absolute error or (less precisely) the error in the approximation. The terminology in

Table 2.5.1 is used to describe the size of such errors:

Table 2.5.1

error description

|x – x0| ≤  0.1

|x – x0| ≤  0.01

|x – x0| ≤  0.001

|x – x0| ≤  0.0001

|x – x0| ≤  0.5

|x – x0| ≤  0.05

|x – x0| ≤  0.005

|x – x0| ≤  0.0005

x approximates x0 with an error of at most 0.1.

x approximates x0 with an error of at most 0.01.

x approximates x0 with an error of at most 0.001.

x approximates x0 with an error of at most 0.0001.

x approximates x0 to the nearest integer.

x approximates x0 to 1 decimal place (i.e., to the nearest tenth).

x approximates x0 to 2 decimal places (i.e., to the nearest hundredth).

x approximates x0 to 3 decimal places (i.e., to the nearest thousandth).

Example 6 The equation

x3 − x − 1 = 0

cannot be solved algebraically very easily because the left side has no simple factors.

However, if we graph p(x) = x3 − x − 1 with a graphing utility (Figure 2.5.10), then we

are led to conjecture that there is one real root and that this root lies inside the interval [1, 2].
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The existence of a root in this interval is also confirmed by Theorem 2.5.9, since p(1) = −1

and p(2) = 5 have opposite signs. Approximate this root to two decimal-place accuracy.

x

y

y = x3 – x – 1

2

2

Figure 2.5.10

Solution. Our objective is to approximate the unknown root x0 with an error of at most

0.005. It follows that if we can find an interval of length 0.01 that contains the root, then the

midpoint of that interval will approximate the root with an error of at most 0.01/2 = 0.005,

which will achieve the desired accuracy.

We know that the root x0 lies in the interval [1, 2]. However, this interval has length

1, which is too large. We can pinpoint the location of the root more precisely by dividing

the interval [1, 2] into 10 equal parts and evaluating p at the points of subdivision using

a calculating utility (Table 2.5.2). In this table p(1.3) and p(1.4) have opposite signs, so

we know that the root lies in the interval [1.3, 1.4]. This interval has length 0.1, which is

still too large, so we repeat the process by dividing the interval [1.3, 1.4] into 10 parts and

evaluating p at the points of subdivision; this yields Table 2.5.3, which tells us that the root

is inside the interval [1.32, 1.33] (Figure 2.5.11). Since this interval has length 0.01, its

midpoint 1.325 will approximate the root with an error of at most 0.005. Thus, x0 ≈ 1.325

to two decimal-place accuracy. ◭

Table 2.5.2

1

–1

1.1

–0.77

1.2

–0.47

1.3

–0.10 0.34

1.5

0.88

1.6

1.50

1.7

2.21

1.8

3.03

1.4x

f (x)

1.9

3.96

2

5

Table 2.5.3

1.3

–0.103

1.31

–0.062

1.32

–0.020

1.33

0.023 0.066

1.35

0.110

1.36

0.155

1.37

0.201

1.38

0.248

1.34x

f (x)

1.39

0.296

1.4

0.344

1.322 1.324 1.326 1.328 1.330

-0.02

-0.01

0.01

0.02

x

y

y = p(x) = x3 – x – 1

Figure 2.5.11

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING ROOTS BY
ZOOMING WITH A GRAPHING
UTILITY

The method illustrated in Example 6 can also be implemented with a graphing utility as

follows.

Step 1. Figure 2.5.12a shows the graph of f in the window [−5, 5]× [−5, 5]

with xScl = 1 and yScl = 1. That graph places the root between

x = 1 and x = 2.

Step 2. Since we know that the root lies between x = 1 and x = 2, we will

zoom in by regraphing f over an x-interval that extends between

these values and in which xScl = 0.1. The y-interval and yScl are not

critical, as long as the y-interval extends above and below the x-axis.

Figure 2.5.12b shows the graph of f in the window [1, 2] × [−1, 1]

with xScl = 0.1 and yScl = 0.1. That graph places the root between

x = 1.3 and x = 1.4.
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Step 3. Since we know that the root lies between x = 1.3 and x = 1.4, we

will zoom in again by regraphing f over an x-interval that extends

between these values and in whichxScl = 0.01. Figure 2.5.12c shows

the graph of f in the window [1.3, 1.4] × [−0.1, 0.1] with xScl =
0.01 and yScl = 0.01. That graph places the root between x = 1.32

and x = 1.33.

Step 4. Since the interval in Step 3 has length 0.01, its midpoint 1.325 ap-

proximates the root with an error of at most 0.005, so x0 ≈ 1.325 to

two decimal-place accuracy.

Figure 2.5.12

[–5, 5] × [–5, 5]

xScl = 1, yScl = 1

[1, 2] × [–1, 1]

xScl = 0.1, yScl = 0.1

[1.3, 1.4] × [–0.1, 0.1]

xScl = 0.01, yScl = 0.01

(b) (c)(a)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. To say that x approximates x0 to n decimal places does not mean that the first

n decimal places of x and x0 will be the same when the numbers are rounded to n decimal

places. For example, x = 1.084 approximates x0 = 1.087 to two decimal places because

|x − x0| = 0.003(<0.005). However, if we round these values to two decimal places, then

we obtain x ≈ 1.08 and x0 ≈ 1.09. Thus, if you approximate a number to n decimal places,

then you should display that approximation to at least n + 1 decimal places to preserve the

accuracy.

•
•
•
•
•
•
•
•

FOR THE READER. Use a graphing or calculating utility to show that the root x0 in Example

6 can be approximated as x0 ≈ 1.3245 to three decimal-place accuracy.

EXERCISE SET 2.5 Graphing Calculator
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, let f be the function whose graph is shown.

On which of the following intervals, if any, is f continuous?

(a) [1, 3] (b) (1, 3) (c) [1, 2]

(d) (1, 2) (e) [2, 3] (f) (2, 3)

For each interval on whichf is not continuous, indicate which

conditions for the continuity of f do not hold.

1.

1 2 3

x

y 2.

1 2 3

x

y

3.

1 2 3

x

y 4.

1 2 3

x

y

In Exercises 5 and 6, find all values of c such that the specified

function has a discontinuity at x = c. For each such value of

c, determine which conditions of Definition 2.5.1 fail to be

satisfied.
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5. (a) The function f in Exercise 1 of Section 2.1.

(b) The function F in Exercise 5 of Section 2.1.

(c) The function f in Exercise 9 of Section 2.1.

6. (a) The function f in Exercise 2 of Section 2.1.

(b) The function F in Exercise 6 of Section 2.1.

(c) The function f in Exercise 10 of Section 2.1.

7. Suppose that f and g are continuous functions such that

f(2) = 1 and lim
x→2

[f(x) + 4g(x)] = 13. Find

(a) g(2) (b) lim
x→2

g(x).

8. Suppose that f and g are continuous functions such that

lim
x→3

g(x) = 5 and f(3) = −2. Find lim
x→3

[f(x)/g(x)].

9. In each part sketch the graph of a function f that satisfies

the stated conditions.

(a) f is continuous everywhere except at x = 3, at which

point it is continuous from the right.

(b) f has a two-sided limit at x = 3, but it is not continuous

at x = 3.

(c) f is not continuous at x = 3, but if its value at x = 3

is changed from f(3) = 1 to f(3) = 0, it becomes

continuous at x = 3.

(d) f is continuous on the interval [0, 3) and is defined on

the closed interval [0, 3]; but f is not continuous on the

interval [0, 3].

10. Find formulas for some functions that are continuous on the

intervals (−�, 0) and (0,+�), but are not continuous on the

interval (−�,+�).

11. A student parking lot at a university charges $2.00 for the

first half hour (or any part) and $1.00 for each subsequent

half hour (or any part) up to a daily maximum of $10.00.

(a) Sketch a graph of cost as a function of the time parked.

(b) Discuss the significance of the discontinuities in the

graph to a student who parks there.

12. In each part determine whether the function is continuous

or not, and explain your reasoning.

(a) The Earth’s population as a function of time

(b) Your exact height as a function of time

(c) The cost of a taxi ride in your city as a function of the

distance traveled

(d) The volume of a melting ice cube as a function of time

In Exercises 13–24, find the values of x (if any) at which f

is not continuous.

13. f(x) = x3 − 2x + 3 14. f(x) = (x − 5)17

15. f(x) =
x

x2 + 1
16. f(x) =

x

x2 − 1

17. f(x) =
x − 4

x2 − 16
18. f(x) =

3x + 1

x2 + 7x − 2

19. f(x) =
x

|x| − 3
20. f(x) =

5

x
+

2x

x + 4

21. f(x) = |x3 − 2x2| 22. f(x) =
x + 3

|x2 + 3x|

23. f(x) =







2x + 3, x ≤ 4

7 +
16

x
, x > 4

24. f(x) =







3

x − 1
, x 	= 1

3, x = 1

25. Find a value for the constant k, if possible, that will make

the function continuous everywhere.

(a) f(x) =�7x − 2, x ≤ 1

kx2, x > 1

(b) f(x) =�kx2, x ≤ 2

2x + k, x > 2

26. On which of the following intervals is

f(x) =
1

√
x − 2

continuous?

(a) [2,+�) (b) (−�,+�) (c) (2,+�) (d) [1, 2)

A function f is said to have a removable discontinuity at

x = c if limx→c f(x) exists but f is not continuous at x = c,

either because f is not defined at c or because the definition

for f(c) differs from the value of the limit. This terminology

will be needed in Exercises 27–30.

27. (a) Sketch the graph of a function with a removable dis-

continuity at x = c for which f(c) is undefined.
(b) Sketch the graph of a function with a removable dis-

continuity at x = c for which f(c) is defined.

28. (a) The terminology removable discontinuity is appropri-

ate because a removable discontinuity of a function f

at x = c can be “removed” by redefining the value of

f appropriately at x = c. What value for f(c) removes

the discontinuity?
(b) Show that the following functions have removable dis-

continuities at x = 1, and sketch their graphs.

f(x) =
x2 − 1

x − 1
and g(x) =









1, x > 1

0, x = 1

1, x < 1

(c) What values should be assigned to f(1) and g(1) to

remove the discontinuities?

In Exercises 29 and 30, find the values of x (if any) at which

f is not continuous, and determine whether each such value

is a removable discontinuity.

29. (a) f(x) =
|x|
x

(b) f(x) =
x2 + 3x

x + 3

(c) f(x) =
x − 2

|x| − 2
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30. (a) f(x) =
x2 − 4

x3 − 8

(b) f(x) =

{

2x − 3, x ≤ 2

x2, x > 2

(c) f(x) =

{

3x2 + 5, x 	= 1

6, x = 1

31. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = (x + 3)/(2x2 + 5x − 3), and then use

the graph to make a conjecture about the number and

locations of all discontinuities.

(b) Check your conjecture by factoring the denominator.

32. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = x/(x3 − x + 2), and then use the graph to

make a conjecture about the number and locations of

all discontinuities.

(b) Use the Intermediate-Value Theorem to approximate

the location of all discontinuities to two decimal places.

33. Prove that f(x) = x3/5 is continuous everywhere, carefully

justifying each step.

34. Prove that f(x) = 1/
√

x4 + 7x2 + 1 is continuous every-

where, carefully justifying each step.

35. Let f and g be discontinuous at c. Give examples to show

that

(a) f + g can be continuous or discontinuous at c

(b) fg can be continuous or discontinuous at c.

36. Prove Theorem 2.5.4.

37. Prove:

(a) part (a) of Theorem 2.5.3

(b) part (b) of Theorem 2.5.3

(c) part (c) of Theorem 2.5.3.

38. Prove: If f and g are continuous on [a, b], and f(a) > g(a),

f(b) < g(b), then there is at least one solution of the equa-

tion f(x) = g(x) in (a, b). [Hint: Consider f(x) − g(x).]

39. Give an example of a function f that is defined on a closed

interval, and whose values at the endpoints have opposite

signs, but for which the equation f(x) = 0 has no solution

in the interval.

40. Use the Intermediate-Value Theorem to show that there is a

square with a diagonal length that is between r and 2r and

an area that is half the area of a circle of radius r .

41. Use the Intermediate-Value Theorem to show that there is

a right circular cylinder of height h and radius less than r

whose volume is equal to that of a right circular cone of

height h and radius r .

In Exercises 42 and 43, show that the equation has at least

one solution in the given interval.

42. x3 − 4x + 1 = 0; [1, 2] 43. x3+x2−2x = 1; [−1, 1]

44. Prove: If p(x) is a polynomial of odd degree, then the equa-

tion p(x) = 0 has at least one real solution.

45. The accompanying figure shows the graph of y = x4+x−1.

Use the method of Example 6 to approximate the x-

intercepts with an error of at most 0.05.

[–5, 4] × [–3, 6]

xScl = 1, yScl = 1

Figure Ex-45

46. Use a graphing utility to solve the problem in Exercise 45

by zooming.

47. The accompanying figure shows the graph of y = 5−x−x4.

Use the method of Example 6 to approximate the roots of

the equation 5−x−x4 = 0 to two decimal-place accuracy.

[–5, 4] × [–3, 6]

xScl = 1, yScl = 1

Figure Ex-47

48. Use a graphing utility to solve the problem in Exercise 47

by zooming.

49. Use the fact that
√

5 is a solution of x2 − 5 = 0 to approxi-

mate
√

5 with an error of at most 0.005.

50. Prove that if a and b are positive, then the equation

a

x − 1
+

b

x − 3
= 0

has at least one solution in the interval (1, 3).

51. A sphere of unknown radius x consists of a spherical core

and a coating that is 1 cm thick (see the accompanying fig-

ure). Given that the volume of the coating and the volume of

the core are the same, approximate the radius of the sphere

to three decimal-place accuracy.

1 cm

x

Figure Ex-51
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52. A monk begins walking up a mountain road at 12:00 noon

and reaches the top at 12:00 midnight. He meditates and

rests until 12:00 noon the next day, at which time he begins

walking down the same road, reaching the bottom at 12:00

midnight. Show that there is at least one point on the road

that he reaches at the same time of day on the way up as on

the way down.

53. Let f be defined at c. Prove that f is continuous at c if, given

ǫ > 0, there exists a δ > 0 such that |f(x) − f(c)| < ǫ if

|x − c| < δ.

2.6 LIMITS AND CONTINUITY OF TRIGONOMETRIC FUNCTIONS

In this section we will investigate the continuity properties of the trigonometric func-

tions, and we will discuss some important limits involving these functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONTINUITY OF TRIGONOMETRIC
FUNCTIONS

Before we begin, recall that in the expressions sin x, cos x, tan x, cot x, sec x, and csc x it

is understood that x is in radian measure.

In trigonometry, the graphs of sin x and cos x are drawn as continuous curves (Fig-

ure 2.6.1). To actually prove that these functions are continuous everywhere, we must show

that the following equalities hold for every real number c:

lim
x→c

sin x = sin c and lim
x→c

cos x = cos c (1–2)

Although we will not formally prove these results, we can make them plausible by consid-

ering the behavior of the point P(cos x, sin x) as it moves around the unit circle. For this

purpose, view c as a fixed angle in radian measure, and letQ(cos c, sin c) be the correspond-

ing point on the unit circle. As x→c (i.e., as the angle x approaches the angle c), the point

P moves along the circle toward Q, and this implies that the coordinates of P approach the

corresponding coordinates of Q; that is, cos x→cos c, and sin x→sin c (Figure 2.6.2).

-1

1

y = sin x

cCO o

x

y

-1

1

y = cos x

cCO o

x

y

Figure 2.6.1

Formulas (1) and (2) can be used to find limits of the remaining trigonometric functions

by expressing them in terms of sin x and cos x; for example, if cos c 	= 0, then

lim
x→c

tan x = lim
x→c

sin x

cos x
=

sin c

cos c
= tan c

Thus, we are led to the following theorem.

2.6.1 THEOREM. If c is any number in the natural domain of the stated trigonometric

function, then

lim
x→c

sin x = sin c lim
x→c

cos x = cos c lim
x→c

tan x = tan c

lim
x→c

csc x = csc c lim
x→c

sec x = sec c lim
x→c

cot x = cot c

Q(cos c, sin c)

P(cos x, sin x)

x

c

Figure 2.6.2

It follows from this theorem, for example, that sin x and cos x are continuous everywhere

and that tan x is continuous, except at the points where it is undefined.
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Example 1 Find the limit

lim
x→1

cos

(
x2 − 1

x − 1

)

Solution. Recall from the last section that since the cosine function is continuous every-

where,

lim
x→1

cos(g(x)) = cos( lim
x→1

g(x))

provided limx→1 g(x) exists. Thus,

lim
x→1

cos

(
x2 − 1

x − 1

)

= lim
x→1

cos(x + 1) = cos

(

lim
x→1

(x + 1)

)

= cos 2 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

OBTAINING LIMITS BY SQUEEZING
In Section 2.1 we used the numerical evidence in Table ?? to conjecture that

lim
x→0

sin x

x
= 1 (3)

However, it is not a simple matter to establish this limit with certainty. The difficulty is

that the numerator and denominator both approach zero as x→0. As discussed in Section

2.2, such limits are called indeterminate forms of type 0/0. Sometimes indeterminate forms

of this type can be established by manipulating the ratio algebraically, but in this case no

simple algebraic manipulation will work, so we must look for other methods.

The problem with indeterminate forms of type 0/0 is that there are two conflicting

influences at work: as the numerator approaches 0 it drives the magnitude of the ratio

toward 0, and as the denominator approaches 0 it drives the magnitude of the ratio toward ±�

(depending on the sign of the expression). The limiting behavior of the ratio is determined

by the precise way in which these influences offset each other. Later in this text we will

discuss general methods for attacking indeterminate forms, but for the limit in (3) we can

use a method called squeezing.

In the method of squeezing one proves that a function f has a limit L at a number c by

trapping the function between two other functions, g andh, whose limits at c are known to be

L (Figure 2.6.3). This is the idea behind the following theorem, which we state without proof.

x

y

c

L

y = h(x)

y = g(x)

y = f (x)

Figure 2.6.3

O o

1 x

y

O o

1 x

y

x→0 
lim = 1sin x

x

x→0 
lim = 01 – cos x

x

y = 
sin x

x

y = 
1 – cos x

x

Figure 2.6.4

2.6.2 THEOREM (The Squeezing Theorem). Let f, g, and h be functions satisfying

g(x) ≤ f(x) ≤ h(x)

for all x in some open interval containing the number c, with the possible exception that

the inequalities need not hold at c. If g and h have the same limit as x approaches c, say

lim
x→c

g(x) = lim
x→c

h(x) = L

then f also has this limit as x approaches c, that is,

lim
x→c

f(x) = L

•
•
•
•
•
•
•
•
•

FOR THE READER. The Squeezing Theorem also holds for one-sided limits and limits at

+� and −�. How do you think the hypotheses of the theorem would change in those cases?

The usefulness of the Squeezing Theorem will be evident in our proof of the following

theorem (Figure 2.6.4).

2.6.3 THEOREM.

(a) lim
x→0

sin x

x
= 1 (b) lim

x→0

1 − cos x

x
= 0
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However, before giving the proof, it will be helpful to review the formula for the area A of

a sector with radius r and a central angle of θ radians (Figure 2.6.5). The area of the sector

can be derived by setting up the following proportion to the area of the entire circle:

A

πr2
=

θ

2π

[

area of the sector

area of the circle
=

central angle of the sector

central angle of the circle

]

From this we obtain the formula

A = 1
2
r2θ (4)

Now we are ready for the proof of Theorem 2.6.3.

u

r

Area = A

Figure 2.6.5

Proof (a). In this proof we will interpret x as an angle in radian measure, and we will

assume to start that 0 < x < π/2. It follows from Formula (4) that the area of a sector of

radius 1 and central angle x is x/2. Moreover, it is suggested by Figure 2.6.6 that the area

of this sector lies between the areas of two triangles, one with area (tan x)/2 and one with

area (sin x)/2. Thus,

tan x

2
≥

x

2
≥

sin x

2

Multiplying through by 2/(sin x) yields

1

cos x
≥

x

sin x
≥ 1

and then taking reciprocals and reversing the inequalities yields

cos x ≤
sin x

x
≤ 1 (5)

Moreover, these inequalities also hold for −π/2 < x < 0, since replacing x by −x in (5)

and using the identities sin(−x) = − sin x and cos(−x) = cos x leaves the inequalities

unchanged (verify). Finally, since the functions cos x and 1 both have limits of 1 as x→0,

it follows from the Squeezing Theorem that (sin x)/x also has a limit of 1 as x→0.

Figure 2.6.6

1
1

x (1, 0)

(1, tan x)

tan x

(cos x, sin x)

x

1

x

1

x

Area of triangle Area of sector Area of triangle≥

≥ ≥

≥

tan x

2

sin x

2

x

2

sin x

Proof (b). For this proof we will use the limit in part (a), the continuity of the sine function,

and the trigonometric identity sin2 x = 1 − cos2 x. We obtain

lim
x→0

1 − cos x

x
= lim

x→0

[

1 − cos x

x
·

1 + cos x

1 + cos x

]

= lim
x→0

sin2 x

(1 + cos x)x

=
(

lim
x→0

sin x

x

) (

lim
x→0

sin x

1 + cos x

)

= (1)

(

0

1 + 1

)

= 0

Example 2 Find

(a) lim
x→0

tan x

x
(b) lim

θ →0

sin 2θ

θ
(c) lim

x→0

sin 3x

sin 5x
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Solution (a).

lim
x→0

tan x

x
= lim

x→0

(
sin x

x
·

1

cos x

)

= (1)(1) = 1

Solution (b). The trick is to multiply and divide by 2, which will make the denominator

the same as the argument of the sine function [ just as in Theorem 2.6.3(a)]:

lim
θ →0

sin 2θ

θ
= lim

θ →0
2 ·

sin 2θ

2θ
= 2 lim

θ →0

sin 2θ

2θ

Now make the substitution x = 2θ , and use the fact that x→0 as θ →0. This yields

lim
θ →0

sin 2θ

θ
= 2 lim

θ →0

sin 2θ

2θ
= 2 lim

x→0

sin x

x
= 2(1) = 2

Solution (c).

lim
x→0

sin 3x

sin 5x
= lim

x→0

sin 3x

x

sin 5x

x

= lim
x→0

3 ·
sin 3x

3x

5 ·
sin 5x

5x

=
3 · 1

5 · 1
=

3

5
◭

•
•
•
•
•
•
•
•
•

FOR THE READER. Use a graphing utility to confirm the limits in the last example graph-

ically, and if you have a CAS, then use it to obtain the limits.

Example 3 Make conjectures about the limits

(a) lim
x→0

sin

(
1

x

)

(b) lim
x→0

x sin

(
1

x

)

and confirm your conclusions by generating the graphs of the functions near x = 0 using a

graphing utility.

Solution (a). Since 1/x →+� as x → 0+, we can view sin(1/x) as the sine of an angle

that increases indefinitely as x→ 0+. As this angle increases, the function sin(1/x) keeps

oscillating between −1 and 1 without approaching a limit. Similarly, there is no limit from

the left since 1/x → −� as x → 0−. These conclusions are consistent with the graph of

y = sin(1/x) shown in Figure 2.6.7a. Observe that the oscillations become more and more

rapid as x approaches 0 because 1/x increases (or decreases) more and more rapidly as x

approaches 0.

Solution (b). If x > 0,−x ≤ x sin(1/x) ≤ x, and if x < 0, x ≤ x sin(1/x) ≤ −x.

Thus, for x 	= 0,−|x| ≤ x sin(1/x) ≤ |x|. Since both |x| → 0 and −|x| → 0 as x → 0,

the Squeezing Theorem applies and we can conclude that x sin(1/x)→0 as x→0. This is

illustrated in Figure 2.6.7b. ◭

-1 1

-1

1

x

y

y = sin (   )x
1

(a)

y = x sin (   )x
1

x

y
y = |x |

y = – |x |

(b)

Figure 2.6.7

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It follows from part (b) of this example that the function

f(x) =�x sin(1/x), x 	= 0

0, x = 0

is continuous at x = 0, since the value of the function and the value of the limit are the

same at 0. This shows that the behavior of a function can be very complex in the vicinity

of an x-value c, even though the function is continuous at c.
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EXERCISE SET 2.6 Graphing Calculator C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–10, find the discontinuities, if any.

1. f(x) = sin(x2 − 2) 2. f(x) = cos

(
x

x − π

)

3. f(x) = cot x 4. f(x) = sec x

5. f(x) = csc x 6. f(x) =
1

1 + sin2 x

7. f(x) = | cos x| 8. f(x) =�2 + tan2 x

9. f(x) =
1

1 − 2 sin x
10. f(x) =

3

5 + 2 cos x

11. Use Theorem 2.5.6 to show that the following functions

are continuous everywhere by expressing them as compo-

sitions of simpler functions that are known to be continuous.

(a) sin(x3 + 7x + 1) (b) |sin x|
(c) cos3(x + 1) (d)

√
3 + sin 2x

(e) sin(sin x) (f ) cos5 x − 2 cos3 x + 1

12. (a) Prove that if g(x) is continuous everywhere, then so are

sin(g(x)), cos(g(x)), g(sin(x)), and g(cos(x)).

(b) Illustrate the result in part (a) with some of your own

choices for g.

Find the limits in Exercises 13–35.

13. lim
x→+�

cos

(
1

x

)

14. lim
x→+�

sin

(
2

x

)

15. lim
x→+�

sin

(
πx

2 − 3x

)

16. lim
h→0

sinh

2h

17. lim
θ →0

sin 3θ

θ
18. lim

θ →0+

sin θ

θ2

19. lim
x→0−

sin x

|x|
20. lim

x→0

sin2 x

3x2

21. lim
x→0+

sin x

5
√
x

22. lim
x→0

sin 6x

sin 8x

23. lim
x→0

tan 7x

sin 3x
24. lim

θ →0

sin2 θ

θ

25. lim
h→0

h

tanh
26. lim

h→0

sinh

1 − cosh

27. lim
θ →0

θ2

1 − cos θ
28. lim

x→0

x

cos
(

1
2
π − x

)

29. lim
θ →0

θ

cos θ
30. lim

t→0

t2

1 − cos2 t

31. lim
h→0

1 − cos 5h

cos 7h − 1
32. lim

x→0+
sin

(
1

x

)

33. lim
x→0+

cos

(
1

x

)

34. lim
x→0

x2 − 3 sin x

x

35. lim
x→0

2x + sin x

x

In Exercises 36–39: (i) Construct a table to estimate the limit

by evaluating the function near the limiting value. (ii) Find

the exact value of the limit.

36. lim
x→5

sin(x − 5)

x2 − 25
37. lim

x→2

sin(2x − 4)

x2 − 4

38. lim
x→−2

sin(x2 + 3x + 2)

x + 2
39. lim

x→−1

sin(x2 + 3x + 2)

x3 + 1

40. Find a value for the constant k that makes

f(x) =







sin 3x

x
, x 	= 0

k, x = 0

continuous at x = 0.

41. Find a nonzero value for the constant k that makes

f(x) =







tan kx

x
, x < 0

3x + 2k2, x ≥ 0

continuous at x = 0.

42. Is

f(x) =







sin x

|x|
, x 	= 0

1, x = 0

continuous at x = 0?

43. In each part, find the limit by making the indicated substi-

tution.

(a) lim
x→+�

x sin
1

x
; t =

1

x

(b) lim
x→−�

x

(

1 − cos
1

x

)

; t =
1

x

(c) lim
x→π

π − x

sin x
. [Hint: Let t = π − x.]

44. Find lim
x→2

cos(π/x)

x − 2
; t =

π

2
−

π

x
.

45. Find lim
x→1

sin(πx)

x − 1
. 46. Find lim

x→π/4

tan x−1

x−π/4
.

47. Use the Squeezing Theorem to show that

lim
x→0

x cos
50π

x
= 0

and illustrate the principle involved by using a graphing util-

ity to graph y = |x|, y = −|x|, and y = x cos(50π/x) on

the same screen in the window [−1, 1] × [−1, 1].

48. Use the Squeezing Theorem to show that

lim
x→0

x2 sin

(
50π
3
√
x

)

= 0
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and illustrate the principle involved by using a graphing util-

ity to graph y = x2, y = −x2, and y = x2 sin(50π/ 3
√
x ) on

the same screen in the window [−0.5, 0.5]× [−0.25, 0.25].

49. Sketch the graphs of y = 1 − x2, y = cos x, and y = f(x),

where f is a function that satisfies the inequalities

1 − x2 ≤ f(x) ≤ cos x

for all x in the interval (−π/2, π/2). What can you say about

the limit of f(x) as x→0? Explain your reasoning.

50. Sketch the graphs of y = 1/x, y = −1/x, and y = f(x),

where f is a function that satisfies the inequalities

−
1

x
≤ f(x) ≤

1

x

for all x in the interval [1,+�). What can you say about the

limit of f(x) as x→+�? Explain your reasoning.

51. Find formulas for functions g and h such that g(x)→0 and

h(x)→0 as x→+� and such that

g(x) ≤
sin x

x
≤ h(x)

for positive values of x. What can you say about the limit

lim
x→+�

sin x

x
?

Explain your reasoning.

52. Draw pictures analogous to Figure 2.6.3 that illustrate the

Squeezing Theorem for limits of the forms limx→+�
f(x)

and limx→−�
f(x).

Recall that unless stated otherwise the variable x in trigono-

metric functions such as sin x and cos x is assumed to be in

radian measure. The limits in Theorem 2.6.3 are based on

that assumption. Exercises 53 and 54 explore what happens

to those limits if degree measure is used for x.

53. (a) Show that if x is in degrees, then

lim
x→0

sin x

x
=

π

180

(b) Confirm that the limit in part (a) is consistent with the

results produced by your calculating utility by setting

the utility to degree measure and calculating (sin x)/x

for some values of x that get closer and closer to 0.

54. What is the limit of (1−cos x)/x as x→0 if x is in degrees?

55. It follows from part (a) of Theorem 2.6.3 that if θ is small

(near zero) and measured in radians, then one should expect

the approximation

sin θ ≈ θ

to be good.

(a) Find sin 10◦ using a calculating utility.

(b) Estimate sin 10◦ using the approximation above.

56. (a) Use the approximation of sin θ that is given in Exer-

cise 55 together with the identity cos 2α = 1 − 2 sin2 α

with α = θ/2 to show that if θ is small (near zero)

and measured in radians, then one should expect the

approximation

cos θ ≈ 1 − 1
2
θ2

to be good.
(b) Find cos 10◦ using a calculating utility.
(c) Estimate cos 10◦ using the approximation above.

57. It follows from part (a) of Example 2 that if θ is small (near

zero) and measured in radians, then one should expect the

approximation

tan θ ≈ θ

to be good.

(a) Find tan 5◦ using a calculating utility.
(b) Find tan 5◦ using the approximation above.

58. Referring to the accompanying figure, suppose that the an-

gle of elevation of the top of a building, as measured from

a point L feet from its base, is found to be α degrees.

(a) Use the relationship h = L tanα to calculate the height

of a building for which L = 500 ft and α = 6◦ .
(b) Show that if L is large compared to the building height

h, then one should expect good results in approximating

h by h ≈ πLα/180.
(c) Use the result in part (b) to approximate the building

height h in part (a).

ha

L Figure Ex-58

59. (a) Use the Intermediate-Value Theorem to show that the

equation x = cos x has at least one solution in the in-

terval [0, π/2].
(b) Show graphically that there is exactly one solution in

the interval.
(c) Approximate the solution to three decimal places.

60. (a) Use the Intermediate-Value Theorem to show that the

equation x + sin x = 1 has at least one solution in the

interval [0, π/6].
(b) Show graphically that there is exactly one solution in

the interval.
(c) Approximate the solution to three decimal places.

61. In the study of falling objects near the surface of the Earth,

the acceleration g due to gravity is commonly taken to be

9.8 m/s2 or 32 ft/s2. However, the elliptical shape of the

Earth and other factors cause variations in this constant that

are latitude dependent. The following formula, known as the

Geodetic Reference Formula of 1967, is commonly used to

predict the value of g at a latitude of φ degrees (either north

or south of the equator):

g = 9.7803185(1.0 + 0.005278895 sin2 φ

− 0.000023462 sin4 φ) m/s2

(a) Observe that g is an even function of φ. What does this

suggest about the shape of the Earth, as modeled by the

Geodetic Reference Formula?
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(b) Show that g = 9.8 m/s2 somewhere between latitudes

of 38◦ and 39◦ .

62. Let

f(x) =
{

1 if x is a rational number

0 if x is an irrational number

(a) Make a conjecture about the limit of f(x) as x→0.

(b) Make a conjecture about the limit of xf(x) as x→0.

(c) Prove your conjectures.

SUPPLEMENTARY EXERCISES

1. For the function f graphed in the accompanying figure, find

the limit if it exists.

(a) lim
x→1

f(x) (b) lim
x→2

f(x) (c) lim
x→3

f(x)

(d) lim
x→4

f(x) (e) lim
x→+�

f(x) (f ) lim
x→−�

f(x)

(g) lim
x→3+

f(x) (h) lim
x→3−

f(x) (i) lim
x→0

f(x)

-1 1 2 3 4 5 6 7 8

1

2

3

x

y

Figure Ex-1

2. (a) Find a formula for a rational function that has a verti-

cal asymptote at x = 1 and a horizontal asymptote at

y = 2.

(b) Check your work by using a graphing utility to graph

the function.

3. (a) Write a paragraph or two that describes how the limit of

a function can fail to exist at x = a. Accompany your

description with some specific examples.

(b) Write a paragraph or two that describes how the limit

of a function can fail to exist as x → +� or x → −�.

Also, accompany your description with some specific

examples.

(c) Write a paragraph or two that describes how a function

can fail to be continuous at x = a. Accompany your

description with some specific examples.

4. Show that the conclusion of the Intermediate-Value The-

orem may be false if f is not continuous on the interval

[a, b].

5. In each part, evaluate the function for the stated values of x,

and make a conjecture about the value of the limit. Confirm

your conjecture by finding the limit algebraically.

(a) f(x) =
x − 2

x2 − 4
; lim

x→2+
f(x); x = 2.5, 2.1, 2.01,

2.001, 2.0001, 2.00001

(b) f(x) =
tan 4x

x
; lim

x→0
f(x); x = ±1.0, ±0.1, ±0.01,

±0.001, ±0.0001, ±0.00001

6. In each part, find the horizontal asymptotes, if any.

(a) y =
2x − 7

x2 − 4x
(b) y =

x3 − x2 + 10

3x2 − 4x

(c) y =
2x2 − 6

x2 + 5x

7. (a) Approximate the value for the limit

lim
x→0

3x − 2x

x

to three decimal places by constructing an appropriate

table of values.
(b) Confirm your approximation using graphical evidence.

8. According to Ohm’s law, when a voltage of V volts is ap-

plied across a resistor with a resistance of R ohms, a current

of I = V /R amperes flows through the resistor.

(a) How much current flows if a voltage of 3.0 volts is ap-

plied across a resistance of 7.5 ohms?
(b) If the resistance varies by ±0.1 ohm, and the voltage

remains constant at 3.0 volts, what is the resulting range

of values for the current?
(c) If temperature variations cause the resistance to vary

by ±δ from its value of 7.5 ohms, and the voltage re-

mains constant at 3.0 volts, what is the resulting range

of values for the current?
(d) If the current is not allowed to vary by more than

ǫ = ±0.001 ampere at a voltage of 3.0 volts, what vari-

ation of ±δ from the value of 7.5 ohms is allowable?
(e) Certain alloys become superconductors as their tem-

perature approaches absolute zero (−273◦C), meaning

that their resistance approaches zero. If the voltage re-

mains constant, what happens to the current in a super-

conductor as R→0+?

9. Suppose that f is continuous on the interval [0, 1] and that

0 ≤ f(x) ≤ 1 for all x in this interval.

(a) Sketch the graph of y = x together with a possible

graph for f over the interval [0, 1].
(b) Use the Intermediate-Value Theorem to help prove that

there is at least one number c in the interval [0, 1] such

that f(c) = c.

10. Use algebraic methods to find

(a) lim
θ →0

tan

(

1 − cos θ

θ

)

(b) lim
t→1

t − 1
√
t − 1

(c) lim
x→+�

(2x − 1)5

(3x2 + 2x − 7)(x3 − 9x)

(d) lim
θ →0

cos

(

sin(θ + π)

2θ

)

.
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11. Suppose that f is continuous on the interval [0, 1], that

f(0) = 2, and that f has no zeros in the interval. Prove that

f(x) > 0 for all x in [0, 1].

12. Suppose that

f(x) =

{

−x4 + 3, x ≤ 2

x2 + 9, x > 2

Is f continuous everywhere? Justify your conclusion.

13. Show that the equation x4 + 5x3 + 5x − 1 = 0 has at least

two real solutions in the interval [−6, 2].

14. Use the Intermediate-Value Theorem to approximate
√

11

to three decimal places, and check your answer by finding

the root directly with a calculating utility.

15. Suppose that f is continuous at x0 and that f(x0) > 0. Give

either an ǫ-δ proof or a convincing verbal argument to show

that there must be an open interval containing x0 on which

f(x) > 0.

16. Sketch the graph of f(x) = |x2 − 4|/(x2 − 4).

17. In each part, approximate the discontinuities of f to three

decimal places.

(a) f(x) =
x + 1

x2 + 2x − 5

(b) f(x) =
x + 3

|2 sin x − x|
18. In Example 3 of Section 2.6 we used the Squeezing Theorem

to prove that

lim
x→0

x sin

(

1

x

)

= 0

Why couldn’t we have obtained the same result by writing

lim
x→0

x sin

(

1

x

)

= lim
x→0

x · lim
x→0

sin

(

1

x

)

= 0 · lim
x→0

sin

(

1

x

)

= 0?

In Exercises 19 and 20, find lim
x→a

f(x), if it exists, for

a = 0, 5+, −5−, −5, 5, −�, +�

19. (a) f(x) =
√

5 − x (b) f(x) = (x2−25)/(x−5)

20. (a) f(x) = (x + 5)/(x2 − 25)

(b) f(x) =

{

(x − 5)/|x − 5|, x 	= 5

0, x = 5

In Exercises 21–28, find the indicated limit, if it exists.

21. lim
x→0

tan ax

sin bx
(a 	= 0, b 	= 0)

22. lim
x→0

sin 3x

tan 3x

23. lim
θ →0

sin 2θ

θ2
24. lim

x→0

x sin x

1 − cos x

25. lim
x→0+

sin x
√
x

26. lim
x→0

sin2(kx)

x2
, k 	= 0

27. lim
x→0

3x − sin(kx)

x
, k 	= 0

28. lim
x→+�

2x + x sin 3x

5x2 − 2x + 1

29. One dictionary describes a continuous function as “one

whose value at each point is closely approached by its values

at neighboring points.”

(a) How would you explain the meaning of the terms

“neighboring points” and “closely approached” to a

nonmathematician?

(b) Write a paragraph that explains why the dictionary def-

inition is consistent with Definition 2.5.1.

30. (a) Show by rationalizing the numerator that

lim
x→0

√

x2 + 4 − 2

x2
=

1

4

(b) Evaluate f(x) for

x = ±1.0,±0.1,±0.01,±0.001,±0.0001,±0.00001

and explain why the values are not getting closer and

closer to the limit.

(c) The accompanying figure shows the graph of f gen-

erated with a graphing utility and zooming in on the

origin. Explain what is happening.

[–0.5, 0.5] × [–0.1, 0.5]

xScl = 0.1, yScl = 0.1

[–5, 5] × [–0.1, 0.5]

xScl = 1, yScl = 0.1

[–5 × 10–6, 5 × 10–6] × [–0.1, 0.5]

xScl = 10–6, yScl = 0.1

Figure Ex-30

In Exercises 31–36, approximate the limit of the function

by looking at its graph and calculating values for some ap-

propriate choices of x. Compare your answer with the value

produced by a CAS.



January 10, 2001 13:09 g65-ch2 Sheet number 61 Page number 167 cyan magenta yellow black

Supplementary Exercises 167

C 31. lim
x→0

(1 + x)1/x
C 32. lim

x→3

2x − 8

x − 3

C 33. lim
x→1

sin x − sin 1

x − 1
C 34. lim

x→0+
x−2(1.001)−1/x

C 35. lim
x→+�

(�
x +

√
x −

√
x

)

C 36. lim
x→+�

(

3x + 5x
)1/x

37. The limit

lim
x→0

sin x

x
= 1

ensures that there is a number δ such that����sin x

x
− 1

����< 0.001

if 0 < |x| < δ. Estimate the largest such δ.

38. If $1000 is invested in an account that pays 7% interest

compounded n times each year, then in 10 years there will

be 1000(1 + 0.07/n)10n dollars in the account. How much

money will be in the account in 10 years if the interest is

compounded quarterly (n = 4)? Monthly (n = 12)? Daily

(n = 365)? Estimate the amount of money that will be in

the account in 10 years if the interest is compounded con-

tinuously, that is, as n→+�?

39. There are various numerical methods other than the method

discussed in Section 2.5 to obtain approximate solutions of

equations of the form f(x) = 0. One such method requires

that the equation be expressed in the form x = g(x), so that

a solution x = c can be interpreted as the value of x where

the line y = x intersects the curve y = g(x), as shown in the

accompanying figure. If x1 is an initial estimate of c and the

graph of y = g(x) is not too steep in the vicinity of c, then

a better approximation can be obtained from x2 = g(x1)

(see the figure). An even better approximation is obtained

from x3 = g(x2), and so forth. The formula xn+1 = g(xn)

for n = 1, 2, 3, . . . generates successive approximations

x2, x3, x4, . . . that get closer and closer to c.

(a) The equation x3 −x−1 = 0 has only one real solution.

Show that this equation can be written as

x = g(x) = 3
√
x + 1

(b) Graph y = x and y = g(x) in the same coordinate

system for −1 ≤ x ≤ 3.

(c) Starting with an arbitrary estimate x1, make a sketch

that shows the location of the successive iterates

x2 = g(x1), x3 = g(x2), . . .

(d) Use x1 = 1 and calculate x2, x3, . . . , continuing until

you obtain two consecutive values that differ by less

than 10−4. Experiment with other starting values such

as x1 = 2 or x1 = 1.5.

x

y
y = x y = g(x)

c x3 x2 x1

Figure Ex-39

40. The method described in Exercise 39 will not always work.

(a) The equation x3 − x − 1 = 0 can be expressed as

x = g(x) = x3 − 1. Graph y = x and y = g(x) in

the same coordinate system. Starting with an arbitrary

estimate x1, make a sketch illustrating the locations of

the successive iterates x2 = g(x1), x3 = g(x2), . . . .

(b) Use x1 = 1 and calculate the successive iterates xn for

n = 2, 3, 4, 5, 6.

In Exercises 41 and 42, use the method of Exercise 39 to

approximate the roots of the equation.

41. x5 − x − 2 = 0 42. x − cos x = 0


