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THE DERIVATIVE

any real-world phenomena involve chang-

ing quantities—the speed of a rocket, the inflation of cur-

rency, the number of bacteria in a culture, the shock inten-

sity of an earthquake, the voltage of an electrical signal,

and so forth. In this chapter we will develop the concept

of a derivative, which is the mathematical tool that is used

to study rates at which quantities change. In Section 3.1

we will interpret both average and instantaneous velocity

geometrically, and we will define the slope of a curve at a

point. In Sections 3.2 to 3.6 we will provide a precise defi-

nition of the derivative and we will develop mathematical

tools for calculating derivatives efficiently. In Section 3.7

we will show how these methods of differentiation can be

applied to problems involving rates of change.

One of the important themes of calculus is that many

nonlinear functions can be closely approximated by linear

functions. In Section 3.8 we will show how derivatives can

be used to generate such approximations.
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3.1 SLOPES AND RATES OF CHANGE

In this section we will explore the connection between velocity at an instant, the slope

of a curve at a point, and rate of change. Our work here is intended to be informal

and introductory, and all of the ideas that we develop will be revisited in more detail

in later sections.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VELOCITY AND SLOPES
In Section 2.1 we interpreted the instantaneous velocity of a particle moving along an s-axis

as a limit of average velocities. We begin our introduction to the derivative with another

visit to the topic of velocity.

For purposes of illustration, consider a bell ringer practicing for her part in a change-

ringing group at an English bell tower. The ringer controls a rope, pulling periodically to

ring the bell. We will concentrate on the position of the sally (the handgrip on the rope),

measured in feet above the floor of the ringing room. Imagine the s-axis as the line of travel

of the sally. Figure 3.1.1a shows a sequence of “snapshots” of one such scenario, taken at

times t = 0, 1, 2, 3, and 4 s.
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We may be able to record the height of the sally at various times, as in Table 3.1.1, or

even model the motion of the sally by a function, as depicted in the graph in Figure 3.1.1b.

The velocity of the sally measures the rate of ascent of the sally in its motion during the

ringing of the bell. For example, during the first 2 s (t = 0 to t = 2), the displacement of

the sally is f (2)−f (0) = 7.79−5.00 = 2.79 ft, so the average velocity of the sally during

these 2 s is

vave =
7.79 − 5.00

2 − 0
≈ 1.39 ft/s

The average velocity during the next 2 s (t = 2 to t = 4) is

vave =
3.40 − 7.79

4 − 2
≈ −2.19 ft/s

Note that the displacement of the sally is negative during this latter time interval, since its

position at time t = 4 is below that at time t = 2. Thus, the average velocity is also negative.

Table 3.1.1

0.0

5.00

t (seconds)

s = f (t) (ft)

1.5

5.78

0.5

2.66

1.0

3.19

2.0

7.79

2.5

8.52

3.0

7.92

3.5

6.02

4.0

3.40

We can see from the graph of s = f(t) (Figure 3.1.2) that these average velocities

are equal to the slopes of the lines through the points (0, 5.00) and (2, 7.79), and through
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(2, 7.79) and (4, 3.40). Thus, average velocity can be interpreted as a geometric property

of the graph of the position function.

3.1.1 GEOMETRIC INTERPRETATION OF AVERAGE VELOCITY. If an object moves

along an s-axis, and if the position versus time curve is s = f(t), then the average

velocity of the object between times t0 and t1,

vave =
f(t1)− f(t0)

t1 − t0

is represented geometrically by the slope of the line joining the points (t0, f(t0)) and

(t1, f(t1)).

Now, from the graph of s = f(t) in Figure 3.1.1b we can see that the sally is rising more

quickly during the time interval 1.5 ≤ t ≤ 2 than during the interval 2 ≤ t ≤ 2.5. This

is numerically revealed using the data in Table 3.1.1 to obtain average velocities of 4.02

ft/s and 1.46 ft/s, respectively, for these two time intervals. But what of the velocity, vinst,

of the sally at the instant our clock strikes t = 2 s? How should vinst be defined? Does it

have a geometric interpretation as well? We argued in Section 2.1 that the “instantaneous

velocity” at a particular moment in time should be the limiting value of average velocities.

This suggests that we define the instantaneous velocity of the sally at time t = 2 by

vinst = lim
t1 →2

f (t1)− f (2)

t1 − 2

It follows that we can estimate vinst at t = 2 by calculating average velocities over ever

smaller intervals anchored at 2. That is, we would expect that the fractions

f(2.2)− f(2)

2.2 − 2
,

f(2.1)− f(2)

2.1 − 2
,

f(2.01)− f(2)

2.01 − 2

would, in turn, each yield a better estimate for vinst. Since Table 3.1.1 is lacking for such

refined data, consider the portion of the graph of s = f(t) near t = 2 shown in Figure 3.1.3.

21.5 2.5 3 3.5

7.5

7

8

8.5

9

Figure 3.1.3

The ratios that produce average velocities on an interval 2 ≤ t ≤ t1 are slopes of lines

through the points (2, f (2)) and (t1, f (t1)). Figure 3.1.3 shows such lines for t1 = 3, 2.5,

and 2.25. We can infer the limiting value of these slopes as t1 approaches 2 by magnifying

a portion of the graph of f near the point (2, f(2)). This is illustrated in Figure 3.1.4, from

which it appears that the limiting value is about 2.8. Thus, subject to our crude measuring

devices, the instantaneous velocity at time t = 2 is given by vinst ≈ 2.8 ft/s.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SLOPE OF A CURVE
The preceding discussion of average and instantaneous velocities could be cast as an inves-

tigation of slopes related to the position curve. The slope of a general function curve at a

point can be translated into useful information in many applications, so a consideration of

the notion of the slope of a curve is warranted.

Consider the function y = f(x) whose graph is shown in Figure 3.1.5. We focus on the

point P(x0, f(x0)). One has an intuitive notion that the “steepness” of the curve varies at

different points. For example, view the graph of y = f(x) in Figure 3.1.5 as the cross

Figure 3.1.5
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section of a hill and imagine a hiker walking the hill from left to right. The hiker will find

the trek fairly arduous at point P , but the climb gets easier as she approaches the summit.

Rather than rely on comparative notions of “less steep” or “more steep,” we seek a numeric

value to attach to each point on the curve that will describe “how steep” the curve is at

that point. For straight lines, steepness is the same at every point, and the measure used to

describe steepness is the slope of the line. (Note that slope not only describes “how steep”

a line is, but also whether the line rises or falls.) Our goal is to define slope for our curve

y = f(x), even though f(x) is not linear.

Since we know how to calculate the slope of a line through two points, let us consider a

line joining point P with another pointQ(x1, f (x1)) on the curve. By analogy with secants

to circles, a line determined by two points on a curve is called a secant line to the curve.

The slope of the secant line PQ is given by

msec =
f(x1)− f(x0)

x1 − x0

(1)

As the sampling point Q(x1, f(x1)) is chosen closer to P , that is, as x1 is selected closer

to x0, the slopes msec more nearly approximate what we might reasonably call the “slope”

of the curve y = f(x) at the point P . Thus, from (1), the slope of the curve y = f (x) at

P(x0, f (x0)) should be defined by

mcurve = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

(2)

Example 1 Consider the function f(x) = 6x − x2 and the point P(2, f (2)) = (2, 8).

(a) Find the slopes of secant lines to the graph of y = f(x) determined by P and points

on the graph at x = 3 and x = 1.5.

(b) Find the slope of the graph of y = f(x) at the point P .

Solution (a). The secant line to the graph off throughP andQ(3, f (3)) = (3, 9)has slope

msec =
9 − 8

3 − 2
= 1

The secant line to the graph of f through P and Q(1.5, f (1.5)) = (1.5, 6.75) has slope

msec =
6.75 − 8

1.5 − 2
= 2.5

Solution (b). The slope of the graph of f at the point P is

mcurve = lim
x1 →2

f(x1)− f(2)

x1 − 2
= lim

x1 →2

6x1 − x2
1 − 8

x1 − 2

= lim
x1 →2

(4 − x1)(x1 − 2)

x1 − 2
= lim

x1 →2
(4 − x1) = 4 − 2 = 2 ◭

Recall our discussion of instantaneous velocity as a limit of average velocities, in which

average velocities corresponded to slopes of secant lines on the position curve. We now

have an interpretation of such a limit of slopes of secant lines as the slope of the position

curve at the instant in question. This provides a geometric interpretation of instantaneous

velocity as the slope of the graph of the position curve.

3.1.2 GEOMETRIC INTERPRETATION OF INSTANTANEOUS VELOCITY. If a particle

moves along an s-axis, and if the position versus time curve is s = f(t), then the

instantaneous velocity of the particle at time t0,

vinst = lim
t1 → t0

f(t1)− f(t0)

t1 − t0

is represented geometrically by the slope of the curve at the point (t0, f(t0)).
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SLOPES AND RATES OF CHANGE
Velocity or slope can be viewed as rate of change—the rate of change of position with

respect to time, or the rate of change of a function’s value with respect to its input. Rates of

change occur in many applications. For example:

• A microbiologist might be interested in the rate at which the number of bacteria in a

colony changes with time.

• An engineer might be interested in the rate at which the length of a metal rod changes

with temperature.

• An economist might be interested in the rate at which production cost changes with the

quantity of a product that is manufactured.

• A medical researcher might be interested in the rate at which the radius of an artery

changes with the concentration of alcohol in the bloodstream.

In general, if x and y are quantities related by an equation y = f(x), we can consider

the rate at which y changes with x. As with velocity, we distinguish between an average

rate of change, represented by the slope of a secant line to the graph of y = f(x), and an

instantaneous rate of change, represented by the slope of the curve at a point.

3.1.3 DEFINITION. If y = f(x), then the average rate of change of y with respect

to x over the interval [x0, x1] is

rave =
f(x1)− f(x0)

x1 − x0

(3)

Geometrically, the average rate of change of y with respect to x over the interval [x0, x1]

is the slope of the secant line to the graph of y = f(x) through the points (x0, f (x0)) and

(x1, f (x1)):

rave = msec

(see Figure 3.1.6a).
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Figure 3.1.6

3.1.4 DEFINITION. If y = f(x), then the instantaneous rate of change of y with

respect to x when x = x0 is

rinst = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

(4)

Geometrically, the instantaneous rate of change of y with respect to x when x = x0 is the

slope of the graph of y = f(x) at the point (x0, f (x0)):

rinst = mcurve

(see Figure 3.1.6b).

Example 2 Let y = x2 + 1.

(a) Find the average rate of change of y with respect to x over the interval [3, 5].

(b) Find the instantaneous rate of change of y with respect to x when x = −4.

(c) Find the instantaneous rate of change of y with respect to x at the general point

corresponding to x = x0.

Solution (a). We apply Formula (3) with f(x) = x2 + 1, x0 = 3, and x1 = 5. This yields

rave =
f(x1)− f(x0)

x1 − x0

=
f(5)− f(3)

5 − 3
=

26 − 10

2
= 8

Thus, on the average, y increases 8 units per unit increase in x over the interval [3, 5].
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Solution (b). We apply Formula (4) with f(x) = x2 + 1 and x0 = −4. This yields

rinst = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

= lim
x1 →−4

f(x1)− f(−4)

x1 − (−4)
= lim

x1 →−4

(x2
1 + 1)− 17

x1 + 4

= lim
x1 →−4

x2
1 − 16

x1 + 4
= lim

x1 →−4

(x1 + 4)(x1 − 4)

x1 + 4
= lim

x1 →−4
(x1 − 4) = −8

Thus, for a small change in x from x = −4, the value of y will change approximately eight

times as much in the opposite direction. That is, because the instantaneous rate of change

is negative, the value of y decreases as values of x move through x = −4 from left to right.

Solution (c). We proceed as in part (b):

rinst = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

= lim
x1 →x0

(x2
1 + 1)− (x2

0 + 1)

x1 − x0

= lim
x1 →x0

x2
1 − x2

0

x1 − x0

= lim
x1 →x0

(x1 + x0)(x1 − x0)

x1 − x0

= lim
x1 →x0

(x1 + x0) = 2x0

Thus, the instantaneous rate of change of ywith respect to x at x = x0 is 2x0. Observe that the

result in part (b) can be obtained from this more general result by setting x0 = −4. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RATES OF CHANGE IN
APPLICATIONS

In applied problems, average and instantaneous rates of change must be accompanied by

appropriate units. In general, the units for a rate of change of y with respect to x are obtained

by “dividing” the units of y by the units of x and then simplifying according to the standard

rules of algebra. Here are some examples:

• If y is in degrees Fahrenheit (◦F) and x is in inches (in), then a rate of change of y with

respect to x has units of degrees Fahrenheit per inch (◦F/in).

• If y is in feet per second (ft/s) and x is in seconds (s), then a rate of change of y with

respect to x has units of feet per second per second (ft/s/s), which would usually be

written as ft/s2.

• If y is in newton-meters (N·m) and x is in meters (m), then a rate of change of y with

respect to x has units of newtons (N), since N·m/m = N.

• If y is in foot-pounds (ft·lb) and x is in hours (h), then a rate of change of y with respect

to x has units of foot-pounds per hour (ft·lb/h).

Example 3 The limiting factor in athletic endurance is cardiac output, that is, the volume

of blood that the heart can pump per unit of time during an athletic competition. Figure 3.1.7

shows a stress-test graph of cardiac output V in liters (L) of blood versus workload W in

kilogram-meters (kg·m) for 1 minute of weight lifting. This graph illustrates the known

medical fact that cardiac output increases with the workload, but after reaching a peak

value begins to decrease.
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Figure 3.1.7

(a) Use the secant line shown in Figure 3.1.8a to estimate the average rate of change

of cardiac output with respect to workload as the workload increases from 300 to

1200 kg·m.

(b) Use the line segment shown in Figure 3.1.8b to estimate the instantaneous rate of

change of cardiac output with respect to workload at the point where the workload is

300 kg·m.
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Solution (a). Using the estimated points (300, 13) and (1200, 19), the slope of the secant

line indicated in Figure 3.1.8a is

msec ≈
19 − 13

1200 − 300
≈ 0.0067

L

kg·m
Since rave = msec, the average rate of change of cardiac output with respect to workload
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over the interval is approximately 0.0067 L/kg·m. This means that on the average a 1-unit

increase in workload produced a 0.0067-L increase in cardiac output over the interval.

Solution (b). We estimate the slope of the cardiac output curve at W = 300 by sketching

a line that appears to meet the curve at W = 300 with slope equal to that of the curve

(Figure 3.1.8b). Estimating points (0, 7) and (900, 25) on this line, we obtain

rinst ≈
25 − 7

900 − 0
= 0.02

L

kg·m
◭

EXERCISE SET 3.1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. The accompanying figure shows the position versus time

curve for an elevator that moves upward a distance of 60 m

and then discharges its passengers.

(a) Estimate the instantaneous velocity of the elevator at

t = 10 s.

(b) Sketch a velocity versus time curve for the motion of

the elevator for 0 ≤ t ≤ 20.
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Figure Ex-1

2. The accompanying figure shows the position versus time

curve for a certain particle moving along a straight line.

Estimate each of the following from the graph:

(a) the average velocity over the interval 0 ≤ t ≤ 3

(b) the values of t at which the instantaneous velocity is

zero

(c) the values of t at which the instantaneous velocity is

either a maximum or a minimum

(d) the instantaneous velocity when t = 3 s.
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Figure Ex-2

3. The accompanying figure shows the position versus time

curve for a certain particle moving on a straight line.

(a) Is the particle moving faster at time t0 or time t2? Ex-

plain.

(b) The portion of the curve near the origin is horizontal.

What does this tell us about the initial velocity of the

particle?

(c) Is the particle speeding up or slowing down in the in-

terval [t0, t1]? Explain.

(d) Is the particle speeding up or slowing down in the in-

terval [t1, t2]? Explain.

t

s

t1 t2t0

Figure Ex-3

4. An automobile, initially at rest, begins to move along a

straight track. The velocity increases steadily until suddenly

the driver sees a concrete barrier in the road and applies the

brakes sharply at time t0. The car decelerates rapidly, but

it is too late—the car crashes into the barrier at time t1 and

instantaneously comes to rest. Sketch a position versus time

curve that might represent the motion of the car.

5. If a particle moves at constant velocity, what can you say

about its position versus time curve?

6. The accompanying figure shows the position versus time

curves of four different particles moving on a straight line.

For each particle, determine whether its instantaneous ve-

locity is increasing or decreasing with time.
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In Exercises 7–10, a function y = f(x) and values of x0 and

x1 are given.

(a) Find the average rate of change of y with respect to x

over the interval [x0, x1].
(b) Find the instantaneous rate of change of y with respect

to x at the given value of x0.
(c) Find the instantaneous rate of change of y with respect

to x at a general x-value x0.
(d) Sketch the graph of y = f(x) together with the secant

line whose slope is given by the result in part (a), and

indicate graphically the slope of the curve given by the

result in part (b).

7. y = 1
2
x2; x0 = 3, x1 = 4

8. y = x3; x0 = 1, x1 = 2

9. y = 1/x; x0 = 2, x1 = 3

10. y = 1/x2; x0 = 1, x1 = 2

In Exercises 11–14, a function y = f(x) and an x-value x0

are given.

(a) Find the slope of the graph of f at a general x-value x0.

(b) Find the slope of the graph of f at the x-value specified

by the given x0.

11. f(x) = x2 + 1; x0 = 2

12. f(x) = x2 + 3x + 2; x0 = 2

13. f(x) =
√
x; x0 = 1

14. f(x) = 1/
√
x; x0 = 4

15. Suppose that the outside temperature versus time curve over

a 24-hour period is as shown in the accompanying figure.

(a) Estimate the maximum temperature and the time at

which it occurs.

(b) The temperature rise is fairly linear from 8 A.M. to 2 P.M.

Estimate the rate at which the temperature is increasing

during this time period.

(c) Estimate the time at which the temperature is decreasing

most rapidly. Estimate the instantaneous rate of change

of temperature with respect to time at this instant.
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Figure Ex-15

16. The accompanying figure shows the graph of the pressure

p in atmospheres (atm) versus the volume V in liters (L) of

1 mole of an ideal gas at a constant temperature of 300 K

(kelvins). Use the line segments shown in the figure to esti-

mate the rate of change of pressure with respect to volume

at the points where V = 10 L and V = 25 L.
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Figure Ex-16

17. The accompanying figure shows the graph of the height h in

centimeters versus the age t in years of an individual from

birth to age 20.

(a) When is the growth rate greatest?

(b) Estimate the growth rate at age 5.

(c) At approximately what age between 10 and 20 is the

growth rate greatest? Estimate the growth rate at this

age.

(d) Draw a rough graph of the growth rate versus age.
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Figure Ex-17

In Exercises 18–21, use geometric interpretations 3.1.1 and

3.1.2 to find the average and instantaneous velocity.

18. A rock is dropped from a height of 576 ft and falls toward

Earth in a straight line. In t seconds the rock drops a distance

of s = 16t2 ft.

(a) How many seconds after release does the rock hit the

ground?
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(b) What is the average velocity of the rock during the time

it is falling?
(c) What is the average velocity of the rock for the first 3 s?
(d) What is the instantaneous velocity of the rock when it

hits the ground?

19. During the first 40 s of a rocket flight, the rocket is pro-

pelled straight up so that in t seconds it reaches a height of

s = 5t3 ft.

(a) How high does the rocket travel in 40 s?
(b) What is the average velocity of the rocket during the

first 40 s?
(c) What is the average velocity of the rocket during the

first 135 ft of its flight?

(d) What is the instantaneous velocity of the rocket at the

end of 40 s?

20. A particle moves on a line away from its initial position

so that after t hours it is s = 3t2 + t miles from its initial

position.

(a) Find the average velocity of the particle over the interval

[1, 3].

(b) Find the instantaneous velocity at t = 1.

21. A particle moves in the positive direction along a straight

line so that after t minutes its distance is s = 6t4 feet from

the origin.

(a) Find the average velocity of the particle over the interval

[2, 4].

(b) Find the instantaneous velocity at t = 2.

3.2 THE DERIVATIVE

In this section we will introduce the concept of a “derivative,” the primary mathemati-

cal tool that is used to calculate rates of change and slopes of curves.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SLOPE OF A CURVE AND TANGENT
LINES

In the preceding section we argued that the slope of the graph of y = f(x) at x = x0 should

be given by

mcurve = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

(1)

The ratio

f(x1)− f(x0)

x1 − x0

is called a difference quotient. As we saw in the last section, the difference quotient can

also be interpreted as the average rate of change of f(x) over the interval [x0, x1], and its

limit as x1 →x0 is the instantaneous rate of change of f(x) at x = x0.

The geometric problem of finding the slope of a curve, and the somewhat paradoxical

notions of instantaneous velocity and instantaneous rate of change, are all resolved by a limit

of a difference quotient. The fact that problems in such disparate areas are unified by this ex-

pression is celebrated in the definition of the derivative of a function at a value in its domain.

Q

P

y =  f (x) 

x0 x1

x1 – x0

f (x1) − f (x0)
f (x1)

x

y

f '(x0) = lim
f (x1) − f (x0)

x1 − x0x1→x0 

f (x0)

Figure 3.2.1

3.2.1 DEFINITION. Suppose that x0 is a number in the domain of a function f . If

lim
x1 →x0

f(x1)− f(x0)

x1 − x0

exists, then the value of this limit is called the derivative of f at x = x0 and is denoted by

f ′(x0). That is,

f ′(x0) = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

(2)

(see Figure 3.2.1). If the limit of the difference quotient exists, f ′(x0) is the slope of the

graph of f at the point P (x0, f (x0)) (or at x = x0). If this limit does not exist, then the

slope of the graph of f is undefined at P (or at x = x0).

Now that we have defined the derivative of a function, we can begin to answer a question

that fueled much of the early development of calculus. Mathematicians of the seventeenth
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century were perplexed by the problem of defining a tangent line to a general curve. Of

course, in the case of a circle the definition was apparent: a line is tangent to a circle if it

meets the circle at a single point. But, it was also clear that this simple definition would not

suffice in many cases. For example, the y-axis intersects the parabola y = x2 at a single

point but does not appear to be “tangent” to the curve (Figure 3.2.2a). On the other hand,

the line y = 1 does seem to be tangent to the graph of y = sin x, even though it intersects

this graph infinitely often (Figure 3.2.2b).

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-1

1

x

y

y = 1

y = sin x-2 -1 1 2

1

2

3

4

x

y

y = x2

(a) (b)

Figure 3.2.2

By the end of the first half of the seventeenth century, mathematicians such as Descartes

and Fermat had developed a variety of procedures for constructing tangent lines. However,

a general definition of a tangent line to a curve was still missing. Roughly speaking, a line

should be tangent to the graph of a function y = f(x) at a point (x0, f(x0)) provided the line

has the same direction as the graph at the point. Since the direction of a line is determined

by its slope, we would expect a line to be tangent to the graph at (x0, f(x0)) if the slope of

the line is equal to the slope of the graph of f at x0. Thus, we can now use the derivative

to define the tangent line to a curve when the curve is the graph of a function y = f(x).

(Later we will extend this definition to more general curves.)

3.2.2 DEFINITION. Suppose that x0 is a number in the domain of a function f . If

f ′(x0) = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

exists, then we define the tangent line to the graph of f at the point P (x0, f (x0)) to be

the line whose equation is

y − f(x0) = f ′(x0)(x − x0) (3)

We also call this the tangent line to the graph of f at x = x0.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. Tangent lines to graphs do not have the same properties as tangent lines to

circles. For example, a tangent line to a circle intersects the circle only at the point of

tangency whereas a tangent line to a general graph may intersect the graph at points other

than the point of tangency (Figure 3.2.3).

x

y

A tangent line to a graph may intersect the graph

at points other than the point of tangency.

x

y

Figure 3.2.3
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Example 1 Find the slope of the graph of y = x2 + 1 at the point (2, 5), and use it to

find the equation of the tangent line to y = x2 + 1 at x = 2 (Figure 3.2.4).

2-2

10

(2, 5)

y = x2 + 1

x

y

Figure 3.2.4

Solution. From (2), the slope of the graph of y = x2 + 1 at the point (2, 5) is given by

f ′(2) = lim
x1 →2

f(x1)− f(2)

x1 − 2
= lim

x1 →2

(x2
1 + 1)− 5

x1 − 2
= lim

x1 →2

x2
1 − 4

x1 − 2

= lim
x1 →2

(x1 − 2)(x1 + 2)

x1 − 2
= lim

x1 →2
(x1 + 2) = 4

The tangent line is the line through the point (2, 5) with slope 4,

y − 5 = 4(x − 2)

which we may also write in slope-intercept form as y = 4x − 3. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SLOPE OF A CURVE BY ZOOMING
The slope of a curve at a point can be estimated by zooming on a graphing utility. The

idea is to zoom in on the point until the surrounding portion of the curve appears to be a

straight line (Figure 3.2.5). The utility’s trace operation can then be used to estimate the

slope. Figure 3.2.6 illustrates this procedure for the tangent line in Example 1. The first part

of the figure shows the graph of y = x2 + 1 in the window

[−6.3, 6.3] × [0, 6.2]

and the second part shows the graph after we have zoomed in on the point (2, 5) by a factor

of 10. The trace operation produces the points

(2.05, 5.2025) and (1.95, 4.8025)

on the curve, so the slope of the tangent line can be approximated as

f ′(2) ≈
5.2025 − 4.8025

2.05 − 1.95
=

0.4

0.1
= 4.0

which happens to agree exactly with the result in Example 1. It is important to understand,

however, that the exact agreement in this case is accidental; in general, this method will not

produce exact results because of roundoff errors in the computations, and also because the

magnified portion of the curve may have a slight curvature, even though it appears straight

on the screen.

x

y

Zooming in on the graph

of y = x2 + 1

Figure 3.2.5

Figure 3.2.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE DERIVATIVE
In general, the slope of a curve y = f(x) will depend on the point (x, f(x)) at which the

slope is computed. That is, the slope is itself a function of x. To illustrate this, let us use (2)

to compute f ′(x0) at a general x-value x0 for the curve y = x2 + 1. The computations are

similar to those in Example 1.

f ′(x0) = lim
x1 →x0

f(x1)− f(x0)

x1 − x0

= lim
x1 →x0

(x2
1 + 1)− (x2

0 + 1)

x1 − x0

= lim
x1 →x0

x2
1 − x2

0

x1 − x0

= lim
x1 →x0

(x1 − x0)(x1 + x0)

x1 − x0

= lim
x1 →x0

(x1 + x0) = 2x0 (4)
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Now we can use the general formula f ′(x0) = 2x0 to compute the slope of the tangent line

at any point along the curve y = x2 + 1 simply by substituting the appropriate value for

x = x0. For example, if x0 = 2, 2x0 = 4, so f ′(2) = 4, agreeing with the result in Example

1. Similarly, if x0 = 0, then 2x0 = 0, so f ′(0) = 0; and if x0 = −2, then 2x0 = −4, so

f ′(−2) = −4 (Figure 3.2.7).

-2 2

5

10

x

y

Slope = 0

Slope = –4 Slope = 4

y = x2 + 1

Figure 3.2.7

To generalize this idea, replacing x0 by x in (2), the slope of the graph of y = f(x) at a

general point (x, f(x)) is given by

f ′(x) = lim
x1 →x

f (x1)− f(x)

x1 − x
(5)

The fact that this describes a “slope-producing function” is so important that there is a

common terminology associated with it. [To simplify notation, we use w in the place of x1

in (5).]

3.2.3 DEFINITION. The function f ′ defined by the formula

f ′(x) = lim
w→x

f(w)− f(x)

w − x
(6)

is called the derivative of f with respect to x. The domain of f ′ consists of all x in the

domain of f for which the limit exists.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Despite the presence of the symbol w in the definition, Formula (6) defines

the function f ′ as a function of the single variable x. To calculate the value of f ′(x) at a

particular input value x, we fix the value of x and let w→x in (6). The answer to this limit

no longer involves the symbolw;w “disappears” at the step in which the limit is evaluated.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. This is our first encounter with what was alluded to in Section 1.1 as a function

that is the result of a “continuing process of incremental refinement.” That is, the derivative

function f ′ is derived from the function f via a limit. The use of a limiting process to define

a new object is a fundamental tool in calculus and will be employed again in later chapters.

Recalling from the last section that the slope of the graph of y = f(x) can be interpreted

as the instantaneous rate of change of y with respect to x, it follows that the derivative of a

function f can be interpreted in several ways:

Interpretations of the Derivative. The derivative f ′ of a function f can be interpreted

as a function whose value at x is the slope of the graph of y = f(x) at x, or, alternatively,

it can be interpreted as a function whose value at x is the instantaneous rate of change of

y with respect to x at x. In particular, when y = f(t) describes the position at time t of

an object moving along a straight line, then f ′(t) describes the (instantaneous) velocity

of the object at time t .

Example 2

(a) Find the derivative with respect to x of f(x) = x3 − x.

(b) Graph f and f ′ together, and discuss the relationship between the two graphs.

Solution (a). Later in this chapter we will develop efficient methods for finding derivatives,

but for now we will find the derivative directly from Formula (6) in the definition of f ′. The
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computations are as follows:

f ′(x) = lim
w→x

f(w)− f(x)

w − x
= lim

w→x

(w3 − w)− (x3 − x)

w − x
= lim

w→x

(w3 − x3)− (w − x)

w − x

= lim
w→x

(w − x)[(w2 + wx + x2)− 1]

w − x
= lim

w→x
(w2 + wx + x2 − 1)

= x2 + x2 + x2 − 1 = 3x2 − 1

Solution (b). Since f ′(x) can be interpreted as the slope of the graph of y = f(x) at x,

the derivative f ′(x) is positive where the graph of f has positive slope, it is negative where

the graph of f has negative slope, and it is zero where the graph of f is horizontal. We

leave it for the reader to verify that this is consistent with the graphs of f(x) = x3 − x and

f ′(x) = 3x2 − 1 shown in Figure 3.2.8. ◭

-2 -1 1 2

-2

-1

1

2

x

y
ff ′

Figure 3.2.8

Example 3 At each value of x, the tangent line to a line y = mx+b coincides with the line

itself (Figure 3.2.9), and hence all tangent lines have slope m. This suggests geometrically

that if f(x) = mx + b, then f ′(x) = m for all x. This is confirmed by the following

computations:

f ′(x) = lim
w→x

f(w)− f(x)

w − x
= lim

w→x

(mw + b)− (mx + b)

w − x
= lim

w→x

mw −mx

w − x

= lim
w→x

m(w − x)

w − x
= lim

w→x
m = m ◭

x

y y = mx + b

At each value of x the

tangent line has slope m.

Figure 3.2.9
Example 4

(a) Find the derivative with respect to x of f(x) =
√
x.

(b) Find the slope of the curve y =
√
x at x = 9.

(c) Find the limits of f ′(x) as x→0+ and as x→+�, and explain what those limits say

about the graph of f .

Solution (a). From Definition 3.2.3,

f ′(x) = lim
w→x

f(w)− f(x)

w − x
= lim

w→x

√
w −

√
x

w − x
= lim

w→x

√
w −

√
x

w − x
·
√
w +

√
x

√
w +

√
x

= lim
w→x

w − x

(w − x)(
√
w +

√
x)

= lim
w→x

1
√
w +

√
x

=
1

√
x +

√
x

=
1

2
√
x

Solution (b). The slope of the curve y =
√
x at x = 9 is f ′(9). From part (a), this slope

is f ′(9) = 1/(2
√

9 ) = 1
6
.

1 2 3 4 5 6 7 8 9

1

2

3

y = f (x) = √x

1 2 3 4 5 6 7 8 9

1

2

3

y = f '(x) = 
2√x

1

x

y

x

y

Figure 3.2.10

Solution (c). The graphs of f(x) =
√
x and f ′(x) = 1/(2

√
x ) are shown in Figure 3.2.10.

Observe that f ′(x) > 0 if x > 0, which means that all tangent lines to the graph of y =
√
x

have positive slope at all points in this interval. Since

lim
x→0+

1

2
√
x

= +� and lim
x→+�

1

2
√
x

= 0

the graph becomes more and more vertical as x → 0+ and more and more horizontal as

x→+�. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Use a graphing utility to estimate the slope of the curve y =
√
x at

x = 9 by zooming, and compare your result to the exact value obtained in the last exam-

ple. If you have a CAS, read the documentation to determine how it can be used to find

derivatives, and then use it to confirm the derivative obtained in Example 4(a).
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Example 5 Consider the situation in Example 1 of Section 2.1 where a ball is thrown

vertically upward so that the height (in feet) of the ball above the ground t seconds after its

release is modeled by the function

s(t) = −16t2 + 29t + 6, 0 ≤ t ≤ 2

(a) Use the derivative of s(t) at t = 0.5 to determine the instantaneous velocity of the ball

at time t = 0.5 s.

(b) Find the velocity function v(t) = s ′(t) for 0 < t < 2. What is the velocity of the ball

just before impacting the ground at time t = 2 s?

Solution (a). When t = 0.5 s, the height of the ball is s(0.5) = 16.5 ft. The ball’s

instantaneous velocity at time t = 0.5 is given by the derivative of s at t = 0.5, that is,

s ′(0.5). From Definition 3.2.1,

s ′(0.5) = lim
w→0.5

s(w)− s(0.5)

w − 0.5
= lim

w→0.5

(−16w2 + 29w + 6)− 16.5

w − 0.5

= lim
w→0.5

−16w2 + 29w − 10.5

w − 0.5
·

2

2
= lim

w→0.5

−32w2 + 58w − 21

2w − 1

= lim
w→0.5

(2w − 1)(−16w + 21)

2w − 1
= lim

w→0.5
(−16w + 21) = −8 + 21 = 13

Thus, the velocity of the ball at time t = 0.5 s is s ′(0.5) = 13 ft/s, which agrees with our

estimate from numerical evidence in Example 1 of Section 2.1.

Solution (b). From Definition 3.2.3,

v(t) = s ′(t) = lim
w→ t

s(w)− s(t)

w − t
= lim

w→ t

(−16w2 + 29w + 6)− (−16t2 + 29t + 6)

w − t

= lim
w→ t

−16(w2 − t2)+ 29(w − t)+ (6 − 6)

w − t

= lim
w→ t

−16(w − t)(w + t)+ 29(w − t)

w − t
= lim

w→ t

(w − t)[−16(w + t)+ 29]

w − t

= lim
w→ t

[−16(w + t)+ 29] = −16(t + t)+ 29 = −32t + 29

Thus, for 0 < t < 2, the velocity of the ball is given by v(t) = s ′(t) = −32t + 29. As

t→2−, s ′(t) = −32t + 29→−64 + 29 = −35 ft/s. That is, the ball is falling at a speed

approaching 35 ft/s when its impact with the ground is imminent. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIABILITY
Observe that a function f must be defined at x = x0 in order for the difference quotient

f(w)− f(x0)

w − x0

to make sense, since this quotient references a value for f (x0). Since a value for f (x0) is

required before the limit of this quotient can be considered, values in the domain of the

derivative function f ′ must also be in the domain of f .

For a number x0 in the domain of a function f , we say that f is differentiable at x0, or

that the derivative of f exists at x0, if

lim
w→x0

f(w)− f(x0)

w − x0

exists. Thus, the domain of f ′ consists of all values of x at which f is differentiable. If x0 is

not in the domain of f or if the limit does not exist, then we say that f is not differentiable

at x0, or that the derivative of f does not exist at x0. If f is differentiable at every value of x

in an open interval (a, b), then we say that f is differentiable on (a, b). This definition also

applies to infinite open intervals of the form (a,+�), (−�, b), and (−�,+�). In the case

where f is differentiable on (−�,+�) we will say that f is differentiable everywhere.
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Geometrically, if f is differentiable at a value x0 for x, then the graph of f has a tangent

line at x0. If f is defined at x0 but is not differentiable at x0, then either the graph of f has

no well-defined tangent line at x0 or it has a vertical tangent line at x0. Informally, the most

commonly encountered circumstances of nondifferentiability occur where the graph off has

• a corner,

• a vertical tangent line, or

• a discontinuity.

Figure 3.2.11 illustrates each of these situations.

x0

x

y

Vertical tangent

y = f (x)

x0

x

y

Discontinuity

y = f (x)

x0

x

y

y = f (x)

Corner

Figure 3.2.11

It makes sense intuitively that a function is not differentiable where its graph has a

corner, since there is no reasonable way to define the graph’s slope at a corner. For example,

Figure 3.2.12a shows a typical corner point P(x0, f(x0)) on the graph of a function f . At

this point, the slopes of secant lines joining P and nearby points Q have different limiting

values, depending on whether Q is to the left or to the right of P . Hence, the slopes of the

secant lines do not have a two-sided limit.

A vertical tangent line occurs at a place on a continuous curve where the slopes of secant

lines approach +� or approach −� (Figure 3.2.12b). Since an infinite limit is a special way

of saying that a limit does not exist, a function f is not differentiable at a point of vertical

tangency.

x x0 x

Q

Q

P

x

y

Q

x0

P

Slope tends toward
+∞

x x0 x

x

Q

P

xSlope tends to
w

ar
d

–
∞

(a) (b)

Figure 3.2.12

We will explore the relationship between differentiability and continuity later in this

section. It should be noted that there are other, less common, circumstances under which a

function may fail to be differentiable. See Exercise 45 for one such example.
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Example 6 The graph of y = |x| in Figure 3.2.13 has a corner at x = 0, which implies

that f(x) = |x| is not differentiable at x = 0.

x

y

0

y = |x |

Figure 3.2.13

(a) Prove that f(x) = |x| is not differentiable at x = 0 by showing that the limit in Defi-

nition 3.2.3 does not exist at x = 0.

(b) Find a formula for f ′(x).

Solution (a). From Formula (6) with x = 0, the value of f ′(0), if it were to exist, would

be given by

f ′(0) = lim
w→0

f(w)− f(0)

w − 0
= lim

w→0

|w| − |0|
w

= lim
w→0

|w|
w

But

|w|
w

=

{

1, w > 0

−1, w < 0

so that

lim
w→0−

|w|
w

= −1 and lim
w→0+

|w|
w

= 1

Thus,

f ′(0) = lim
w→0

|w|
w

does not exist because the one-sided limits are not equal.

x

y

y =  f ′(x) = 
  1, x > 0

–1, x < 0

Figure 3.2.14

Solution (b). A formula for the derivative of f(x) = |x| can be obtained by writing |x| in

piecewise form and treating the cases x > 0 and x < 0 separately. If x > 0, then f(x) = x

and f ′(x) = 1; if x < 0, then f(x) = −x and f ′(x) = −1. Thus,

f ′(x) =
{

1, x > 0

−1, x < 0

The graph of f ′ is shown in Figure 3.2.14. Observe that f ′ is not continuous at x = 0, so

this example shows that a function that is continuous everywhere may have a derivative that

fails to be continuous everywhere. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIABILITY AND
CONTINUITY

It makes sense intuitively that a function f cannot be differentiable where it has a “jump”

discontinuity, since the value of the function changes precipitously at the “jump.” The

following theorem shows that a function f must be continuous at a value x0 in order for it to

be differentiable there (or stated another way, a function f cannot be differentiable where

it is not continuous).

3.2.4 THEOREM. If f is differentiable at x = x0, then f must also be continuous at x0.

Proof. We are given that f is differentiable at x0, so it follows from (6) that f ′(x0) exists

and is given by

f ′(x0) = lim
w→x0

f(w)− f(x0)

w − x0

(7)

To show that f is continuous at x0, we must show that

lim
w→x0

f(w) = f(x0)

or equivalently,

lim
w→x0

[f(w)− f(x0)] = 0
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However, this can be proved using (7) as follows:

lim
w→x0

[f(w)− f(x0)] = lim
w→x0

[

f(w)− f(x0)

w − x0

· (w − x0)

]

= lim
w→x0

[

f(w)− f(x0)

w − x0

]

· lim
w→x0

(w − x0)

= f ′(x0) · 0 = 0

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The converse to Theorem 3.2.4 is false. That is, a function may be continuous

at an input value, but not differentiable there. For example, the function f (x) = |x| is

continuous at x = 0 but not differentiable at x = 0 (see Example 6). In fact, any function

whose graph has a corner and is continuous at the location of the corner will be continuous

but not differentiable at the corner.

The relationship between continuity and differentiability was of great historical sig-

nificance in the development of calculus. In the early nineteenth century mathematicians

believed that if a continous function had many points of nondifferentiability, these points,

like the tips of a sawblade, would have to be separated from each other and joined by smooth

curve segments (Figure 3.2.15). This misconception was shattered by a series of discov-

eries beginning in 1834. In that year a Bohemian priest, philosopher, and mathematician

named Bernhard Bolzano
∗

discovered a procedure for constructing a continuous function

that is not differentiable at any point. Later, in 1860, the great German mathematician, Karl

Weierstrass produced the first formula for such a function. The graphs of such functions are

impossible to draw; it is as if the corners are so numerous that any segment of the curve,

when suitably enlarged, reveals more corners. The discovery of these pathological func-

tions was important in that it made mathematicians distrustful of their geometric intuition

and more reliant on precise mathematical proof. However, these functions remained only

mathematical curiosities until the early 1980s, when applications of them began to emerge.

During recent decades, such functions have started to play a fundamental role in the study

of geometric objects called fractals. Fractals have revealed an order to natural phenomena

that were previously dismissed as random and chaotic.

Figure 3.2.15

x

y

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVE NOTATION
The process of finding a derivative is called differentiation. You can think of differentiation

as an operation on functions that associates a function f ′ with a function f . When the

∗
BERNHARD BOLZANO (1781–1848). Bolzano, the son of an art dealer, was born in Prague, Bohemia (Czech

Republic). He was educated at the University of Prague, and eventually won enough mathematical fame to be

recommended for a mathematics chair there. However, Bolzano became an ordained Roman Catholic priest, and

in 1805 he was appointed to a chair of Philosophy at the University of Prague. Bolzano was a man of great human

compassion; he spoke out for educational reform, he voiced the right of individual conscience over government

demands, and he lectured on the absurdity of war and militarism. His views so disenchanted Emperor Franz I

of Austria that the emperor pressed the Archbishop of Prague to have Bolzano recant his statements. Bolzano

refused and was then forced to retire in 1824 on a small pension. Bolzano’s main contribution to mathematics was

philosophical. His work helped convince mathematicians that sound mathematics must ultimately rest on rigorous

proof rather than intuition. In addition to his work in mathematics, Bolzano investigated problems concerning

space, force, and wave propagation.
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independent variable is x, the differentiation operation is often denoted by

d

dx
[f(x)]

which is read “the derivative of f (x) with respect to x.” Thus,

d

dx
[f(x)] = f ′(x) (8)

For example, with this notation the derivatives obtained in Examples 2, 3, and 4 can be

expressed as

d

dx
[x3 − x] = 3x2 − 1,

d

dx
[mx + b] = m,

d

dx
[
√
x] =

1

2
√
x

(9)

To denote the value of the derivative at a specific value x = x0 with the notation in (8), we

would write

d

dx
[f(x)]

∣

∣

∣

∣

x=x0

= f ′(x0) (10)

For example, from (9)

d

dx
[x3 −x]

∣

∣

∣

∣

x=1

= 3(12)−1 = 2,
d

dx
[mx+b]

∣

∣

∣

∣

x=5

=m,
d

dx
[
√
x]

∣

∣

∣

∣

x=9

=
1

2
√

9
=

1

6

Notations (8) and (10) are convenient when no dependent variable is involved. However,

if there is a dependent variable, say y = f(x), then (8) and (10) can be written as

d

dx
[y] = f ′(x) and

d

dx
[y]

∣

∣

∣

∣

x=x0

= f ′(x0)

It is common to omit the brackets on the left side and write these expressions as

dy

dx
= f ′(x) and

dy

dx

∣

∣

∣

∣

x=x0

= f ′(x0)

where dy/dx is read as “the derivative of y with respect to x.” For example, if y =
√
x,

then

dy

dx
=

1

2
√
x
,

dy

dx

∣

∣

∣

∣

x=x0

=
1

2
√
x0

,
dy

dx

∣

∣

∣

∣

x=9

=
1

2
√

9
=

1

6

•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Later, the symbols dy and dx will be defined separately. However, for the time

being, dy/dx should not be regarded as a ratio; rather, it should be considered as a single

symbol denoting the derivative.

When letters other than x and y are used for the independent and dependent variables,

then the various notations for the derivative must be adjusted accordingly. For example, if

y = f(u), then the derivative with respect to u would be written as

d

du
[f(u)] = f ′(u) and

dy

du
= f ′(u)

In particular, if y =
√
u, then

dy

du
=

1

2
√
u
,

dy

du

∣

∣

∣

∣

u=u0

=
1

2
√
u0

,
dy

du

∣

∣

∣

∣

u=9

=
1

2
√

9
=

1

6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

OTHER NOTATIONS
Some writers denote the derivative asDx[f(x)] = f ′(x), but we will not use this notation in

this text. In problems where the name of the independent variable is clear from the context,

there are some other possible notations for the derivative. For example, if y = f(x), but it

is clear from the problem that the independent variable is x, then the derivative with respect

to x might be denoted by y ′ or f ′.
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Often, you will see Definition 3.2.3 expressed using h or �x for the difference w − x.

With h = w− x, then w = x + h and w→x is equivalent to h→0. Thus, Formula (6) has

the form

f ′(x) = lim
h→0

f(x + h)− f(x)

h
(11)

Or, using �x instead of h for w − x, Formula (6) has the form

f ′(x) = lim
�x→0

f(x +�x)− f(x)

�x
(12)

If y = f(x), then it is also common to let

�y = f(w)− f(x) = f(x +�x)− f(x)

in which case

dy

dx
= lim

�x→0

�y

�x
= lim

�x→0

f(x +�x)− f(x)

�x
(13)

The geometric interpretations of �x and �y are shown in Figure 3.2.16.

Q

T
an

ge
n
t 
li
n
e

P

y =  f (x) 

x x + ∆x

∆x

∆y =  f (x + ∆x) − f (x)

x

y

=
∆y 

∆x

dy 

dx ∆ x→0
lim 

Figure 3.2.16

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES AT THE ENDPOINTS
OF AN INTERVAL

If a function f is defined on a closed interval [a, b] and is not defined outside that interval,

then the derivative f ′(x) is not defined at the endpoints because

f ′(x) = lim
w→x

f(w)− f(x)

w − x

is a two-sided limit and only a one-sided limit makes sense at an endpoint. To deal with this

situation, we define derivatives from the left and right. These are denoted by f ′
− and f ′

+,

respectively, and are defined by

f ′
−(x) = lim

w→x−

f(w)− f(x)

w − x
and f ′

+(x) = lim
w→x+

f(w)− f(x)

w − x

At points where f ′
+(x) exists we say that the function f is differentiable from the right,

and at points where f ′
−(x) exists we say that the function f is differentiable from the left.

Geometrically, f ′
+(x) is the limit of the slopes of the secant lines approaching x from the

right, and f ′
−(x) is the limit of the slopes of the secant lines approaching x from the left

(Figure 3.2.17).

ba

y = f (x)
Slope = f ′ (b)−

Slope = f ′ (a)+

Figure 3.2.17

It can be proved that a function f is continuous from the left at those points where it is

differentiable from the left, and f is continuous from the right at those points where it is

differentiable from the right.
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We say a function f is differentiable on an interval of the form [a, b], [a,+�), (−�, b],

[a, b), or (a, b] if f is differentiable at all numbers inside the interval, and it is differentiable

at the endpoint(s) from the left or right, as appropriate.

EXERCISE SET 3.2 Graphing Calculator
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Use the graph of y = f(x) in the accompanying figure to

estimate the value of f ′(1), f ′(3), f ′(5), and f ′(6).

2. For the function graphed in the accompanying figure, ar-

range the numbers 0, f ′(−3), f ′(0), f ′(2), and f ′(4) in in-

creasing order.

1 2 3 4 5 6

1

2

3

4

5

6

x

y

Figure Ex-1

-5 5

-5

5

x

y

Figure Ex-2

3. (a) If you are given an equation for the tangent line at the

point (a, f(a)) on a curve y = f(x), how would you

go about finding f ′(a)?

(b) Given that the tangent line to the graph of y = f(x) at

the point (2, 5) has the equation y = 3x−1, find f ′(2).

(c) For the function y = f(x) in part (b), what is the in-

stantaneous rate of change of y with respect to x at

x = 2?

4. Given that the tangent line to y = f(x) at the point (−1, 3)

passes through the point (0, 4), find f ′(−1).

5. Sketch the graph of a function f for which f(0) = 1,

f ′(0) = 0, f ′(x) > 0 if x < 0, and f ′(x) < 0 if x > 0.

6. Sketch the graph of a function f for which f(0) = 0,

f ′(0) = 0, and f ′(x) > 0 if x < 0 or x > 0.

7. Given that f(3) = −1 and f ′(3) = 5, find an equation for

the tangent line to the graph of y = f(x) at x = 3.

8. Given that f(−2) = 3 and f ′(−2) = −4, find an equation

for the tangent line to the graph of y = f(x) at x = −2.

In Exercises 9–14, use Definition 3.2.3 to find f ′(x), and then

find the equation of the tangent line to y = f(x) at x = a.

9. f(x) = 3x2; a = 3 10. f(x) = x4; a = −2

11. f(x) = x3; a = 0 12. f(x) = 2x3 + 1; a = −1

13. f(x) =
√
x + 1; a = 8 14. f(x) =

√
2x + 1; a = 4

In Exercises 15–20, use Formula (13) to find dy/dx.

15. y =
1

x
16. y =

1

x + 1

17. y = ax2 + b

(a, b constants)

18. y = x2 − x

19. y =
1

√
x

20. y =
1

x2

In Exercises 21 and 22, use Definition 3.2.3 (with appropriate

change in notation) to obtain the derivative requested.

21. Find f ′(t) if f(t) = 4t2 + t.

22. Find dV /dr if V = 4
3
πr3.

23. Match the graphs of the functions shown in (a)–(f ) with the

graphs of their derivatives in (A)–(F).

(a) (b)

(B)

x

y

x

y
(c)

x

y

(d)

x

y
(e)

x

y
(f)

x

y

(A)

x

y

x

y
(C)

x

y

(D)
y

(E)

x

y
(F)

x

y

x

24. Find a function f such that f ′(x) = 1 for all x, and give an

informal argument to justify your answer.
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In Exercises 25 and 26, sketch the graph of the derivative of

the function whose graph is shown.

25. (a) (b)

x

y

45°
30° x

y
(c)

x

y

1–1

26. (a) (b)

x

y
(c)

x

y

x

y

In Exercises 27 and 28, the limit represents f ′(a) for some

function f and some number a. Find f(x) and a in each case.

27. (a) lim
x1 →3

x2
1 − 9

x1 − 3
(b) lim

�x→0

√
1 +�x − 1

�x

28. (a) lim
x→1

x7 − 1

x − 1
(b) lim

h→0

cos(π+ h)+ 1

h

29. Find dy/dx|x=1, given that y = 4x2 + 1.

30. Find dy/dx|x=−2, given that y = (5/x)+ 1.

31. Find an equation for the line that is tangent to the curve

y = x3 − 2x + 1 at the point (0, 1), and use a graphing

utility to graph the curve and its tangent line on the same

screen.

32. Use a graphing utility to graph the following on the same

screen: the curve y = x2/4, the tangent line to this curve

at x = 1, and the secant line joining the points (0, 0) and

(2, 1) on this curve.

33. Let f(x) = 2x . Estimate f ′(1) by

(a) using a graphing utility to zoom in at an appropriate

point until the graph looks like a straight line, and then

estimating the slope

(b) using a calculating utility to estimate the limit in Defi-

nition 3.2.3 by making a table of values for a succession

of values of w approaching 1.

34. Let f(x) = sin x. Estimate f ′(π/4) by

(a) using a graphing utility to zoom in at an appropriate

point until the graph looks like a straight line, and then

estimating the slope

(b) using a calculating utility to estimate the limit in Defi-

nition 3.2.3 by making a table of values for a succession

of values of w approaching π/4.

35. Suppose that the cost of drilling x feet for an oil well is

C = f(x) dollars.

(a) What are the units of f ′(x)?

(b) In practical terms, what does f ′(x) mean in this case?

(c) What can you say about the sign of f ′(x)?

(d) Estimate the cost of drilling an additional foot, starting

at a depth of 300 ft, given that f ′(300) = 1000.

36. A paint manufacturing company estimates that it can sell

g = f(p) gallons of paint at a price of p dollars.

(a) What are the units of dg/dp?

(b) In practical terms, what does dg/dp mean in this case?

(c) What can you say about the sign of dg/dp?

(d) Given that dg/dp|p=10 = −100, what can you say

about the effect of increasing the price from $10 per

gallon to $11 per gallon?

37. It is a fact that when a flexible rope is wrapped around a

rough cylinder, a small force of magnitude F0 at one end

can resist a large force of magnitude F at the other end. The

size of F depends on the angle θ through which the rope is

wrapped around the cylinder (see the accompanying figure).

That figure shows the graph of F (in pounds) versus θ (in

radians), where F is the magnitude of the force that can be

resisted by a force with magnitude F0 = 10 lb for a certain

rope and cylinder.

(a) Estimate the values of F and dF/dθ when the angle

θ = 10 radians.

(b) It can be shown that the force F satisfies the equation

dF/dθ = µF , where the constant µ is called the coef-

ficient of friction. Use the results in part (a) to estimate

the value of µ.

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

Angle u (rad)

F
o
rc

e
 F

 (
lb

)

u

F
F0

F0

F

Figure Ex-37

38. According to the U. S. Bureau of the Census, the estimated

and projected midyear world population, N , in billions for

the years 1950, 1975, 2000, 2025, and 2050 was 2.555,

4.088, 6.080, 7.841, and 9.104, respectively. Although the

increase in population is not a continuous function of the

time t , we can apply the ideas in this section if we are will-

ing to approximate the graph of N versus t by a continuous

curve, as shown in the accompanying figure.

(a) Use the tangent line at t = 2000 shown in the figure to

approximate the value of dN/dt there. Interpret your

result as a rate of change.

(b) The instantaneous growth rate is defined as

dN/dt

N
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Use your answer to part (a) to approximate the instanta-

neous growth rate at the start of the year 2000. Express

the result as a percentage and include the proper units.

1950 1975 2000 2025 2050

0

1

2

3

4

5

6
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10

Time t (years)

W
o
rl

d
 p

o
p
u
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ti
o
n
 N

 (
b
il
li
o
n
s)

Figure Ex-38

39. According to Newton’s Law of Cooling, the rate of change

of an object’s temperature is proportional to the differ-

ence between the temperature of the object and that of the

surrounding medium. The accompanying figure shows the

graph of the temperature T (in degrees Fahrenheit) versus

time t (in minutes) for a cup of coffee, initially with a tem-

perature of 200◦F, that is allowed to cool in a room with a

constant temperature of 75◦F.

(a) Estimate T and dT /dt when t = 10 min.
(b) Newton’s Law of Cooling can be expressed as

dT

dt
= k(T − T0)

where k is the constant of proportionality and T0 is

the temperature (assumed constant) of the surrounding

medium. Use the results in part (a) to estimate the value

of k.
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Figure Ex-39

40. Write a paragraph that explains what it means for a function

to be differentiable. Include some examples of functions that

are not differentiable, and explain the relationship between

differentiability and continuity.

41. Show that f(x) = 3
√
x is continuous at x = 0 but not dif-

ferentiable at x = 0. Sketch the graph of f .

42. Show that f(x) = 3
√

(x − 2)2 is continuous at x = 2 but

not differentiable at x = 2. Sketch the graph of f .

43. Show that

f(x) =
{

x2 + 1, x ≤ 1

2x, x > 1

is continuous and differentiable at x = 1. Sketch the graph

of f .

44. Show that

f(x) =
{

x2 + 2, x ≤ 1

x + 2, x > 1

is continuous but not differentiable at x = 1. Sketch the

graph of f .

45. Show that

f(x) =
{

x sin(1/x), x �= 0

0, x = 0

is continuous but not differentiable at x = 0. Sketch the

graph of f near x = 0. (See Figure 2.6.7b and the remark

following Example 3 in Section 2.6.)

46. Show that

f(x) =
{

x2 sin(1/x), x �= 0

0, x = 0

is continuous and differentiable at x = 0. Sketch the graph

of f near x = 0.

47. Suppose that a function f is differentiable at x = 1 and

lim
h→0

f(1 + h)

h
= 5

Find f(1) and f ′(1).

48. Suppose that f is a differentiable function with the property

that

f(x + y) = f(x)+ f(y)+ 5xy and lim
h→0

f(h)

h
= 3

Find f(0) and f ′(x).

49. Suppose that f has the property f(x + y) = f(x)f(y) for

all values of x and y and that f(0) = f ′(0) = 1. Show that

f is differentiable and f ′(x) = f(x). [Hint: Start by ex-

pressing f ′(x) as a limit.]

3.3 TECHNIQUES OF DIFFERENTIATION

In the last section we defined the derivative of a function f as a limit, and we used

that limit to calculate a few simple derivatives. In this section we will develop some

important theorems that will enable us to calculate derivatives more efficiently.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVE OF A CONSTANT
The graph of a constant function f(x) = c is the horizontal line y = c, and hence the tangent

line to this graph has slope 0 at every value of x (Figure 3.3.1). Thus, we should expect the

derivative of a constant function to be 0 for all x.

x

y

x

y = c

The tangent line to the graph of

f (x) = c has slope 0 for all x.

Figure 3.3.1

3.3.1 THEOREM. The derivative of a constant function is 0; that is, if c is any real

number, then

d

dx
[c] = 0

Proof. Let f(x) = c. Then from the definition of a derivative,

d

dx
[c] = f ′(x) = lim

w→x

f(w)− f(x)

w − x
= lim

w→x

c − c

w − x
= lim

w→x
0 = 0

Example 1 If f(x) = 5 for all x, then f ′(x) = 0 for all x; that is,

d

dx
[5] = 0 ◭

For our next derivative rule, we will need the algebraic identity

wn − xn = (w − x)(wn−1 + wn−2x + wn−3x2 + · · · + wxn−2 + xn−1)

which is valid for any positive integer n. This identity may be verified by expanding the

right-hand side of the equation and noting the cancellation of terms. For example, with

n = 4 we have

(w − x)(w3 + w2x + wx2 + x3) = w4 + (w3x − xw3)+ (w2x2 − xw2x)

+ (wx3 − xwx2)− x4

= w4 + 0 + 0 + 0 − x4

= w4 − x4

3.3.2 THEOREM (The Power Rule). If n is a positive integer, then

d

dx
[xn] = nxn−1

Proof. Let f(x) = xn. Then from the definition of the derivative we obtain

d

dx
[xn] = f ′(x) = lim

w→x

f(w)− f(x)

w − x
= lim

w→x

wn − xn

w − x

= lim
w→x

(w − x)(wn−1 + wn−2x + wn−3x2 + · · · + wxn−2 + xn−1)

w − x

= lim
w→x

wn−1 + wn−2x + wn−3x2 + · · · + wxn−2 + xn−1

= xn−1 + xn−1 + · · · + xn−1
n terms in all

= nxn−1

In words, the derivative of x raised to a positive integer power is the product of the

integer exponent and x raised to the next lower integer power.

Example 2

d

dx
[x5] = 5x4,

d

dx
[x] = 1 · x0 = 1,

d

dx
[x12] = 12x11

◭



January 17, 2001 10:52 g65-ch3 Sheet number 24 Page number 192 cyan magenta yellow black

192 The Derivative

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVE OF A CONSTANT
TIMES A FUNCTION

3.3.3 THEOREM. If f is differentiable at x and c is any real number, then cf is also

differentiable at x and

d

dx
[cf(x)] = c

d

dx
[f(x)]

Proof.

d

dx
[cf(x)] = lim

w→x

cf(w)− cf(x)

w − x
= lim

w→x
c

[

f(w)− f(x)

w − x

]

= c lim
w→x

f(w)− f(x)

w − x
= c

d

dx
[f(x)]

A constant factor can be
moved through a limit sign.

In function notation, Theorem 3.3.3 states

(cf )′ = cf ′

In words, a constant factor can be moved through a derivative sign.

Example 3

d

dx
[4x8] = 4

d

dx
[x8] = 4[8x7] = 32x7

d

dx
[−x12] = (−1)

d

dx
[x12] = −12x11

d

dx

[x

π

]

=
1

π

d

dx
[x] =

1

π
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF SUMS AND
DIFFERENCES

3.3.4 THEOREM. If f and g are differentiable at x, then so are f +g and f −g and

d

dx
[f(x)+ g(x)] =

d

dx
[f(x)] +

d

dx
[g(x)]

d

dx
[f(x)− g(x)] =

d

dx
[f(x)] −

d

dx
[g(x)]

Proof.

d

dx
[f(x)+ g(x)] = lim

w→x

[f(w)+ g(w)] − [f(x)+ g(x)]

w − x

= lim
w→x

[f(w)− f(x)] + [g(w)− g(x)]

w − x

= lim
w→x

f(w)− f(x)

w − x
+ lim

w→x

g(w)− g(x)

w − x

The limit of a
sum is the sum of
the limits.

=
d

dx
[f(x)] +

d

dx
[g(x)]

The proof for f − g is similar.
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In function notation, Theorem 3.3.4 states

(f + g)′ = f ′ + g′ (f − g)′ = f ′ − g′

In words, the derivative of a sum equals the sum of the derivatives, and the derivative of

a difference equals the difference of the derivatives.

Example 4

d

dx
[x4 + x2] =

d

dx
[x4] +

d

dx
[x2] = 4x3 + 2x

d

dx
[6x11 − 9] =

d

dx
[6x11] −

d

dx
[9] = 66x10 − 0 = 66x10

◭

Although Theorem 3.3.4 was stated for sums and differences of two terms, it can be

extended to any mixture of finitely many sums and differences of differentiable functions.

For example,

d

dx
[3x8 − 2x5 + 6x + 1] =

d

dx
[3x8] −

d

dx
[2x5] +

d

dx
[6x] +

d

dx
[1]

= 24x7 − 10x4 + 6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVE OF A PRODUCT 3.3.5 THEOREM (The Product Rule). If f and g are differentiable at x, then so is the

product f ·g, and

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)]

Proof. The earlier proofs in this section were straightforward applications of the definition

of the derivative. However, this proof requires a trick—adding and subtracting the quantity

f(w)g(x) to the numerator in the derivative definition as follows:

d

dx
[f(x)g(x)] = lim

w→x

f(w) · g(w)− f(x) · g(x)
w − x

= lim
w→x

f(w)g(w)− f(w)g(x)+ f(w)g(x)− f(x)g(x)

w − x

= lim
w→x

[

f(w) ·
g(w)− g(x)

w − x
+ g(x) ·

f(w)− f(x)

w − x

]

= lim
w→x

f(w) · lim
w→x

g(w)− g(x)

w − x
+ lim

w→x
g(x) · lim

w→x

f(w)− f(x)

w − x

= [ lim
w→x

f(w)]
d

dx
[g(x)] + [ lim

w→x
g(x)]

d

dx
[f(x)]

= f(x)
d

dx
[g(x)] + g(x)

d

dx
[f(x)]

[Note: In the last step f(w)→f(x) as w→x because f is continuous at x by Theorem

3.2.4, and g(x)→g(x) as w→x because g(x) does not involve w and hence remains

constant.]

The product rule can be written in function notation as

(f ·g)′ = f ·g′ + g ·f ′
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In words, the derivative of a product of two functions is the first function times the

derivative of the second plus the second function times the derivative of the first.

•
•
•
•
•
•
•
•

WARNING. Note that in general (f ·g)′ �= f ′ ·g′; that is, the derivative of a product is not

generally the product of the derivatives!

Example 5 Find dy/dx if y = (4x2 − 1)(7x3 + x).

Solution. There are two methods that can be used to find dy/dx. We can either use the

product rule or we can multiply out the factors in y and then differentiate. We will give both

methods.

Method I. (Using the Product Rule)

dy

dx
=

d

dx
[(4x2 − 1)(7x3 + x)]

= (4x2 − 1)
d

dx
[7x3 + x] + (7x3 + x)

d

dx
[4x2 − 1]

= (4x2 − 1)(21x2 + 1)+ (7x3 + x)(8x) = 140x4 − 9x2 − 1

Method II. (Multiplying First)

y = (4x2 − 1)(7x3 + x) = 28x5 − 3x3 − x

Thus,

dy

dx
=

d

dx
[28x5 − 3x3 − x] = 140x4 − 9x2 − 1

which agrees with the result obtained using the product rule. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVE OF A QUOTIENT 3.3.6 THEOREM (The Quotient Rule). If f and g are differentiable at x and g(x) �= 0,

then f /g is differentiable at x and

d

dx

[

f(x)

g(x)

]

=
g(x)

d

dx
[f(x)] − f(x)

d

dx
[g(x)]

[g(x)]2

Proof.

d

dx

[

f(x)

g(x)

]

= lim
w→x

f(w)

g(w)
−
f(x)

g(x)

w − x
= lim

w→x

f(w) · g(x)− f(x) · g(w)
(w − x) · g(x) · g(w)

Adding and subtracting f(x) · g(x) in the numerator yields

d

dx

[

f(x)

g(x)

]

= lim
w→x

f(w) · g(x)− f(x) · g(x)− f(x) · g(w)+ f(x) · g(x)
(w − x) · g(x) · g(w)

= lim
w→x

[

g(x) ·
f(w)− f(x)

w − x

]

−
[

f(x) ·
g(w)− g(x)

w − x

]

g(x) · g(w)

=
lim
w→x

g(x) · lim
w→x

f(w)− f(x)

w − x
− lim

w→x
f(x) · lim

w→x

g(w)− g(x)

w − x

lim
w→x

g(x) · lim
w→x

g(w)
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=
[ lim
w→x

g(x)] ·
d

dx
[f(x)] − [ lim

w→x
f(x)] ·

d

dx
[g(x)]

lim
w→x

g(x) · lim
w→x

g(w)

=
g(x)

d

dx
[f(x)] − f(x)

d

dx
[g(x)]

[g(x)]2

[See the note at the end of the proof of Theorem 3.3.5 for an explanation of the last step.]

The quotient rule can be written in function notation as

(

f

g

)′

=
g ·f ′ − f ·g′

g2

In words, the derivative of a quotient of two functions is the denominator times the

derivative of the numerator minus the numerator times the derivative of the denominator,

all divided by the denominator squared.

•
•
•
•
•
•
•
•

WARNING. Note that in general (f /g)′ �= f ′/g′; that is, the derivative of a quotient is not

generally the quotient of the derivatives.

Example 6 Let f(x) =
x2 − 1

x4 + 1
.

(a) Graph y = f(x), and use your graph to make rough estimates of the locations of all

horizontal tangent lines.

(b) By differentiating, find the exact locations of the horizontal tangent lines.

Solution (a). In Figure 3.3.2 we have shown the graph of the equation y = f(x) in the

window [−2.5, 2.5] × [−1, 1]. This graph suggests that horizontal tangent lines occur at

x = 0, x ≈ 1.5, and x ≈ −1.5.

y = 
x2 – 1

x4 + 1

[–2.5, 2.5] × [–1, 1]

xScl = 1, yScl = 1

Figure 3.3.2

Solution (b). To find the exact locations of the horizontal tangent lines, we must find the

points where dy/dx = 0 (why?). We start by finding dy/dx:

dy

dx
=

d

dx

[

x2 − 1

x4 + 1

]

=
(x4 + 1)

d

dx
[x2 − 1] − (x2 − 1)

d

dx
[x4 + 1]

(

x4 + 1
)2

=
(x4 + 1)(2x)− (x2 − 1)(4x3)

(

x4 + 1
)2

The differentiation is complete.
The rest is simplification.

=
−2x5 + 4x3 + 2x

(

x4 + 1
)2

= −
2x(x4 − 2x2 − 1)

(

x4 + 1
)2

Now we will set dy/dx = 0 and solve for x. We obtain

−
2x(x4 − 2x2 − 1)

(

x4 + 1
)2

= 0

The solutions of this equation are the values of x for which the numerator is 0:

2x(x4 − 2x2 − 1) = 0

The first factor yields the solution x = 0. Other solutions can be found by solving the
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equation

x4 − 2x2 − 1 = 0

This can be treated as a quadratic equation in x2 and solved by the quadratic formula. This

yields

x2 =
2 ±

√
8

2
= 1 ±

√
2

The minus sign yields imaginary values of x, which we ignore since they are not relevant

to the problem. The plus sign yields the solutions

x = ±
√

1 +
√

2

In summary, horizontal tangent lines occur at

x = 0, x =
√

1 +
√

2 ≈ 1.55, and x = −
√

1 +
√

2 ≈ −1.55

which is consistent with the rough estimates that we obtained graphically in part (a). ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE POWER RULE FOR INTEGER
EXPONENTS

In Theorem 3.3.2 we established the formula

d

dx
[xn] = nxn−1

for positive integer values of n. Eventually, we will show that this formula applies if n is

any real number. As our first step in this direction we will show that it applies for all integer

values of n.

3.3.7 THEOREM. If n is any integer, then

d

dx
[xn] = nxn−1 (1)

Proof. The result has already been established in the case where n > 0. If n < 0, then let

m = −n so that

f(x) = x−m =
1

xm

From Theorem 3.3.6,

f ′(x) =
d

dx

[

1

xm

]

=
xm

d

dx
[1] − 1

d

dx
[xm]

(xm)2
= −

d

dx
[xm]

(xm)2

Since n < 0, it follows that m > 0, so xm can be differentiated using Theorem 3.3.2. Thus,

f ′(x) = −
mxm−1

x2m
= −mxm−1−2m = −mx−m−1 = nxn−1

which proves (1). In the case n = 0 Formula (1) reduces to

d

dx
[1] = 0 · x−1 = 0

which is correct by Theorem 3.3.1.

Example 7

d

dx
[x−9] = −9x−9−1 = −9x−10

d

dx

[

1

x

]

=
d

dx
[x−1] = (−1)x−1−1 = −x−2 = −

1

x2
◭
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In Example 4 of Section 3.2 we showed that

d

dx
[
√
x] =

1

2
√
x

(2)

which shows that Formula (1) also works with n = 1
2
, since

d

dx
[x1/2] =

1

2x1/2
=

1

2
x−1/2

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

HIGHER DERIVATIVES
If the derivative f ′ of a function f is itself differentiable, then the derivative of f ′ is denoted

by f ′′ and is called the second derivative of f . As long as we have differentiability, we

can continue the process of differentiating derivatives to obtain third, fourth, fifth, and even

higher derivatives of f . The successive derivatives of f are denoted by

f ′, f ′′ = (f ′)′, f ′′′ = (f ′′)′, f (4) = (f ′′′)′, f (5) = (f (4))′, . . .

These are called the first derivative, the second derivative, the third derivative, and so forth.

Beyond the third derivative, it is too clumsy to continue using primes, so we switch from

primes to integers in parentheses to denote the order of the derivative. In this notation it is

easy to denote a derivative of arbitrary order by writing

f (n) The nth derivative of f

The significance of the derivatives of order 2 and higher will be discussed later.

Example 8 If f(x) = 3x4 − 2x3 + x2 − 4x + 2, then

f ′(x) = 12x3 − 6x2 + 2x − 4

f ′′(x) = 36x2 − 12x + 2

f ′′′(x) = 72x − 12

f (4)(x) = 72

f (5)(x) = 0
...

f (n)(x) = 0 (n ≥ 5) ◭

Successive derivatives can also be denoted as follows:

f ′(x) =
d

dx
[f(x)]

f ′′(x) =
d

dx

[

d

dx
[f(x)]

]

=
d2

dx2
[f(x)]

f ′′′(x) =
d

dx

[

d2

dx2
[f(x)]

]

=
d3

dx3
[f(x)]

...
...

In general, we write

f (n)(x) =
dn

dxn
[f(x)]

which is read “the nth derivative of f with respect to x.”

When a dependent variable is involved, say y = f(x), then successive derivatives can

be denoted by writing

dy

dx
,

d2y

dx2
,

d3y

dx3
,

d4y

dx4
, . . . ,

dny

dxn
, . . .

or more briefly,

y ′, y ′′, y ′′′, y(4), . . . , y(n), . . .
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EXERCISE SET 3.3 Graphing Calculator
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–12, find dy/dx.

1. y = 4x7 2. y = −3x12

3. y = 3x8 + 2x + 1 4. y = 1
2
(x4 + 7)

5. y = π3 6. y =
√

2x + (1/
√

2)

7. y = − 1
3
(x7 + 2x − 9) 8. y =

x2 + 1

5

9. y = ax3 + bx2 + cx + d (a, b, c, d constant)

10. y =
1

a

(

x2 +
1

b
x + c

)

(a, b, c constant)

11. y = −3x−8 + 2
√
x 12. y = 7x−6 − 5

√
x

In Exercises 13–20, find f ′(x).

13. f(x) = x−3 +
1

x7
14. f(x) =

√
x +

1

x

15. f(x) = (3x2 + 6)
(

2x − 1
4

)

16. f(x) = (2 − x − 3x3)(7 + x5)

17. f(x) = (x3 + 7x2 − 8)(2x−3 + x−4)

18. f(x) =
(

1

x
+

1

x2

)

(3x3 + 27)

19. f(x) =
(

3x2 + 1
)2

20. f(x) =
(

x5 + 2x
)2

In Exercises 21 and 22, find y ′(1).

21. y =
1

5x − 3
22. y =

3
√
x + 2

In Exercises 23 and 24, find dx/dt .

23. x =
3t

2t + 1
24. x =

t2 + 1

3t

In Exercises 25–28, find dy/dx|x=1.

25. y =
2x − 1

x + 3
26. y =

4x + 1

x2 − 5

27. y =
(

3x + 2

x

)

(x−5 + 1)

28. y = (2x7 − x2)

(

x − 1

x + 1

)

In Exercises 29 and 30, approximate f ′(1) by considering

difference quotients

f(x1)− f(1)

x1 − 1

for values of x1 near 1, and then find the exact value of f ′(1)

by differentiating.

29. f(x) = x3 − 3x + 1 30. f(x) = x
√
x

In Exercises 31 and 32, use a graphing utility to estimate the

value of f ′(1) by zooming in on the graph of f , and then

compare your estimate to the exact value obtained by differ-

entiating.

31. f(x) =
x

x2 + 1
32. f(x) =

x2 − 1

x2 + 1

In Exercises 33–36, find the indicated derivative.

33.
d

dt
[16t2] 34.

dC

dr
, where C = 2πr

35. V ′(r), where V = πr3 36.
d

dα
[2α−1 + α]

37. A spherical balloon is being inflated.

(a) Find a general formula for the instantaneous rate of

change of the volume V with respect to the radius r ,

given that V = 4
3
πr3.

(b) Find the rate of change of V with respect to r at the

instant when the radius is r = 5.

38. Find
d

dλ

[

λλ0 + λ6

2 − λ0

]

(λ0 is constant).

39. Find g′(4) given that f(4) = 3 and f ′(4) = −5.

(a) g(x) =
√
xf(x) (b) g(x) =

f(x)

x

40. Find g′(3) given that f(3) = −2 and f ′(3) = 4.

(a) g(x) = 3x2 − 5f(x) (b) g(x) =
2x + 1

f(x)

41. Find F ′(2) given that f(2) = −1, f ′(2) = 4, g(2) = 1, and

g′(2) = −5.

(a) F(x) = 5f(x)+ 2g(x) (b) F(x) = f(x)− 3g(x)

(c) F(x) = f(x)g(x) (d) F(x) = f(x)/g(x)

42. Find F ′(π) given that f(π) = 10, f ′(π) = −1,

g(π) = −3, and g′(π) = 2.

(a) F(x) = 6f(x)− 5g(x) (b) F(x) = x(f(x)+ g(x))

(c) F(x) = 2f(x)g(x) (d) F(x) =
f(x)

4 + g(x)

43. Find an equation of the tangent line to the graph of y = f(x)

at x = −3 if f(−3) = 2 and f ′(−3) = 5.

44. Find an equation for the line that is tangent to the curve

y = (1 − x)/(1 + x) at x = 2.

In Exercises 45 and 46, find d2y/dx2.

45. (a) y = 7x3 − 5x2 + x (b) y = 12x2 − 2x + 3

(c) y =
x + 1

x
(d) y = (5x2 − 3)(7x3 + x)

46. (a) y = 4x7 − 5x3 + 2x (b) y = 3x + 2

(c) y =
3x − 2

5x
(d) y = (x3 − 5)(2x + 3)

In Exercises 47 and 48, find y ′′′.
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47. (a) y = x−5 + x5 (b) y = 1/x

(c) y = ax3 + bx + c (a, b, c constant)

48. (a) y = 5x2 − 4x + 7 (b) y = 3x−2 + 4x−1 + x

(c) y = ax4 + bx2 + c (a, b, c constant)

49. Find

(a) f ′′′(2), where f(x) = 3x2 − 2

(b)
d2y

dx2

∣

∣

∣

∣

x=1

, where y = 6x5 − 4x2

(c)
d4

dx4
[x−3]

∣

∣

∣

∣

x=1

50. Find

(a) y ′′′(0), where y = 4x4 + 2x3 + 3

(b)
d4y

dx4

∣

∣

∣

∣

x=1

, where y =
6

x4
.

51. Show that y = x3 + 3x + 1 satisfies y ′′′ + xy ′′ − 2y ′ = 0.

52. Show that if x �= 0, then y = 1/x satisfies the equation

x3y ′′ + x2y ′ − xy = 0.

53. Find a general formula for F ′′(x) if F(x) = xf(x) and f

and f ′ are differentiable at x.

54. Suppose that the function f is differentiable everywhere

and F(x) = xf(x).

(a) Express F ′′′(x) in terms of x and derivatives of f .

(b) For n ≥ 2, conjecture a formula for Fm(x).

In Exercises 55 and 56, use a graphing utility to make rough

estimates of the locations of all horizontal tangent lines, and

then find their exact locations by differentiating.

55. y = 1
3
x3 − 3

2
x2 + 2x 56. y =

x

x2 + 9

57. Find a function y = ax2 + bx + c whose graph has an

x-intercept of 1, a y-intercept of −2, and a tangent line with

a slope of −1 at the y-intercept.

58. Find k if the curve y = x2 + k is tangent to the line y = 2x.

59. Find the x-coordinate of the point on the graph of y = x2

where the tangent line is parallel to the secant line that cuts

the curve at x = −1 and x = 2.

60. Find the x-coordinate of the point on the graph of y =
√
x

where the tangent line is parallel to the secant line that cuts

the curve at x = 1 and x = 4.

61. Find the coordinates of all points on the graph of y = 1−x2

at which the tangent line passes through the point (2, 0).

62. Show that any two tangent lines to the parabola y = ax2,

a �= 0, intersect at a point that is on the vertical line halfway

between the points of tangency.

63. Suppose that L is the tangent line at x = x0 to the graph of

the cubic equation y = ax3 + bx. Find the x-coordinate of

the point where L intersects the graph a second time.

64. Show that the segment of the tangent line to the graph of

y = 1/x that is cut off by the coordinate axes is bisected by

the point of tangency.

65. Show that the triangle that is formed by any tangent line to

the graph of y = 1/x, x > 0, and the coordinate axes has

an area of 2 square units.

66. Find conditions on a, b, c, and d so that the graph of the

polynomial f(x) = ax3 + bx2 + cx + d has

(a) exactly two horizontal tangents

(b) exactly one horizontal tangent

(c) no horizontal tangents.

67. Newton’s Law of Universal Gravitation states that the mag-

nitude F of the force exerted by a point with mass M on a

point with mass m is

F =
GmM

r2

whereG is a constant and r is the distance between the bod-

ies. Assuming that the points are moving, find a formula for

the instantaneous rate of change of F with respect to r .

68. In the temperature range between 0◦C and 700◦C the re-

sistance R [in ohms (.)] of a certain platinum resistance

thermometer is given by

R = 10 + 0.04124T − 1.779 × 10−5T 2

where T is the temperature in degrees Celsius. Where in

the interval from 0◦C to 700◦C is the resistance of the ther-

mometer most sensitive and least sensitive to temperature

changes? [Hint: Consider the size of dR/dT in the interval

0 ≤ T ≤ 700.]

In Exercises 69 and 70, use a graphing utility to make rough

estimates of the intervals on which f ′(x) > 0, and then find

those intervals exactly by differentiating.

69. f(x) = x −
1

x
70. f(x) =

5x

x2 + 4

71. Apply the product rule (3.3.5) twice to show that if f, g, and

h are differentiable functions, then f ·g ·h is differentiable,

and

(f ·g ·h)′ = f ′ ·g ·h+ f ·g′ ·h+ f ·g ·h′

72. Based on the result in Exercise 71, make a conjecture about

a formula for differentiating a product of n functions.

73. Use the formula in Exercise 71 to find

(a)
d

dx

[

(2x + 1)

(

1 +
1

x

)

(x−3 + 7)

]

(b)
d

dx

[

(x7 + 2x − 3)3
]

.

74. Use the formula you obtained in Exercise 72 to find

(a)
d

dx

[

x−5(x2 + 2x)(4 − 3x)(2x9 + 1)
]

(b)
d

dx

[

(x2 + 1)50
]

.
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In Exercises 75–78, you are asked to determine whether

a piecewise-defined function f is differentiable at a value

x = x0, where f is defined by different formulas on differ-

ent sides of x0. You may use the following result, which is a

consequence of the Mean-Value Theorem (discussed in Sec-

tion 4.8). Theorem. Let f be continuous at x0 and suppose

that limx→x0
f ′(x) exists. Then f is differentiable at x0, and

f ′(x0) = limx→x0
f ′(x).

75. Show that

f(x) =

{
x2 + x + 1, x ≤ 1

3x, x > 1

is continuous at x = 1. Determine whether f is differen-

tiable at x = 1. If so, find the value of the derivative there.

Sketch the graph of f .

76. Let

f(x) =

{
x2 − 16x, x < 9

12
√
x, x ≥ 9

Is f continuous at x = 9? Determine whether f is dif-

ferentiable at x = 9. If so, find the value of the derivative

there.

77. Let

f(x) =

{
x2, x ≤ 1

√
x, x > 1

Determine whether f is differentiable at x = 1. If so, find

the value of the derivative there.

78. Let

f(x) =

{
x3 + 1

16
, x < 1

2

3
4
x2, x ≥ 1

2

Determine whether f is differentiable at x = 1
2
. If so, find

the value of the derivative there.

79. Find all points where f fails to be differentiable. Justify

your answer.

(a) f(x) = |3x − 2| (b) f(x) = |x2 − 4|

80. In each part compute f ′, f ′′, f ′′′ and then state the formula

for f (n).

(a) f(x) = 1/x (b) f(x) = 1/x2

[Hint: The expression (−1)n has a value of 1 if n is even

and −1 if n is odd. Use this expression in your answer.]

81. (a) Prove:

d2

dx2
[cf(x)] = c

d2

dx2
[f(x)]

d2

dx2
[f(x)+ g(x)] =

d2

dx2
[f(x)] +

d2

dx2
[g(x)]

(b) Do the results in part (a) generalize to nth derivatives?

Justify your answer.

82. Prove:

(f ·g)′′ = f ′′ ·g + 2f ′ ·g′ + f ·g′′

83. (a) Find f (n)(x) if f(x) = xn.

(b) Find f (n)(x) if f(x) = xk and n > k, where k is a

positive integer.

(c) Find f (n)(x) if

f(x) = a0 + a1x + a2x
2 + · · · + anx

n

84. Let f(x) = x8 − 2x + 3; find

lim
w→2

f ′(w)− f ′(2)

w − 2

85. (a) Prove: If f ′′(x) exists for each x in (a, b), then both f

and f ′ are continuous on (a, b).

(b) What can be said about the continuity of f and its

derivatives if f (n)(x) exists for each x in (a, b)?

3.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

The main objective of this section is to obtain formulas for the derivatives of trigono-

metric functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF THE
TRIGONOMETRIC FUNCTIONS

For the purpose of finding derivatives of the trigonometric functions sin x, cos x, tan x,

cot x, sec x, and csc x, we will assume that x is measured in radians. We will also need the

following limits, which were stated in Theorem 2.6.3 (with x rather than h as the variable):

lim
h→0

sinh

h
= 1 and lim

h→0

1 − cosh

h
= 0

We begin with the problem of differentiating sin x. Using the alternative form

f ′(x) = lim
h→0

f(x + h)− f(x)

h
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for the definition of a derivative (Formula (11) of Section 3.2), we have

d

dx
[sin x] = lim

h→0

sin(x + h)− sin x

h

= lim
h→0

sin x cosh+ cos x sinh− sin x

h
By the addition formula for sine

= lim
h→0

[

sin x

(
cosh− 1

h

)

+ cos x

(
sinh

h

)]

= lim
h→0

[

cos x

(
sinh

h

)

− sin x

(
1 − cosh

h

)]

Since sin x and cos x do not involve h, they remain constant as h→0; thus,

lim
h→0

(sin x) = sin x and lim
h→0

(cos x) = cos x

Consequently,

d

dx
[sin x] = cos x · lim

h→0

(
sinh

h

)

− sin x · lim
h→0

(
1 − cosh

h

)

= cos x · (1)− sin x · (0) = cos x

Thus, we have shown that

d

dx
[sin x] = cos x (1)

The derivative of cos x can be obtained similarly, resulting in the formula

d

dx
[cos x] = − sin x (2)

The derivatives of the remaining trigonometric functions are

d

dx
[tan x] = sec2 x

d

dx
[sec x] = sec x tan x (3–4)

d

dx
[cot x] = − csc2 x

d

dx
[csc x] = − csc x cot x (5–6)

These can all be obtained from (1) and (2) using the relationships

tan x =
sin x

cos x
, cot x =

cos x

sin x
, sec x =

1

cos x
, csc x =

1

sin x

For example,

d

dx
[tan x] =

d

dx

[
sin x

cos x

]

=
cos x ·

d

dx
[sin x] − sin x ·

d

dx
[cos x]

cos2 x

=
cos x · cos x − sin x · (− sin x)

cos2 x
=

cos2 x + sin2 x

cos2 x
=

1

cos2 x
= sec2 x

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The derivative formulas for the trigonometric functions should be memorized.

An easy way of doing this is discussed in Exercise 42. Moreover, we emphasize again that

in all of the derivative formulas for the trigonometric functions, x is measured in radians.

Example 1 Find f ′(x) if f(x) = x2 tan x.
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Solution. Using the product rule and Formula (3), we obtain

f ′(x) = x2 ·
d

dx
[tan x] + tan x ·

d

dx
[x2] = x2 sec2 x + 2x tan x ◭

Example 2 Find dy/dx if y =
sin x

1 + cos x
.

Solution. Using the quotient rule together with Formulas (1) and (2) we obtain

dy

dx
=
(1 + cos x) ·

d

dx
[sin x] − sin x ·

d

dx
[1 + cos x]

(1 + cos x)2

=
(1 + cos x)(cos x)− (sin x)(− sin x)

(1 + cos x)2

=
cos x + cos2 x + sin2 x

(1 + cos x)2
=

cos x + 1

(1 + cos x)2
=

1

1 + cos x
◭

Example 3 Find y ′′(π/4) if y(x) = sec x.

Solution.

y ′(x) = sec x tan x

y ′′(x) = sec x ·
d

dx
[tan x] + tan x ·

d

dx
[sec x]

= sec x · sec2 x + tan x · sec x tan x

= sec3 x + sec x tan2 x

Thus,

y ′′(π/4) = sec3(π/4)+ sec(π/4) tan2(π/4)

= (
√

2)3 + (
√

2)(1)2 = 3
√

2 ◭

Example 4 On a sunny day, a 50-ft flagpole casts a shadow that changes with the angle

of elevation of the Sun. Let s be the length of the shadow and θ the angle of elevation of the

Sun (Figure 3.4.1). Find the rate at which the length of the shadow is changing with respect

to θ when θ = 45◦ . Express your answer in units of feet/degree.

50 ft

x u

Figure 3.4.1

Solution. The variables s and θ are related by tan θ = 50/s, or equivalently,

s = 50 cot θ (7)

If θ is measured in radians, then Formula (5) is applicable, which yields

ds

dθ
= −50 csc2 θ

which is the rate of change of shadow length with respect to the elevation angle θ in units

of feet/radian. When θ = 45◦ (or equivalently, θ = π/4 radians), we obtain

ds

dθ

∣
∣
∣
∣
θ=π/4

= −50 csc2(π/4) = −100 feet/radian

Converting radians (rad) to degrees (deg) yields

−100
ft

rad
·
π

180

rad

deg
= −

5

9
π ft/deg ≈ −1.75 ft/deg

Thus, when θ = 45◦ , the shadow length is decreasing (because of the minus sign) at an

approximate rate of 1.75 ft/deg increase in the angle of elevation. ◭
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EXERCISE SET 3.4 Graphing Calculator
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–18, find f ′(x).

1. f(x) = 2 cos x − 3 sin x 2. f(x) = sin x cos x

3. f(x) =
sin x

x
4. f(x) = x2 cos x

5. f(x) = x3 sin x − 5 cos x 6. f(x) =
cos x

x sin x

7. f(x) = sec x −
√

2 tan x 8. f(x) = (x2 + 1) sec x

9. f(x) = sec x tan x 10. f(x) =
sec x

1 + tan x

11. f(x) = csc x cot x

12. f(x) = x − 4 csc x + 2 cot x

13. f(x) =
cot x

1 + csc x
14. f(x) =

csc x

tan x

15. f(x) = sin2 x + cos2 x 16. f(x) =
1

cot x

17. f(x) =
sin x sec x

1 + x tan x

18. f(x) =
(x2 + 1) cot x

3 − cos x csc x

In Exercises 19–24, find d2y/dx2.

19. y = x cos x 20. y = csc x

21. y = x sin x − 3 cos x 22. y = x2 cos x + 4 sin x

23. y = sin x cos x 24. y = tan x

25. Find the equation of the line tangent to the graph of tan x at

(a) x = 0 (b) x = π/4 (c) x = −π/4.

26. Find the equation of the line tangent to the graph of sin x at

(a) x = 0 (b) x = π (c) x = π/4.

27. (a) Show that y = x sin x is a solution to y ′′ +y = 2 cos x.

(b) Show that y = x sin x is a solution of the equation

y(4) + y ′′ = −2 cos x.

28. (a) Show that y = cos x and y = sin x are solutions of the

equation y ′′ + y = 0.

(b) Show that y = A sin x + B cos x is a solution of the

equation y ′′ + y = 0 for all constants A and B.

29. Find all values in the interval [−2π, 2π] at which the graph

of f has a horizontal tangent line.

(a) f(x) = sin x (b) f(x) = x + cos x

(c) f(x) = tan x (d) f(x) = sec x

30. (a) Use a graphing utility to make rough estimates of the

values in the interval [0, 2π] at which the graph of

y = sin x cos x has a horizontal tangent line.

(b) Find the exact locations of the points where the graph

has a horizontal tangent line.

31. A 10-ft ladder leans against a wall at an angle θ with the

horizontal, as shown in the accompanying figure. The top

of the ladder is x feet above the ground. If the bottom of

the ladder is pushed toward the wall, find the rate at which

x changes with respect to θ when θ = 60◦ . Express the

answer in units of feet/degree.

32. An airplane is flying on a horizontal path at a height of

3800 ft, as shown in the accompanying figure. At what rate

is the distance s between the airplane and the fixed point

P changing with respect to θ when θ = 30◦? Express the

answer in units of feet/degree.

u

10 ft
x

Figure Ex-31

P

s
3800 ft

u

Figure Ex-32

33. A searchlight is trained on the side of a tall building. As the

light rotates, the spot it illuminates moves up and down the

side of the building. That is, the distanceD between ground

level and the illuminated spot on the side of the building is

a function of the angle θ formed by the light beam and the

horizontal (see the accompanying figure). If the searchlight

is located 50 m from the building, find the rate at which D

is changing with respect to θ when θ = 45◦ . Express your

answer in units of meters/degree.

34. An Earth-observing satellite can see only a portion of the

Earth’s surface. The satellite has horizon sensors that can

detect the angle θ shown in the accompanying figure. Let

r be the radius of the Earth (assumed spherical) and h the

distance of the satellite from the Earth’s surface.

(a) Show that h = r(csc θ − 1).

(b) Using r = 6378 km, find the rate at which h is changing

with respect to θ when θ = 30◦ . Express the answer in

units of kilometers/degree. [Adapted from Space Math-

ematics, NASA, 1985.]

D

u 50 m

Figure Ex-33

h Satellite

Earth

u

Figure Ex-34

In Exercises 35 and 36, make a conjecture about the deriva-

tive by calculating the first few derivatives and observing the

resulting pattern.
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35. (a)
d87

dx87
[sin x] (b)

d100

dx100
[cos x]

36.
d17

dx17
[x sin x]

37. In each part, determine where f is differentiable.

(a) f(x) = sin x (b) f(x) = cos x

(c) f(x) = tan x (d) f(x) = cot x

(e) f(x) = sec x (f ) f(x) = csc x

(g) f(x) =
1

1 + cos x
(h) f(x) =

1

sin x cos x

(i) f(x) =
cos x

2 − sin x

38. (a) Derive Formula (2) using the definition of a derivative.
(b) Use Formulas (1) and (2) to obtain (5).
(c) Use Formula (2) to obtain (4).
(d) Use Formula (1) to obtain (6).

39. Let f(x) = cos x. Find all positive integers n for which

f (n)(x) = sin x.

40. (a) Show that lim
h→0

tanh

h
= 1.

(b) Use the result in part (a) to help derive the formula for

the derivative of tan x directly from the definition of a

derivative.

41. Without using any trigonometric identities, find

lim
x→0

tan(x + y)− tan y

x

[Hint: Relate the given limit to the definition of the deriva-

tive of an appropriate function of y.]

42. Let us agree to call the functions cos x, cot x, and csc x

the cofunctions of sin x, tan x, and sec x, respectively. Con-

vince yourself that the derivative of any cofunction can be

obtained from the derivative of the corresponding function

by introducing a minus sign and replacing each function in

the derivative by its cofunction. Memorize the derivatives

of sin x, tan x, and sec x and then use the above observation

to deduce the derivatives of the cofunctions.

43. The derivative formulas for sin x, cos x, tan x, cot x, sec x,

and csc x were obtained under the assumption that x is mea-

sured in radians. This exercise shows that different (more

complicated) formulas result if x is measured in degrees.

Prove that if h and x are degree measures, then

(a) lim
h→0

cosh− 1

h
= 0 (b) lim

h→0

sinh

h
=

π

180

(c)
d

dx
[sin x] =

π

180
cos x.

3.5 THE CHAIN RULE

In this section we will derive a formula that expresses the derivative of a composition

f ◦g in terms of the derivatives of f and g. This formula will enable us to differentiate

complicated functions using known derivatives of simpler functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF COMPOSITIONS 3.5.1 PROBLEM. If we know the derivatives of f and g, how can we use this infor-

mation to find the derivative of the composition f ◦g?

The key to solving this problem is to introduce dependent variables

y = (f ◦g)(x) = f(g(x)) and u = g(x)

so that y = f(u). We are interested in using the known derivatives

dy

du
= f ′(u) and

du

dx
= g′(x)

to find the unknown derivative

dy

dx
=

d

dx
[f(g(x))]

Stated another way, we are interested in using the known rates of change dy/du and du/dx

to find the unknown rate of change dy/dx. But intuition suggests that rates of change

multiply. For example, if y changes at 4 times the rate of change of u and u changes at 2

times the rate of change of x, then y changes at 4 × 2 = 8 times the rate of change of x.

This suggests that

dy

dx
=
dy

du
·
du

dx

These ideas are formalized in the following theorem.
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3.5.2 THEOREM (The Chain Rule). If g is differentiable at x and f is differentiable at

g(x), then the composition f ◦g is differentiable at x. Moreover,

(f ◦g)′(x) = f ′(g(x))g′(x)

Alternatively, if

y = f(g(x)) and u = g(x)

then y = f(u) and

dy

dx
=
dy

du
·
du

dx
(1)

The proof of this result is given in Appendix G.

Example 1 Find h′(x) if h(x) = 4 cos(x3).

Solution. We first find functions f and g such that f ◦g = h. Observe that if g(x) = x3

and f (u) = 4 cos u, then

(f ◦g)(x) = f(g(x)) = 4 cos(g(x)) = 4 cos(x3) = h(x)

Also,

f ′(u) = −4 sin u and g′(x) = 3x2

Using the chain rule,

h′(x) = f ′(g(x)) g′(x) = (−4 sin g(x))(3x2) = −12x2 sin(x3)

Alternatively, set y = h(x) and let u = x3. Then y = 4 cos u. By the form of the chain rule

in Formula (1),

h′(x) =
dy

dx
=
dy

du
·
du

dx
=

d

du
[4 cos u] ·

d

dx
[x3]

= (−4 sin u) · (3x2) = (−4 sin(x3)) · (3x2) = −12x2 sin(x3) ◭

Formula (1) is easy to remember because the left side is exactly what results if we “cancel”

the du’s on the right side. This “canceling” device provides a good way to remember the

chain rule when variables other than x, y, and u are used.

Example 2 Find dw/dt if w = tan x and x = 4t3 + t .

Solution. In this case the chain rule takes the form

dw

dt
=
dw

dx
·
dx

dt
=

d

dx
[tan x] ·

d

dt
[4t3 + t]

= (sec2 x)(12t2 + 1) = (12t2 + 1) sec2(4t3 + t) ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

AN ALTERNATIVE APPROACH TO
USING THE CHAIN RULE

Although Formula (1) is useful, it is sometimes unwieldy because it involves so many

variables. As you become more comfortable with the chain rule, you may want to dispense

with actually writing out all these variables. To accomplish this, it is helpful to note that

since (f ◦g)(x) = f(g(x)), the chain rule may be written in the form

d

dx
[f(g(x))] = (f ◦g)′(x) = f ′(g(x))g′(x)

If we call g(x) the “inside function” and f the “outside function,” then this equation states

that:

The derivative of f(g(x)) is the derivative of the outside function evaluated at the inside

function times the derivative of the inside function.
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That is,

d

dx
[f(g(x))] = f ′(g(x))

︸ ︷︷ ︸
· g′(x)

︸ ︷︷ ︸

Derivative of
the outside
evaluated at
the inside

Derivative
of the inside

(2)

For example,

d

dx
[cos(x2 + 9)] = − sin(x2 + 9)

︸ ︷︷ ︸
· 2x

︸︷︷︸

Derivative of the
outside evaluated
at the inside

Derivative
of the inside

d

dx
[tan2 x] =

d

dx

[

(tan x)2
]

= (2 tan x)
︸ ︷︷ ︸

· (sec2 x)
︸ ︷︷ ︸

= 2 tan x sec2 x

Derivative of
the outside
evaluated at
the inside

Derivative
of the inside

Substituting u = g(x) into (2) yields the following alternative form:

d

dx
[f(u)] = f ′(u)

du

dx
(3)

For example, to differentiate the function

f(x) =
(

x2 − x + 1
)23

(4)

we can let u = x2 − x + 1 and then apply (3) to obtain

d

dx

[

(x2 − x + 1)23
]

=
d

dx
[u23] = 23u22

︸ ︷︷ ︸

du

dx

f ′(u)

= 23
(

x2 − x + 1
)22 d

dx
[x2 − x + 1]

= 23
(

x2 − x + 1
)22 · (2x − 1)

More generally, if uwere any other differentiable function of x, the pattern of computations

would be virtually the same. For example, if u = cos x, then

d

dx
[cos23 x] =

d

dx
[u23] = 23u22 du

dx
= 23 cos22 x

d

dx
[cos x]

= 23 cos22 x · (− sin x) = −23 sin x cos22 x

In both of the preceding computations, the chain rule took the form

d

dx
[u23] = 23u22 du

dx
(5)

This formula is a generalization of the more basic formula

d

dx
[x23] = 23x22 (6)

In fact, in the special case where u = x, Formula (5) reduces to (6) since

d

dx
[u23] = 23u22 du

dx
= 23x22 d[x]

dx
= 23x22

Table 3.5.1 contains a list of generalized derivative formulas that are consequences

of (3).
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Table 3.5.1

du

dx

d

dx
[un] = nun–1        (n an integer)

du

dx

d

dx
[sin u] = cos u

du

dx

d

dx
[tan u] = sec2 u

du

dx

d

dx
[sec u] = sec u tan u

du

dx

1

2√u

d

dx
[√u] = 

du

dx

d

dx
[cos u] = –sin u

du

dx

d

dx
[cot u] = –csc2 u

du

dx

d

dx
[csc u] = –csc u cot u

generalized derivative formulas

Example 3 Find

(a)
d

dx
[sin(2x)] (b)

d

dx
[tan(x2 + 1)] (c)

d

dx
[
√

x3 + csc x]

(d)
d

dx

[

(1 + x5 cot x)−8
]

(e)
d

dx

[
1

x3 + 2x − 3

]

Solution (a). Taking u = 2x in the generalized derivative formula for sin u yields

d

dx
[sin(2x)] =

d

dx
[sin u] = cos u

du

dx
= cos 2x ·

d

dx
[2x] = cos 2x · 2 = 2 cos 2x

Solution (b). Taking u = x2 + 1 in the generalized derivative formula for tan u yields

d

dx
[tan(x2 + 1)] =

d

dx
[tan u] = sec2 u

du

dx

= sec2(x2 + 1) ·
d

dx
[x2 + 1] = sec2(x2 + 1) · 2x

= 2x sec2(x2 + 1)

Solution (c). Taking u = x3 + csc x in the generalized derivative formula for
√
u yields

d

dx
[
√

x3 + csc x] =
d

dx
[
√
u] =

1

2
√
u

du

dx
=

1

2
√
x3 + csc x

·
d

dx
[x3 + csc x]

=
1

2
√
x3 + csc x

· (3x2 − csc x cot x) =
3x2 − csc x cot x

2
√
x3 + csc x

Solution (d ). Taking u = 1+x5 cot x in the generalized derivative formula for u−8 yields

d

dx

[

(1 + x5 cot x)−8
]

=
d

dx
[u−8] = −8u−9 du

dx

= −8
(

1 + x5 cot x
)−9 ·

d

dx
[1 + x5 cot x]

= −8
(

1 + x5 cot x
)−9 · (x5(− csc2 x)+ 5x4 cot x)

= (8x5 csc2 x − 40x4 cot x)
(

1 + x5 cot x
)−9

Solution (e). Taking u = x3 + 2x− 3 in the generalized derivative formula for u−1 yields

d

dx

[
1

x3 + 2x − 3

]

=
d

dx
[(x3 + 2x − 3)−1] =

d

dx
[u−1]

= −u−2 du

dx
= −(x3 + 2x − 3)−2 d

dx
[x3 + 2x − 3]

= −(x3 + 2x − 3)−2(3x2 + 2) = −
3x2 + 2

(x3 + 2x − 3)2
◭
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Sometimes you will have to make adjustments in notation or apply the chain rule more

than once to calculate a derivative.

Example 4 Find

(a)
d

dx
[sin(

√
1 + cos x)] (b)

dµ

dt
if u = sec

√
ωt (ω constant)

Solution (a). Taking u =
√

1 + cos x in the generalized derivative formula for sin u yields

d

dx
[sin(

√
1 + cos x)] =

d

dx
[sin u] = cos u

du

dx

= cos(
√

1 + cos x) ·
d

dx
[
√

1 + cos x]
We use the generalized
derivative formula for

√
u

with u = 1 + cos x.

= cos(
√

1 + cos x) ·
− sin x

2
√

1 + cos x

= −
sin x cos(

√
1 + cos x)

2
√

1 + cos x

Solution (b).

dµ

dt
=

d

dt
[sec

√
ωt] = sec

√
ωt tan

√
ωt

d

dt
[
√
ωt]

We used the generalized
derivative formula for
sec u with u =

√
ωt .

= sec
√
ωt tan

√
ωt

ω

2
√
ωt

We used the generalized
derivative formula for

√
u

with u = ωt .
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIATING USING
COMPUTER ALGEBRA SYSTEMS

Although the chain rule makes it possible to differentiate extremely complicated functions,

the computations can be time-consuming to execute by hand. For complicated derivatives

engineers and scientists often use computer algebra systems such as Mathematica, Maple,

and Derive. For example, although we have all of the mathematical tools to perform the

differentiation

d

dx

[(

x2 + 1
)10

sin3(
√
x)

√
1 + csc x

]

(7)

by hand, the computations are sufficiently tedious that it would be more efficient to use a

computer algebra system.

•
••• FOR THE READER. If you have a CAS, use it to perform the differentiation in (7).

EXERCISE SET 3.5 Graphing Calculator C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Given that f ′(0) = 2, g(0) = 0, and g′(0) = 3, find

(f ◦g)′(0).
2. Given that f ′(9) = 5, g(2) = 9, and g′(2) = −3, find

(f ◦g)′(2).
3. Let f(x) = x5 and g(x) = 2x − 3.

(a) Find (f ◦g)(x) and (f ◦g)′(x).
(b) Find (g ◦f )(x) and (g ◦f )′(x).

4. Let f(x) = 5
√
x and g(x) = 4 + cos x.

(a) Find (f ◦g)(x) and (f ◦g)′(x).
(b) Find (g ◦f )(x) and (g ◦f )′(x).

5. Given the following table of values, find the indicated

derivatives in parts (a) and (b).

x f (x) f ′(x)

3

5

5

3

–2

–1

g(x) g′(x)

5

12

7

4

(a) F ′(3), where F(x) = f(g(x))

(b) G′(3), where G(x) = g(f(x))
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6. Given the following table of values, find the indicated

derivatives in parts (a) and (b).

x f (x) f ′(x)

–1

2

2

0

3

4

g(x) g′(x)

2

1

–3

–5

(a) F ′(−1), where F(x) = f(g(x))

(b) G′(−1), where G(x) = g(f(x))

In Exercises 7–26, find f ′(x).

7. f(x) =
(

x3 + 2x
)37

8. f(x) =
(

3x2 + 2x − 1
)6

9. f(x) =
(

x3 −
7

x

)−2

10. f(x) =
1

(

x5 − x + 1
)9

11. f(x) =
4

(

3x2 − 2x + 1
)3

12. f(x) =
√

x3 − 2x + 5

13. f(x) =
√

4 +
√

3x 14. f(x) = sin3 x

15. f(x) = sin(x3) 16. f(x) = cos2(3
√
x)

17. f(x) = 4 cos5 x 18. f(x) = csc(x3)

19. f(x) = sin

(
1

x2

)

20. f(x) = tan4(x3)

21. f(x) = 2 sec2(x7) 22. f(x) = cos3

(
x

x + 1

)

23. f(x) =
√

cos(5x) 24. f(x) =
√

3x − sin2(4x)

25. f(x) =
[

x + csc(x3 + 3)
]−3

26. f(x) =
[

x4 − sec(4x2 − 2)
]−4

In Exercises 27–40, find dy/dx.

27. y = x3 sin2(5x) 28. y =
√
x tan3(

√
x)

29. y = x5 sec(1/x) 30. y =
sin x

sec(3x + 1)

31. y = cos(cos x) 32. y = sin(tan 3x)

33. y = cos3(sin 2x) 34. y =
1 + csc(x2)

1 − cot(x2)

35. y = (5x + 8)13
(

x3 + 7x
)12

36. y = (2x − 5)2
(

x2 + 4
)3

37. y =
(
x − 5

2x + 1

)3

38. y =
(

1 + x2

1 − x2

)17

39. y =
(2x + 3)3

(

4x2 − 1
)8

40. y =
[

1 + sin3(x5)
]12

In Exercises 41 and 42, use a CAS to find dy/dx.

C 41. y =
[

x sin 2x + tan4(x7)
]5

C 42. y = tan4

(

2 +
(7 − x)

√
3x2 + 5

x3 + sin x

)

In Exercises 43–50, find an equation for the tangent line to

the graph at the specified value of x.

43. y = x cos 3x, x = π

44. y = sin(1 + x3), x = −3

45. y = sec3
(π

2
− x

)

, x = −
π

2

46. y =
(

x −
1

x

)3

, x = 2 47. y = tan(4x2), x =
√
π

48. y = 3 cot4 x, x =
π

4
49. y = x2

√

5 − x2, x = 1

50. y =
x

√
1 − x2

, x = 0

In Exercises 51–54, find d2y/dx2.

51. y = x cos(5x)− sin2 x 52. y = sin(3x2)

53. y =
1 + x

1 − x
54. y = x tan

(
1

x

)

In Exercises 55–58, find the indicated derivative.

55. y = cot3(π− θ); find
dy

dθ
.

56. λ =
(
au+ b

cu+ d

)6

; find
dλ

du
(a, b, c, d constants).

57.
d

dω
[a cos2 πω + b sin2 πω] (a, b constants).

58. x = csc2
(π

3
− y

)

; find
dx

dy
.

59. (a) Use a graphing utility to obtain the graph of the function

f(x) = x
√

4 − x2.

(b) Use the graph in part (a) to make a rough sketch of the

graph of f ′.

(c) Find f ′(x), and then check your work in part (b) by

using the graphing utility to obtain the graph of f ′.

(d) Find the equation of the tangent line to the graph of f

at x = 1, and graph f and the tangent line together.

60. (a) Use a graphing utility to obtain the graph of the function

f(x) = sin x2 cos x over the interval [−π/2, π/2].

(b) Use the graph in part (a) to make a rough sketch of the

graph of f ′ over the interval.

(c) Find f ′(x), and then check your work in part (b) by

using the graphing utility to obtain the graph of f ′ over

the interval.

(d) Find the equation of the tangent line to the graph of f at

x = 1, and graph f and the tangent line together over

the interval.
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61. If an object suspended from a spring is displaced vertically

from its equilibrium position by a small amount and re-

leased, and if the air resistance and the mass of the spring

are ignored, then the resulting oscillation of the object is

called simple harmonic motion. Under appropriate condi-

tions the displacement y from equilibrium in terms of time

t is given by

y = A cosωt

where A is the initial displacement at time t = 0, and ω is

a constant that depends on the mass of the object and the

stiffness of the spring (see the accompanying figure). The

constant |A| is called the amplitude of the motion and ω the

angular frequency.

(a) Show that

d2y

dt2
= −ω2y

(b) The period T is the time required to make one complete

oscillation. Show that T = 2π/ω.

(c) The frequency f of the vibration is the number of os-

cillations per unit time. Find f in terms of the period T .

(d) Find the amplitude, period, and frequency of an ob-

ject that is executing simple harmonic motion given by

y = 0.6 cos 15t , where t is in seconds and y is in cen-

timeters.

t

y

A

–A

0

y = Acos    t   v 

2p/v

Figure Ex-61

62. Find the value of the constantA so that y = A sin 3t satisfies

the equation

d2y

dt2
+ 2y = 4 sin 3t

63. The accompanying figure shows the graph of atmospheric

pressurep (lb/in2) versus the altitudeh (mi) above sea level.

(a) From the graph and the tangent line at h = 2 shown

on the graph, estimate the values of p and dp/dh at an

altitude of 2 mi.

(b) If the altitude of a space vehicle is increasing at the

rate of 0.3 mi/s at the instant when it is 2 mi above sea

level, how fast is the pressure changing with time at this

instant?

0 1 2 3 4 5 6 7
0

5

10

15

Altitude h (mi)

P
re

ss
u
re

 P
 (
lb

/i
n

2
)

Figure Ex-63

64. The force F (in pounds) acting at an angle θ with the hor-

izontal that is needed to drag a crate weighing W pounds

along a horizontal surface at a constant velocity is given by

F =
µW

cos θ + µ sin θ

where µ is a constant called the coefficient of sliding fric-

tion between the crate and the surface (see the accompany-

ing figure). Suppose that the crate weighs 150 lb and that

µ = 0.3.

(a) Find dF/dθ when θ = 30◦ . Express the answer in units

of pounds/degree.

(b) Find dF/dt when θ = 30◦ if θ is decreasing at the rate

of 0.5◦/s at this instant.

u

F

Figure Ex-64

65. Recall that

d

dx
(|x|) =

{

1, x > 0

−1, x < 0

Use this result and the chain rule to find

d

dx
(|sin x|)

for nonzero x in the interval (−π, π).
66. Use the derivative formula for sin x and the identity

cos x = sin
(π

2
− x

)

to obtain the derivative formula for cos x.

67. Let

f(x) =

{

x sin
1

x
, x �= 0

0, x = 0

(a) Show that f is continuous at x = 0.
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(b) Use Definition 3.2.1 to show that f ′(0) does not exist.

(c) Find f ′(x) for x �= 0.

(d) Determine whether lim
x→0

f ′(x) exists.

68. Let

f(x) =







x2 sin
1

x
, x �= 0

0, x = 0

(a) Show that f is continuous at x = 0.

(b) Use Definition 3.2.1 to find f ′(0).

(c) Find f ′(x) for x �= 0.

(d) Show that f ′ is not continuous at x = 0.

69. Given the following table of values, find the indicated

derivatives in parts (a) and (b).

x f (x) f ′(x)

2

8

1

5

7

–3

(a) g′(2), where g(x) = [f(x)]3

(b) h′(2), where h(x) = f(x3)

70. Given that f ′(x) =
√

3x + 4 and g(x) = x2 −1, find F ′(x)

if F(x) = f(g(x)).

71. Given that f ′(x) =
x

x2 + 1
and g(x) =

√
3x − 1, find

F ′(x) if F(x) = f(g(x)).

72. Find f ′(x2) if
d

dx
[f(x2)] = x2.

73. Find
d

dx
[f(x)] if

d

dx
[f(3x)] = 6x.

74. Recall that a function f is even if f(−x) = f(x) and odd

if f(−x) = −f(x), for all x in the domain of f . Assuming

that f is differentiable, prove:

(a) f ′ is odd if f is even

(b) f ′ is even if f is odd.

75. Draw some pictures to illustrate the results in Exercise 74,

and write a paragraph that gives an informal explanation of

why the results are true.

76. Let y = f1(u), u = f2(v), v = f3(w), andw = f4(x). Ex-

press dy/dx in terms of dy/du, dw/dx, du/dv, and dv/dw.

77. Find a formula for

d

dx
[f(g(h(x)))]

3.6 IMPLICIT DIFFERENTIATION

In earlier sections we were concerned with differentiating functions that were given by

equations of the form y = f(x). In this section we will consider methods for differen-

tiating functions for which it is inconvenient or impossible to express them in this form.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FUNCTIONS DEFINED EXPLICITLY
AND IMPLICITLY

An equation of the form y = f(x) is said to define y explicitly as a function of x because

the variable y appears alone on one side of the equation. However, sometimes functions are

defined by equations in which y is not alone on one side; for example, the equation

yx + y + 1 = x (1)

is not of the form y = f(x). However, this equation still defines y as a function of x since

it can be rewritten as

y =
x − 1

x + 1

Thus, we say that (1) defines y implicitly as a function of x, the function being

f(x) =
x − 1

x + 1

An equation in x and y can implicitly define more than one function of x; for example,

if we solve the equation

x2 + y2 = 1 (2)

for y in terms of x, we obtain y = ±
√

1 − x2, so we have found two functions that are
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defined implicitly by (2), namely

f1(x) =
√

1 − x2 and f2(x) = −
√

1 − x2 (3)

The graphs of these functions are the upper and lower semicircles of the circle x2 + y2 = 1

(Figure 3.6.1).

x

y

x

y

x2 + y2 = 1 y = √1 – x2

x

y

y = –√1 – x2

Figure 3.6.1

Observe that the complete circle x2 + y2 = 1 does not pass the vertical line test, and

hence is not itself the graph of a function of x. However, the upper and lower semicircles

(which are only portions of the entire circle) do pass the vertical line test, and hence are

graphs of functions. In general, if we have an equation in x and y, then any portion of its

graph that passes the vertical line test can be viewed as the graph of a function defined by

the equation. Thus, we make the following definition.

3.6.1 DEFINITION. We will say that a given equation in x and y defines the function f

implicitly if the graph of y = f(x) coincides with a portion of the graph of the equation.

Thus, for example, the equation x2 + y2 = 1 defines the functions f1(x) =
√

1 − x2 and

f2(x) = −
√

1 − x2 implicitly, since the graphs of these functions are contained in the circle

x2 + y2 = 1.

Sometimes it may be difficult or impossible to solve an equation in x and y for y in terms

of x. For example, with persistence the equation

x3 + y3 = 3xy (4)

can be solved for y in terms of x, but the algebra is tedious and the resulting formulas are

complicated. On the other hand, the equation

sin(xy) = y

cannot be solved for y in terms of x by any elementary method. Thus, even though an

equation in x and y may define one or more functions of x, it may not be practical or

possible to find explicit formulas for those functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHS OF EQUATIONS IN
x AND y

When an equation in x and y cannot be solved for y in terms of x (or x in terms of y),

it may be difficult or time-consuming to obtain even a rough sketch of the graph, so the

graphing of such equations is usually best left for graphing utilities. In particular, the CAS

programs Mathematica and Maple both have “implicit plotting” capabilities for graphing

such equations. For example, Figure 3.6.2 shows the graph of Equation (4), which is called

the Folium of Descartes.

•
•
•
•
•
•
•
•

FOR THE READER. Figure 3.6.3 shows the graphs of two functions (in solid color) that

are defined implicitly by (4). Sketch some more.
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-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

x

y

x3 + y3 = 3xy

Figure 3.6.2
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-1

1
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y

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

x

y

Figure 3.6.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

IMPLICIT DIFFERENTIATION
In general, it is not necessary to solve an equation for y in terms of x in order to differentiate

the functions defined implicitly by the equation. To illustrate this, let us consider the simple

equation

xy = 1 (5)

One way to find dy/dx is to rewrite this equation as

y =
1

x
(6)

from which it follows that

dy

dx
= −

1

x2
(7)

However, there is another way to obtain this derivative. We can differentiate both sides of

(5) before solving for y in terms of x, treating y as a (temporarily unspecified) differentiable

function of x. With this approach we obtain

d

dx
[xy] =

d

dx
[1]

x
d

dx
[y] + y

d

dx
[x] = 0

x
dy

dx
+ y = 0

dy

dx
= −

y

x

If we now substitute (6) into the last expression, we obtain

dy

dx
= −

1

x2

which agrees with (7). This method of obtaining derivatives is called implicit differentiation.

Example 1 Use implicit differentiation to find dy/dx if 5y2 + sin y = x2.

d

dx
[5y2 + sin y] =

d

dx
[x2]

5
d

dx
[y2] +

d

dx
[sin y] = 2x

5

(

2y
dy

dx

)

+ (cos y)
dy

dx
= 2x

The chain rule was
used here because
y is a function of x.

10y
dy

dx
+ (cos y)

dy

dx
= 2x
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Solving for dy/dx we obtain

dy

dx
=

2x

10y + cos y
(8)

Note that this formula involves both x and y. In order to obtain a formula for dy/dx that

involves x alone, we would have to solve the original equation for y in terms of x and then

substitute in (8). However, it is impossible to do this, so we are forced to leave the formula

for dy/dx in terms of x and y. ◭

Example 2 Use implicit differentiation to find d2y/dx2 if 4x2 − 2y2 = 9.

Solution. Differentiating both sides of 4x2 − 2y2 = 9 implicitly yields

8x − 4y
dy

dx
= 0

from which we obtain

dy

dx
=

2x

y
(9)

Differentiating both sides of (9) implicitly yields

d2y

dx2
=
(y)(2)− (2x)(dy/dx)

y2
(10)

Substituting (9) into (10) and simplifying using the original equation, we obtain

d2y

dx2
=

2y − 2x(2x/y)

y2
=

2y2 − 4x2

y3
= −

9

y3
◭

In Examples 1 and 2, the resulting formulas for dy/dx involved both x and y. Although

it is usually more desirable to have the formula for dy/dx expressed in terms of x alone,

having the formula in terms of x and y is not an impediment to finding slopes and equations

of tangent lines provided the x- and y-coordinates of the point of tangency are known. This

is illustrated in the following example.

Example 3 Find the slopes of the curve y2 − x + 1 = 0 at the points (2,−1) and (2, 1).

2

x

y

(2, 1)

(2, –1)

y = √x – 1

y = –√x – 1

Figure 3.6.4

Solution. We could proceed by solving the equation for y in terms of x, and then evaluating

the derivative of y =
√
x − 1 at (2, 1) and the derivative of y = −

√
x − 1 at (2,−1) (Figure

3.6.4). However, implicit differentiation is more efficient since it gives the slopes of both

functions. Differentiating implicitly yields

d

dx
[y2 − x + 1] =

d

dx
[0]

d

dx
[y2] −

d

dx
[x] +

d

dx
[1] =

d

dx
[0]

2y
dy

dx
− 1 = 0

dy

dx
=

1

2y

At (2,−1)we have y = −1, and at (2, 1)we have y = 1, so the slopes of the curve at those

points are

dy

dx

∣
∣
∣
∣
x=2
y=−1

= −
1

2
and

dy

dx

∣
∣
∣
∣
x=2
y=1

=
1

2
◭
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Example 4

(a) Use implicit differentiation to find dy/dx for the Folium of Descartes x3 + y3 = 3xy.

(b) Find an equation for the tangent line to the Folium of Descartes at the point
(

3
2
, 3

2

)

.

(c) At what point(s) in the first quadrant is the tangent line to the Folium of Descartes

horizontal?

Solution (a). Differentiating both sides of the given equation implicitly yields

d

dx
[x3 + y3] =

d

dx
[3xy]

3x2 + 3y2
dy

dx
= 3x

dy

dx
+ 3y

x2 + y2
dy

dx
= x

dy

dx
+ y

(y2 − x)
dy

dx
= y − x2

dy

dx
=
y − x2

y2 − x
(11)

Solution (b). At the point
(

3
2
, 3

2

)

, we have x = 3
2

and y = 3
2
, so from (11) the slope mtan

of the tangent line at this point is

mtan =
dy

dx

∣
∣
∣
∣
x=3/2

y=3/2

=
(3/2)− (3/2)2

(3/2)2 − (3/2)
= −1

Thus, the equation of the tangent line at the point
(

3
2
, 3

2

)

is

y − 3
2

= −1
(

x − 3
2

)

or x + y = 3

which is consistent with Figure 3.6.5.
-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

x

y

3

2

3

2( ,   )

Figure 3.6.5

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

x

y

Figure 3.6.6

Solution (c). The tangent line is horizontal at the points where dy/dx = 0, and from (11)

this occurs only where y − x2 = 0 or

y = x2 (12)

Substituting this expression for y in the equation x3 + y3 = 3xy for the curve yields

x3 +
(

x2
)3 = 3x3

x6 − 2x3 = 0

x3(x3 − 2) = 0

whose solutions are x = 0 and x = 21/3. From (12), the solutions x = 0 and x = 21/3 yield

the points (0, 0) and (21/3, 22/3) ≈ (1.26, 1.59), respectively. Of these two, only (21/3, 22/3)

is in the first quadrant. Substituting x = 21/3, y = 22/3 into (11) yields

dy

dx

∣
∣
∣
∣
x=21/3

y=22/3

=
0

24/3 − 22/3
= 0

We conclude that (21/3, 22/3) is the only point on the Folium of Descartes in the first quad-

rant at which the tangent line is horizontal (Figure 3.6.6). ◭
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•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Note that (11) gives an undefined expression for dy/dx at (0, 0). However,

using more advanced techniques it can be shown that the x-axis is tangent to a portion of

the Folium of Descartes at the origin.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIABILITY OF FUNCTIONS
DEFINED IMPLICITLY

When differentiating implicitly, it is assumed that y represents a differentiable function of

x. If this is not so, then the resulting calculations may be nonsense. For example, if we

differentiate the equation

x2 + y2 + 1 = 0 (13)

we obtain

2x + 2y
dy

dx
= 0 or

dy

dx
= −

x

y

However, this derivative is meaningless because (13) does not define a function of x. (The

left side of the equation is greater than zero.)

In general, differentiability of implicitly defined functions can be difficult to determine

analytically. For example, the first function in Figure 3.6.3 appears to have zero derivative

at the origin, whereas the second function in that figure is not differentiable at the origin.

However, from Example 4(a) we note that the formula derived for the implicit derivative

cannot be evaluated at the origin. This results from the ambiguity created by the curve

crossing itself at the origin. We leave a more careful discussion of differentiability for

implicitly defined functions for an advanced course in analysis.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF RATIONAL
POWERS OF x

In Theorem 3.3.7 and the discussion immediately following it, we showed that the formula

d

dx
[xn] = nxn−1 (14)

holds for integer values of n and for n = 1
2
. We will now use implicit differentiation to

show that this formula holds for any rational exponent. More precisely, we will show that

if r is a rational number, then

d

dx
[xr ] = rxr−1 (15)

wherever xr and xr−1 are defined. For now, we will assume without proof that xr is differ-

entiable; the justification for this will be considered later.

Let y = xr . Since r is a rational number, it can be expressed as a ratio of integers

r = m/n. Thus, y = xr = xm/n can be written as

yn = xm so that
d

dx
[yn] =

d

dx
[xm]

By differentiating implicitly with respect to x and using (14), we obtain

nyn−1 dy

dx
= mxm−1 (16)

But

yn−1 =
[

xm
/n

]n−1 = xm−(m/n)

Thus, (16) can be written as

nxm−(m/n) dy

dx
= mxm−1

so that

dy

dx
=
m

n
x(m

/n)−1 = rxr−1

which establishes (15).
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Example 5 From (15)

d

dx
[x4/5] =

4

5
x(4

/5)−1 =
4

5
x−1/5

d

dx
[x−7/8] = −

7

8
x(−7/8)−1 = −

7

8
x−15/8

d

dx
[ 3
√
x] =

d

dx
[x1/3] =

1

3
x−2/3 =

1

3
3
√
x2

◭

If u is a differentiable function of x, and r is a rational number, then the chain rule yields

the following generalization of (15):

d

dx
[ur ] = rur−1 ·

du

dx
(17)

Example 6

d

dx

[

x2 − x + 2
]3/4 =

3

4

(

x2 − x + 2
)−1/4 ·

d

dx
[x2 − x + 2]

=
3

4

(

x2 − x + 2
)−1/4

(2x − 1)

d

dx
[(secπx)−4/5] = −

4

5
(secπx)−9/5 ·

d

dx
[secπx]

= −
4

5
(secπx)−9/5 · secπx tanπx · π

= −
4π

5
(secπx)−4/5 tanπx ◭

EXERCISE SET 3.6 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–8, find dy/dx.

1. y = 3
√

2x − 5 2. y = 3
√

2 + tan(x2)

3. y =
(
x − 1

x + 2

)3/2

4. y =
√

x2 + 1

x2 − 5

5. y = x3
(

5x2 + 1
)−2/3

6. y =
(3 − 2x)4/3

x2

7. y = [sin(3/x)]5/2 8. y =
[

cos(x3)
]−1/2

In Exercises 9 and 10: (a) Find dy/dx by differentiating im-

plicitly. (b) Solve the equation for y as a function of x, and

find dy/dx from that equation. (c) Confirm that the two re-

sults are consistent by expressing the derivative in part (a) as

a function of x alone.

9. x3 + xy − 2x = 1 10.
√
y − sin x = 2

In Exercises 11–20, find dy/dx by implicit differentiation.

11. x2 + y2 = 100 12. x3 − y3 = 6xy

13. x2y + 3xy3 − x = 3 14. x3y2 − 5x2y + x = 1

15.
1

y
+

1

x
= 1 16. x2 =

x + y

x − y

17. sin(x2y2) = x 18. x2 =
cot y

1 + csc y

19. tan3(xy2 + y) = x 20.
xy3

1 + sec y
= 1 + y4

In Exercises 21–26, find d2y/dx2 by implicit differentiation.

21. 3x2 − 4y2 = 7 22. x3 + y3 = 1

23. x3y3 − 4 = 0 24. 2xy − y2 = 3

25. y + sin y = x 26. x cos y = y
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In Exercises 27 and 28, find the slope of the tangent line to

the curve at the given points in two ways: first by solving

for y in terms of x and differentiating and then by implicit

differentiation.

27. x2 + y2 = 1; (1/
√

2, 1/
√

2 ), (1/
√

2,−1/
√

2 )

28. y2 − x + 1 = 0; (10, 3), (10,−3)

In Exercises 29–32, use implicit differentiation to find the

slope of the tangent line to the curve at the specified point,

and check that your answer is consistent with the accompa-

nying graph.

29. x4 + y4 = 16; (1,
4
√

15) [Lamé’s special quartic]

30. y3 + yx2 + x2 − 3y2 = 0; (0, 3) [trisectrix]

31. 2
(

x2 + y2
)2 = 25(x2 − y2); (3, 1) [lemniscate]

32. x2/3 +y2/3 = 4; (−1, 3
√

3 ) [ four-cusped hypocycloid]

-2 1 2

-2

-1

1

2

x

y

Figure Ex-29

-4 4
-1

4

x

y

Figure Ex-30

-3 3

-2

2

x

y

Figure Ex-31

-8 8

-8

8

x

y

Figure Ex-32

C 33. If you have a CAS, read the documentation on “implicit

plotting,” and then generate the four curves in Exercises

29–32.

C 34. Curves with equations of the form y2 = x(x − a)(x − b),

where a < b are called bipartite cubics.

(a) Use the implicit plotting capability of a CAS to graph

the bipartite cubic y2 = x(x − 1)(x − 2).

(b) At what points does the curve in part (a) have a hori-

zontal tangent line?

(c) Solve the equation in part (a) for y in terms of x, and

use the result to explain why the graph consists of two

separate parts (i.e., is bipartite).

(d) Graph the equation in part (a) without using the implicit

plotting capability of the CAS.

C 35. (a) Use the implicit plotting capability of a CAS to graph

the rotated ellipse x2 − xy + y2 = 4.

(b) Use the graph to estimate the x-coordinates of all hori-

zontal tangent lines.

(c) Find the exact values for the x-coordinates in part (b).

In Exercises 36–39, use implicit differentiation to find the

specified derivative.

36.
√
u+

√
v = 5; du/dv 37. a4 − t4 = 6a2t ; da/dt

38. y = sin x; dx/dy.

39. a2ω2 + b2λ2 = 1 (a, b constants); dω/dλ

40. At what point(s) is the tangent line to the curve y2 = 2x3

perpendicular to the line 4x − 3y + 1 = 0?

41. Find the values of a and b for the curve x2y + ay2 = b if

the point (1, 1) is on its graph and the tangent line at (1, 1)

has the equation 4x + 3y = 7.

42. Find the coordinates of the point in the first quadrant at

which the tangent line to the curve x3 − xy + y3 = 0 is

parallel to the x-axis.

43. Find equations for two lines through the origin that are tan-

gent to the curve x2 − 4x + y2 + 3 = 0.

44. Use implicit differentiation to show that the equation of the

tangent line to the curve y2 = kx at (x0, y0) is

y0y = 1
2
k(x + x0)

45. Find dy/dx if

2y3t + t3y = 1 and
dt

dx
=

1

cos t

In Exercises 46 and 47, find dy/dt in terms of x, y, and

dx/dt , assuming that x and y are differentiable functions of

the variable t . [Hint: Differentiate both sides of the given

equation with respect to t .]

46. x3y2 + y = 3 47. xy2 = sin 3x

48. (a) Show that f(x) = x4/3 is differentiable at 0, but not

twice differentiable at 0.

(b) Show that f(x) = x7/3 is twice differentiable at 0, but

not three times differentiable at 0.

(c) Find an exponent k such that f(x) = xk is (n−1) times

differentiable at 0, but not n times differentiable at 0.

In Exercises 49 and 50, find all rational values of r such that

y = xr satisfies the given equation.

49. 3x2y ′′ + 4xy ′ − 2y = 0 50. 16x2y ′′+24xy ′+y= 0



January 17, 2001 10:52 g65-ch3 Sheet number 51 Page number 219 cyan magenta yellow black

3.7 Related Rates 219

Two curves are said to be orthogonal if their tangent lines are

perpendicular at each point of intersection, and two families

of curves are said to be orthogonal trajectories of one another

if each member of one family is orthogonal to each member

of the other family. This terminology is used in Exercises 51

and 52.

51. The accompanying figure shows some typical members of

the families of circles x2 + (y− c)2 = c2 (black curves)and

(x − k)2 + y2 = k2 (gray curves). Show that these families

are orthogonal trajectories of one another. [Hint: For the tan-

gent lines to be perpendicular at a point of intersection, the

slopes of those tangent lines must be negative reciprocals

of one another.]

52. The accompanying figure shows some typical members

of the families of hyperbolas xy = c (black curves) and

x2 − y2 = k (gray curves), where c �= 0 and k �= 0. Use the

hint in Exercise 51 to show that these families are orthogonal

trajectories of one another.

x

y

Figure Ex-51

x

y

Figure Ex-52

3.7 RELATED RATES

In this section we will study related rates problems. In such problems one tries to find

the rate at which some quantity is changing by relating the quantity to other quantities

whose rates of change are known.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIATING EQUATIONS TO
RELATE RATES

Figure 3.7.1 shows a liquid draining through a conical filter. As the liquid drains, its volume

V , height h, and radius r are functions of the elapsed time t , and at each instant these

variables are related by the equation

V =
π

3
r2h

If we differentiate both sides of this equation with respect to t , then we obtain

dV

dt
=
π

3

[

r2 dh

dt
+ h

(

2r
dr

dt

)]

=
π

3

(

r2 dh

dt
+ 2rh

dr

dt

)

Thus, if at a given instant we have values for r, h, and two of the three rates in this equation,

then we can solve for the value of the third rate at this instant. In this section we present

some specific examples that use this basic idea.

hV

r

Figure 3.7.1

Example 1 Assume that oil spilled from a ruptured tanker spreads in a circular pattern

whose radius increases at a constant rate of 2 ft/s. How fast is the area of the spill increasing

when the radius of the spill is 60 ft?
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Solution. Let

t = number of seconds elapsed from the time of the spill

r = radius of the spill in feet after t seconds

A = area of the spill in square feet after t seconds

(Figure 3.7.2). We know the rate at which the radius is increasing, and we want to find the

rate at which the area is increasing at the instant when r = 60; that is, we want to find

dA

dt

∣
∣
∣
∣
r=60

given that
dr

dt
= 2 ft/s

Oil

spill

r

Figure 3.7.2 From the formula for the area of a circle we obtain

A = πr2 (1)

Because A and r are functions of t , we can differentiate both sides of (1) with respect to t

to obtain
dA

dt
= 2πr

dr

dt

Thus, when r = 60 the area of the spill is increasing at the rate of

dA

dt

∣
∣
∣
∣
r=60

= 2π(60)(2) = 240π ft2/s

or approximately 754 ft2/s. ◭

With only minor variations, the method used in Example 1 can be used to solve a variety

of related rates problems. The method consists of five steps:

A Strategy for Solving Related Rates Problems

Step 1. Identify the rates of change that are known and the rate of change that

is to be found. Interpret each rate as a derivative of a variable with

respect to time, and provide a description of each variable involved.

Step 2. Find an equation relating those quantities whose rates are identified

in Step 1. In a geometric problem, this is aided by drawing an appro-

priately labeled figure that illustrates a relationship involving these

quantities.

Step 3. Obtain an equation involving the rates in Step 1 by differentiating

both sides of the equation in Step 2 with respect to the time variable.

Step 4. Evaluate the equation found in Step 3 using the known values for the

quantities and their rates of change at the moment in question.

Step 5. Solve for the value of the remaining rate of change at this moment.

•
•
•
•
•
•
•
•

WARNING. Do not substitute prematurely; that is, always perform the differentiation in

Step 3 before performing the substitution in Step 4.

Example 2 A baseball diamond is a square whose sides are 90 ft long (Figure 3.7.3).

Suppose that a player running from second base to third base has a speed of 30 ft/s at the

instant when he is 20 ft from third base. At what rate is the player’s distance from home

plate changing at that instant?

3rd 1st

2nd

90 ft

Home

y

x
w

Figure 3.7.3

Solution. The rate we wish to find is the rate of change of the distance from the player

to home plate. We are given the speed of the player as he moves along the base path from

second to third base, which tells us both the speed with which he is moving away from
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second base and the speed with which he is approaching third base. Let

t = number of seconds since the player left second base

w = distance in feet from the player to second base

x = distance in feet from the player to third base

y = distance in feet from the player to home plate

Thus, we want to find

dy

dt

∣
∣
∣
∣
x=20

given that
dw

dt

∣
∣
∣
∣
x=20

= 30 ft/s and
dx

dt

∣
∣
∣
∣
x=20

= −30 ft/s

[Note that (dy/dx)x=20 is negative because x is decreasing with respect to t .]

From the Theorem of Pythagoras,

x2 + 902 = y2 (2)

Differentiating both sides of this equation with respect to t yields

2x
dx

dt
= 2y

dy

dt
or x

dx

dt
= y

dy

dt
(3)

To evaluate (3) at the instant when x = 20 we need a value for y at this instant. Substituting

x = 20 into (2) yields

400 + 8100 = (y|x=20)
2 or y|x=20 =

√
8500 = 10

√
85

Then, evaluating (3) when x = 20 yields

20 · (−30) = 10
√

85 ·
dy

dt

∣
∣
∣
∣
x=20

or
dy

dt

∣
∣
∣
∣
x=20

=
−600

10
√

85
= −

60
√

85
≈ −6.51 ft/s

The negative sign in the answer tells us that y is decreasing, which makes sense in the

physical situation of the problem (Figure 3.7.3). ◭

•
•
•
•
•
•
•
•

FOR THE READER. In our solution for Example 2 we chose to relate x and y. An alternative

approach would be to relate w and y. Solve the problem using this alternative approach.

3000 ft
Camera Launching

pad

Elevation

angle

Rocket

Figure 3.7.4

Example 3 In Figure 3.7.4 we have shown a camera mounted at a point 3000 ft from the

base of a rocket launching pad. If the rocket is rising vertically at 880 ft/s when it is 4000

ft above the launching pad, how fast must the camera elevation angle change at that instant

to keep the camera aimed at the rocket?

3000 ft

h

Camera

Rocket

f

Figure 3.7.5

Solution. Let

t = number of seconds elapsed from the time of launch

φ = camera elevation angle in radians after t seconds

h = height of the rocket in feet after t seconds

(Figure 3.7.5). At each instant the rate at which the camera elevation angle must change is

dφ/dt , and the rate at which the rocket is rising is dh/dt . We want to find

dφ

dt

∣
∣
∣
∣
h=4000

given that
dh

dt

∣
∣
∣
∣
h=4000

= 880 ft/s

From Figure 3.7.5 we see that

tanφ =
h

3000
(4)

Because φ and h are functions of t , we can differentiate both sides of (4) with respect to t

to obtain

(sec2 φ)
dφ

dt
=

1

3000

dh

dt
(5)

When h = 4000, it follows that

(sec φ)h=4000 =
5000

3000
=

5

3
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(Figure 3.7.6), so that from (5)
(

5

3

)2
dφ

dt

∣
∣
∣
∣
∣
h=4000

=
1

3000
· 880 =

22

75

dφ

dt

∣
∣
∣
∣
h=4000

=
22

75
·

9

25
=

66

625
≈ 0.11 rad/s ≈ 6.05 deg/s ◭

3000

4000
5000

f

Figure 3.7.6 Example 4 Suppose that liquid is to be cleared of sediment by allowing it to drain through

a conical filter that is 16 cm high and has a radius of 4 cm at the top (Figure 3.7.7). Suppose

also that the liquid flows out of the cone at a constant rate of 2 cm3/min.

Filter

Funnel to

hold filter

y

r

16 cm

4 cm

Figure 3.7.7

(a) Do you think that the depth of the liquid will decrease at a constant rate? Give a verbal

argument that justifies your conclusion.

(b) Find a formula that expresses the rate at which the depth of the liquid is changing in

terms of the depth, and use that formula to determine whether your conclusion in part

(a) is correct.

(c) At what rate is the depth of the liquid changing at the instant when the liquid in the

cone is 8 cm deep?

Solution (a). For the volume of liquid to decrease by a fixed amount, it requires a greater

decrease in depth when the cone is close to empty than when it is almost full (Figure 3.7.8).

This suggests that for the volume to decrease at a constant rate, the depth must decrease at

an increasing rate.

The same volume has drained, but 

the change in height is greater near 

the bottom than near the top.

Figure 3.7.8

Solution (b). Let

t = time elapsed from the initial observation (min)

V = volume of liquid in the cone at time t (cm3)

y = depth of the liquid in the cone at time t (cm)

r = radius of the liquid surface at time t (cm)

(Figure 3.7.7). At each instant the rate at which the volume of liquid is changing is dV /dt ,

and the rate at which the depth is changing is dy/dt . We want to express dy/dt in terms of

y given that dV /dt has a constant value of dV /dt = −2. (We must use a minus sign here

because V decreases as t increases.)

From the formula for the volume of a cone, the volume V , the radius r , and the depth y

are related by

V = 1
3
πr2y (6)

If we differentiate both sides of (6) with respect to t , the right side will involve the quantity

dr/dt . Since we have no direct information about dr/dt , it is desirable to eliminate r from

(6) before differentiating. This can be done using similar triangles. From Figure 3.7.7 we

see that

r

y
=

4

16
or r =

1

4
y

Substituting this expression in (6) gives

V =
π

48
y3 (7)

Differentiating both sides of (7) with respect to t we obtain

dV

dt
=

π

48

(

3y2 dy

dt

)

or

dy

dt
=

16

πy2

dV

dt
=

16

πy2
(−2) = −

32

πy2
(8)
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which expresses dy/dt in terms of y. The minus sign tells us that y is decreasing with time,

and
∣
∣
∣
∣

dy

dt

∣
∣
∣
∣
=

32

πy2

tells us how fast y is decreasing. From this formula we see that |dy/dt | increases as y

decreases, which confirms our conjecture in part (a) that the depth of the liquid decreases

more quickly as the liquid drains through the filter.

Solution (c). The rate at which the depth is changing when the depth is 8 cm can be

obtained from (8) with y = 8:

dy

dt

∣
∣
∣
∣
y=8

= −
32

π(82)
= −

1

2π
≈ −0.16 cm/min ◭

EXERCISE SET 3.7
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, both x and y denote functions of t that are

related by the given equation. Use this equation and the given

derivative information to find the specified derivative.

1. Equation: y = 3x + 5.

(a) Given that dx/dt = 2, find dy/dt when x = 1.

(b) Given that dy/dt = −1, find dx/dt when x = 0.

2. Equation: x + 4y = 3.

(a) Given that dx/dt = 1, find dy/dt when x = 2.

(b) Given that dy/dt = 4, find dx/dt when x = 3.

3. Equation: x2 + y2 = 1.

(a) Given that dx/dt = 1, find dy/dt when

(x, y) =

(

1

2
,

√
3

2

)

(b) Given that dy/dt = −2, find dx/dt when

(x, y) =

(√
2

2
,

√
2

2

)

4. Equation: x2 + y2 = 2x.

(a) Given that dx/dt = −2, find dy/dt when

(x, y) = (1, 1).

(b) Given that dy/dt = 3, find dx/dt when

(x, y) =

(

2 +
√

2

2
,

√
2

2

)

5. LetA be the area of a square whose sides have length x, and

assume that x varies with the time t .

(a) Draw a picture of the square with the labels A and x

placed appropriately.

(b) Write an equation that relates A and x.

(c) Use the equation in part (b) to find an equation that

relates dA/dt and dx/dt .

(d) At a certain instant the sides are 3 ft long and increasing

at a rate of 2 ft/min. How fast is the area increasing at

that instant?

6. Let A be the area of a circle of radius r , and assume that r

increases with the time t .

(a) Draw a picture of the circle with the labels A and r

placed appropriately.

(b) Write an equation that relates A and r .

(c) Use the equation in part (b) to find an equation that

relates dA/dt and dr/dt .

(d) At a certain instant the radius is 5 cm and increasing at

the rate of 2 cm/s. How fast is the area increasing at

that instant?

7. LetV be the volume of a cylinder having height h and radius

r , and assume that h and r vary with time.

(a) How are dV /dt , dh/dt , and dr/dt related?

(b) At a certain instant, the height is 6 in and increasing at 1

in/s, while the radius is 10 in and decreasing at 1 in/s.

How fast is the volume changing at that instant? Is the

volume increasing or decreasing at that instant?

8. Let l be the length of a diagonal of a rectangle whose sides

have lengths x and y, and assume that x and y vary with

time.

(a) How are dl/dt , dx/dt , and dy/dt related?

(b) If x increases at a constant rate of 1
2

ft/s and y decreases

at a constant rate of 1
4

ft/s, how fast is the size of the

diagonal changing when x = 3 ft and y = 4 ft? Is the

diagonal increasing or decreasing at that instant?

9. Let θ (in radians) be an acute angle in a right triangle, and

let x and y, respectively, be the lengths of the sides adjacent

to and opposite θ . Suppose also that x and y vary with time.

(a) How are dθ/dt , dx/dt , and dy/dt related?

(b) At a certain instant, x = 2 units and is increasing at 1

unit/s, while y = 2 units and is decreasing at 1
4

unit/s.

How fast is θ changing at that instant? Is θ increasing

or decreasing at that instant?

10. Suppose that z = x3y2, where both x and y are changing

with time. At a certain instant when x = 1 and y = 2, x is

decreasing at the rate of 2 units/s, and y is increasing at the
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rate of 3 units/s. How fast is z changing at this instant? Is z

increasing or decreasing?

11. The minute hand of a certain clock is 4 in long. Starting

from the moment when the hand is pointing straight up,

how fast is the area of the sector that is swept out by the

hand increasing at any instant during the next revolution of

the hand?

12. A stone dropped into a still pond sends out a circular rip-

ple whose radius increases at a constant rate of 3 ft/s. How

rapidly is the area enclosed by the ripple increasing at the

end of 10 s?

13. Oil spilled from a ruptured tanker spreads in a circle whose

area increases at a constant rate of 6 mi2/h. How fast is the

radius of the spill increasing when the area is 9 mi2?

14. A spherical balloon is inflated so that its volume is increas-

ing at the rate of 3 ft3/min. How fast is the diameter of the

balloon increasing when the radius is 1 ft?

15. A spherical balloon is to be deflated so that its radius de-

creases at a constant rate of 15 cm/min. At what rate must

air be removed when the radius is 9 cm?

16. A 17-ft ladder is leaning against a wall. If the bottom of the

ladder is pulled along the ground away from the wall at a

constant rate of 5 ft/s, how fast will the top of the ladder be

moving down the wall when it is 8 ft above the ground?

17. A 13-ft ladder is leaning against a wall. If the top of the

ladder slips down the wall at a rate of 2 ft/s, how fast will

the foot be moving away from the wall when the top is 5 ft

above the ground?

18. A 10-ft plank is leaning against a wall. If at a certain instant

the bottom of the plank is 2 ft from the wall and is being

pushed toward the wall at the rate of 6 in/s, how fast is the

acute angle that the plank makes with the ground increasing?

19. A softball diamond is a square whose sides are 60 ft long.

Suppose that a player running from first to second base has a

speed of 25 ft/s at the instant when she is 10 ft from second

base. At what rate is the player’s distance from home plate

changing at that instant?

20. A rocket, rising vertically, is tracked by a radar station that

is on the ground 5 mi from the launchpad. How fast is the

rocket rising when it is 4 mi high and its distance from the

radar station is increasing at a rate of 2000 mi/h?

21. For the camera and rocket shown in Figure 3.7.4, at what rate

is the camera-to-rocket distance changing when the rocket

is 4000 ft up and rising vertically at 880 ft/s?

22. For the camera and rocket shown in Figure 3.7.4, at what rate

is the rocket rising when the elevation angle is π/4 radians

and increasing at a rate of 0.2 radian/s?

23. A satellite is in an elliptical orbit around the Earth. Its dis-

tance r (in miles) from the center of the Earth is given by

r =
4995

1 + 0.12 cos θ

where θ is the angle measured from the point on the orbit

nearest the Earth’s surface (see the accompanying figure).

(a) Find the altitude of the satellite at perigee (the point

nearest the surface of the Earth) and at apogee (the point

farthest from the surface of the Earth). Use 3960 mi as

the radius of the Earth.

(b) At the instant when θ is 120◦ , the angle θ is increasing

at the rate of 2.7◦/min. Find the altitude of the satel-

lite and the rate at which the altitude is changing at this

instant. Express the rate in units of mi/min.

Apogee Perigee

ur

Figure Ex-23

24. An aircraft is flying horizontally at a constant height of 4000

ft above a fixed observation point (see the accompanying fig-

ure). At a certain instant the angle of elevation θ is 30◦ and

decreasing, and the speed of the aircraft is 300 mi/h.

(a) How fast is θ decreasing at this instant? Express the

result in units of degrees/s.

(b) How fast is the distance between the aircraft and the

observation point changing at this instant? Express the

result in units of ft/s. Use 1 mi = 5280 ft.

4000 ft

u

Figure Ex-24

25. A conical water tank with vertex down has a radius of 10

ft at the top and is 24 ft high. If water flows into the tank

at a rate of 20 ft3/min, how fast is the depth of the water

increasing when the water is 16 ft deep?

26. Grain pouring from a chute at the rate of 8 ft3/min forms a

conical pile whose altitude is always twice its radius. How

fast is the altitude of the pile increasing at the instant when

the pile is 6 ft high?

27. Sand pouring from a chute forms a conical pile whose height

is always equal to the diameter. If the height increases at a

constant rate of 5 ft/min, at what rate is sand pouring from

the chute when the pile is 10 ft high?

28. Wheat is poured through a chute at the rate of 10 ft3/min,

and falls in a conical pile whose bottom radius is always half
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the altitude. How fast will the circumference of the base be

increasing when the pile is 8 ft high?

29. An aircraft is climbing at a 30◦ angle to the horizontal. How

fast is the aircraft gaining altitude if its speed is 500 mi/h?

30. A boat is pulled into a dock by means of a rope attached to a

pulley on the dock (see the accompanying figure). The rope

is attached to the bow of the boat at a point 10 ft below the

pulley. If the rope is pulled through the pulley at a rate of 20

ft/min, at what rate will the boat be approaching the dock

when 125 ft of rope is out?

Dock

Pulley

Boat

Figure Ex-30

31. For the boat in Exercise 30, how fast must the rope be pulled

if we want the boat to approach the dock at a rate of 12 ft/min

at the instant when 125 ft of rope is out?

32. A man 6 ft tall is walking at the rate of 3 ft/s toward a

streetlight 18 ft high (see the accompanying figure).

(a) At what rate is his shadow length changing?

(b) How fast is the tip of his shadow moving?

Figure Ex-32

33. A beacon that makes one revolution every 10 s is located on

a ship anchored 4 kilometers from a straight shoreline. How

fast is the beam moving along the shoreline when it makes

an angle of 45◦ with the shore?

34. An aircraft is flying at a constant altitude with a constant

speed of 600 mi/h. An antiaircraft missile is fired on a

straight line perpendicular to the flight path of the aircraft so

that it will hit the aircraft at a pointP (see the accompanying

figure). At the instant the aircraft is 2 mi from the impact

point P the missile is 4 mi from P and flying at 1200 mi/h.

At that instant, how rapidly is the distance between missile

and aircraft decreasing?

P

Figure Ex-34

35. Solve Exercise 34 under the assumption that the angle be-

tween the flight paths is 120◦ instead of the assumption that

the paths are perpendicular. [Hint: Use the law of cosines.]

36. A police helicopter is flying due north at 100 mi/h and at a

constant altitude of 1
2

mi. Below, a car is traveling west on a

highway at 75 mi/h. At the moment the helicopter crosses

over the highway the car is 2 mi east of the helicopter.

(a) How fast is the distance between the car and helicopter

changing at the moment the helicopter crosses the high-

way?

(b) Is the distance between the car and helicopter increasing

or decreasing at that moment?

37. A particle is moving along the curve whose equation is

xy3

1 + y2
=

8

5

Assume that the x-coordinate is increasing at the rate of 6

units/s when the particle is at the point (1, 2).

(a) At what rate is the y-coordinate of the point changing

at that instant?

(b) Is the particle rising or falling at that instant?

38. A point P is moving along the curve whose equation is

y =
√
x3 + 17. When P is at (2, 5), y is increasing at the

rate of 2 units/s. How fast is x changing?

39. A point P is moving along the line whose equation is

y = 2x. How fast is the distance between P and the point

(3, 0) changing at the instant when P is at (3, 6) if x is

decreasing at the rate of 2 units/s at that instant?

40. A point P is moving along the curve whose equation is

y =
√
x. Suppose that x is increasing at the rate of 4 units/s

when x = 3.

(a) How fast is the distance between P and the point (2, 0)

changing at this instant?

(b) How fast is the angle of inclination of the line segment

from P to (2, 0) changing at this instant?

41. A particle is moving along the curve y = x/(x2 + 1). Find

all values of x at which the rate of change of x with respect

to time is three times that of y. [Assume that dx/dt is never

zero.]

42. A particle is moving along the curve 16x2 + 9y2 = 144.

Find all points (x, y) at which the rates of change of x and

y with respect to time are equal. [Assume that dx/dt and

dy/dt are never both zero at the same point.]

43. The thin lens equation in physics is

1

s
+

1

S
=

1

f

where s is the object distance from the lens, S is the image

distance from the lens, and f is the focal length of the lens.

Suppose that a certain lens has a focal length of 6 cm and

that an object is moving toward the lens at the rate of 2 cm/s.

How fast is the image distance changing at the instant when

the object is 10 cm from the lens? Is the image moving away

from the lens or toward the lens?
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44. Water is stored in a cone-shaped reservoir (vertex down).

Assuming the water evaporates at a rate proportional to the

surface area exposed to the air, show that the depth of the

water will decrease at a constant rate that does not depend

on the dimensions of the reservoir.

45. A meteor enters the Earth’s atmosphere and burns up at a

rate that, at each instant, is proportional to its surface area.

Assuming that the meteor is always spherical, show that the

radius decreases at a constant rate.

46. On a certain clock the minute hand is 4 in long and the hour

hand is 3 in long. How fast is the distance between the tips

of the hands changing at 9 o’clock?

47. Coffee is poured at a uniform rate of 20 cm3/s into a cup

whose inside is shaped like a truncated cone (see the accom-

panying figure). If the upper and lower radii of the cup are

4 cm and 2 cm and the height of the cup is 6 cm, how fast

will the coffee level be rising when the coffee is halfway

up? [Hint: Extend the cup downward to form a cone.]

Figure Ex-47

3.8 LOCAL LINEAR APPROXIMATION; DIFFERENTIALS

In this section we will show how derivatives can be used to approximate nonlinear

functions by simpler linear functions. We will also define the differentials dy and dx

and use them to interpret the derivative dy/dx as a ratio of differentials.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOCAL LINEAR APPROXIMATION
In the solution of certain problems, it can be useful (and sometimes even necessary) to

approximate a nonlinear function by a linear function. For example, the equations that

describe the motion of a swinging pendulum may be greatly simplified by using the fact

that if x is close to 0, then sin x ≈ x. The existence of such linear approximations provides us

with a geometric interpretation of differentiability. We saw in Section 3.2 that if a function

f is differentiable at a number x0, then the tangent line to the graph of f through the

point P = (x0, f(x0)) will very closely approximate the graph of f for values of x near

x0 (Figure 3.8.1). This linear approximation may be described informally in terms of the

behavior of the graph of f under magnification: if f is differentiable at x0, then stronger

and stronger magnifications at P eventually make the curve segment containing P look

more and more like a nonvertical line segment, that line being the tangent line to the graph

of f at P . For this reason, a function that is differentiable at x0 is said to be locally linear

at the point P(x0, f(x0)) (Figure 3.8.2a). By contrast, the graph of a function that is not

differentiable at x0 due to a corner at the pointP(x0, f(x0)) cannot be magnified to resemble

a straight line segment at that point (Figure 3.8.2b).

Near x0 the tangent line closely 

approximates the curve.

y =  f (x) 

f (x0)

x0

x

y

Figure 3.8.1

Figure 3.8.2

x

y

PP P

This curve is locally linear at P.

x

y

PP P

This curve is not locally linear at P.

(a) (b)

To capture this intuitive idea analytically, assume that a function f is differentiable at

x0 and recall that the equation of the tangent line to the graph of the function f through

P = (x0, f(x0)) is y = f(x0) + f ′(x0)(x − x0). Since this line closely approximates the
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graph of f for values of x near x0, it follows that

f(x) ≈ f(x0)+ f ′(x0)(x − x0) (1)

provided x is close to x0. We call (1) the local linear approximation of f at x0. Furthermore,

it can be shown that (1) is actually the best linear approximation off near x0 in the sense that

any other linear function will fail to give as good an approximation to f for values of x very

close to x0. An alternative version of this formula can be obtained by letting �x = x − x0,

in which case (1) can be expressed as

f(x0 +�x) ≈ f(x0)+ f ′(x0)�x (2)

Example 1

(a) Find the local linear approximation of f(x) =
√
x at x0 = 1.

(b) Use the local linear approximation obtained in part (a) to approximate
√

1.1, and

compare your approximation to the result produced directly by a calculating utility.

Solution (a). Since f ′(x) = 1/(2
√
x), it follows from (1) that the local linear approxima-

tion of
√
x at x0 = 1 is

√
x ≈

√
1 +

1

2
√

1
(x − 1) = 1 +

1

2
(x − 1) =

1

2
(x + 1)

In other words, if x is close to 1, then we expect
√
x to be about 1

2
(x + 1). Figure 3.8.3

shows both the graph of f(x) =
√
x and the local linear approximation y = 1

2
(x + 1).

Solution (b). Applying the local linear approximation from part (a) yields
√

1.1 ≈ 1
2
(1.1 + 1) = 1.05

Since the tangent line y = 1
2
(x+ 1) in Figure 3.8.3 lies above the graph of f(x) =

√
x, we

would expect this approximation to be slightly too large. This expectation is confirmed by

the calculator approximation
√

1.1 ≈ 1.04881. ◭

1 2 3 4

0.5

1

1.5

2

2.5

x

y

(1, 1)

y =   (x + 1)
1

2

y = f (x) = √x 

Figure 3.8.3

Example 2

(a) Show that if x is close to 0, then sin x ≈ x.

(b) Use the approximation from part (a) to approximate sin 2◦ , and compare your approx-

imation to the result produced directly by your calculating utility.

Solution (a). Since we are interested in approximating sin x for values of x close to 0,

we compute the local linear approximation of f(x) = sin x at x0 = 0. With f(x) = sin x,

f ′(x) = cos x, and x0 = 0, the approximation in (1) becomes

sin x ≈ sin 0 + cos 0(x − 0) = 0 + 1(x) = x

Figure 3.8.4 shows both the graph of f(x) = sin x and the local linear approximation y = x.
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-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

x

y
y = x

y = sin x

Figure 3.8.4

Solution (b). In the approximation sin x ≈ x, the variable x is in radian measure, so we

must first convert 2◦ to radians before we can apply this approximation. Since

2◦ = 2
( π

180

)

=
π

90
≈ 0.0349066 radian

it follows that sin 2◦ ≈ 0.0349066. Comparing the two graphs in Figure 3.8.4, we would

expect this approximation to be slightly too large. The calculator approximation sin 2◦ ≈
0.0348995 shows that this is indeed the case. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Part (b) in both Example 1 and Example 2 is meant to be illustrative only.

We are not suggesting that you replace individual calculator computations with the local

linear approximation. Local linear approximations are significant because they allow us to

model a complicated function by a simple one. This idea will be pursued in greater detail

in Chapter 10.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ERROR IN LOCAL LINEAR
APPROXIMATIONS

As a general rule, the accuracy of the local linear approximation to f(x) at x0 will deteriorate

as x gets progressively farther from x0. To illustrate this for the approximation sin x ≈ x in

Example 2, let us graph the function

E(x) = |sin x − x|
which is the absolute value of the error in the approximation (Figure 3.8.5).

-.5 -.3 -.1-.4 -.2 .1 .2 .3 .4 .5

0.005

0.01

0.015

x

E

E(x) = |sin x – x |

Figure 3.8.5

In Figure 3.8.5, the graph shows how the absolute error in the local linear approximation

of sin x increases as x moves progressively farther from 0 in either the positive or negative

direction. The graph also tells us that for values of x between the two vertical lines, the

absolute error does not exceed 0.01. Thus, for example, we could use the local linear

approximation sin x ≈ x for all values of x in the interval −0.35 < x < 0.35 (radians) with

confidence that the approximation is within 0.01 of the exact value.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIALS
Newton and Leibniz independently developed different notations for the derivative. This

created a notational divide between Britain and the European continent that lasted for more

than 50 years. The Leibniz notation dy/dx eventually prevailed for its superior utility. For

example, we have already mentioned that the Leibniz notation makes the chain rule

dy

dx
=
dy

du
·
du

dx

easy to remember.

Up to now we have been interpreting dy/dx as a single entity representing the derivative

of y with respect to x, but we have not attached any meaning to the individual symbols “dy”

and “dx.” Early in the development of calculus, these symbols represented “infinitely small

changes” in the variables y and x and the derivative dy/dx was thought to be a ratio of these

infinitely small changes. However, the precise meaning of an “infinitely small change” in a

variable turned out to be logically elusive and eventually such arguments were replaced by

an analysis that was based on the more modern concept of a limit.
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Our next objective is to define the symbols dy and dx so that dy/dx can actually be

treated as a ratio. We begin by defining the symbol “dx” to be a variable that can assume

any real number as its value. The variable dx is called the differential of x. If we are given

a function y = f(x) that is differentiable at x = x0, then we define the differential of f at

x0 to be the function of dx given by the formula

dy = f ′(x0) dx (3)

where the symbol “dy” is simply the dependent variable of this function. The variable dy

is called the differential of y and we note that it is proportional to dx with constant of

proportionality f ′(x0). If dx �= 0, then we can divide both sides of (3) by dx to obtain

dy

dx
= f ′(x0)

Thus, we have achieved our goal of defining dy and dx so that their ratio is a derivative. It

is customary to omit the subscript on x and simply write the differential dy as

dy = f ′(x) dx (4)

where it is understood that x is regarded as fixed at some value.

Because f ′(x) is equal to the slope of the tangent line to the graph of f at the point

(x, f(x)), the differentials dy and dx can be viewed as a corresponding rise and run of this

tangent line (Figure 3.8.6).

x

y

Rise = dy

Slope = f ′(x)

y =  f (x) 

x x + dx

Run = dx

Figure 3.8.6

Example 3 Given the function y = x2, geometrically interpret the relationship between

the differentials dx and dy when x = 3.

Solution. Since dy/dx = 2x, we have dy = 2x dx = 6 dx when x = 3. This tells us that

if we travel along the tangent line to the curve y = x2 at the point (3, 9), then any change

of dx units in the horizonal direction produces a change of dy = 6 dx units in the vertical

direction. ◭

Recall that given a function y = f(x), we defined �y = f(x +�x)− f(x) to denote

the signed change in y from its value at some initial number x to its value at a new number

x + �x. It is important to understand the distinction between the increment �y and the

differential dy. To see the difference, let us assign the independent variables dx and �x

the same value, so dx = �x. Then �y represents the change in y that occurs when we

start at x and travel along the curve y = f(x) until we have moved �x (= dx) units in the

x-direction, and dy represents the change in y that occurs if we start at x and travel along

the tangent line until we have moved dx (= �x) units in the x-direction (Figure 3.8.7).

x

y

∆x = dx

dy

∆y

y =  f (x) 

x x + ∆x

(x + dx)

Figure 3.8.7

Example 4 Let y =
√
x. Find dy and �y at x = 4 with dx = �x = 3. Then make a

sketch of y =
√
x, showing dy and �y in the picture.

Solution. With f(x) =
√
x we obtain

�y = f(x +�x)− f(x) =
√
x +�x −

√
x =

√
7 −

√
4 ≈ 0.65

If y =
√
x, then

dy

dx
=

1

2
√
x
, so dy =

1

2
√
x
dx =

1

2
√

4
(3) =

3

4
= 0.75

Figure 3.8.8 shows the curve y =
√
x together with dy and �y. ◭

4 7

x

y

dy =  0.75

∆y ≈ 0.65 
y = √x

Figure 3.8.8

Although �y and dy are generally different, the differential dy will nonetheless be a

good approximation for�y provided dx = �x is close to 0. To see this, recall from Section
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3.2 that

f ′(x) = lim
�x→0

�y

�x

It follows that if �x is close to 0, then we will have f ′(x) ≈ �y/�x or, equivalently,

�y ≈ f ′(x)�x = f ′(x) dx = dy (5)

As the reader might guess by comparing Figure 3.8.1 with Figure 3.8.7, the approximation

�y ≈ dy is simply a restatement of the local linear approximation of a function.

•
•
•
•
•
•
•
•

FOR THE READER. Obtain the approximation �y ≈ dy directly from the local linear

approximation (2) by renaming some parameters and using some algebra.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ERROR PROPAGATION IN
APPLICATIONS

In applications, small errors invariably occur in measured quantities. When these quantities

are used in computations, those errors are propagated in turn to the computed quantities.

For example, suppose that in an application the variables x and y are related by a function

y = f(x). If xa is the actual value of x, but it is measured to be x0, then we define the

difference dx = x0 − xa to be the error in the measurement of x. Note that if the error

is positive, the measured value is larger than the actual value, and if the error is negative,

the measured value is smaller than the actual value. Since y is determined from x by the

function y = f(x), the true value of y is f(xa) and the value of y computed from the

measured value of x is f(x0). The propagated error in the computed value of y is then

defined to be f(x0) − f(xa). Note that if the propagated error is positive, the calculated

value of y will be too large, and if this error is negative, the calculated value of y will be too

small. If f is differentiable at the measured value x0, and if the error in the measurement

of x is close to 0, then the local linear approximation (1) (with x replaced by xa) becomes

f(xa) ≈ f(x0)+ f ′(x0)(xa − x0) = f(x0)− f ′(x0)(x0 − xa) = f (x0)− f ′(x0) dx

We can now use this approximation in our formula for the propagated error to obtain

f(x0)− f(xa) ≈ f(x0)− (f(x0)− f ′(x0) dx) = f ′(x0) dx

In other words, the propagated error may be approximated by

f(x0)− f(xa) ≈ dy (6)

where dy = f ′(x0) dx is the value of the differential of f at x0 when dx = x0 − xa is the

error in the measurement of x.

Unfortunately, this approximation cannot be used directly in applied problems because

the measurement error dx = x0 − xa will in general be unknown. (Keep in mind that

the only value of x that is available to the researcher is the measured value x0.) However,

although the exact value of the error in measuring x will generally be unknown, it is often

possible to determine upper and lower bounds for this error. Upper and lower bounds for

the propagated error can then be approximated by using the differential dy = f ′(x0) dx.

Example 5 Suppose that the side of a square is measured with a ruler to be 10 inches

with a measurement error of at most ± 1
32

of an inch.

(a) Use a differential to estimate the error in the computed area of the square.

(b) Compare the estimate from part (a) with the actual possible error computed using a

calculating utility.

Solution (a). The side of a square x and the area of the square y are related by the equation

y = x2. Since dy = 2x dx, if we set x = 10, then dy = 20 dx. To say that the measurement
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error is at most ± 1
32

of an inch means that the measurement error dx = x0 −xa satisfies the

inequalities − 1
32

≤ dx ≤ 1
32

. Multiplying each term by 20 yields the equivalent inequalities

20
(

− 1
32

)

≤ dy ≤ 20
(

1
32

)

or − 5
8

≤ dy ≤ 5
8

Since we are using the differential dy to approximate the propagated error, we estimate this

propagated error to be between − 5
8

and 5
8

of a square inch. In other words, we estimate the

propagated error to be at most ± 5
8

of a square inch.

Solution (b). The area of the square is computed to be 100 square inches, but the actual

area could be as much as
(

10 + 1
32

)2 = 100 + 5
8

+ 1
1024

or as little as
(

10 − 1
32

)2 = 100 − 5
8

+ 1
1024

The propagated error is therefore between − 5
8

+ 1
1024

and 5
8

+ 1
1024

. Therefore, the upper

and lower bounds for the propagated error that we found in part (a) differ from the actual

upper and lower bounds by 1
1024

of a square inch. ◭

•
•
•
•
•
•
•
•

FOR THE READER. Examine a ruler and explain why a measurement error of at most 1
32

of an inch is reasonable.

The ratio of the error in some measured or calculated quantity to the true value of the

quantity is called the relative error of the measurement or calculation. When expressed

as a percentage, the relative error is called the percentage error. For example, suppose

that the side of a square is measured to be 10 inches, but the actual length of the side is

9.98 inches. The relative error in this measurement is then 0.02/9.98 ≈ 0.002004008 or

about 0.2004008%. However, as a practical matter the relative error cannot be computed

exactly, since both the error and the true value of the quantity are usually unknown. To

approximate the relative error in the measurement or computation of some quantity q, we

use the ratio dq/q, where q is the measured or calculated value of the quantity. If q is a

measured quantity, the numerator dq of this ratio denotes a measurement error, and if q is

a computed quantity, dq is an estimate of the propagated error given by (6).

Example 6 The radius of a sphere is measured with a percentage error within ±0.04%.

Estimate the percentage error in the calculated volume of the sphere.

Solution. The volume V of a sphere is V = 4
3
πr3, so dV = 4πr2 dr. It then follows from

the formulas for V and dV that

dV

V
=

4πr2 dr
4
3
πr3

= 3
dr

r

If dr denotes the error in measurement of the radius of the sphere, then the relative error

in this measurement is estimated by the ratio dr/r , where r is the measured value of

the radius. Our assumption that the percentage error in this measurement is within ±0.04%

then becomes −0.0004 ≤ dr/r ≤ 0.0004.Multiplying each term by 3 yields the equivalent

inequalities

−0.0012 = 3(−0.0004) ≤ dV /V ≤ 3(0.0004) = 0.0012

Since we are using dV /V to approximate the relative error in the calculated volume of the

sphere, we estimate this percentage error to be within ±0.12%. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MORE NOTATION; DIFFERENTIAL
FORMULAS

The symbol df is another common notation for the differential of a function y = f(x).

For example, if f(x) = sin x, then we can write df = cos x dx. We can also view the

symbol “d” as an operator that acts on a function to produce the corresponding differential.
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For example, d[x2] = 2x dx, d[sin x] = cos x dx, and so on. All of the general rules of

differentiation then have corresponding differential versions:

d

dx
[c] = 0 d[c] = 0

d[cf ] = c df

d[ f + g] = df + dg

d[ fg] = f dg + g df

df

dx

d

dx
[cf ] = c

df

dx

dg

dx

d

dx
[ f + g] =       +

dg

dx

df

dx

d

dx
[ fg] = f       + g

g       –  f
df

dx

dg

dxf

g

f

g
d

dx
        = 

derivative formula differential formula

g2

g df –  f dg
        = 

g2
d

For example,

d[x2 sin x] = (x2 cos x + 2x sin x) dx

= x2(cos x dx)+ (2x dx) sin x

= x2d[sin x] + (sin x)d[x2]

illustrates the differential version of the product rule.

EXERCISE SET 3.8 Graphing Calculator
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. (a) Use Formula (1) to obtain the local linear approxima-

tion of x3 at x0 = 1.
(b) Use Formula (2) to rewrite the approximation obtained

in part (a) in terms of �x.
(c) Use the result obtained in part (a) to approximate

(1.02)3, and confirm that the formula obtained in part

(b) produces the same result.

2. (a) Use Formula (1) to obtain the local linear approxima-

tion of 1/x at x0 = 2.
(b) Use Formula (2) to rewrite the approximation obtained

in part (a) in terms of �x.
(c) Use the result obtained in part (a) to approximate

1/2.05, and confirm that the formula obtained in part

(b) produces the same result.

3. (a) Find the local linear approximation of f(x) =
√

1 + x

at x0 = 0, and use it to approximate
√

0.9 and
√

1.1.
(b) Graph f and its tangent line at x0 together, and use the

graphs to illustrate the relationship between the exact

values and the approximations of
√

0.9 and
√

1.1.

4. (a) Find the local linear approximation of f(x) = 1/
√
x at

x0 = 4, and use it to approximate 1/
√

3.9 and 1/
√

4.1.
(b) Graph f and its tangent line at x0 together, and use the

graphs to illustrate the relationship between the exact

values and the approximations of 1/
√

3.9 and 1/
√

4.1.

In Exercises 5–8, confirm that the stated formula is the local

linear approximation at x0 = 0.

5. (1 + x)15 ≈ 1 + 15x 6.
1

√
1 − x

≈ 1 + 1
2
x

7. tan x ≈ x 8.
1

1 + x
≈ 1 − x

In Exercises 9–12, confirm that the stated formula is the local

linear approximation of f at x0 = 1, where �x = x − 1.

9. f(x) = x4; (1 +�x)4 ≈ 1 + 4�x

10. f(x) =
√
x;

√
1 +�x ≈ 1 + 1

2
�x

11. f(x) =
1

2 + x
;

1

3 +�x
≈

1

3
−

1

9
�x

12. f(x) = (4 + x)3; (5 +�x)3 ≈ 125 + 75�x

In Exercises 13–16, confirm that the formula is the local lin-

ear approximation at x0 = 0, and use a graphing utility to

estimate an interval of x-values on which the error is at most

±0.1.

13.
√
x + 3 ≈

√
3 +

1

2
√

3
x

14.
1

√
9 − x

≈
1

3
+

1

54
x

15. tan 2x ≈ 2x 16.
1

(1 + 2x)5
≈ 1 − 10x
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17. (a) Use the local linear approximation of sin x at x0 = 0

obtained in Example 2 to approximate sin 1◦ , and com-

pare the approximation to the result produced directly

by your calculating device.

(b) How would you choose x0 to approximate sin 44◦?

(c) Approximate sin 44◦ ; compare the approximation to the

result produced directly by your calculating device.

18. (a) Use the local linear approximation of tan x at x0 = 0 to

approximate tan 2◦ , and compare the approximation to

the result produced directly by your calculating device.

(b) How would you choose x0 to approximate tan 61◦?

(c) Approximate tan 61◦ ; compare the approximation to

the result produced directly by your calculating device.

In Exercises 19–27, use an appropriate local linear approxi-

mation to estimate the value of the given quantity.

19. (3.02)4 20. (1.97)3 21.
√

65

22.
√

24 23.
√

80.9 24.
√

36.03

25. sin 0.1 26. tan 0.2 27. cos 31◦

28. The approximation (1 + x)k ≈ 1 + kx is commonly used

by engineers for quick calculations.

(a) Derive this result, and use it to make a rough estimate

of (1.001)37.

(b) Compare your estimate to that produced directly by

your calculating device.

(c) Show that this formula produces a very bad estimate of

(1.1)37, and explain why.

29. (a) Let y = x2. Find dy and �y at x = 2 with

dx = �x = 1.

(b) Sketch the graph of y = x2, showing dy and �y in the

picture.

30. (a) Let y = x3. Find dy and �y at x = 1 with

dx = �x = 1.

(b) Sketch the graph of y = x3, showing dy and �y in the

picture.

31. (a) Let y = 1/x. Find dy and �y at x = 1 with

dx = �x = −0.5.

(b) Sketch the graph of y = 1/x, showing dy and �y in

the picture.

32. (a) Let y =
√
x. Find dy and �y at x = 9 with

dx = �x = −1.

(b) Sketch the graph of y =
√
x, showing dy and �y in

the picture.

In Exercises 33–36, find formulas for dy and �y.

33. y = x3 34. y = 8x − 4

35. y = x2 − 2x + 1 36. y = sin x

In Exercises 37–40, find the differential dy.

37. (a) y = 4x3 − 7x2 (b) y = x cos x

38. (a) y = 1/x (b) y = 5 tan x

39. (a) y = x
√

1 − x (b) y = (1 + x)−17

40. (a) y =
1

x3 − 1
(b) y =

1 − x3

2 − x

In Exercises 41–44, use dy to approximate �y when x

changes as indicated.

41. y =
√

3x − 2; from x = 2 to x = 2.03

42. y =
√
x2 + 8; from x = 1 to x = 0.97

43. y =
x

x2 + 1
; from x = 2 to x = 1.96

44. y = x
√

8x + 1; from x = 3 to x = 3.05

45. The side of a square is measured to be 10 ft, with a possible

error of ±0.1 ft.

(a) Use differentials to estimate the error in the calculated

area.

(b) Estimate the percentage errors in the side and the area.

46. The side of a cube is measured to be 25 cm, with a possible

error of ±1 cm.

(a) Use differentials to estimate the error in the calculated

volume.

(b) Estimate the percentage errors in the side and volume.

47. The hypotenuse of a right triangle is known to be 10 in ex-

actly, and one of the acute angles is measured to be 30◦ ,

with a possible error of ±1◦ .

(a) Use differentials to estimate the errors in the sides op-

posite and adjacent to the measured angle.

(b) Estimate the percentage errors in the sides.

48. One side of a right triangle is known to be 25 cm exactly.

The angle opposite to this side is measured to be 60◦ , with

a possible error of ±0.5◦ .

(a) Use differentials to estimate the errors in the adjacent

side and the hypotenuse.

(b) Estimate the percentage errors in the adjacent side and

hypotenuse.

49. The electrical resistance R of a certain wire is given by

R = k/r2, where k is a constant and r is the radius of the

wire. Assuming that the radius r has a possible error of

±5%, use differentials to estimate the percentage error in

R. (Assume k is exact.)

50. A 12-foot ladder leaning against a wall makes an angle θ

with the floor. If the top of the ladder is h feet up the wall,

express h in terms of θ and then use dh to estimate the

change in h if θ changes from 60◦ to 59◦ .

51. The area of a right triangle with a hypotenuse ofH is calcu-

lated using the formula A = 1
4
H 2 sin 2θ , where θ is one of

the acute angles. Use differentials to approximate the error

in calculating A if H = 4 cm (exactly) and θ is measured

to be 30◦ , with a possible error of ±15′.

52. The side of a square is measured with a possible percentage

error of ±1%. Use differentials to estimate the percentage

error in the area.
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53. The side of a cube is measured with a possible percentage

error of ±2%. Use differentials to estimate the percentage

error in the volume.

54. The volume of a sphere is to be computed from a measured

value of its radius. Estimate the maximum permissible per-

centage error in the measurement if the percentage error in

the volume must be kept within ±3%. (V = 4
3
πr3 is the

volume of a sphere of radius r .)

55. The area of a circle is to be computed from a measured value

of its diameter. Estimate the maximum permissible percent-

age error in the measurement if the percentage error in the

area must be kept within ±1%.

56. A steel cube with 1-in sides is coated with 0.01 in of copper.

Use differentials to estimate the volume of copper in the

coating. [Hint: Let �V be the change in the volume of the

cube.]

57. A metal rod 15 cm long and 5 cm in diameter is to be cov-

ered (except for the ends) with insulation that is 0.001 cm

thick. Use differentials to estimate the volume of insulation.

[Hint: Let �V be the change in volume of the rod.]

58. The time required for one complete oscillation of a pendu-

lum is called its period. If L is the length of the pendulum,

then the period is given by P = 2π
√

L/g, where g is a con-

stant called the acceleration due to gravity. Use differentials

to show that the percentage error in P is approximately half

the percentage error in L.

59. If the temperature T of a metal rod of lengthL is changed by

an amount �T , then the length will change by the amount

�L = αL�T , where α is called the coefficient of linear

expansion. For moderate changes in temperature α is taken

as constant.

(a) Suppose that a rod 40 cm long at 20◦C is found to be

40.006 cm long when the temperature is raised to 30◦C.

Find α.

(b) If an aluminum pole is 180 cm long at 15◦C, how long

is the pole if the temperature is raised to 40◦C? [Take

α = 2.3 × 10−5/◦C.]

60. If the temperature T of a solid or liquid of volume V is

changed by an amount�T , then the volume will change by

the amount�V = βV �T , where β is called the coefficient

of volume expansion. For moderate changes in temperature

β is taken as constant. Suppose that a tank truck loads 4000

gallons of ethyl alcohol at a temperature of 35◦C and deliv-

ers its load sometime later at a temperature of 15◦C. Using

β = 7.5 × 10−4/◦C for ethyl alcohol, find the number of

gallons delivered.

SUPPLEMENTARY EXERCISES

Graphing Calculator C CAS

1. State the definition of a derivative, and give two interpreta-

tions of it.

2. Explain the difference between average and instantaneous

rate of change, and discuss how they are calculated.

3. Given that y = f(x), explain the difference between dy and

�y. Draw a picture that illustrates the relationship between

these quantities.

4. Use the definition of a derivative to find dy/dx, and check

your answer by calculating the derivative using appropriate

derivative formulas.

(a) y =
√

9 − 4x (b) y =
x

x + 1

In Exercises 5–8, find the values of x at which the curve

y = f(x) has a horizontal tangent line.

5. f(x) = (2x + 7)6(x − 2)5 6. f(x) =
(x − 3)4

x2 + 2x

7. f(x) =
√

3x + 1(x − 1)2 8. f(x) =
(

3x + 1

x2

)3

9. The accompanying figure shows the graph of y = f ′(x) for

an unspecified function f .

(a) For what values of x does the curve y = f(x) have a

horizontal tangent line?

(b) Over what intervals does the curve y = f(x) have tan-

gent lines with positive slope?

(c) Over what intervals does the curve y = f(x) have tan-

gent lines with negative slope?

(d) Given that g(x) = f(x) sin x, and f(0) = −1, find

g′′(0).

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

x

y

Figure Ex-9

10. In each part, evaluate the expression given that f(1) = 1,

g(1) = −2, f ′(1) = 3, and g′(1) = −1.

(a)
d

dx
[f(x)g(x)]

∣
∣
∣
∣
x=1

(b)
d

dx

[
f(x)

g(x)

]∣
∣
∣
∣
x=1

(c)
d

dx
[
√

f(x)]

∣
∣
∣
∣
x=1

(d)
d

dx
[f(1)g′(1)]
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11. Find the equations of all lines through the origin that are

tangent to the curve y = x3 − 9x2 − 16x.

12. Find all values ofx for which the tangent line toy = 2x3−x2

is perpendicular to the line x + 4y = 10.

13. Find all values of x for which the line that is tangent to

y = 3x − tan x is parallel to the line y − x = 2.

14. Suppose that f(x) =

{

x2 − 1, x ≤ 1

k(x − 1), x > 1.

For what values of k is f

(a) continuous? (b) differentiable?

15. Let f(x) = x2. Show that for any distinct values of a and

b, the slope of the tangent line to y = f(x) at x = 1
2
(a+ b)

is equal to the slope of the secant line through the points

(a, a2) and (b, b2). Draw a picture to illustrate this result.

16. A car is traveling on a straight road that is 120 mi long.

For the first 100 mi the car travels at an average velocity of

50 mi/h. Show that no matter how fast the car travels for

the final 20 mi it cannot bring the average velocity up to 60

mi/h for the entire trip.

17. In each part, use the given information to find �x, �y, and

dy.

(a) y = 1/(x − 1); x decreases from 2 to 1.5.

(b) y = tan x; x increases from −π/4 to 0.

(c) y =
√

25 − x2; x increases from 0 to 3.

18. Use the formula V = l3 for the volume of a cube of side l

to find

(a) the average rate at which the volume of a cube changes

with l as l increases from l = 2 to l = 4

(b) the instantaneous rate at which the volume of a cube

changes with l when l = 5.

19. The amount of water in a tank t minutes after it has started

to drain is given by W = 100(t − 15)2 gal.

(a) At what rate is the water running out at the end of 5

min?

(b) What is the average rate at which the water flows out

during the first 5 min?

20. Use an appropriate local linear approximation to estimate

the value of cot 46◦ , and compare your answer to the value

obtained with a calculating device.

21. The base of the Great Pyramid at Giza is a square that is

230 m on each side.

(a) As illustrated in the accompanying figure, suppose that

an archaeologist standing at the center of a side mea-

sures the angle of elevation of the apex to be φ = 51◦

with an error of ±0.5◦ . What can the archaeologist rea-

sonably say about the height of the pyramid?

(b) Use differentials to estimate the allowable error in the

elevation angle that will ensure an error in the height is

at most ±5 m.

f

230 m

230 m

Figure Ex-21

22. The period T of a clock pendulum (i.e., the time required

for one back-and-forth movement) is given in terms of its

length L by T = 2π
√

L/g, where g is the gravitational

constant.

(a) Assuming that the length of a clock pendulum can

vary (say, due to temperature changes), find the rate

of change of the period T with respect to the length L.

(b) If L is in meters (m) and T is in seconds (s), what are

the units for the rate of change in part (a)?

(c) If a pendulum clock is running slow, should the length

of the pendulum be increased or decreased to correct

the problem?

(d) The constant g generally decreases with altitude. If you

move a pendulum clock from sea level to a higher ele-

vation, will it run faster or slower?

(e) Assuming the length of the pendulum to be constant,

find the rate of change of the period T with respect to g.

(f ) Assuming that T is in seconds (s) and g is in meters per

second per second (m/s2), find the units for the rate of

change in part (e).

In Exercises 23 and 24, zoom in on the graph of f on an inter-

val containing x = x0 until the graph looks like a straight line.

Estimate the slope of this line and then check your answer by

finding the exact value of f ′(x0).

23. (a) f(x) = x2 − 1, x0 = 1.8

(b) f(x) =
x2

x − 2
, x0 = 3.5

24. (a) f(x) = x3 − x2 + 1, x0 = 2.3

(b) f(x) =
x

x2 + 1
, x0 = −0.5

In Exercises 25 and 26, approximate f ′(2) by considering the

difference quotients

f(x1)− f(2)

x1 − 2

for values of x1 near 2. If you have a CAS, see if it can find

the exact value of the limit of these difference quotients as

x1 →2.

C 25. f(x) = 2x C 26. f(x) = xsin x
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27. At time t = 0 a car moves into the passing lane to pass

a slow-moving truck. The average velocity of the car from

t = 1 to t = 1 + h is

vave =
3(h+ 1)2.5 + 580h− 3

10h

Estimate the instantaneous velocity of the car at t = 1,

where time is in seconds and distance is in feet.

28. A sky diver jumps from an airplane. Suppose that the dis-

tance she falls during the first t seconds before her parachute

opens is s(t) = 986((0.835)t −1)+176t , where s is in feet

and t ≥ 1. Graph s versus t for 1 ≤ t ≤ 20, and use your

graph to estimate the instantaneous velocity at t = 15.

29. Approximate the values of x at which the tangent line to the

graph of y = x3 − sin x is horizontal.

30. Use a graphing utility to graph the function

f(x) = |x4 − x − 1| − x

and find the values of x where the derivative of this function

does not exist.

C 31. Use a CAS to find the derivative of f from the definition

f ′(x) = lim
w→x

f(w)− f(x)

w − x

and check the result by finding the derivative by hand.

(a) f(x) = x5 (b) f(x) = 1/x

(c) f(x) = 1/
√
x (d) f(x) =

2x + 1

x − 1

(e) f(x) =
√

3x2 + 5 (f ) f(x) = sin 3x

In Exercises 32–37: (a) Use a CAS to findf ′(x) via Definition

3.2.3; (b) use the CAS to find f ′′(x).

C 32. f(x) = x2 sin x C 33. f(x) =
√
x + cos2 x

C 34. f(x) =
2x2 − x + 5

3x + 2
C 35. f(x) =

tan x

1 + x2

C 36. f(x) =
1

x
sin

√
x C 37. f(x) =

√

x4 − 3x + 2

x(2 − cos x)

In Exercises 38 and 39, find the equation of the tangent line

at the specified point.

38. x2/3 − y2/3 − y = 1; (1,−1)

39. sin xy = y; (π/2, 1)

40. The hypotenuse of a right triangle is growing at a constant

rate of a centimeters per second and one leg is decreasing

at a constant rate of b centimeters per second. How fast is

the acute angle between the hypotenuse and the other leg

changing at the instant when both legs are 1 cm?

EXPANDING THE CALCULUS HORIZON

Robotics

Robin designs and sells room dividers to defray college expenses. She is soon overwhelmed with orders and decides

to build a robot to spray paint her dividers. As in most engineering projects, Robin begins with a simplified model that

she will eventually refine to be more realistic. However, Robin quickly discovers that robotics (the design and control

of robots) involves a considerable amount of mathematics, some of which we will discuss in this module.

The Design Plan

Robin’s plan is to develop a two-dimensional version of the robot arm in Figure 1. As shown in

Figure 2, Robin’s robot arm will consist of two links of fixed length, each of which will rotate

independently about a pivot point. A paint sprayer will be attached to the end of the second link,

and a computer will vary the angles θ1 and θ2, thereby allowing the robot to paint a region of the

xy-plane.

The Mathematical Analysis

To analyze the motion of the robot arm, Robin denotes the coordinates of the paint sprayer by

(x, y), as in Figure 3, and she derives the following equations that express x and y in terms of the

angles θ1 and θ2 and the lengths l1 and l2 of the links:

x = l1 cos θ1 + l2 cos(θ1 + θ2)

y = l1 sin θ1 + l2 sin(θ1 + θ2)
(1)
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Upper arm

Forearm

Base

Figure 1

x

y

u2

u1

Link 1

Link 2

Paint sprayer

Figure 2

x

y

u2

u1

u1

l1

l1 cos u1 l2 cos (u1 + u2)

l2 sin (u1 + u2)

l1 sin u1

l2

(x, y)

Figure 3

• • • • • • • • • • •

Exercise 1 Use Figure 3 to confirm the equations in (1).

In the language of robotics, θ1 and θ2 are called the control angles, the point (x, y) is called the

end effector, and the equations in (1) are called the forward kinematic equations (from the Greek

word kinema, meaning “motion”).

• • • • • • • • • • •

Exercise 2 What is the region of the plane that can be reached by the end effector if:

(a) l1 = l2, (b) l1 > l2, and (c) l1 < l2?

• • • • • • • • • • •

Exercise 3 What are the coordinates of the end effector if l1 = 2, l2 = 3, θ1 = π/4, and

θ2 = π/6?

Simulating Paint Patterns

Robin recognizes that if θ1 and θ2 are regarded as functions of time, then the forward kinematic

equations can be expressed as

x = l1 cos θ1(t)+ l2 cos(θ1(t)+ θ2(t))

y = l1 sin θ1(t)+ l2 sin(θ1(t)+ θ2(t))

which are parametric equations for the curve traced by the end effector. For example, if the arms

extend horizontally along the positive x-axis at time t = 0, and if links 1 and 2 rotate at the

constant rates of ω1 and ω2 radians per second (rad/s), respectively, then

θ1(t) = ω1t and θ2(t) = ω2t

and the parametric equations of motion for the end effector become

x = l1 cosω1t + l2 cos(ω1t + ω2t)

y = l1 sinω1t + l2 sin(ω1t + ω2t)

• • • • • • • • • • •

Exercise 4 Show that if l1 = l2 = 1, and ifω1 = 2 rad/s andω2 = 3 rad/s, then the parametric

equations of motion are

x = cos 2t + cos 5t

y = sin 2t + sin 5t

Use a graphing utility to show that the curve traced by the end effector over the time interval

0 ≤ t ≤ 2π is as shown in Figure 4. This would be the painting pattern of Robin’s paint sprayer.
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Figure 4

• • • • • • • • • • •

Exercise 5 Use a graphing utility to explore how the rotation rates of the links affect the spray

patterns of a robot arm for which l1 = l2 = 1.

• • • • • • • • • • •

Exercise 6 Suppose that l1 = l2 = 1, and a malfunction in the robot arm causes the second

link to lock at θ2 = 0, while the first link rotates at a constant rate of 1 rad/s. Make a conjecture

about the path of the end effector, and confirm your conjecture by finding parametric equations

for its motion.

Controlling the Position of the End Effector

Robin’s plan is to make the robot paint the dividers in vertical strips, sweeping from the bottom

up. After a strip is painted, she will have the arm return to the bottom of the divider and then move

horizontally to position itself for the next upward sweep. Since the sections of her dividers will

be 3 ft wide by 5 ft high, Robin decides on a robot with two 3-ft links whose base is positioned

near the lower left corner of a divider section, as in Figure 5a. Since the fully extended links span

a radius of 6 ft, she feels that this arrangement will work.

x

y

Base

3

3

(3, 0)

(3, 5)

Divider section

(a)

x

y

Base

33

(3, 0)

(3, 5)

(b)

x

y

Base

3

3

3

3

(3, 0)

(3, 5)

(c)

60°

–120°

Figure 5

Robin starts with the problem of painting the far right edge from (3, 0) to (3, 5). With the

help of some basic geometry (Figure 5b), she determines that the end effector can be placed at the

point (3, 0) by taking the control angles to be θ1 = π/3 (= 60◦ ) and θ2 = −2π/3 (= −120◦ )

(verify). However, the problem of finding the control angles that correspond to the point (3, 5)

is more complicated, so she starts by substituting the link lengths l1 = l2 = 3 into the forward

kinematic equations in (1) to obtain

x = 3 cos θ1 + 3 cos(θ1 + θ2)

y = 3 sin θ1 + 3 sin(θ1 + θ2)
(2)
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Thus, to put the end effector at the point (3, 5), the control angles must satisfy the equations

cos θ1 + cos(θ1 + θ2) = 1

3 sin θ1 + 3 sin(θ1 + θ2) = 5
(3)

Solving these equations for θ1 and θ2 challenges Robin’s algebra and trigonometry skills, but she

manages to do it using the procedure in the following exercise.

• • • • • • • • • • •

Exercise 7

(a) Use the equations in (3) and the identity

sin2(θ1 + θ2)+ cos2(θ1 + θ2) = 1

to show that

15 sin θ1 + 9 cos θ1 = 17

(b) Solve the last equation for sin θ1 in terms of cos θ1 and substitute in the identity

sin2 θ1 + cos2 θ1 = 1

to obtain

153 cos2 θ1 − 153 cos θ1 + 32 = 0

(c) Treat this as a quadratic equation in cos θ1, and use the quadratic formula to obtain

cos θ1 =
1

2
±

5
√

17

102

(d) Use the arccosine (inverse cosine) operation of a calculating utility to solve the equations in

part (c) to obtain

θ1 ≈ 0.792436 rad ≈ 45.4032◦ and θ1 ≈ 1.26832 rad ≈ 72.6693◦

(e) Substitute each of these angles into the first equation in (3), and solve for the corresponding

values of θ2.

At first, Robin was surprised that the solutions for θ1 and θ2 were not unique, but her sketch

in Figure 5c quickly made it clear that there will ordinarily be two ways of positioning the links

to put the end effector at a specified point.

Controlling the Motion of the End Effector

Now that Robin has figured out how to place the end effector at the points (3, 0) and (3, 5), she

turns to the problem of making the robot paint the vertical line segment between those points.

She recognizes that not only must she make the end effector move on a vertical line, but she must

control its velocity—if the end effector moves too quickly, the paint will be too thin, and if it

moves too slowly, the paint will be too thick.

After some experimentation, she decides that the end effector should have a constant velocity

of 1 ft/s. Thus, Robin’s mathematical problem is to determine the rotation rates dθ1/dt and dθ2/dt

(in rad/s) that will make dx/dt = 0 and dy/dt = 1. The first condition will ensure that the end

effector moves vertically (no horizontal velocity), and the second condition will ensure that it

moves upward at 1 ft/s.

To find formulas for dx/dt and dy/dt , Robin uses the chain rule to differentiate the forward

kinematic equations in (2) and obtains

dx

dt
= −3 sin θ1

dθ1

dt
− [3 sin(θ1 + θ2)]

(
dθ1

dt
+
dθ2

dt

)

dy

dt
= 3 cos θ1

dθ1

dt
+ [3 cos(θ1 + θ2)]

(
dθ1

dt
+
dθ2

dt

)
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She uses the forward kinematic equations again to simplify these formulas and she then substitutes

dx/dt = 0 and dy/dt = 1 to obtain

−y
dθ1

dt
− 3 sin(θ1 + θ2)

dθ2

dt
= 0

x
dθ1

dt
+ 3 cos(θ1 + θ2)

dθ2

dt
= 1

(4)

• • • • • • • • • • •

Exercise 8 Confirm Robin’s computations.

The equations in (4) will be used in the following way: At a given time t , the robot will

report the control angles θ1 and θ2 of its links to the computer, the computer will use the forward

kinematic equations in (2) to calculate the x- and y-coordinates of the end effector, and then the

values of θ1, θ2, x, and y will be substituted into (4) to produce two equations in the two unknowns

dθ1/dt and dθ2/dt . The computer will solve these equations to determine the required rotation

rates for the links.

• • • • • • • • • • •

Exercise 9 In each part, use the given information to sketch the position of the links, and then

calculate the rotation rates for the links in rad/s that will make the end effector of Robin’s robot

move upward with a velocity of 1 ft/s from that position.

(a) θ1 = π/3, θ2 = −2π/3 (b) θ1 = π/2, θ2 = −π/2
..................................................................................................................................
Module by Mary Ann Connors, USMA, West Point, and Howard Anton, Drexel University, and

based on the article “Moving a Planar Robot Arm” by Walter Meyer, MAA Notes Number 29,

The Mathematical Association of America, 1993.


