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EXPONENTIAL, 

LOGARITHMIC,

AND INVERSE

TRIGONOMETRIC 

FUNCTIONS

n this chapter we will expand our collection of

“elementary” functions to include the exponential, loga-

rithmic, and inverse trigonometric functions. The heart of

the chapter is Section 7.1 on inverse functions, in which

we develop fundamental ideas that link a function and its

inverse numerically, algebraically, and graphically. Our

focus will be on those aspects of inverse functions that

relate to calculus. In particular, we will see that there is an

important connection between the derivative of a function

and the derivative of its inverse. This connection will allow

us to develop a number of derivative and integral formu-

las that involve the exponential, logarithmic, and inverse

trigonometric functions. With the aid of these formulas,

we will discuss a powerful tool for evaluating limits known

as L’Hôpital’s rule. The chapter concludes with an intro-

duction to some analogs of the trigonometric functions,

known as the hyperbolic functions.
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7.1 INVERSE FUNCTIONS

In everyday language the term “inversion” conveys the idea of a reversal. For example,

in meteorology a temperature inversion is a reversal in the usual temperature proper-

ties of air layers; in music, a melodic inversion reverses an ascending interval to the

corresponding descending interval; and in grammar an inversion is a reversal of the

normal order of words. In mathematics the term inverse is used to describe functions

that are reverses of one another in the sense that each undoes the effect of the other.

The purpose of this section is to discuss this fundamental mathematical idea.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INVERSE FUNCTIONS
The idea of solving an equation y = f(x) for x as a function of y, say x = g(y), is one

of the most important ideas in mathematics. Sometimes, solving an equation is a simple

process; for example, using basic algebra the equation

y = x3 + 1 y = f(x)

can be solved for x as a function of y:

x = 3
√

y − 1 x = g(y)

The first equation is better for computing y if x is known, and the second is better for

computing x if y is known (Figure 7.1.1).
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Figure 7.1.1

Our primary interest in this section is to identify relationships that may exist between

the functions f and g when an equation y = f(x) is expressed as x = g(y), or conversely.

For example, consider the functions f(x) = x3 + 1 and g(y) = 3
√
y − 1 discussed above.

When these functions are composed in either order they cancel out the effect of one another

in the sense that

g(f(x)) = 3
√

f(x) − 1 = 3
√

(x3 + 1) − 1 = x

f(g(y)) = [g(y)]3 + 1 = ( 3
√

y − 1 )3 + 1 = y
(1)

The first of these equations states that each output of the composition g(f(x)) is the same

as the input, and the second states that each output of the composition f(g(y)) is the same

as the input. Pairs of functions with these two properties are so important that there is some

terminology for them.

7.1.1 DEFINITION. If the functions f and g satisfy the two conditions

g(f(x)) = x for every x in the domain of f

f(g(y)) = y for every y in the domain of g

then we say that f and g are inverses. Moreover, we call f an inverse function for g and

g an inverse function for f .



February 9, 2001 11:36 g65-ch7 Sheet number 3 Page number 445 cyan magenta yellow black

7.1 Inverse Functions 445

Example 1 It follows from (1) thatf(x) = x3+1 andg(y) = 3
√
y − 1 are inverses. ◭

It can be shown that a function cannot have two different inverse functions. Thus, if a

function f has an inverse function, then the inverse is unique, and we are entitled to talk

about the inverse of f . The inverse of a function f is commonly denoted by f −1 (read “f

inverse”). Thus, instead of using g in Example 1, the inverse of f(x) = x3 could have been

expressed as f −1(y) = 3
√
y − 1.

•
•
•
•
•
•
•
•

WARNING. The symbol f −1 should always be interpreted as the inverse of f and never

as the reciprocal 1/f .

It is important to understand that a function is determined by the relationship that it

establishes between its inputs and outputs and not by the letter used for the independent

variable. Thus, even though the formulas f(x) = 3x and f(y) = 3y use different inde-

pendent variables, they define the same function f , since the two formulas have the same

“form” and hence assign the same value to each input; for example, in either notation

f(2) = 6. As we progress through this text, there will be certain occasions on which we

will want the independent variables for f and f −1 to be the same, and other occasions on

which we will want them to be different. Thus, in Example 1 we could have expressed the

inverse of f(x) = x3 + 1 as f −1(x) = 3
√
x − 1 had we wanted f and f −1 to have the same

independent variable.

If we use the notation f −1 (rather than g) in Definition 7.1.1, and if we use x as the

independent variable in the formulas for both f and f −1, then the defining equations

relating these functions are

f −1(f(x)) = x for every x in the domain of f

f(f −1(x)) = x for every x in the domain of f −1
(2)

Example 2 Confirm each of the following.

(a) The inverse of f(x) = 2x is f −1(x) = 1
2
x.

(b) The inverse of f(x) = x3 is f −1(x) = x1/3.

Solution (a).

f −1(f(x)) = f −1(2x) = 1
2
(2x) = x

f(f −1(x)) = f
(

1
2
x
)

= 2
(

1
2
x
)

= x

Solution (b).

f −1(f(x)) = f −1(x3) =
(

x3
)1/3 = x

f(f −1(x)) = f(x1/3) =
(

x1/3
)3 = x ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The results in Example 2 should make sense to you intuitively, since the op-

erations of multiplying by 2 and multiplying by 1
2

in either order cancel the effect of one

another, as do the operations of cubing and taking a cube root.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DOMAIN AND RANGE OF INVERSE
FUNCTIONS

The equations in (2) imply certain relationships between the domains and ranges of f and

f −1. For example, in the first equation the quantity f(x) is an input of f −1, so points in

the range of f lie in the domain of f −1; and in the second equation the quantity f −1(x) is

an input of f , so points in the range of f −1 lie in the domain of f . All of this suggests the

following relationships, which we state without formal proof:

domain of f −1 = range of f

range of f −1 = domain of f
(3)
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At the beginning of this section we solved the equation y = f(x) = x3 + 1 for x as a

function of y to obtain x = g(y) = 3
√
y − 1, and we observed in Example 1 that g is the

inverse of f . This was not accidental—whenever an equation y = f(x) is solved for x as

a function of y, say x = g(y), then f and g will be inverses. We can see why this is so by

making two substitutions:

• Substitute y = f(x) into x = g(y). This yields x = g(f(x)), which is the first equation

in Definition 7.1.1.

• Substitute x = g(y) into y = f(x). This yields y = f(g(y)), which is the second equa-

tion in Definition 7.1.1.

Since f and g satisfy the two conditions in Definition 7.1.1, we conclude that they are

inverses. In summary:

If an equation y = f(x) can be solved for x as a function of y, then f has an inverse

function and the resulting equation is x = f −1(y).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A METHOD FOR FINDING INVERSES
Example 3 Find the inverse of f(x) =

√
3x − 2.

Solution. From the discussion above we can find a formula for f −1(y) by solving the

equation

y =
√

3x − 2

for x as a function of y. The computations are

y2 = 3x − 2

x = 1
3
(y2 + 2)

from which it follows that

f −1(y) = 1
3
(y2 + 2)

At this point we have successfully produced a formula for f −1; however, we are not quite

done, since there is no guarantee that the natural domain associated with this formula is

the correct domain for f −1. To determine whether this is so, we will examine the range of

y = f(x) =
√

3x − 2. The range consists of all y in the interval [0,+�), so from (3) this

interval is also the domain of f −1(y); thus, the inverse of f is given by the formula

f −1(y) = 1
3
(y2 + 2), y ≥ 0 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. When a formula for f −1 is obtained by solving the equation y = f(x) for x as

a function of y, the resulting formula has y as the independent variable. If it is preferable

to have x as the independent variable for f −1, then there are two ways to proceed: you can

solve y = f(x) for x as a function of y, and then replace y by x in the final formula for f −1,

or you can interchange x and y in the original equation and solve the equation x = f(y)

for y in terms of x, in which case the final equation will be y = f −1(x). In Example 3,

either of these procedures will produce f −1(x) = 1
3
(x2 + 2), x ≥ 0.

Solving y = f(x) for x as a function of y not only provides a method for finding the

inverse of a function f , but it also provides an interpretation of what the values of f −1

represent. This tells us that for a given y, the quantity f −1(y) is that number x with the

property that f(x) = y. For example, if f −1(1) = 4, then you know that f(4) = 1; and

similarly, if f(3) = 7, then you know that f −1(7) = 3.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EXISTENCE OF INVERSE
FUNCTIONS

Not every function has an inverse function. In general, in order for a function f to have

an inverse function it must assign distinct outputs to distinct inputs. To see why this is

so, consider the function f(x) = x2. Since f(2) = f(−2) = 4, the function f assigns the
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same output to two distinct inputs. If f were to have an inverse function, then the equation

f(2) = 4 would imply that f −1(4) = 2, and the equation f(−2) = 4 would imply that

f −1(4) = −2. This is obviously impossible, since f −1 cannot be a function and have

two different values for f −1(4). Thus, f(x) = x2 has no inverse. Another way to see that

f(x) = x2 has no inverse is to attempt to find the inverse by solving the equation y = x2 for

x in terms of y. We run into trouble immediately because the resulting equation, x = ±√
y,

does not express x as a single function of y.

Functions that assign distinct outputs to distinct inputs are sufficiently important that there

is a name for them—they are said to be one-to-one or invertible. Stated algebraically, a

function f is one-to-one if f(x1) �= f(x2) whenever x1 �= x2; and stated geometrically,

a function f is one-to-one if the graph of y = f(x) is cut at most once by any horizontal

line (Figure 7.1.2).

x

y

y =  f (x)

f (x1) =  f (x2)

x1 x2

Not one-to-one, since 

f (x1) =  f (x2) and x1 ≠ x2

x

y

y =  f (x)

f (x1)

f (x2)

x1 x2

One-to-one, since f (x1) ≠  f (x2) 
if x1 ≠  x2

Figure 7.1.2

One can prove that a function f has an inverse function if and only if it is one-to-one,

and this provides us with the following geometric test for determining whether a function

has an inverse function.

7.1.2 THEOREM (The Horizontal Line Test). A function f has an inverse function if and

only if its graph is cut at most once by any horizontal line.

Example 4 We observed above that the function f(x) = x2 does not have an inverse

function. This is confirmed by the horizontal line test, since the graph of y = x2 is cut more

than once by certain horizontal lines (Figure 7.1.3). ◭

x

y

y = x2

4

–2 2

Figure 7.1.3

x

y y = x3

Figure 7.1.4
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Figure 7.1.5

Example 5 We saw in Example 2(b) that the function f(x) = x3 has an inverse [namely,

f −1(x) = x1/3]. The existence of an inverse is confirmed by the horizontal line test, since

the graph of y = x3 is cut at most once by any horizontal line (Figure 7.1.4). ◭

Example 6 Explain why the function f that is graphed in Figure 7.1.5 has an inverse

function, and find f −1(3).

Solution. The function f has an inverse function since its graph passes the horizontal

line test. To evaluate f −1(3), we view f −1(3) as that number x for which f(x) = 3. From

the graph we see that f(2) = 3, so f −1(3) = 2. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHS OF INVERSE FUNCTIONS
Our next objective is to explore the relationship between the graphs of f and f −1. For this

purpose, it will be desirable to use x as the independent variable for both functions, which

means that we will be comparing the graphs of y = f(x) and y = f −1(x).

If (a, b) is a point on the graph y = f(x), then b = f(a). This is equivalent to the

statement that a = f −1(b), which means that (b, a) is a point on the graph of y = f −1(x).

In short, reversing the coordinates of a point on the graph of f produces a point on the graph
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of f −1. Similarly, reversing the coordinates of a point on the graph of f −1 produces a point

on the graph of f (verify). However, the geometric effect of reversing the coordinates of

a point is to reflect that point about the line y = x (Figure 7.1.6), and hence the graphs of

y = f(x) and y = f −1(x) are reflections of one another about this line (Figure 7.1.7). In

summary, we have the following result.

7.1.3 THEOREM. If f has an inverse function f −1, then the graphs of y = f(x) and

y = f −1(x) are reflections of one another about the line y = x; that is, each is the

mirror image of the other with respect to that line.

y = x

x

y

a

a

b

b

(a, b)

(b, a)

The points (a, b) and (b, a) 
are reflections about y = x.

Figure 7.1.6

y = x

y = f (x)

y = f –1(x)

x

y

(a, b)

(b, a)

Figure 7.1.7

Example 7 Figure 7.1.8 shows the graphs of the inverse functions discussed in Examples

2 and 3. ◭

y = x y = xy = x
y = 2x

y =  
1

2
x

y = x3

y = x1/3

y = 
1

3
(x2 + 2)

y = √3x – 2 

x

xx

y yy

Figure 7.1.8

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INCREASING OR DECREASING
FUNCTIONS ARE INVERTIBLE

If the graph of a function f is always increasing or always decreasing over the domain of

f , then a horizontal line will cut the graph of f at most once (Figure 7.1.9), so f must have

an inverse function. In Theorem 4.1.2 we saw that f must be increasing on any interval on

which f ′(x) > 0 and must be decreasing on any interval on which f ′(x) < 0. Thus, we

have the following result.

7.1.4 THEOREM. If the domain of a function f is an interval on which f ′(x) > 0 or

on which f ′(x) < 0, then f has an inverse function.
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Example 8 The graph of f(x) = x5 + x + 1 is always increasing on (−�,+�) since

f ′(x) = 5x4 + 1 > 0

for all x. However, there is no easy way to solve the equation y = x5 + x + 1 for x in terms

of y (try it), so even though we know that f has an inverse function f −1, we cannot produce

a formula for f −1(x). ◭

x

y

Figure 7.1.9

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. What is important to understand here is that our inability to find an explicit

formula for the inverse function does not negate the existence of the inverse. In this case

the inverse function x = f −1(y) is implicitly defined by the equation y = x5 + x + 1,

so we can use implicit differentiation (Section 3.6) to investigate properties of the inverse

function determined by its derivative.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RESTRICTING DOMAINS FOR
INVERTIBILITY

Frequently, the domain of a function that is not one-to-one can be partitioned into intervals

so that the “piece” of the function defined on each interval in the partition is one-to-one.

Thus, the function may be viewed as piecewise defined in terms of one-to-one functions. For

example, the function f(x) = x2 is not one-to-one on its natural domain, −� < x < +�,

but consider

f(x) =

{

x2, x < 0

x2, x ≥ 0

(Figure 7.1.10). The “piece” of f(x) given by

g(x) = x2, x ≥ 0

is increasing, and so is one-to-one, on its specified domain. Thus, g has an inverse function

g−1. Solving

y = x2, x ≥ 0

for x yields x = √
y, so g−1(y) = √

y. Similarly, if

h(x) = x2, x ≤ 0

then h has an inverse function, h−1(y) = −√
y. Geometrically, the graphs of g(x) = x2,

x ≥ 0 and g−1(x) =
√
x are reflections of one another about the line y = x, as are the

graphs of h(x) = x2, x ≤ 0 and h−1x = −
√
x (Figure 7.1.11).

y = x2, x ≥ 0y = x2, x ≤  0

x

y

Figure 7.1.10
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-1

-2

1

2

3

4

5

y = √x

y = – √x

x

y
y = x2, x ≥ 0y = x2, x ≤ 0

Figure 7.1.11

The functions g(x) and h(x) in the last paragraph are called restrictions of the function

f (x) because each is obtained from f(x) merely by placing a restriction on its domain. In

particular, we say that g(x) is the restriction of f (x) to the interval [0,+�) and that h(x)

is the restriction of f(x) to the interval (−�, 0].
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONTINUITY OF INVERSE
FUNCTIONS

Since the graphs of a one-to-one function f and its inverse function f −1 are reflections

of one another about the line y = x, it is intuitively clear that if the graph of f has no

breaks, then neither will the graph of f −1. This suggests the following result, which we

state without proof.

7.1.5 THEOREM. Suppose that f is a function with domain D and range R. If D is an

interval and f is continuous and one-to-one on D, then R is an interval and the inverse

of f is continuous on R.

For example, the function f(x) = x5+x+1 in Example 8 has domain and range (−�,+�),

and f is continuous and one-to-one on (−�,+�). Thus, we can conclude that f −1 is

continuous on (−�,+�), despite our inability to find a formula for f −1(x).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIABILITY OF INVERSE
FUNCTIONS

Suppose that f is a function whose domain D is an open interval and that f is continuous

and one-to-one on D. Informally, the places where f fails to be differentiable occur where

the graph of f has a corner or a vertical tangent line. Similarly, f −1 will be differentiable

on its domain except where the graph of f −1 has a corner or a vertical tangent line. Note

that a corner in the graph of f will reflect about the line y = x to a corner in the graph

of f −1, and vice versa. However, since a vertical line is the reflection of a horizontal line

about the graph of y = x (Figure 7.1.12), a point of vertical tangency on the graph of f −1

will correspond to a point of horizontal tangency on the graph of f . Thus, f −1 will fail to

be differentiable at a point (x, f −1(x)) on its graph if f ′(f −1(x)) = 0.

x

y

V

H

y = x

The vertical line V reflects into the 

horizontal line H and conversely.

Figure 7.1.12

Now suppose that f is differentiable at a point (a, b) and that f ′(a) �= 0. Then

y − b = f ′(a)(x − a)

is the equation of the tangent line to the graph of f at (a, b). The reflection of this line about

the graph of y = x should carry it to a tangent line L to the graph of y = f −1(x) at the

point (b, a). The equation of L is

x − b = f ′(a)(y − a) or y − a =
1

f ′(a)
(x − b)

which tells us that the slope of the curve y = f −1(x) at (b, a) and the slope of the curve

y = f(x) at (a, b) are reciprocals (Figure 7.1.13). Using a = f −1(b) we obtain

(f −1)′(b) =
1

f ′(f −1(b))

In summary, we have the following result.

x

y

f (x)

Slope = f ′(a)

 y = x

(a, b)

(b, a)

Slope = 1/f ′(a)
f –1(x)

Figure 7.1.13

7.1.6 THEOREM (Differentiability of Inverse Functions). Suppose thatf is a function whose

domain D is an open interval, and let R be the range of f . If f is differentiable and one-

to-one on D, then f −1 is differentiable at any value x in R for which f ′(f −1(x)) �= 0.

Furthermore, if x is in R with f ′(f −1(x)) �= 0, then

d

dx
[f −1(x)] =

1

f ′(f −1(x))
(4)

As an immediate consequence of Theorems 7.1.4 and 7.1.5 we have the following result.

7.1.7 COROLLARY. If the domain of a function f is an interval on which f ′(x) > 0

or on which f ′(x) < 0, then f has an inverse function f −1 and f −1(x) is differentiable

at any value x in the range of f . The derivative of f −1 is given by Formula (4).
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
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•
•
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. A careful proof of Theorem 7.1.6 would involve the definition of the derivative

of f −1(x). As a sketch of this argument, consider the special case where f is differentiable

and increasing on D and set g(x) = f −1(x). Then g is increasing and continuous on R.

Now, g(x) is differentiable at those values of x for which

lim
w→x

g(w) − g(x)

w − x

exists. For w and x in R with w �= x, set r = g(w) and s = g(x), so f (r) = w, f (s) = x,

and r �= s. Then

g(w) − g(x)

w − x
=

r − s

f(r) − f(s)
=

1

f (r) − f (s)

r − s

Using the facts that f and g are continuous and increasing on their domains and that f and

g are inverse functions, we can argue that w→x if and only if r→s. Thus,

lim
w→x

g(w) − g(x)

w − x

exists provided

lim
r→s

f(r) − f(s)

r − s

exists and is not zero. That is, y = f −1(x) is differentiable at x if f is differentiable at y

and f ′(y) �= 0.

Formula (4) can be expressed in a less forbidding form by setting

y = f −1(x) so that x = f(y)

Thus,

dy

dx
= (f −1)′(x) and

dx

dy
= f ′(y) = f ′(f −1(x))

Substituting these expressions into Formula (4) yields the following alternative version of

that formula:

dy

dx
=

1

dx/dy
(5)

If an explicit formula can be obtained for the inverse of a function, then the differen-

tiability of the inverse function can generally be deduced from that formula. However, if

no explicit formula for the inverse can be obtained, then Theorem 7.1.6 is the primary tool

for establishing differentiability of the inverse function. Once the differentiability has been

established, a derivative function for the inverse function can be obtained either by implicit

differentiation or by using Formula (4) or (5).

Example 9 We saw in Example 8 that the function f(x) = x5 + x + 1 is invertible.

(a) Show that f −1 is differentiable on the interval (−�,+�).

(b) Find a formula for the derivative of f −1 using Formula (5).

(c) Find a formula for the derivative of f −1 using implicit differentiation.

Solution (a). Both the range and domain of f are (−�,+�). Since

f ′(x) = 5x4 + 1 > 0

for all x, f −1 is differentiable at every x in its domain, (−�,+�).

Solution (b). If we let y = f −1(x), then

x = f(y) = y5 + y + 1 (6)
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from which it follows that dx/dy = 5y4 + 1. Then, from Formula (5),

dy

dx
=

1

dx/dy
=

1

5y4 + 1
(7)

Since we were unable to solve (6) for y in terms of x, we must leave (7) in terms of y.

Solution (c). Differentiating (6) implicitly with respect to x yields

d

dx
[x] =

d

dx
[y5 + y + 1]

1 = (5y4 + 1)
dy

dx

dy

dx
=

1

5y4 + 1

which agrees with (7). ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHING INVERSE FUNCTIONS
WITH GRAPHING UTILITIES

Most graphing utilities cannot graph inverse functions directly. However, there is a way of

graphing inverse functions by expressing the graphs parametrically. To see how this can be

done, suppose that we are interested in graphing the inverse of a one-to-one function f . We

observed in Section 1.8 that the equation y = f(x) can be expressed parametrically as

x = t, y = f(t) (8)

Moreover, we know that the graph of f −1 can be obtained by interchanging x and y, since

this reflects the graph of f about the line y = x. Thus, from (8) the graph of f −1 can be

represented parametrically as

x = f(t), y = t (9)

For example, Figure 7.1.14 shows the graph of f(x) = x5 +x+1 and its inverse generated

with a graphing utility. The graph of f was generated from the parametric equations

x = t, y = t5 + t + 1

and the graph of f −1 was generated from the parametric equations

x = t5 + t + 1, y = t

-6 8

-6

8

x

y
f

f –1

Figure 7.1.14

EXERCISE SET 7.1 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In (a)–(d), determine whether f and g are inverse functions.

(a) f(x) = 4x, g(x) = 1
4
x

(b) f(x) = 3x + 1, g(x) = 3x − 1

(c) f(x) = 3
√
x − 2, g(x) = x3 + 2

(d) f(x) = x4, g(x) = 4
√
x

2. Check your answers to Exercise 1 with a graphing utility by

determining whether the graphs of f and g are reflections

of one another about the line y = x.

3. In each part, determine whether the function f defined by

the table is one-to-one.

(a)
1

–2

2

–1

3

0

4

1

6

3

5

2

x

f (x)

(b)
1

4

2

–7

3

6

4

–3

6

4

5

1

x

f (x)

4. In each part, determine whether the function f is one-to-

one, and justify your answer.

(a) f(t) is the number of people in line at a movie theater

at time t .

(b) f(x) is your weight on your xth birthday.

(c) f(v) is the weight of v cubic inches of lead.

5. In each part, use the horizontal line test to determine whether

the function f is one-to-one.

(a) f(x) = 3x + 2 (b) f(x) =
√
x − 1

(c) f(x) = |x| (d) f(x) = x3

(e) f(x) = x2 − 2x + 2 (f ) f(x) = sin x

6. In each part, generate the graph of the function f with a

graphing utility, and determine whether f is one-to-one.

(a) f(x) = x3 − 3x + 2 (b) f(x) = x3 −3x2 +3x−1

7. In each part, determine whether f is one-to-one.

(a) f(x) = tan x

(b) f(x) = tan x, −π < x < π, x �= ±π/2

(c) f(x) = tan x, −π/2 < x < π/2
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8. In each part, determine whether f is one-to-one.

(a) f(x) = cos x

(b) f(x) = cos x, −π/2 ≤ x ≤ π/2

(c) f(x) = cos x, 0 ≤ x ≤ π

9. (a) The accompanying figure shows the graph of a function

f over its domain −8 ≤ x ≤ 8. Explain why f has an

inverse, and use the graph to find f −1(2), f −1(−1), and

f −1(0).

(b) Find the domain and range of f −1.

(c) Sketch the graph of f −1.

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8

-2

-1

0

1

2

x

y

Figure Ex-9

10. (a) Explain why the function f graphed in the accompany-

ing figure has no inverse function on its domain −3 ≤
x ≤ 4.

(b) Subdivide the domain into three adjacent intervals on

each of which the function f has an inverse.

-3 4

x

y

Figure Ex-10

In Exercises 11 and 12, determine whether the function f is

one-to-one by examining the sign of f ′(x).

11. (a) f(x) = x2 + 8x + 1

(b) f(x) = 2x5 + x3 + 3x + 2

(c) f(x) = 2x + sin x

12. (a) f(x) = x3 + 3x2 − 8

(b) f(x) = x5 + 8x3 + 2x − 1

(c) f(x) =
x

x + 1

In Exercises 13–23, find a formula for f −1(x).

13. f(x) = x5 14. f(x) = 6x

15. f(x) = 7x − 6 16. f(x) =
x + 1

x − 1

17. f(x) = 3x3 − 5 18. f(x) = 5
√

4x + 2

19. f(x) = 3
√

2x − 1

20. f(x) = 5/(x2 + 1), x ≥ 0

21. f(x) = 3/x2, x < 0 22. f(x) =
{

2x, x ≤ 0

x2, x > 0

23. f(x) =
{

5/2 − x, x < 2

1/x, x ≥ 2

24. Find a formula for p−1(x), given that

p(x) = x3 − 3x2 + 3x − 1

In Exercises 25–29, find a formula for f −1(x), and state the

domain of f −1.

25. f(x) = (x + 2)4, x ≥ 0

26. f(x) =
√
x + 3 27. f(x) = −

√
3 − 2x

28. f(x) = 3x2 + 5x − 2, x ≥ 0

29. f(x) = x − 5x2, x ≥ 1

30. The formula F = 9
5
C + 32, where C ≥ −273.15 expresses

the Fahrenheit temperature F as a function of the Celsius

temperature C.

(a) Find a formula for the inverse function.

(b) In words, what does the inverse function tell you?

(c) Find the domain and range of the inverse function.

31. (a) One meter is about 6.214 × 10−4 miles. Find a formula

y = f(x) that expresses a length x in meters as a func-

tion of the same length y in miles.

(b) Find a formula for the inverse of f .

(c) In practical terms, what does the formula x = f −1(y)

tell you?

32. Suppose that f is a one-to-one, continuous function such

that lim
x→3

f(x) = 7. Find lim
x→7

f −1(x), and justify your rea-

soning.

33. Let f(x) = x2, x > 1, and g(x) =
√
x.

(a) Show that f(g(x)) = x, x > 1, and g(f(x)) = x,

x > 1.

(b) Show that f and g are not inverses by showing that the

graphs of y = f(x) and y = g(x) are not reflections of

one another about y = x.

(c) Do parts (a) and (b) contradict one another? Explain.

34. Let f(x) = ax2 + bx + c, a > 0. Find f −1 if the domain

of f is restricted to

(a) x ≥ −b/(2a) (b) x ≤ −b/(2a).

35. (a) Show that f(x) = (3 − x)/(1 − x) is its own inverse.

(b) What does the result in part (a) tell you about the graph

of f ?

36. Suppose that a line of nonzero slope m intersects the x-axis

at (x0, 0). Find an equation for the reflection of this line

about y = x.

37. (a) Show that f(x) = x3 − 3x2 + 2x is not one-to-one on

(−�,+�).

(b) Find the largest value of k such that f is one-to-one on

the interval (−k, k).
38. (a) Show that the function f(x) = x4 − 2x3 is not one-to-

one on (−�,+�).

(b) Find the smallest value of k such that f is one-to-one

on the interval [k,+�).
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39. Let f(x) = 2x3 + 5x + 3. Find x if f −1(x) = 1.

40. Let f(x) =
x3

x2 + 1
. Find x if f −1(x) = 2.

In Exercises 41–44, use a graphing utility and parametric

equations to display the graphs of f and f −1 on the same

screen.

41. f(x) = x3 + 0.2x − 1, −1 ≤ x ≤ 2

42. f(x) =
√
x2 + 2 + x, −5 ≤ x ≤ 5

43. f(x) = cos(cos 0.5x), 0 ≤ x ≤ 3

44. f(x) = x + sin x, 0 ≤ x ≤ 6

In Exercises 45–48, find the derivative of f −1 by using For-

mula (5), and check your result by differentiating implicitly.

45. f(x) = 5x3 + x − 7 46. f(x) = 1/x2, x > 0

47. f(x) = 2x5 + x3 + 1

48. f(x) = 5x − sin 2x, −
π

4
< x <

π

4

49. Prove that if a2 + bc �= 0, then the graph of

f(x) =
ax + b

cx − a

is symmetric about the line y = x.

50. (a) Prove: If f and g are one-to-one, then so is the compo-

sition f ◦g.

(b) Prove: If f and g are one-to-one, then

(f ◦g)−1 = g−1 ◦f −1

51. Sketch the graph of a function that is one-to-one on

(−�,+�), yet not increasing on (−�,+�) and not decreas-

ing on (−�,+�).

52. Prove: A one-to-one function f cannot have two different

inverse functions.

53. Let F(x) = f(2g(x)) where f(x) = x4 + x3 + 1 for

0 ≤ x ≤ 2, and g(x) = f −1(x). Find F(3).

7.2 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

When logarithms were introduced in the seventeenth century as a computational tool,

they provided scientists of that period computing power that was previously unimag-

inable. Although computers and calculators have largely replaced logarithms for

numerical calculations, the logarithmic functions and their relatives have wide-ranging

applications in mathematics and science. Some of these will be introduced in this

section.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

IRRATIONAL EXPONENTS
In algebra, integer and rational powers of a number b are defined by

bn = b × b × · · · × b (n factors), b−n =
1

bn
, b0 = 1,

bp/q = q
√
bp = (

q
√
b)p, b−p/q =

1

bp/q

If b is negative, then some of the fractional powers of b will have imaginary values; for

example, (−2)1/2 =
√

−2. To avoid this complication we will assume throughout this

section that b ≥ 0, even if it is not stated explicitly.

Observe that the preceding definitions do not include irrational powers of b such as

2π, 3
√

2, and π−
√

7

There are various methods for defining irrational powers. One approach is to define irrational

powers of b as limits of rational powers of b. For example, to define 2π we can start with

the decimal representation of π, namely,

3.1415926 . . .

From this decimal we can form a sequence of rational numbers that gets closer and closer

to π, namely,

3.1, 3.14, 3.141, 3.1415, 3.14159

and from these we can form a sequence of rational powers of 2:

23.1, 23.14, 23.141, 23.1415, 23.14159
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Since the exponents of the terms in this sequence approach a limit of π, it seems plausible

that the terms themselves approach a limit, and it would seem reasonable to define 2π to be

this limit. Table 7.2.1 provides numerical evidence that the sequence does, in fact, have a

limit and that to four decimal places the value of this limit is 2π ≈ 8.8250. More generally,

for any irrational exponent p and positive number b, we can define bp as the limit of the

rational powers of b created from the decimal expansion of p.

Table 7.2.1

3

3.1

3.14

3.141

3.1415

3.14159

3.141592

8.000000

8.574188

8.815241

8.821353

8.824411

8.824962

8.824974

2xx 

•
•
•
•
•
•
•
•

FOR THE READER. Confirm the approximation 2π ≈ 8.8250 by computing 2π directly

using your calculating utility.

Although our definition of bp for irrational p certainly seems reasonable, there is a

lot of tedious mathematical detail required to make the definition precise. We will not be

concerned with such matters here and will accept without proof that the following familiar

laws hold for all real exponents:

bpbq = bp+q,
bp

bq
= bp−q,

(

bp
)q = bpq

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE FAMILY OF EXPONENTIAL
FUNCTIONS

A function of the form f(x) = bx , where b > 0 and b �= 1, is called an exponential

function with base b. Some examples are

f(x) = 2x, f(x) =
(

1
2

)x
, f(x) = πx

Note that an exponential function has a constant base and variable exponent. Thus, functions

such as f(x) = x2 and f(x) = xπ would not be classified as exponential functions, since

they have a variable base and a constant exponent.

It can be shown that exponential functions are continuous and have one of the basic two

shapes shown in Figure 7.2.1a, depending on whether 0 < b < 1 or b > 1. Figure 7.2.1b

shows the graphs of some specific exponential functions.

-2 -1 1 2

x

y

x

y
y = bx

(b > 1) 
y = bx

(0 < b < 1) 

1

2

3

4

1

2x3x10x1

2(  )
x 1

3(  )
x 1

10(  )
x

(a) (b)

Figure 7.2.1

•
•
•
•
•
•
•
•

REMARK. If b = 1, then the function bx is constant, since bx = 1x = 1. This case is of

no interest to us here, so we have excluded it from the family of exponential functions.

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Use your graphing utility to confirm that the graphs of y =
(

1
2

)x
and

y = 2x agree with Figure 7.2.1b, and explain why the two graphs are reflections of one

another about the y-axis.

Since it is not our objective in this section to develop the properties of exponential

functions in rigorous mathematical detail, we will simply observe without proof that the

following properties of exponential functions are consistent with the graphs shown in Fig-

ure 7.2.1.
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7.2.1 THEOREM. If b > 0 and b �= 1, then:

(a) The function f(x) = bx is defined for all real values of x, so its natural domain is

(−�,+�).

(b) The function f(x) = bx is continuous on the interval (−�,+�), and its range is

(0,+�).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOGARITHMS
Recall from algebra that a logarithm is an exponent. More precisely, if b > 0 and b �= 1,

then for positive values of x the logarithm to the base b of x is denoted by

logb x

and is defined to be that exponent to which b must be raised to produce x. For example,

log10 100 = 2, log10(1/1000) = −3, log2 16 = 4, logb 1 = 0, logb b = 1

102 = 100 10−3 = 1/1000 24 = 16 b0 = 1 b1 = b

Historically, the first logarithms ever studied were the logarithms with base 10, called

common logarithms. For such logarithms it is usual to suppress explicit reference to the

base and write log x rather than log10 x. More recently, logarithms with base 2 have played a

role in computer science, since they arise naturally in the binary number system. However,

the most widely used logarithms in applications are the natural logarithms, which have an

irrational base denoted by the letter e in honor of the Swiss mathematician Leonhard Euler

(p. 11), who first suggested its application to logarithms in an unpublished paper written in

1728. This constant, whose value to six decimal places is

e ≈ 2.718282 (1)

arises as the horizontal asymptote of the graph of the equation

y =
(

1 +
1

x

)x

(2)

(Figure 7.2.2).

Figure 7.2.2
-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

1

2

3

4

5

6

y = e

y = 1 +
1
x)

x

(

x

y(1 +    )
x
 

1
x

1 +    
1
x

1

10

100

1000

10,000

100,000

1,000,000

2

1.1

1.01

1.001

1.0001

1.00001

1.000001

x

2.000000

2.593742

2.704814

2.716924

2.718146

2.718268

2.718280

≈  

the values of (1 + 1/x)x

approach e as x → + ∞

The fact that y = e is a horizontal asymptote of (2) as x → +� and as x → −� is

expressed by the limits

e = lim
x→+�

(

1 +
1

x

)x

and e = lim
x→−�

(

1 +
1

x

)x

(3–4)

Later, we will show that these limits can be derived from the limit

e = lim
x→0

(1 + x)1/x (5)

which is sometimes taken as the definition of the number e.
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It is standard to denote the natural logarithm of x by ln x (read “ell en of x”), rather than

loge x. Thus, ln x can be viewed as that power to which e must be raised to produce x. For

example,

ln 1 = 0, ln e = 1, ln 1/e = −1, ln(e2) = 2

Since e0 = 1 Since e1 = e Since e−1 = 1/e Since e2 = e2

In general, the statements

y = ln x and x = ey

are equivalent.

The exponential function f(x) = ex is called the natural exponential function. To

simplify typography, this function is sometimes written as exp x. Thus, for example, you

might see the relationship ex1+x2 = ex1ex2 expressed as

exp(x1 + x2) = exp(x1) exp(x2)

This notation is also used by graphing and calculating utilities, and it is typical to access

the function ex with some variation of the command EXP.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Most scientific calculating utilities provide some way of evaluating

common logarithms, natural logarithms, and powers of e. Check your documentation to see

how this is done, and then confirm the approximation e ≈ 2.718282 and the values that

appear in the table in Figure 7.2.2.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOGARITHMIC FUNCTIONS
Figure 7.2.1a suggests that if b > 0 and b �= 1, then the graph of y = bx passes the

horizontal line test, and this implies that the function f(x) = bx has an inverse function.

To find a formula for this inverse (with x as the independent variable), we can solve the

equation x = by for y as a function of x. This can be done by taking the logarithm to the

base b of both sides of this equation. This yields

logb x = logb(b
y) (6)

However, if we think of logb(b
y) as that exponent to which b must be raised to produce by ,

then it becomes evident that logb(b
y) = y. Thus, (6) can be rewritten as

y = logb x

from which we conclude that the inverse of f(x) = bx is f −1(x) = logb x. This implies

that the graphs of y = bx and y = logb x are reflections of one another about the line y = x

(Figure 7.2.3). We call logb x the logarithmic function with base b.

x

y

1 b

1

b

y = bx

y = logb x

Figure 7.2.3

Recall from Section 7.1 that a one-to-one function f and its inverse satisfy the equations

f −1(f(x)) = x for every x in the domain of f

f(f −1(x)) = x for every x in the domain of f −1

In particular, if we take f(x) = bx and f −1(x) = logb x, and if we keep in mind that the

domain of f −1 is the same as the range of f , then we obtain

logb(b
x) = x for all real values of x

blogb x = x for x > 0
(7)

In the special case where b = e, these equations become

ln(ex) = x for all real values of x

eln x = x for x > 0
(8)

In words, the equations in (7) tell us that the functions bx and logb x cancel out the effect

of one another when composed in either order; for example,

log 10x = x, 10log x = x, ln ex = x, eln x = x, ln e5 = 5, elnπ = π
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Figure 7.2.4 shows computer-generated tables and graphs of y = ex and

y = ln x. The values of y = ex and y = ln x have been rounded to the second decimal

place in the tables. This explains why the column under y = ex in the second table is not

identical to the column under x in the first table.

The inverse relationship between bx and logb x allows us to translate properties of ex-

ponential functions into properties of logarithmic functions, and vice versa.

7.2.2 THEOREM (Comparison of Exponential and Logarithmic Functions). If b > 0 and b �= 1,

then:

b0 = 1 logb 1 = 0

b1 = b logb b = 1

range bx = (0,+�) domain logb x = (0,+�)

domain bx = (−�,+�) range logb x = (−�,+�)

y = bx is continuous on (−�,+�) y = logb x is continuous on (0,+�)

x
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0.50
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5
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8
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–0.69

  0

  0.69
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y = ln x x
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0.25

0.50

1.00

1.99

3.00

4.01

5.00

5.99

7.03

8.00

9.03

y = ex
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9

x

y y = ex

y = ln x

Figure 7.2.4

You should recall the following algebraic properties of logarithms from your earlier

studies.

7.2.3 THEOREM (Algebraic Properties of Logarithms). If b > 0, b �= 1, a > 0, c > 0, and

r is any real number, then:

logb(ac) = logb a + logb c Product property

logb(a/c) = logb a − logb c Quotient property

logb(a
r) = r logb a Power property

logb(1/c) = − logb c Reciprocal property

These properties are often used to expand a single logarithm into sums, differences, and

multiples of other logarithms and, conversely, to condense sums, differences, and multiples

of logarithms into a single logarithm. For example,

log
xy5

√
z

= log xy5 − log
√
z = log x + log y5 − log z1/2 = log x + 5 log y − 1

2
log z

5 log 2 + log 3 − log 8 = log 32 + log 3 − log 8 = log
32 · 3

8
= log 12

1
3

ln x− ln(x2 −1)+2 ln(x+3)= ln x1/3 − ln(x2 −1)+ ln(x+3)2 = ln
3
√
x(x+3)2

x2 − 1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Expressions of the form logb(u + v) and logb(u − v) have no useful simplifi-

cations in terms of logb u and logb v. In particular,

logb(u + v) �= logb u + logb v

logb(u − v) �= logb u − logb v

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOLVING EQUATIONS INVOLVING
EXPONENTIALS AND LOGARITHMS

The equation y = ex can be solved for x in terms of y as x = ln y, provided (of course) that

y is in the domain of the natural logarithm function and x is in the domain of the natural

exponential function; that is, y > 0 and x is any real number. Thus,

y = ex is equivalent to x = ln y if y > 0 and x is any real number
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More generally, if b > 0 and b �= 1, then

y = bx is equivalent to x = logb y if y > 0 and x is any real number

Equations of the form logb x = k can be solved by converting them to the exponential

form x = bk , and equations of the form bx = k can be solved by taking a logarithm of both

sides (usually log or ln).

Example 1 Find x such that

(a) log x =
√

2 (b) ln(x + 1) = 5 (c) 5x = 7

Solution (a). Converting the equation to exponential form yields

x = 10
√

2 ≈ 25.95

Solution (b). Converting the equation to exponential form yields

x + 1 = e5 or x = e5 − 1 ≈ 147.41

Solution (c). Taking the natural logarithm of both sides and using the power property of

logarithms yields

x ln 5 = ln 7 or x =
ln 7

ln 5
≈ 1.21 ◭

Example 2 A satellite that requires 7 watts of power to operate at full capacity is equipped

with a radioisotope power supply whose power output P in watts is given by the equation

P = 75e−t/125

where t is the time in days that the supply is used. How long can the satellite operate at full

capacity?

Solution. The power P will fall to 7 watts when

7 = 75e−t/125

The solution for t is as follows:

7/75 = e−t/125

ln(7/75) = ln(e−t/125)

ln(7/75) = −t/125

t = −125 ln(7/75) ≈ 296.4

so the satellite can operate at full capacity for about 296 days. ◭

Here is a more complicated example.

Example 3 Solve
ex − e−x

2
= 1 for x.

Solution. Multiplying both sides of the given equation by 2 yields

ex − e−x = 2

or equivalently,

ex −
1

ex
= 2
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Multiplying through by ex yields

e2x − 1 = 2ex or e2x − 2ex − 1 = 0

This is really a quadratic equation in disguise, as can be seen by rewriting it in the form

(

ex
)2 − 2ex − 1 = 0

and letting u = ex to obtain

u2 − 2u − 1 = 0

Solving for u by the quadratic formula yields

u =
2 ±

√
4 + 4

2
=

2 ±
√

8

2
= 1 ±

√
2

or, since u = ex ,

ex = 1 ±
√

2

But ex cannot be negative, so we discard the negative value 1 −
√

2; thus,

ex = 1 +
√

2

ln ex = ln(1 +
√

2 )

x = ln(1 +
√

2 ) ≈ 0.881 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CHANGE OF BASE FORMULA FOR
LOGARITHMS

Scientific calculators generally provide keys for evaluating common logarithms and natural

logarithms but have no keys for evaluating logarithms with other bases. However, this is

not a serious deficiency because it is possible to express a logarithm with any base in terms

of logarithms with any other base (see Exercise 40). For example, the following formula

expresses a logarithm with base b in terms of natural logarithms:

logb x =
ln x

ln b
(9)

We can derive this result by letting y = logb x, from which it follows that by = x. Taking

the natural logarithm of both sides of this equation we obtain y ln b = ln x, from which (9)

follows.

Example 4 Use a calculating utility to evaluate log2 5 by expressing this logarithm in

terms of natural logarithms.

Solution. From (9) we obtain

log2 5 =
ln 5

ln 2
≈ 2.321928 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOGARITHMIC SCALES IN SCIENCE
AND ENGINEERING

Logarithms are used in science and engineering to deal with quantities whose units vary over

an excessively wide range of values. For example, the “loudness” of a sound can be measured

by its intensity I (in watts per square meter), which is related to the energy transmitted by

the sound wave—the greater the intensity, the greater the transmitted energy, and the louder

the sound is perceived by the human ear. However, intensity units are unwieldy because

they vary over an enormous range. For example, a sound at the threshold of human hearing

has an intensity of about 10−12 W/m2, a close whisper has an intensity that is about 100

times the hearing threshold, and a jet engine at 50 meters has an intensity that is about

1,000,000,000,000 = 1012 times the hearing threshold. To see how logarithms can be used
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to reduce this wide spread, observe that if

y = log x

then increasing x by a factor of 10 adds 1 unit to y since

log 10x = log 10 + log x = 1 + y

Physicists and engineers take advantage of this property by measuring loudness in terms of

the sound level β, which is defined by

β = 10 log(I/I0)

where I0 = 10−12 W/m2 is a reference intensity close to the threshold of human hearing.

The units of β are decibels (dB), named in honor of the telephone inventor Alexander

Graham Bell. With this scale of measurement, multiplying the intensity I by a factor of 10

adds 10 dB to the sound level β (verify). This results in a more tractable scale than intensity

for measuring sound loudness (Table 7.2.2). Some other familiar logarithmic scales are

the Richter scale used to measure earthquake intensity and the pH scale used to measure

acidity in chemistry, both of which are discussed in the exercises.

Table 7.2.2

b (dB) I/I0

0

10

20

30

40

50

120

.

.

.

100 = 1

101 = 10

102 = 100

103 = 1,000

104 = 10,000

105 = 100,000
.
.
.

1012 = 1,000,000,000,000

Example 5 In 1976 the rock group The Who set the record for the loudest concert: 120

dB. By comparison, a jackhammer positioned at the same spot as The Who would have

produced a sound level of 92 dB. What is the ratio of the sound intensity of The Who to the

sound intensity of a jackhammer?

Peter Townsend of the Who sustained

permanent hearing reduction due to the

high decibel level of his band’s music.

Solution. Let I1 and β1(= 120 dB) denote the intensity and sound level of The Who, and

let I2 and β2 (= 92 dB) denote the intensity and sound level of the jackhammer. Then

I1/I2 = (I1/I0)/(I2/I0)

log(I1/I2) = log(I1/I0) − log(I2/I0)

10 log(I1/I2) = 10 log(I1/I0) − 10 log(I2/I0)

10 log(I1/I2) = β1 − β2 = 120 − 92 = 28

log(I1/I2) = 2.8

Thus, I1/I2 = 102.8 ≈ 630, which tells us that the sound intensity of The Who was 631

times greater than a jackhammer! ◭

Table 7.2.3

x

1

2

3

4

5

6

7

8

9

10

100

1000

0.00

0.69

1.10

1.39

1.61

1.79

1.95

2.08

2.20

2.30

4.61

6.91

2.72

7.39

20.09

54.60

148.41

403.43

1096.63

2980.96

8103.08

22026.47

ex

2.69 × 1043

1.97 × 10434

ln x

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EXPONENTIAL AND LOGARITHMIC
GROWTH

The growth patterns of ex and ln x illustrated by Table 7.2.3 are worth noting. Both functions

increase as x increases, but they increase in dramatically different ways—ex increases

extremely rapidly and ln x increases extremely slowly. For example, at x = 10 the value of

ex is over 22,000, but at x = 1000 the value of ln x has not even reached 7.

The table strongly suggests that ex → +� as x → +�. However, the growth of ln x is

so slow that its limiting behavior as x→+� is not clear from the table. In spite of its slow

growth, it is still true that ln x→+� as x→+�. To see that this is so, choose any positive

number M (as large as you like). The value of ln x will reach M when x = eM , since

ln x = ln(eM) = M

Since ln x increases as x increases, we can conclude that ln x > M for x > eM ; hence,

ln x → +� as x → +� since the values of ln x eventually exceed any positive number M

(Figure 7.2.5).

In summary,

lim
x→+�

ex = +� lim
x→+�

ln x = +� (10–11)

The following limits, which are consistent with Figure 7.2.5, can be deduced numerically
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by constructing appropriate tables of values (verify):

lim
x→−�

ex = 0 lim
x→0+

ln x = −� (12–13)

The following limits can be deduced numerically, but they can be seen more readily by

noting that the graph of y = e−x is the reflection about the y-axis of the graph of y = ex

(Figure 7.2.6):

lim
x→+�

e−x = 0 lim
x→−�

e−x = +� (14–15)

x

y

y = ex

y = ln xy = M

eM

Figure 7.2.5

y = exy = e–x

x

y

1

Figure 7.2.6

EXERCISE SET 7.2 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, simplify the expression without using

a calculating utility.

1. (a) −82/3 (b) (−8)2/3 (c) 8−2/3

2. (a) 2−4 (b) 41.5 (c) 9−0.5

In Exercises 3 and 4, use a calculating utility to approximate

the expression. Round your answer to four decimal places.

3. (a) 21.57 (b) 5−2.1

4. (a)
5
√

24 (b)
8
√

0.6

In Exercises 5 and 6, find the exact value of the expression

without using a calculating utility.

5. (a) log2 16 (b) log2

(
1

32

)

(c) log4 4 (d) log9 3

6. (a) log10(0.001) (b) log10(104)

(c) ln(e3) (d) ln(
√
e )

In Exercises 7 and 8, use a calculating utility to approximate

the expression. Round your answer to four decimal places.

7. (a) log 23.2 (b) ln 0.74

8. (a) log 0.3 (b) lnπ

In Exercises 9 and 10, use the logarithm properties in The-

orem 7.2.3 to rewrite the expression in terms of r , s, and t ,

where r = ln a, s = ln b, and t = ln c.

9. (a) ln a2
√
bc (b) ln

b

a3c

10. (a) ln
3
√
c

ab
(b) ln

√

ab3

c2

In Exercises 11 and 12, expand the logarithm in terms of

sums, differences, and multiples of simpler logarithms.

11. (a) log(10x
√
x − 3 ) (b) ln

x2 sin3 x
√
x2 + 1

12. (a) log

3
√
x + 2

cos 5x
(b) ln

√

x2 + 1

x3 + 5

In Exercises 13–15, rewrite the expression as a single loga-

rithm.

13. 4 log 2 − log 3 + log 16
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14. 1
2

log x − 3 log(sin 2x) + 2

15. 2 ln(x + 1) + 1
3

ln x − ln(cos x)

In Exercises 16–25, solve for x without using a calculating

utility.

16. log10(1 + x) = 3 17. log10(
√
x ) = −1

18. ln(x2) = 4 19. ln(1/x) = −2

20. log3(3
x) = 7 21. log5(5

2x) = 8

22. log10 x
2 + log10 x = 30

23. log10 x
3/2 − log10

√
x = 5

24. ln 4x − 3 ln(x2) = ln 2

25. ln(1/x) + ln(2x3) = ln 3

In Exercises 26–31, solve for x without using a calculating

utility. Use the natural logarithm anywhere that logarithms

are needed.

26. 3x = 2 27. 5−2x = 3

28. 3e−2x = 5 29. 2e3x = 7

30. ex − 2xex = 0 31. xe−x + 2e−x = 0

In Exercises 32 and 33, rewrite the given equation as a

quadratic equation in u, where u = ex ; then solve for x.

32. e2x − ex = 6 33. e−2x − 3e−x = −2

In Exercises 34–36, sketch the graph of the equation without

using a graphing utility.

34. (a) y = 1 + ln(x − 2) (b) y = 3 + ex−2

35. (a) y =
(

1
2

)x−1 − 1 (b) y = ln |x|

36. (a) y = 1 − e−x+1 (b) y = 3 ln
3
√
x − 1

37. Use a calculating utility and the change of base formula (9)

to find the values of log2 7.35 and log5 0.6, rounded to four

decimal places.

In Exercises 38 and 39, graph the functions on the same screen

of a graphing utility. [Use the change of base formula (9),

where needed.]

38. y = ln x, y = ex , log x, 10x

39. y = log2 x, ln x, log5 x, log x

40. (a) Derive the general change of base formula

logb x =
loga x

loga b

(b) Use the result in part (a) to find the exact value of

(log2 81)(log3 32) without using a calculating utility.

41. Use a graphing utility to estimate the two points of intersec-

tion of the graphs of y = x0.2 and y = ln x.

42. The United States public debt D, in billions of dollars, has

been modeled as D = 0.051517(1.1306727)x , where x is

the number of years since 1900. Based on this model, when

did the debt first reach one trillion dollars?

43. (a) Is the curve in the accompanying figure the graph of an

exponential function? Explain your reasoning.

(b) Find the equation of an exponential function that passes

through the point (4, 2).

(c) Find the equation of an exponential function that passes

through the point
(

2, 1
4

)

.

(d) Use a graphing utility to generate the graph of an expo-

nential function that passes through the point (2, 5).

x

y

Figure Ex-43

44. (a) Make a conjecture about the general shape of the graph

of y = log(log x), and sketch the graph of this equation

and y = log x in the same coordinate system.

(b) Check your work in part (a) with a graphing utility.

45. Find the fallacy in the following “proof” that 1
8
> 1

4
. Mul-

tiply both sides of the inequality 3 > 2 by log 1
2

to get

3 log 1
2
> 2 log 1

2

log
(

1
2

)3
> log

(
1
2

)2

log 1
8
> log 1

4

1
8
> 1

4

46. Prove the four algebraic properties of logarithms in Theo-

rem 7.2.3.

47. If equipment in the satellite of Example 2 requires 15 watts

to operate correctly, what is the operational lifetime of the

power supply?

48. The equation Q = 12e−0.055t gives the mass Q in grams of

radioactive potassium-42 that will remain from some initial

quantity after t hours of radioactive decay.

(a) How many grams were there initially?

(b) How many grams remain after 4 hours?

(c) How long will it take to reduce the amount of radioac-

tive potassium-42 to half of the initial amount?

49. The acidity of a substance is measured by its pH value,

which is defined by the formula

pH = − log[H+]

where the symbol [H+] denotes the concentration of hydro-

gen ions measured in moles per liter. Distilled water has a

pH of 7; a substance is called acidic if it has pH < 7 and
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basic if it has pH > 7. Find the pH of each of the following

substances and state whether it is acidic or basic.

substance [H+]

Arterial blood

Tomatoes

Milk

Coffee

(a)

(b)

(c)

(d)

3.9 × 10–8 mol/L

6.3 × 10–5 mol/L

4.0 × 10–7 mol/L

1.2 × 10–6 mol/L

50. Use the definition of pH in Exercise 49 to find [H+] in a

solution having a pH equal to

(a) 2.44 (b) 8.06

51. The perceived loudness β of a sound in decibels (dB) is re-

lated to its intensity I in watts/square meter (W/m
2
) by the

equation

β = 10 log(I/I0)

where I0 = 10−12 W/m2. Damage to the average ear oc-

curs at 90 dB or greater. Find the decibel level of each of the

following sounds and state whether it will cause ear damage.

sound I

Jet aircraft (from 500 ft)

Amplified rock music

Garbage disposal

TV (mid volume from 10 ft)

(a)

(b)

(c)

(d)

1.0 × 102 W/m2

1.0 W/m2

1.0 × 10–4 W/m2

3.2 × 10–5 W/m2

In Exercises 52–54, use the definition of the decibel level of

a sound (see Exercise 51).

52. If one sound is three times as intense as another, how much

greater is its decibel level?

53. According to one source, the noise inside a moving automo-

bile is about 70 dB, whereas an electric blender generates 93

dB. Find the ratio of the intensity of the noise of the blender

to that of the automobile.

54. Suppose that the decibel level of an echo is 2
3

the decibel

level of the original sound. If each echo results in another

echo, how many echoes will be heard from a 120-dB sound

given that the average human ear can hear a sound as low

as 10 dB?

55. On the Richter scale, the magnitude M of an earthquake is

related to the released energy E in joules (J) by the equation

logE = 4.4 + 1.5M

(a) Find the energyE of the 1906 San Francisco earthquake

that registered M = 8.2 on the Richter scale.

(b) If the released energy of one earthquake is 10 times

that of another, how much greater is its magnitude on

the Richter scale?

56. Suppose that the magnitudes of two earthquakes differ by

1 on the Richter scale. Find the ratio of the released energy

of the larger earthquake to that of the smaller earthquake.

[Note: See Exercise 55 for terminology.]

In Exercises 57 and 58, use Formula (3) or (5), as appropriate,

to find the limit.

57. Find lim
x→0

(1 − 2x)1/x . [Hint: Let t = −2x.]

58. Find lim
x→+�

(1 + 3/x)x . [Hint: Let t = 3/x.]

7.3 DERIVATIVES AND INTEGRALS INVOLVING LOGARITHMIC
AND EXPONENTIAL FUNCTIONS

In this section we will obtain derivative formulas for logarithmic and exponential

functions, and we will discuss the general relationship between the derivative of a

one-to-one function and its inverse function.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF LOGARITHMIC
FUNCTIONS

The natural logarithm plays a special role in calculus that can be motivated by differentiating

logb x, where b is an arbitrary base. For this purpose, recall that logb x is continuous for

x > 0. We will also need the limit

lim
v→0

(1 + v)1/v = e

that was given in Formula (5) of Section 7.2 (with x rather than v as the variable).
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Using the definition of a derivative, we obtain

d

dx
[logb x] = lim

w→x

logb w − logb x

w − x

= lim
w→x

[
1

w − x
logb

(w

x

)
]

The quotient property of

logarithms in Theorem 7.2.3

= lim
w→x

[
1

w − x
logb

(
x + (w − x)

x

)]

= lim
w→x

[
1

w − x
logb

(

1 +
w − x

x

)]

= lim
w→x

[
1

x

x

w − x
logb

(

1 +
w − x

x

)]

= lim
v→0

[
1

x

1

v
logb(1 + v)

]

Let v = x/(w − x) and note

that v→0 if and only if w→x.

=
1

x
lim
v→0

[
1

v
logb(1 + v)

]

x is fixed for this limit computation, so

1/x can be moved through the limit sign.

=
1

x
lim
v→0

[

logb(1 + v)1/v
]

The power property of

logarithms in Theorem 7.2.3

=
1

x
logb

[

lim
v→0

(1 + v)1/v

]

logb x is continuous on (0,+�), so we can

move the limit through the function symbol.

=
1

x
logb e Formula (5) of Section 7.2

Thus,

d

dx
[logb x] =

1

x
logb e, x > 0

But from Formula (9) of Section 7.2 we have that logb e = 1/ ln b, so we can rewrite this

derivative formula as

d

dx
[logb x] =

1

x ln b
, x > 0 (1)

In the special case where b = e, we have that ln e = 1, so this formula becomes

d

dx
[ln x] =

1

x
, x > 0 (2)

Thus, among all possible bases, the base b = e produces the simplest formula for the

derivative of logb x. This is one of the reasons why the natural logarithm function is preferred

over other logarithms in calculus.

Example 1

(a) Figure 7.3.1 shows the graph of y = ln x and its tangent lines at the points x = 1
2
, 1,

3, and 5. Find the slopes of those tangent lines.

(b) Does the graph of y = ln x have any horizontal tangent lines? Use the derivative of

ln x to justify your answer.

1 2 3 4 5 6

-1

1

x

y

y = ln x with tangent lines

Figure 7.3.1

Solution (a). From (2), the slopes of the tangent lines at the points x = 1
2
, 1, 3, and 5 are

1/x = 2, 1, 1
3
, and 1

5
, which is consistent with Figure 7.3.1.
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Solution (b). From the graph of y = ln x, it does not appear that there are any horizontal

tangent lines. This is confirmed by the fact that dy/dx = 1/x is not equal to zero for any

real value of x. ◭

If u is a differentiable function of x, and if u(x) > 0, then applying the chain rule to (1)

and (2) produces the following generalized derivative formulas:

d

dx
[logb u] =

1

u ln b
·
du

dx
and

d

dx
[ln u] =

1

u
·
du

dx
(3–4)

Example 2 Find
d

dx
[ln(x2 + 1)].

Solution. From (4) with u = x2 + 1,

d

dx
[ln(x2 + 1)] =

1

x2 + 1
·
d

dx
[x2 + 1] =

1

x2 + 1
· 2x =

2x

x2 + 1
◭

When possible, the properties of logarithms in Theorem 7.2.3 should be used to convert

products, quotients, and exponents into sums, differences, and constant multiples before

differentiating a function involving logarithms.

Example 3

d

dx

[

ln

(
x2 sin x
√

1 + x

)]

=
d

dx

[

2 ln x + ln(sin x) −
1

2
ln(1 + x)

]

=
2

x
+

cos x

sin x
−

1

2(1 + x)

=
2

x
+ cot x −

1

2 + 2x
◭

Example 4 Find
d

dx
[ln |x|].

Solution. The function ln |x| is defined for all x, except x = 0; we will consider the cases

x > 0 and x < 0 separately.

If x > 0, then |x| = x, so

d

dx
[ln |x|] =

d

dx
[ln x] =

1

x

If x < 0, then |x| = −x, so from (4) we have

d

dx
[ln |x|] =

d

dx
[ln(−x)] =

1

(−x)
·
d

dx
[−x] =

1

x

Since the same formula results in both cases, we have shown that

d

dx
[ln |x|] =

1

x
if x �= 0 (5)

Example 5 From (5) and the chain rule,

d

dx
[ln |sin x|] =

1

sin x
·
d

dx
[sin x] =

cos x

sin x
= cot x ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOGARITHMIC DIFFERENTIATION
We now consider a technique called logarithmic differentiation that is useful for differen-

tiating functions that are composed of products, quotients, and powers.
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Example 6 The derivative of

y =
x2 3

√
7x − 14

(

1 + x2
)4

(6)

is messy to calculate directly. However, if we first take the natural logarithm of both sides

and then use its properties, we can write

ln y = 2 ln x + 1
3

ln(7x − 14) − 4 ln(1 + x2)

Differentiating both sides with respect to x yields

1

y

dy

dx
=

2

x
+

7/3

7x − 14
−

8x

1 + x2
(7)

Thus, on solving for dy/dx and using (6) we obtain

dy

dx
=

x2 3
√

7x − 14
(

1 + x2
)4

[
2

x
+

1

3x − 6
−

8x

1 + x2

]

(8)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Since ln y is defined only for y > 0, logarithmic differentiation of y = f(x) is

valid only on intervals where f(x) is positive. Thus, the derivative obtained in the preceding

example is valid on the interval (2,+�), since the given function is positive for x > 2.

However, the formula is actually valid on the interval (−�, 2) as well. This can be seen

by taking absolute values before proceeding with the logarithmic differentiation and noting

that ln |y| is defined for all y except y = 0. If we do this and simplify using properties of

logarithms and absolute values, we obtain

ln |y| = 2 ln |x| + 1
3

ln |7x − 14| − 4 ln |1 + x2|

Differentiating both sides with respect to x yields (7), and hence results in (8).

In general, if the derivative of y = f(x) is to be obtained by logarithmic differentiation,

then the same formula for dy/dx will result regardless of whether one first takes absolute

values or not. Thus, a derivative formula obtained by logarithmic differentiation will be

valid except perhaps at points where f(x) is zero. The formula may, in fact, be valid at

those points as well, but it is not guaranteed.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRALS INVOLVING ln x

Formula (2) states that the function ln x is an antiderivative of 1/x on the interval (0,+�),

whereas Formula (5) states that the function ln |x| is an antiderivative of 1/x on each of the

intervals (−�, 0) and (0,+�). Thus we have the companion integration formula to (5),

∫
1

u
du = ln |u| + C (9)

with implicit understanding that the formula is applicable only across an interval that does

not contain 0.

Example 7 Applying Formula (9),
∫ e

1

1

x
dx = ln |x|

]e

1

= ln |e| − ln |1| = 1 − 0 = 1

∫ −1

−e

1

x
dx = ln |x|

]−1

−e

= ln |−1| − ln |−e| = 0 − 1 = −1 ◭

Example 8 Evaluate

∫
3x2

x3 + 5
dx.

Solution. Make the substitution

u = x3 + 5, du = 3x2 dx
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so that
∫

3x2

x3 + 5
dx =

∫
1

u
du = ln |u| + C = ln |x3 + 5| + C

Formula (9)

◭

Example 9 Evaluate

∫

tan x dx.

Solution.
∫

tan x dx =
∫

sin x

cos x
dx = −

∫
1

u
du = − ln |u| + C = − ln | cos x| + C

u = cos x

du = − sin x dx

◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The last two examples illustrate an important point: Any integral of the form
∫

g′(x)

g(x)
dx

(where the numerator of the integrand is the derivative of the denominator) can be evaluated

by the u-substitution u = g(x), du = g′(x) dx, since this substitution yields
∫

g′(x)

g(x)
dx =

∫
du

u
= ln |u| + C = ln |g(x)| + C

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF IRRATIONAL
POWERS OF x

We know from Formula (15) of Section 3.6 that the differentiation formula

d

dx
[xr ] = rxr−1 (10)

holds for rational values of r . We will now use logarithmic differentiation to show that this

formula holds if r is any real number (rational or irrational). In our computations we will

assume that xr is a differentiable function and that the familiar laws of exponents hold for

real exponents.

Lety = xr , where r is a real number. The derivativedy/dx can be obtained by logarithmic

differentiation as follows:

ln |y| = ln |xr | = r ln |x|
d

dx
[ln |y|] =

d

dx
[r ln |x|]

1

y

dy

dx
=

r

x

dy

dx
=

r

x
y =

r

x
xr = rxr−1

This establishes (10) for real values of r . Thus, for example,

d

dx
[xπ] = πxπ−1 and

d

dx

[

x
√

2
]

=
√

2x
√

2−1 (11)

Note that Formula (10) justifies the integration formula
∫

xr dx =
[
xr+1

r + 1

]

+ C (r �= −1)

(Table 5.2.1) for any real number r other than −1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF EXPONENTIAL
FUNCTIONS

By (1) we know that

d

dx
[logb x]
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is a nonzero function, so Theorem 7.1.6 establishes that the inverse function for logb x is

differentiable on (−�,+�).

To obtain a derivative formula for the exponential function with base b, we rewrite y = bx

as

x = logb y

and differentiate implicitly using (3) to obtain

1 =
1

y ln b
·
dy

dx

Solving for dy/dx and replacing y by bx we have

dy

dx
= y ln b = bx ln b

Thus, we have shown that

d

dx
[bx] = bx ln b (12)

In the special case where b = e we have ln e = 1, so that (12) becomes

d

dx
[ex] = ex (13)

Moreover, if u is a differentiable function of x, then it follows from (12) and (13) that

d

dx
[bu] = bu ln b ·

du

dx
and

d

dx
[eu] = eu ·

du

dx
(14–15)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It is important to distinguish between differentiating the exponential function

bx (variable exponent and constant base) and the power function xb (variable base and

constant exponent). For example, compare the derivative of xπ in (11) to the following

derivative of πx , which is obtained from (12):

d

dx
[πx] = πx lnπ

Example 10 The following computations use Formulas (14) and (15).

d

dx
[2sin x] = (2sin x)(ln 2) ·

d

dx
[sin x] = (2sin x)(ln 2)(cos x)

d

dx
[e−2x] = e−2x ·

d

dx
[−2x] = −2e−2x

d

dx

[

ex
3] = ex

3 ·
d

dx
[x3] = 3x2ex

3

d

dx
[ecos x] = ecos x ·

d

dx
[cos x] = −(sin x)ecos x

◭

The rules

d

dx
(un) = n · un−1 du

dx
if n is a real number

d

dx
(bu) = bu ln b ·

du

dx
if b > 0, b �= 1

deal with derivatives of exponential expressions in which either the base or the exponent of

the expression is a number. The following example illustrates the application of logarithmic

differentiation for finding dy/dx when y is an expression of the form y = uv where both u

and v are nonconstant functions of x.
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Example 11 Use logarithmic differentiation to find
d

dx
[(x2 + 1)sin x].

Solution. Setting y = (x2 + 1)sin x we have

ln y = ln[(x2 + 1)sin x] = (sin x) ln(x2 + 1)

Then

d

dx
(ln y) =

1

y
·
dy

dx

=
d

dx
[(sin x) ln(x2 + 1)] = (sin x)

1

x2 + 1
(2x) + (cos x) ln(x2 + 1)

Thus,

dy

dx
= y

[
2x sin x

x2 + 1
+ (cos x) ln(x2 + 1)

]

= (x2 + 1)sin x

[
2x sin x

x2 + 1
+ (cos x) ln(x2 + 1)

]

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRALS INVOLVING
EXPONENTIAL FUNCTIONS

Associated with derivatives (14) and (15) are the companion integration formulas

∫

bu du =
bu

ln b
+ C and

∫

eu du = eu + C (16–17)

Example 12
∫

2x dx =
2x

ln 2
+ C ◭

Example 13 Evaluate

∫

e5x dx.

Solution. Let u = 5x so that du = 5 dx or dx = 1
5
du, which yields

∫

e5x dx =
1

5

∫

eu du =
1

5
eu + C =

1

5
e5x + C ◭

Example 14
∫

e−x dx = −
∫

eu du = −eu + C = −e−x + C

u = −x

du = −dx

∫

x2ex
3

dx =
1

3

∫

eu du =
1

3
eu + C =

1

3
ex

3 + C

u = x3

du = 3x2 dx

∫
e
√
x

√
x
dx = 2

∫

eu du = 2eu + C = 2e
√
x + C ◭

u =
√
x

du = 1
2
√
x
dx

Example 15 Evaluate

∫ ln 3

0

ex(1 + ex)1/2 dx.

Solution. Make the u-substitution

u = 1 + ex, du = ex dx
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and change the x-limits of integration (x = 0, x = ln 3) to u-limits

(u = 1 + e0 = 2, u = 1 + eln 3 = 1 + 3 = 4).
∫ ln 3

0

ex(1 + ex)1/2 dx =
∫ 4

2

u1/2 du =
2

3
u3/2

]4

2

=
2

3
[43/2 − 23/2] =

16 − 4
√

2

3
◭

EXERCISE SET 7.3 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–30, find dy/dx.

1. y = ln 2x 2. y = ln(x3)

3. y = (ln x)2 4. y = ln(sin x)

5. y = ln | tan x| 6. y = ln(2 +
√
x )

7. y = ln

(
x

1 + x2

)

8. y = ln(ln x)

9. y = ln |x3 − 7x2 − 3| 10. y = x3 ln x

11. y =
√

ln x 12. y =
√

1 + ln2 x

13. y = cos(ln x) 14. y = sin2(ln x)

15. y = x3 log2(3 − 2x) 16. y = x
[

log2(x
2 − 2x)

]3

17. y =
x2

1 + log x
18. y =

log x

1 + log x

19. y = e7x 20. y = e−5x2

21. y = x3ex 22. y = e1/x

23. y =
ex − e−x

ex + e−x
24. y = sin(ex)

25. y = ex tan x 26. y =
ex

ln x

27. y = e(x−e3x ) 28. y = exp(
√

1 + 5x3 )

29. y = ln(1 − xe−x) 30. y = ln(cos ex)

In Exercises 31 and 32, find dy/dx by implicit differentiation.

31. y + ln xy = 1 32. y = ln(x tan y)

In Exercises 33 and 34, use the method of Example 3 to help

perform the indicated differentiation.

33.
d

dx

[

ln
cos x

√

4 − 3x2

]

34.
d

dx

[

ln

√

x − 1

x + 1

]

In Exercises 35–38, find dy/dx using the method of logarith-

mic differentiation.

35. y = x
3
√

1 + x2 36. y = 5

√

x − 1

x + 1

37. y =
(

x2 − 8
)1/3

√

x3 + 1

x6 − 7x + 5
38. y =

sin x cos x tan3 x
√
x

In Exercises 39–42, find f ′(x) by Formula (14) and then by

logarithmic differentiation.

39. f(x) = 2x 40. f(x) = 3−x

41. f(x) = πsin x 42. f(x) = πx tan x

In Exercises 43–46, find dy/dx using the method of logarith-

mic differentiation.

43. y =
(

x3 − 2x
)ln x

44. y = xsin x

45. y = (ln x)tan x 46. y =
(

x2 + 3
)ln x

47. Find f ′(x) if f(x) = xe.

48. (a) Explain why Formula (12) cannot be used to find

(d/dx)[xx].

(b) Find this derivative by logarithmic differentiation.

49. Find

(a)
d

dx
[logx e] (b)

d

dx
[logx 2].

50. Use Part 2 of the Fundamental Theorem of Calculus (5.6.3)

to find the derivative.

(a)
d

dx

∫ x

0

et
2

dt (b)
d

dx

∫ x

1

ln t dt

51. Let f(x) = ekx and g(x) = e−kx . Find

(a) f (n)(x) (b) g(n)(x).

52. Find dy/dt if y = e−λt (A sinωt + B cosωt), where A, B,

λ, and ω are constants.

53. Find f ′(x) if

f(x) =
1

√
2πσ

exp

[

−
1

2

(
x − µ

σ

)2
]

where µ and σ are constants and σ �= 0.

54. Show that for any constants A and k, the function y = Aekt

satisfies the equation dy/dt = ky.

55. Show that for any constants A and B, the function

y = Ae2x + Be−4x

satisfies the equation

y ′′ + 2y ′ − 8y = 0

56. Show that

(a) y = xe−x satisfies the equation xy ′ = (1 − x)y

(b) y = xe−x2/2 satisfies the equation xy ′ = (1 − x2)y.

In Exercises 57 and 58, find the limit by interpreting the ex-

pression as an appropriate derivative.

57. (a) lim
w→1

lnw

w − 1
(b) lim

w→0

10w − 1

w
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58. (a) lim
1x→0

ln(e2 + 1x) − 2

1x
(b) lim

w→1

2w − 2

w − 1

In Exercises 59 and 60, evaluate the integral, and check your

answer by differentiating.

59.

∫ [
2

x
+ 3ex

]

dx 60.

∫ [
1

2t
−

√
2et

]

dt

In Exercises 61 and 62, evaluate the integrals by making the

indicated substitutions.

61. (a)

∫
dx

x ln x
; u = ln x (b)

∫

e−5x dx; u = −5x

62. (a)

∫
sin 3θ

1 + cos 3θ
dθ ; u = 1 + cos 3θ

(b)

∫
ex

1 + ex
dx; u = 1 + ex

In Exercises 63–72, evaluate the integrals by making appro-

priate substitutions.

63.

∫

e2x dx 64.

∫
dx

2x

65.

∫

esin x cos x dx 66.

∫

x3ex
4

dx

67.

∫

x2e−2x3

dx 68.

∫
ex + e−x

ex − e−x
dx

69.

∫
dx

ex
70.

∫ √
ex dx

71.

∫
e
√
y+1

√

y + 1
dy 72.

∫
dy

√
ye

√
y

In Exercises 73–76, evaluate each integral by first modifying

the form of the integrand and then making an appropriate

substitution.

73.

∫
t + 1

t
dt 74.

∫

e2 ln x dx

75.

∫

[ln(ex) + ln(e−x)] dx 76.

∫

cot x dx

In Exercises 77 and 78, evaluate the integrals using Part 1 of

the Fundamental Theorem of Calculus (5.6.1).

77.

∫ 3

ln 2

5ex dx 78.

∫ 1

1/2

1

2x
dx

79. Evaluate the definite integrals by making the indicated u-

substitutions.

(a)

∫ 1

0

e2x−1 dx; u = 2x − 1

(b)

∫ e2

e

ln x

x
dx; u = ln x

80. Evaluate the definite integral by making the indicated u-

substitution and then applying a formula from geometry.

∫ e6

e−6

√

36 − (ln x)2

x
dx; u = ln x

In Exercises 81 and 82, evaluate the definite integral two

ways: first by a u-substitution in the definite integral and then

by a u-substitution in the corresponding indefinite integral.

81.

∫ ln 3

− ln 3

ex

ex + 4
dx 82.

∫ ln 5

0

ex(3 − 4ex) dx

In Exercises 83–86, evaluate the definite integrals by any

method.

83.

∫ e

0

dx

x + e
84.

∫
√

2

1

xe−x2

dx

85.

∫ ln 2

0

e−3x dx 86.

∫ 1

−1

|ex − 1| dx

87. (a) Graph some representative integral curves of the func-

tion f(x) = ex/2.

(b) Find an equation for the integral curve that passes

through the point (0, 1).

88. Use a graphing utility to generate some typical integral

curves of f(x) = x/(x2 + 1) over the interval (−5, 5).

89. Solve the initial-value problems.

(a)
dy

dt
= 2e−t , y(1) = 3 −

2

e

(b)
dy

dt
=

1

t
, y(−1) = 5

7.4 GRAPHS AND APPLICATIONS INVOLVING LOGARITHMIC
AND EXPONENTIAL FUNCTIONS

In this section we will apply the techniques developed in Chapter 4 to graphing func-

tions involving logarithmic or exponential functions. We will also look at applications

of differentiation and integration in some contexts that entail logarithmic or exponen-

tial functions.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOME PROPERTIES OF e
x AND ln x

In Section 7.2 we presented computer-generated graphs of y = ex and y = ln x (Fig-

ure 7.2.4). For reference, these curves are shown in Figure 7.4.1. Since f(x) = ex and

g(x) = ln x are inverses, their graphs are reflections of one another about the line y = x.

These graphs suggest that ex and ln x have the properties listed in Table 7.4.1.

x

y

(0, 1)

(e, 1)

(1, 0)

(1, e)

y = x

y = ex

y = ln x

Figure 7.4.1

Table 7.4.1

properties of ex
properties of ln x

ex > 0 for all x
ln x > 0 if x > 1
ln x < 0 if 0 < x < 1
ln x = 0 if x = 1

ex is increasing on (–∞, +∞) ln x is increasing on (0, +∞)

The graph of ex is concave
up on (–∞, +∞)

The graph of ln x is concave
down on (0, +∞)

We can verify that y = ex is increasing and its graph is concave up from its first and

second derivatives. For all x in (−�,+�) we have

d

dx
[ex] = ex > 0 and

d2

dx2
[ex] =

d

dx
[ex] = ex > 0

The first of these inequalities demonstrates that ex is increasing on (−�,+�), and the

second inequality shows that the graph of ex is concave up on (−�,+�).

Similarly, for all x in (0,+�) we have

d

dx
[ln x] =

1

x
> 0 and

d2

dx2
[ln x] =

d

dx

[
1

x

]

= −
1

x2
< 0

The first of these inequalities demonstrates that ln x is increasing on (0,+�), and the second

inequality shows that the graph of ln x is concave down on (0,+�).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHING EXPONENTIAL AND
LOGARITHMIC FUNCTIONS

Example 1 Generate or sketch a graph of y = e−x2/2 and identify the exact locations of

all relative extrema and inflection points.

Solution. Figure 7.4.2 shows a calculator-generated graph of y = e−x2/2 in the window

[−3, 3] × [−1, 2]. This figure suggests that the graph is symmetric about the y-axis and

has a relative maximum at x = 0, a horizontal asymptote y = 0, and two inflection points.

The following analysis will identify the exact locations of these features.

[–3, 3] × [–1, 2]

xScl = 1, yScl = 1

Figure 7.4.2

• Symmetries: Replacing x by −x does not change the equation, so the graph is symmetric

about the y-axis.

• x-intercepts: Setting y = 0 leads to the equation e−x2/2 = 0, which has no solutions

since all powers of e have positive values. Thus, there are no x-intercepts.

• y-intercepts: Setting x = 0 yields the y-intercept y = 1.

• Vertical asymptotes: There are no vertical asymptotes since e−x2/2 is defined and con-

tinuous on (−�,+�).

• Horizontal asymptotes: Since −x2/2 → −� as x → −� or x → +�, it follows from

Formula (12) of Section 7.2 that

lim
x→−�

e−x2/2 = lim
x→+�

e−x2/2 = 0

Thus, e−x2/2 is asymptotic to y = 0 as x→−� and as x→+�.
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• Derivatives:

dy

dx
= e−x2/2 d

dx

[

−
x2

2

]

= −xe−x2/2

d2y

dx2
= −x

d

dx

[

e−x2/2
]

+ e−x2/2 d

dx
[−x]

= x2e−x2/2 − e−x2/2 = (x2 − 1)e−x2/2

• Intervals of increase and decrease; relative extrema: Since e−x2/2 > 0 for all x, the

sign of dy/dx = −xe−x2/2 is the same as the sign of −x.

0

0+++++++ –––––––

Increasing Sta Decreasing

x

Sign of dy/dx
y

The analysis reveals a relative maximum e0 = 1 at x = 0.

• Concavity: Since e−x2/2 > 0 for all x, the sign of d2y/dx2 = (x2 − 1)e−x2/2 is the

same as the sign of x2 − 1.

–1 1

0++++++ ++++++0–– ––––

Concave

up

Concave

up

Infl InflConcave

down

x

Sign of d2y/dx2

y

Thus, the inflection points occur at x = −1 and at x = 1. These inflection points are

(−1, e−1/2) ≈ (−1, 0.61) and (1, e−1/2) ≈ (1, 0.61).

Our analysis confirms that the calculater-generated graph in Figure 7.4.2 reveals all of

the essential features of the graph of y = e−x2/2. ◭

Example 2 Generate or sketch a graph of y = ln x/x and identify the exact locations of

all relative extrema and inflection points.

Solution. Note that since the domain of ln x/x is (0,+�), the graph lies entirely to the

right of the y-axis. Figure 7.4.3 shows a graph of y = ln x/x obtained with a graphing utility.

This figure suggests that the graph and has one relative maximum, a horizontal asymptote

y = 0, a vertical asymptote x = 0, and one inflection point. The following analysis will

identify the exact locations of these features.
5 10 15 20

-0.4

-0.2

0.2

0.4

x

y

y =
ln x

x

Figure 7.4.3

• Symmetries: None.

• x-intercepts: Setting y = 0 leads to the equation y = ln x/x = 0, whose only solution

occurs when ln x = 0, or x = 1.

• y-intercepts: There are no y-intercepts since ln x is not defined at x = 0.

• Vertical asymptotes: Since

lim
x→0+

1

x
= +� and lim

x→0+
ln x = −�

it follows that values of

y =
ln x

x
=

1

x
(ln x)

will decrease without bound as x→0+, so

lim
x→0+

ln x

x
= −�

and the graph has a vertical asymptote x = 0.
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• Horizontal asymptotes: Note that ln x/x > 0 for x > 1. We will see below that y =
ln x/x is decreasing for sufficiently large values of x, so y = ln x/x is decreasing and

positive on (1,�). We will develop a technique in Section 7.7 that will allow us to

conclude that

lim
x→+�

ln x

x
= 0

Thus, ln x/x is asymptotic to y = 0 as x→+�.

• Derivatives:

dy

dx
=

x(1/x) − (ln x)(1)

x2
=

1 − ln x

x2

d2y

dx2
=

x2(−1/x) − (1 − ln x)(2x)

x4
=

2x ln x − 3x

x4
=

2 ln x − 3

x3

• Intervals of increase and decrease; relative extrema: Since x2 > 0 for all x > 0, the

sign of

dy

dx
=

1 − ln x

x2

is the same as the sign of 1 − ln x. But ln x is an increasing function with ln e = 1,

so 1 − ln x is positive for x < e and negative for x > e. We encapsulate this in the

following diagram.

e

0

0

+∞ +++++++ –––––––

Increasing Sta Decreasing

x

Sign of dy/dx
y

The analysis reveals a relative maximum (ln e)/e = 1/e ≈ 0.37 at x = e.

• Concavity: Since x3 > 0 for all x > 0, the sign of

d2y

dx2
=

2 ln x − 3

x3

is the same as the sign of 2 ln x − 3. Now, 2 ln x − 3 = 0 when ln x = 3
2
, or x = e3/2.

Again, since ln x is an increasing function, 2 ln x − 3 is negative for x < e3/2 and

positive for x > e3/2. We encapsulate this in the following diagram.

0 e3/2

–∞ ++++++0–– –––––– ––––

Concave

up

InflConcave down

x

Sign of d2y/dx2

y

Thus, an inflection point occurs at
(

e3/2, 3
2
e3/2

)

≈ (4.48, 0.33).

Figure 7.4.4 shows our earlier graph with the relative maximum and inflection point

identified. ◭

10 20

-0.4

-0.2

0.2

0.4

x

y

e e3/2

Figure 7.4.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOGISTIC CURVES
When a population grows in an environment in which space or food is limited, the graph

of population versus time is typically an S-shaped curve of the form shown in Figure 7.4.5.

The scenario described by this curve is a population that grows slowly at first and then more

and more rapidly as the number of individuals producing offspring increases. However, at

a certain point in time (where the inflection point occurs) the environmental factors begin

to show their effect, and the growth rate begins a steady decline. Over an extended period

of time the population approaches a limiting value that represents the upper limit on the

number of individuals that the available space or food can sustain. Population growth curves

of this type are called logistic growth curves.

t

y

Logistic growth curve

Figure 7.4.5
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Example 3 We will show in a later chapter that logistic growth curves arise from equations

of the form

y =
L

1 + Ae−kt
(1)

where y is the population at time t (t ≥ 0) and A, k, and L are positive constants. Show

that Figure 7.4.6 correctly describes the graph of this equation.

t

y

L

L

1 + A

L

2

k

ln A

Figure 7.4.6

Solution. We leave it for you to confirm that at time t = 0 the value of y is

y =
L

1 + A

and that for t ≥ 0 the population y satisfies

L

1 + A
≤ y < L

This is consistent with the graph in Figure 7.4.6. The horizontal asymptote at y = L is

confirmed by the limit

lim
t→+�

L

1 + Ae−kt
=

L

1 + 0
= L

Physically, L represents the upper limit on the size of the population.

To investigate intervals of increase or decrease, concavity, and inflection points, we need

the first and second derivatives of y with respect to t . We leave it for you to confirm that

dy

dt
=

k

L
y(L − y) (2)

d2y

dt2
=

k2

L2
y(L − y)(L − 2y) (3)

Since k > 0, y > 0, and L − y > 0, it follows from (2) that dy/dt > 0 for all t . Thus, y is

always increasing and there are no stationary points, which is consistent with Figure 7.4.6.

Since y > 0 and L − y > 0, it follows from (3) that

d2y

dt2
> 0 if L − 2y > 0

d2y

dt2
< 0 if L − 2y < 0

Thus, the graph of y versus t is concave up if y < L/2, concave down if y > L/2, and has

an inflection point where y = L/2, all of which is consistent with Figure 7.4.6.

Finally, we leave it as an exercise for you to confirm that the inflection point occurs at

time

t =
1

k
lnA =

lnA

k
(4)

by solving the equation

L

2
=

L

1 + Ae−kt

for t . ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

NEWTON’S LAW OF COOLING
Example 4 A glass of lemonade with a temperature of 40◦F is left to sit in a room

whose temperature is a constant 70◦F. Using a principle of physics, called Newton’s Law

of Cooling, one can show that if the temperature of the lemonade reaches 52◦F in 1 hour,

then the temperature T of the lemonade as a function of the elapsed time t is modeled by

the equation

T = 70 − 30e−0.5t

whereT is in ◦F and t is in hours. The graph of this equation, shown in Figure 7.4.7, conforms
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Figure 7.4.7
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to our everyday experience that the temperature of the lemonade gradually approaches the

temperature of the room.

(a) In words, what happens to the rate of temperature rise over time?

(b) Use a derivative to confirm your conclusion in part (a).

(c) Find the average temperature Tave of the lemonade over the first 5 hours.

Solution (a). The rate of change of temperature with respect to time is the slope of the

curve T = 70 − 30e−0.5t . As t increases, the curve rises to a horizontal asymptote, so the

slope of the curve decreases to zero. Thus, the temperature rises at an ever-decreasing rate.

Solution (b). The rate of change of temperature with respect to time is

dT

dt
=

d

dt
[70 − 30e−0.5t ] = −30(−0.5e−0.5t ) = 15e−0.5t

As t increases, this derivative decreases, which confirms the conclusion in part (a).

Solution (c). From Definition 5.7.5 the average value of T over the time interval [0, 5] is

Tave =
1

5

∫ 5

0

(70 − 30e−0.5t ) dt (5)

To evaluate this integral, we make the substitution

u = −0.5t so that du = −0.5 dt [or dt = −2 du]

With this substitution we have

u = 0 if t = 0

u = (−0.5)5 = −2.5 if t = 5

Thus, (5) can be expressed as

Tave =
1

5

∫ −2.5

0

(70 − 30eu)(−2) du = −
2

5

∫ −2.5

0

(70 − 30eu) du

= −
2

5

[

70u − 30eu
]−2.5

u=0
= −

2

5

[

(−175 − 30e−2.5) − (−30)
]

= 58 + 12e−2.5 ≈ 58.99◦F ◭

EXERCISE SET 7.4 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, use the given derivative to find all crit-

ical numbers of f , and at each critical number determine

whether a relative maximum, relative minimum, or neither

occurs there.

1. (a) f ′(x) = xe−x (b) f ′(x) = (ex − 2)(ex + 3)

2. (a) f ′(x) = ln

(
2

1 + x2

)

(b) f ′(x) = (1 − x) ln x, x > 0
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In Exercises 3 and 4, use a graphing utility to estimate the

absolute maximum and minimum values of f , if any, on the

stated interval, and then use calculus methods to find the exact

values.

3. f(x) = x3e−2x ; [1, 4] 4. f(x) =
ln(2x)

x
; [1, e]

We will develop techniques in Section 7.7 to verify that

lim
x→+�

ex

x
= +�, lim

x→+�

x

ex
= 0, lim

x→−�

xex = 0

In Exercises 5–14: (a) Use these results, as necessary, to find

the limits of f(x) as x → +� and as x → −�. (b) Give

a graph of f(x) and identify all relative extrema, inflection

points, and asymptotes (as appropriate). Check your work

with a graphing utility.

5. f(x) = xex 6. f(x) = xe−2x

7. f(x) = x2e−2x 8. f(x) = x2e2x

9. f(x) = xex
2

10. f(x) = e−1/x2

11. f(x) =
ex

x
12. f(x) = xe−x

13. f(x) = x2e1−x 14. f(x) = x3ex−1

We will develop techniques in Section 7.7 to verify that

lim
x→+�

ln x

xr
= 0, lim

x→+�

xr

ln x
= +�, lim

x→0+
xr ln x = 0

for any positive real number r . In Exercises 15–20: (a) Use

these results, as necessary, to find the limits of f(x) as

x→+� and as x→ 0+. (b) Give a graph of f(x) and iden-

tify all relative extrema, inflection points, and asymptotes (as

appropriate). Check your work with a graphing utility.

15. f(x) = x ln x 16. f(x) = x2 ln x

17. f(x) =
ln x

x2
18. f(x) =

ln x
√
x

19. f(x) = x2 ln(2x) 20. f(x) = ln(x2 + 1)

21. Consider the family of curves y = xe−bx (b > 0).

(a) Use a graphing utility to generate some members of this

family.

(b) Discuss the effect of varying b on the shape of the graph,

and discuss the locations of the relative extrema and in-

flection points.

22. Consider the family of curves y = e−bx2

(b > 0).

(a) Use a graphing utility to generate some members of this

family.

(b) Discuss the effect of varying b on the shape of the graph,

and discuss the locations of the relative extrema and in-

flection points.

23. (a) Determine whether the following limits exist, and if so,

find them:

lim
x→+�

ex cos x, lim
x→−�

ex cos x

(b) Sketch the graphs ofy = ex ,y = −ex , andy = ex cos x

in the same coordinate system, and label any points of

intersection.

(c) Use a graphing utility to generate some members of the

family y = eax cos bx (a > 0 and b > 0), and discuss

the effect of varying a and b on the shape of the curve.

24. Find a point on the graph of y = e3x at which the tangent

line passes through the origin.

25. (a) Make a conjecture about the shape of the graph of

y = 1
2
x − ln x, and draw a rough sketch.

(b) Check your conjecture by graphing the equation over

the interval 0 < x < 5 with a graphing utility.

(c) Show that the slopes of the tangent lines to the curve at

x = 1 and x = e have opposite signs.

(d) What does part (c) imply about the existence of a hori-

zontal tangent line to the curve? Explain your reasoning.

(e) Find the exact x-coordinates of all horizontal tangent

lines to the curve.

26. The concentration C(t) of a drug in the bloodstream t hours

after it has been injected is commonly modeled by an equa-

tion of the form

C(t) =
K(e−bt − e−at )

a − b

where K > 0 and a > b > 0.

(a) At what time does the maximum concentration occur?

(b) Let K = 1 for simplicity, and use a graphing utility

to check your result in part (a) by graphing C(t) for

various values of a and b.

27. Suppose that the population of deer on an island is modeled

by the equation

P(t) =
95

5 − 4e−t/4

where P(t) is the number of deer t weeks after an initial

observation at time t = 0.

(a) Use a graphing utility to graph the function P(t).

(b) In words, explain what happens to the population over

time. Check your conclusion by finding lim
t→+�

P(t).

(c) In words, what happens to the rate of population growth

over time? Check your conclusion by graphing P ′(t).

28. Suppose that the population of oxygen-dependent bacteria

in a pond is modeled by the equation

P(t) =
60

5 + 7e−t

where P(t) is the population (in billions) t days after an

initial observation at time t = 0.

(a) Use a graphing utility to graph the function P(t).

(b) In words, explain what happens to the population over

time. Check your conclusion by finding lim
t→+�

P(t).

(c) In words, what happens to the rate of population growth

over time? Check your conclusion by graphing P ′(t).

29. Suppose that the spread of a flu virus on a college campus

is modeled by the function

y(t) =
1000

1 + 999e−0.9t
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where y(t) is the number of infected students at time t (in

days, starting with t = 0). Use a graphing utility to estimate

the day on which the virus is spreading most rapidly.

30. Suppose that the number of bacteria in a culture at time t is

given by N = 5000(25 + te−t/20).

(a) Find the largest and smallest number of bacteria in the

culture during the time interval 0 ≤ t ≤ 100.
(b) At what time during the time interval in part (a) is the

number of bacteria decreasing most rapidly?

31. Suppose that a population y grows according to the logistic

model given by Formula (1).

(a) At what rate is y increasing at time t = 0?
(b) In words, describe how the rate of growth of y varies

with time.
(c) At what time is the population growing most rapidly?

32. Show that the inflection point of the logistic growth curve

in Example 3 occurs at the time t given by Formula (4).

33. The equilibrium constant k of a balanced chemical reaction

changes with the absolute temperature T according to the

law

k = k0 exp

(

−
q(T − T0)

2T0T

)

where k0, q, and T0 are constants. Find the rate of change

of k with respect to T .

34. Recall from Section 7.2 that the loudness β of a sound in

decibels (dB) is given by β = 10 log(I/I0), where I is the

intensity of the sound in watts per square meter (W/m2)

and I0 is a constant that is approximately the intensity of a

sound at the threshold of human hearing. Find the rate of

change of β with respect to I at the point where

(a) I/I0 = 10 (b) I/I0 = 100 (c) I/I0 = 1000

35. A particle is moving along the curve y = x ln x. Find all

values of x at which the rate of change of y with respect to

time is three times that of x. [Assume that dx/dt is never

zero.]

36. Let s(t) = t/et be the position function of a particle mov-

ing along a coordinate line, where s is in meters and t is

in seconds. Use a graphing utility to generate the graphs of

s(t), v(t), and a(t) for t ≥ 0, and use those graphs where

needed.

(a) Use the appropriate graph to make a rough estimate of

the time at which the particle reverses the direction of

its motion; and then find the time exactly.
(b) Find the exact position of the particle when it reverses

the direction of its motion.
(c) Use the appropriate graphs to make a rough estimate of

the time intervals on which the particle is speeding up

and on which it is slowing down; and then find those

time intervals exactly.

In Exercises 37 and 38, find the area under the curve y = f(x)

over the stated interval.

37. f(x) = ex ; [1, 3] 38. f(x) =
1

x
; [1, 5]

In Exercises 39 and 40, sketch the region enclosed by the

curves, and find its area.

39. y = ex, y = e2x, x = 0, x = ln 2

40. x = 1/y, x = 0, y = 1, y = e

In Exercises 41 and 42, sketch the curve and find the total

area between the curve and the given interval on the x-axis.

41. y = ex − 1; [−1, 1] 42. y =
x − 1

x
;

[
1
2
, 2

]

In Exercises 43–45, find the average value of the function

over the given interval.

43. f(x) = 1/x; [1, e] 44. f(x) = ex ; [−1, ln 5]

45. f(x) = e−2x ; [0, 4]

46. Find a positive value of k such that the area under the graph

of y = e2x over the interval [0, k] is 3 square units.

47. Suppose that at time t = 0 there are 750 bacteria in a growth

medium and the bacteria population y(t) grows at the rate

y ′(t) = 802.137e1.528t bacteria per hour. How many bacte-

ria will there be in 12 hours?

48. Suppose that the value of a yacht in dollars after t years of

use is V (t) = 275,000e−0.17t . What is the average value of

the yacht over its first 10 years of use?

49. Suppose that a particle moving along a coordinate line has

velocity v(t) = 25 + 10e−0.05t ft/s.

(a) What is the distance traveled by the particle from time

t = 0 to time t = 10?

(b) Does the term 10e−0.05t have much effect on the dis-

tance traveled by the particle over that time interval?

Explain your reasoning.

50. A particle moves with velocity v(t)meters per second along

an s-axis. Find the displacement and distance traveled by the

particle during the given time interval.

(a) v(t) = et − 2; 0 ≤ t ≤ 3

(b) v(t) = 1
2

− 1/t ; 1 ≤ t ≤ 3

C 51. Let the velocity function for a particle that is at the origin

initially and moves along an s-axis be v(t) = 0.5 − te−t .

(a) Generate the velocity versus time curve, and use it to

make a conjecture about the sign of the displacement

over the time interval 0 ≤ t ≤ 5.

(b) Use a CAS to find the displacement.

C 52. Let the velocity function for a particle that is at the origin

initially and moves along an s-axis be v(t) = t ln(t + 0.1).

(a) Generate the velocity versus time curve, and use it to

make a conjecture about the sign of the displacement

over the time interval 0 ≤ t ≤ 1.

(b) Use a CAS to find the displacement.

In Exercises 53 and 54, use a graphing utility to determine the

number of times the curves intersect, and then apply Newton’s

Method, where needed, to approximate the x-coordinates of

all intersections.
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53. y = 1 and y = ex cos x; 0 < x < π

54. y = e−x and y = ln x

55. For the function f(x) = ex/(1+x2), use Newton’s Method

to approximate the x-coordinates of the inflection points to

two decimal places.

56. (a) Show that ex ≥ 1 + x if x ≥ 0.

(b) Show that ex ≥ 1 + x + 1
2
x2 if x ≥ 0.

(c) Confirm the inequalities in parts (a) and (b) with a

graphing utility.

In Exercises 57 and 58, find the volume of the solid that re-

sults when the region enclosed by the given curves is revolved

about the x-axis.

57. y = ex, y = 0, x = 0, x = ln 3

58. y = e−2x, y = 0, x = 0, x = 1

In Exercises 59 and 60, use cylindrical shells to find the vol-

ume of the solid generated when the region enclosed by the

given curves is revolved about the y-axis.

59. y =
1

x2 + 1
, x = 0, x = 1, y = 0

60. y = ex
2

, x = 1, x =
√

3, y = 0

In Exercises 61 and 62, find the exact arc length of the para-

metric curve without eliminating the parameter.

61. x = et cos t, y = et sin t (0 ≤ t ≤ π/2)

62. x = et (sin t + cos t), y = et (cos t − sin t) (1 ≤ t ≤ 4)

In Exercises 63 and 64, express the exact arc length of the

curve over the given interval as an integral that has been sim-

plified to eliminate the radical, and then evaluate the integral

using a CAS.

C 63. y = ln(sec x) from x = 0 to x = π/4

C 64. y = ln(sin x) from x = π/4 to π/2

In Exercises 65 and 66, use a CAS or a calculator with nu-

meric integration capability to approximate the area of the

surface generated by revolving the curve about the stated

axis. Round your answer to two decimal places.

C 65. y = ex , 0 ≤ x ≤ 1; x-axis

C 66. y = ex , 1 ≤ y ≤ e; y-axis

C 67. Use a CAS to find the area of the surface generated by re-

volving the parametric curve x = et cos t , y = et sin t ,

0 ≤ t ≤ π/2 about the x-axis.

7.5 LOGARITHMIC FUNCTIONS FROM THE INTEGRAL POINT
OF VIEW

In Section 7.2 we discussed natural logarithms from the viewpoint of exponents; that

is, we regarded y = ln x to mean that ey = x. In this section we will show that ln x

can also be expressed as an integral with a variable upper limit. This integral rep-

resentation of ln x is important mathematically because it provides a convenient way

of establishing properties such as differentiability and continuity. However, it is also

important in applications because it provides a way of recognizing when integral

solutions of problems can be expressed as natural logarithms.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EXPONENTS
Our work earlier in this chapter was built on the somewhat shaky foundation of extending

our definition of exponential expressions bx (b > 0) to allow for exponents that could be

any real number. The process started by defining integer exponents by

b0 = 1, b1 = b, b2 = b · b, b3 = b · b · b, . . . , b−1 =
1

b
, b−2 =

1

b2
, . . .

Rational exponents were defined as solutions to equations involving integer exponents:

bp
/q is the (positive) solution to xq = bp

For example, 23.1 is the (positive) solution to x10 = 231. We claimed that this could be

extended to irrational exponents via approximations using rational exponents. For example,

it was argued that 2π could be defined as the limiting value of the sequence

23, 23.1, 23.14, 23.141, 23.1415, 23.14159, . . .

where the exponents are successive terminating decimal approximations of π. We then

claimed that the resulting exponential function y = bx is continuous on (−�,+�) and has
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the familiar properties of exponents:

b0 = 1 b−p =
1

bp
bp+q = bpbq bp−q =

bp

bq
(bp)q = bpq

We further claimed that (for b > 0, b �= 1) f(x) = bx is a one-to-one function, so it has an

inverse function that we named logb x. We also claimed that

lim
v→+�

(

1 +
1

v

)v

= e and lim
v→−�

(

1 +
1

v

)v

= e

which allowed us to use these limits to define e and to find derivatives of exponential and

logarithmic functions:

d

dx
[bx] = bx loge b and

d

dx
[logb x] =

1

x loge b

In particular, defining ln x = loge x, we have

d

dx
[ex] = ex and

d

dx
[ln x] =

1

x

Now, for x > 0 we have
∫ x

1

1

t
dt = ln t

]x

1

= ln x − ln 1 = ln x (1)

This relates the natural logarithm function ln x to a definite integral of a continuous function,

an expression for which we have developed a precise definition.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FORMAL DEFINITION OF ln x

A rigorous approach to logarithmic and exponential functions uses (1) as a starting point

to define ln x and defines the natural exponential function as the inverse function for ln x.

The challenge is then to demonstrate the consistency of these definitions with our familiar

properties for logarithms and exponents.

7.5.1 DEFINITION. The natural logarithm of x is denoted by ln x and is defined by

the integral

ln x =
∫ x

1

1

t
dt, x > 0 (2)

Geometrically, ln x is the area under the curve y = 1/t from t = 1 to t = x when x > 1,

and ln x is the negative of the area under the curve y = 1/t from t = x to t = 1 when

0 < x < 1 (Figure 7.5.1). Since 1/t > 0 for t > 0, ln x will be an increasing function

on (0,+�). Moreover, if x = 1, then ln x = 0, since the upper and lower limits of (2)

1 x

A

y =
1
t

1x

A

y =
1
t

t

y

t

y

x

1

ln x =           dt = A
1
t

x

1

ln x =           dt = –        dt = –A
1
t

1

x

1
t

Figure 7.5.1
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are the same. All of this is consistent with the computer-generated graph of y = ln x in

Figure 7.2.4.

•
•
•
•
•
•
•
•

FOR THE READER. Review Theorem 5.5.8, and then explain why x is required to be pos-

itive in Definition 7.5.1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING ln x

NUMERICALLY

For specific values of x, the value of ln x can be approximated numerically by approximating

the definite integral in (2), say by using the midpoint approximation that was discussed in

Section 5.4.

Example 1 Approximate ln 2 using the midpoint approximation with n = 10.

Solution. From (2), the exact value of ln 2 is represented by the integral

ln 2 =
∫ 2

1

1

t
dt

The midpoint rule is given in Formulas (8) and (9) of Section 5.4. Expressed in terms of t ,

the latter formula is
∫ b

a

f(t) dt ≈ 1t

n∑

k=1

f(t∗k )

where 1t is the common width of the subintervals and t∗1 , t∗2 , . . . , t
∗
n are the midpoints.

In this case we have 10 subintervals, so 1t = (2 − 1)/10 = 0.1. The computations to

six decimal places are shown in Table 7.5.1. By comparison, a calculator set to display

six decimal places gives ln 2 ≈ 0.693147, so the magnitude of the error in the midpoint

approximation is about 0.000311. Greater accuracy in the midpoint approximation can be

obtained by increasing n. For example, the midpoint approximation with n = 100 yields

ln 2 ≈ 0.693144, which is correct to five decimal places. ◭

Table 7.5.1

n = 10
∆t = (b – a)/n = (2 – 1)/10 = 0.1

k tk* 1/tk*

1

2

3

4

5

6

7

8

9

10

1.05

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

0.952381

0.869565

0.800000

0.740741

0.689655

0.645161

0.606061

0.571429

0.540541

0.512821

6.928355

∆t        f (tk*) ≈ (0.1)(6.928355)

                                  ≈ 0.692836k=1

n

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PROPERTIES OF ln x

Definition 7.5.1 is not only useful for approximating values of ln x; it is the key to estab-

lishing many of the fundamental properties of the natural logarithm. For example, by Part

2 of the Fundamental Theorem of Calculus (Theorem 5.6.3), we have

d

dx
[ln x] =

1

x
(x > 0) (3)

In particular, the natural logarithm function is differentiable on (0,+�), so we also have

that ln x is continuous on (0,+�).

We can use (3) to establish that our definition for ln x satisfies the expected logarithm

properties.

7.5.2 THEOREM. For any positive numbers a and c and any rational number r:

(a) ln ac = ln a + ln c (b) ln
1

c
= − ln c

(c) ln
a

c
= ln a − ln c (d) ln ar = r ln a

Proof (a). Treating a as a constant, consider the function f(x) = ln(ax). Then

f ′(x) =
1

ax
·
d

dx
(ax) =

1

ax
· a =

1

x

Thus, ln ax and ln x have the same derivative on (0,+�), so these functions must differ by

a constant on this interval. That is, there is a constant k such that

ln ax − ln x = k (4)
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on (0,+�). Substituting x = 1 into this equation we conclude that ln a = k (verify). Thus,

(4) can be written as

ln ax − ln x = ln a

Setting x = c establishes that

ln ac − ln c = ln a or ln ac = ln a + ln c

Proofs (b) and (c). Part (b) follows immediately from part (a) by substituting 1/c for a

(verify). Then

ln
a

c
= ln

(

a ·
1

c

)

= ln a + ln
1

c
= ln a − ln c

Proof (d). Since

d

dx
[ln xr ] =

1

xr
·
d

dx
[xr ] =

1

xr
· rxr−1 =

r

x

and

d

dx
[r ln x] = r ·

d

dx
[ln x] =

r

x

the functions ln xr and r ln x have the same derivative on (0,+�). Thus, there is a constant

k such that

ln xr − r ln x = k

Substituting x = 1 into this equation we conclude that k = 0 (verify), so

ln xr − r ln x = 0 or ln xr = r ln x

Setting x = a completes the proof.

The function ln x is defined and increasing for x in the interval (0,+�). Now, for any

integer N , if x > 2N , then

ln x > ln 2N = N ln 2

by Theorem 7.5.2(d). Since

ln 2 =
∫ 2

1

1

t
dt > 0

N ln 2 can be made arbitrarily large by choosing N appropriately, so

lim
x→+�

ln x = +�

Furthermore, by observing that v = 1/x→+� as x→0+, we can use the preceding limit

and Theorem 7.5.2(b) to conclude that

lim
x→0+

ln x = lim
v→+�

ln
1

v
= lim

v→+�

(− ln v) = −�

These results are summarized in the following theorem.

7.5.3 THEOREM.

(a) The domain of ln x is (0,+�).

(b) lim
x→0+

ln x = −� and lim
x→+�

ln x = +�

(c) The range of ln x is (−�,+�).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF e
x

In Section 7.2 we introduced e informally as the value of a limit, although we did not have

the mathematical tools to prove the existence of this limit. We now give a precise definition

of the number e and confirm that it matches the desired limit.
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Since ln x is increasing and continuous on (0,+�)with range (−�,+�), there is exactly

one (positive) solution to the equation ln x = 1. We define e to be the unique solution to

ln x = 1, so

ln e = 1 (5)

Furthermore, if x is any real number, there is a unique positive solution y to ln y = x,

so for irrational values of x we define ex to be this solution. That is, when x is irrational, ex

is defined by

ln ex = x (6)

Note that for rational values of x, we also have ln ex = x ln e = x from Theorem 7.5.2(d).

Moreover, it follows immediately that eln x = x for any x > 0. Thus, (6) defines the

exponential function for all real values of x as the inverse of the natural logarithm function.

7.5.4 DEFINITION. The inverse of the natural logarithm function ln x is denoted by

ex and is called the natural exponential function.

We can now establish the differentiability of ex , confirm that

d

dx
[ex] = ex

and verify the limits in Formulas (3)–(5) of Section 7.2.

7.5.5 THEOREM. The natural exponential function ex is differentiable on (−�,+�)

and its derivative is

d

dx
[ex] = ex

Proof. Because ln x is differentiable and

d

dx
[ln x] =

1

x
> 0

for all x in (0,+�), it follows from Corollary 7.1.7, with f(x) = ln x and f −1(x) = ex ,

that ex is differentiable on (−�,+�) and its derivative is

d

dx
[ex]
︸︷︷︸

f −1(x)

=
1

1/ex
︸ ︷︷ ︸

f ′(f −1(x))

= ex

7.5.6 THEOREM.

(a) lim
x→0

(1 + x)1/x = e (b) lim
x→+�

(

1 +
1

x

)x

= e (c) lim
x→−�

(

1 +
1

x

)x

= e

Proof. We will prove part (a); the proofs of parts (b) and (c) follow from this limit and

are left as exercises. We first observe that

d

dx
[ln(x + 1)]

∣
∣
∣
∣
x=0

=
1

x + 1
· 1

∣
∣
∣
∣
x=0

= 1

However, using the definition of the derivative, we obtain

d

dx
[ln(x + 1)]

∣
∣
∣
∣
x=0

= lim
w→0

ln(w + 1) − ln(0 + 1)

w − 0

= lim
w→0

[
1

w
· ln(w + 1)

]

= lim
w→0

[ln(w + 1)1/w]
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Thus,

1 = lim
w→0

[ln(w + 1)1/w], so e = e
( lim
w→0

[ln(w+1)1/w])

Since ex is continuous on (−�,+�), we can move the limit symbol through the function

symbol, and once more using the inverse relationship between ex and ln x, we obtain

e = lim
w→0

e[ln(w+1)1/w] = lim
w→0

(w + 1)1/w

which establishes the limit in part (a).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

IRRATIONAL EXPONENTS
Recall from Theorem 7.5.2(d) that if a > 0 and r is a rational number, then ln ar = r ln a.

Then ar = eln ar = er ln a for any positive value of a and any rational number r . But the

expression er ln a makes sense for any real number r , whether rational or irrational, so it is

a good candidate to give meaning to ar for any real number r .

7.5.7 DEFINITION. If a > 0 and r is a real number, ar is defined by

ar = er ln a (7)

With this definition it can be shown that the standard algebraic properties of exponents,

such as

apaq = ap+q,
ap

aq
= ap−q, (ap)q = apq, (ap)(bp) = (ab)p

hold for any real values of a, b, p, and q, where a and b are positive. In addition, using

(7) for a real exponent r , we can define the power function xr whose domain consists of

all positive real numbers and, for a positive base b, we can define the base b exponential

function b x whose domain consists of all real numbers.

7.5.8 THEOREM.

(a) For any real number r, the power function xr is differentiable on (0,+�) and its

derivative is

d

dx
[xr ] = rxr−1

(b) For b > 0 and b �= 1, the base b exponential function bx is differentiable on

(−�,+�) and its derivative is

d

dx
[bx] = bx ln b

Proof. The differentiability of xr = er ln x and bx = ex ln b on their domains follows from

the differentiability of ln x on (0,+�) and of ex on (−�,+�):

d

dx
[xr ] =

d

dx
[er ln x] = er ln x ·

d

dx
[r ln x] = xr ·

r

x
= rxr−1

d

dx
[bx] =

d

dx
[ex ln b] = ex ln b ·

d

dx
[x ln b] = bx ln b

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GENERAL LOGARITHMS
We note that for b > 0 and b �= 1, the function bx is one-to-one, and so has an inverse

function. Using the definition of bx , we can solve y = bx for x as a function of y:

y = bx = ex ln b

ln y = ln(ex ln b) = x ln b

ln y

ln b
= x

Thus, the inverse function for bx is (ln x)/(ln b).
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7.5.9 DEFINITION. For b > 0 and b �= 1, the base b logarithm function, denoted

logb x, is defined by

logb x =
ln x

ln b
(8)

It follows immediately from this definition that logb x is the inverse function for bx and

satisfies the properties in Theorem 7.2.2. Furthermore, logb x is differentiable on (0,+�),

and its derivative is

d

dx
[logb x] =

1

x ln b

As a final note of consistency, we observe that loge x = ln x.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FUNCTIONS DEFINED BY
INTEGRALS

The functions we have dealt with thus far in this text are called elementary functions; they

include polynomial, rational, power, exponential, logarithmic, and trigonometric functions,

and all other functions that can be obtained from these by addition, subtraction, multiplica-

tion, division, root extraction, and composition.

However, there are many important functions that do not fall into this category. Such

functions occur in many ways, but they commonly arise in the course of solving initial-value

problems of the form

dy

dx
= f(x), y(x0) = y0 (9)

Recall from Example 7 of Section 5.2 and the discussion preceding it that the basic

method for solving (9) is to integrate f(x), and then use the initial condition to determine

the constant of integration. It can be proved that if f is continuous, then (9) has a unique

solution and that this procedure produces it. However, there is another approach: Instead

of solving each initial-value problem individually, we can find a general formula for the

solution of (9), and then apply that formula to solve specific problems. We will now show

that

y(x) = y0 +
∫ x

x0

f(t) dt (10)

is a formula for the solution of (9). To confirm that this is so we must show that dy/dx = f(x)

and that y(x0) = y0. The computations are as follows:

dy

dx
=

d

dx

[

y0 +
∫ x

x0

f(t) dt

]

= 0 + f(x) = f(x)

y(x0) = y0 +
∫ x0

x0

f(t) dt = y0 + 0 = y0

Example 2 In Example 7 of Section 5.2 we showed that the solution of the initial-value

problem

dy

dx
= cos x, y(0) = 1

is y(x) = 1+ sin x. This initial-value problem can also be solved by applying Formula (10)

with f(x) = cos x, x0 = 0, and y0 = 1. This yields

y(x) = 1 +
∫ x

0

cos t dt = 1 +
[

sin t
]x

t=0
= 1 + sin x ◭

In the last example we were able to perform the integration in Formula (10) and express

the solution of the initial-value problem as an elementary function. However, sometimes this

will not be possible, in which case the solution of the initial-value problem must be left in

terms of an “unevaluated” integral. For example, from (10), the solution of the initial-value
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problem

dy

dx
= e−x2

, y(0) = 1

is

y(x) = 1 +
∫ x

0

e−t2

dt

However, it can be shown that there is no way to express the integral in this solution as

an elementary function. Thus, we have encountered a new function, which we regard to be

defined by the integral. A close relative of this function, known as the error function, plays

an important role in probability and statistics; it is denoted by erf(x) and is defined as

erf(x) =
2

√
π

∫ x

0

e−t2

dt (11)

Indeed, many of the most important functions in science and engineering are defined as

integrals that have special names and notations associated with them. For example, the

functions defined by

S(x) =
∫ x

0

sin

(
πt2

2

)

dt and C(x) =
∫ x

0

cos

(
πt2

2

)

dt (12–13)

are called the Fresnel sine and cosine functions, respectively, in honor of the French physi-

cist Augustin Fresnel (1788–1827), who first encountered them in his study of diffraction

of light waves.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING AND GRAPHING
FUNCTIONS DEFINED BY
INTEGRALS

The following values of S(1) andC(1)were produced by a CAS that has a built-in algorithm

for approximating definite integrals:

S(1) =
∫ 1

0

sin

(
πt2

2

)

dt ≈ 0.438259, C(1) =
∫ 1

0

cos

(
πt2

2

)

dt ≈ 0.779893

To generate graphs of functions defined by integrals, computer programs choose a set

of x-values in the domain, approximate the integral for each of those values, and then plot

the resulting points. Thus, there is a lot of computation involved in generating such graphs,

since each plotted point requires the approximation of an integral. The graphs of the Fresnel

functions in Figure 7.5.2 were generated in this way using a CAS.

Figure 7.5.2
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REMARK. Although it required a considerable amount of computation to generate the

graphs of the Fresnel functions, the derivatives of S(x) and C(x) are easy to obtain using

Part 2 of the Fundamental Theorem of Calculus (5.6.3); they are

S ′(x) = sin

(
πx2

2

)

and C ′(x) = cos

(
πx2

2

)

(14–15)

These derivatives can be used to determine the locations of the relative extrema and inflection

points and to investigate other properties of S(x) and C(x).
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRALS WITH FUNCTIONS AS
LIMITS OF INTEGRATION

Various applications can lead to integrals in which one or both of the limits of integration

is a function of x. Some examples are
∫ 1

x

√
sin t dt,

∫ sin x

x2

√

t3 + 1 dt,

∫ π

ln x

dt

t7 − 8

We will complete this section by showing how to differentiate integrals of the form
∫ g(x)

a

f(t) dt (16)

where a is constant. Derivatives of other kinds of integrals with functions as limits of inte-

gration will be discussed in the exercises.

To differentiate (16) we can view the integral as a composition F(g(x)), where

F(x) =
∫ x

a

f(t) dt

If we now apply the chain rule, we obtain

d

dx

[∫ g(x)

a

f(t) dt

]

=
d

dx
[F(g(x))] = F ′(g(x))g′(x) = f(g(x))g′(x)

Theorem 5.6.3

Thus,

d

dx

[∫ g(x)

a

f(t) dt

]

= f(g(x))g′(x) (17)

In words:

To differentiate an integral with a constant lower limit and a function as the upper limit,

substitute the upper limit into the integrand, and multiply by the derivative of the upper

limit.

Example 3

d

dx

[∫ sin x

1

(1 − t2) dt

]

= (1 − sin2 x) cos x = cos3 x ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

HISTORICAL NOTE
The connection between natural logarithms and integrals was made in the middle of the

seventeenth century in the course of investigating areas under the curve y = 1/t . The

problem being considered was to find values of t1, t2, t3, . . . , tn, . . . for which the areas

A1, A2, A3, . . . , An, . . . in Figure 7.5.3a would be equal. Through the combined work of

t

y

A4A3A2A1

1 t1

t

y

1

1 1 1 1

e e2 e3 e4t2 t3 t4

(a) (b)

Not drawn to scale

y =
1
t

y =
1
t

Figure 7.5.3
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Isaac Newton, the Belgian Jesuit priest, Gregory of St. Vincent (1584–1667), and Gregory’s

student, Alfons A. de Sarasa (1618–1667), it was shown that by taking the points to be

t1 = e, t2 = e2, t3 = e3, . . . , tn = en, . . .

each of the areas would be 1 (Figure 7.5.3b). Thus, in modern integral notation
∫ en

1

1

t
dt = n

which can be expressed as
∫ en

1

1

t
dt = ln(en)

By comparing the upper limit of the integral and the expression inside the logarithm, it is a

natural leap to the more general result
∫ x

1

1

t
dt = ln x

which today we take as the formal definition of the natural logarithm.

EXERCISE SET 7.5 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Sketch the curve y = 1/t , and shade a region under the

curve whose area is

(a) ln 2 (b) − ln 0.5 (c) 2.

2. Sketch the curve y = 1/t , and shade two different regions

under the curve whose areas are ln 1.5.

3. Given that ln a = 2 and ln c = 5, find

(a)

∫ ac

1

1

t
dt (b)

∫ 1/c

1

1

t
dt

(c)

∫ a/c

1

1

t
dt (d)

∫ a3

1

1

t
dt.

4. Given that ln a = 9, find

(a)

∫ √
a

1

1

t
dt (b)

∫ 2a

1

1

t
dt

(c)

∫ 2/a

1

1

t
dt (d)

∫ a

2

1

t
dt.

5. Approximate ln 5 using the midpoint rule with n = 10, and

estimate the magnitude of the error by comparing your an-

swer to that produced directly by a calculating utility.

6. Approximate ln 3 using the midpoint rule with n = 20, and

estimate the magnitude of the error by comparing your an-

swer to that produced directly by a calculating utility.

7. Simplify the expression and state the values of x for which

your simplification is valid.

(a) e− ln x (b) eln x2

(c) ln
(

e−x2)

(d) ln(1/ex)

(e) exp(3 ln x) (f ) ln(xex)

(g) ln
(

ex− 3√x
)

(h) ex−ln x

8. (a) Let f(x) = e−2x . Find the simplest exact value of the

function f(ln 3).

(b) Let f(x) = ex + 3e−x . Find the simplest exact value of

the function f(ln 2).

In Exercises 9 and 10, express the given quantity as a power

of e.

9. (a) 3π (b) 2
√

2

10. (a) π−x (b) x2x , x > 0

In Exercises 11 and 12, find the limits by making appropriate

substitutions in the limits given in Theorem 7.5.6.

11. (a) lim
x→+�

(

1 +
1

x

)2x

(b) lim
x→0

(1 + 2x)1/x

12. (a) lim
x→+�

(

1 +
1

3x

)x

(b) lim
x→0

(1 + x)1/(3x)

In Exercises 13 and 14, find g′(x) using Part 2 of the Fun-

damental Theorem of Calculus, and check your answer by

evaluating the integral and then differentiating.

13. g(x) =
∫ x

1

(t2 − t) dt 14. g(x) =
∫ x

π

(1 − cos t) dt

In Exercises 15 and 16, find the derivative using Formula

(17), and check your answer by evaluating the integral and

then differentiating.
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15. (a)
d

dx

∫ x3

1

1

t
dt (b)

d

dx

∫ ln x

1

et dt

16. (a)
d

dx

∫ x2

−1

√
t + 1 dt (b)

d

dx

∫ 1/x

π

sin t dt

17. Let F(x) =
∫ x

0

cos t

t2 + 3
dt . Find

(a) F(0) (b) F ′(0) (c) F ′′(0).

18. Let F(x) =
∫ x

2

√

3t2 + 1 dt . Find

(a) F(2) (b) F ′(2) (c) F ′′(2).

C 19. (a) Use Formula (17) to find

d

dx

∫ x2

1

t
√

1 + t dt

(b) Use a CAS to evaluate the integral and differentiate the

resulting function.
(c) Use the simplification command of the CAS, if neces-

sary, to confirm that answers in parts (a) and (b) are the

same.

20. Show that

(a)
d

dx

[∫ a

x

f(t) dt

]

= −f(x)

(b)
d

dx

[∫ a

g(x)

f(t) dt

]

= −f(g(x))g′(x).

In Exercises 21 and 22, use the results in Exercise 20 to find

the derivative.

21. (a)
d

dx

∫ 1

x

sin(t2) dt (b)
d

dx

∫ 3

tan x

t2

1 + t2
dt

22. (a)
d

dx

∫ 0

x

(t2 + 1)40 dt (b)
d

dx

∫ π

1/x

cos3 t dt

23. Find

d

dx

[
∫ x2

3x

t − 1

t2 + 1
dt

]

by writing
∫ x2

3x

t − 1

t2 + 1
dt =

∫ 0

3x

t − 1

t2 + 1
dt +

∫ x2

0

t − 1

t2 + 1
dt

24. Use Exercise 20(b) and the idea in Exercise 23 to show that

d

dx

∫ g(x)

h(x)

f(t) dt = f(g(x))g′(x) − f(h(x))h′(x)

25. Use the result obtained in Exercise 24 to perform the fol-

lowing differentiations:

(a)
d

dx

∫ x3

x2

sin2 t dt (b)
d

dx

∫ x

−x

1

1 + t
dt.

26. Prove that the function

F(x) =
∫ 3x

x

1

t
dt

is constant on the interval (0,+�) by using Exercise 24 to

find F ′(x). What is that constant?

27. LetF(x) =
∫ x

0
f(t) dt , where f is the function whose graph

is shown in the accompanying figure.

(a) Find F(0), F(3), F(5), F(7), and F(10).

(b) On what subintervals of the interval [0, 10] isF increas-

ing? Decreasing?

(c) Where does F have its maximum value? Its minimum

value?

(d) Sketch the graph of F .

0 10

-5

5

x

y

f

Figure Ex-27

28. Use the appropriate values found in part (a) of Exercise 27

to find the average value of f over the interval [0, 10].

In Exercises 29 and 30, expressF(x) in a piecewise form that

does not involve an integral.

29. F(x) =
∫ x

−1

|t | dt

30. F(x) =
∫ x

0

f(t) dt , where f(x) =

{

x, 0 ≤ x ≤ 2

2, x > 2

In Exercises 31–34, use Formula (10) to solve the initial-value

problem.

31.
dy

dx
= 3

√
x; y(1) = 2 32.

dy

dx
=

x + 1
√
x

; y(1) = 0

33.
dy

dx
= sec2 x − sin x; y(π/4) = 1

34.
dy

dx
= xex

2

; y(0) = 0

35. Suppose that at time t = 0 there are P0 individuals who

have disease X, and suppose that a certain model for the

spread of the disease predicts that the disease will spread at

the rate of r(t) individuals per day. Write a formula for the

number of individuals who will have disease X after x days.

36. Suppose that v(t) is the velocity function of a particle mov-

ing along an s-axis. Write a formula for the coordinate of

the particle at time T if the particle is at s1 at time t = 1.

37. The accompanying figure shows the graphs of y = f(x) and

y =
∫ x

0
f(t) dt . Determine which graph is which, and ex-

plain your reasoning.

12

x

y I

II

Figure Ex-37
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38. (a) Make a conjecture about the value of the limit

lim
k→0

∫ b

1

tk−1 dt (b > 0)

(b) Check your conjecture by evaluating the integral and

finding the limit. [Hint: Interpret the limit as the defi-

nition of the derivative of an exponential function.]

39. Let F(x) =
∫ x

0
f(t) dt , where f is the function graphed in

the accompanying figure.

(a) Where do the relative minima of F occur?

(b) Where do the relative maxima of F occur?

(c) Where does the absolute maximum of F on the interval

[0, 5] occur?

(d) Where does the absolute minimum of F on the interval

[0, 5] occur?

(e) Where is F concave up? Concave down?

(f ) Sketch the graph of F .

1 2 3 4 5

-2

-1

1

2

t

y

Figure Ex-39

C 40. CAS programs have commands for working with most of

the important nonelementary functions. Check your CAS

documentation for information about the error function

erf(x) [see Formula (11)], and then complete the following.

(a) Generate the graph of erf(x).

(b) Use the graph to make a conjecture about the existence

and location of any relative maxima and minima of

erf(x).

(c) Check your conjecture in part (b) using the derivative

of erf(x).

(d) Use the graph to make a conjecture about the existence

and location of any inflection points of erf(x).

(e) Check your conjecture in part (d) using the second de-

rivative of erf(x).

(f ) Use the graph to make a conjecture about the existence

of horizontal asymptotes of erf(x).

(g) Check your conjecture in part (f) by using the CAS to

find the limits of erf(x) as x→±�.

41. The Fresnel sine and cosine functions S(x) and C(x) were

defined in Formulas (12) and (13) and graphed in Figure

7.5.2. Their derivatives were given in Formulas (14) and

(15).

(a) At what points does C(x) have relative minima? Rela-

tive maxima?

(b) Where do the inflection points of C(x) occur?

(c) Confirm that your answers in parts (a) and (b) are

consistent with the graph of C(x).

42. Find the limit

lim
h→0

1

h

∫ x+h

x

ln t dt

43. Find a function f and a number a such that

2 +
∫ x

a

f(t) dt = e3x

44. (a) Give a geometric argument to show that

1

x + 1
<

∫ x+1

x

1

t
dt <

1

x
, x > 0

(b) Use the result in part (a) to prove that

1

x + 1
< ln

(

1 +
1

x

)

<
1

x
, x > 0

(c) Use the result in part (b) to prove that

e
x

x+1 <

(

1 +
1

x

)x

< e, x > 0

and hence that

lim
x→+�

(

1 +
1

x

)x

= e

(d) Use the inequality in part (c) to prove that
(

1 +
1

x

)x

< e <

(

1 +
1

x

)x+1

, x > 0

45. Use a graphing utility to generate the graph of

y =
(

1 +
1

x

)x+1

−
(

1 +
1

x

)x

in the window [0, 100] × [0, 0.2], and use that graph and

part (d) of Exercise 44 to make a rough estimate of the error

in the approximation

e ≈
(

1 +
1

50

)50

46. Prove: If f is continuous on an open interval I and a is any

point in I , then

F(x) =
∫ x

a

f(t) dt

is continuous on I .
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7.6 DERIVATIVES AND INTEGRALS INVOLVING INVERSE
TRIGONOMETRIC FUNCTIONS

A common problem in trigonometry is to find an angle whose trigonometric functions

are known. As you may recall, problems of this type involve the computation of “arc

functions” such as arcsin x, arccos x, arctan x, and so forth. In this section we will

consider this idea from the viewpoint of inverse functions, with the goal of developing

derivative formulas for the inverse trigonometric functions. We will also derive some

related integration formulas that involve inverse trigonometric functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INVERSE TRIGONOMETRIC
FUNCTIONS

None of the six basic trigonometric functions is one-to-one because they all repeat period-

ically and hence do not pass the horizontal line test. Thus, to define inverse trigonometric

functions we must first restrict the domains of the trigonometric functions to make them

one-to-one. The top part of Figure 7.6.1 shows how these restrictions are made for sin x,

cos x, tan x, and sec x. (Inverses of cot x and csc x are of lesser importance and will be left

for the exercises.) The inverses of these restricted functions are denoted by

sin−1 x, cos−1 x, tan−1 x, sec−1 x

(or alternatively by arcsin x, arccos x, arctan x, arcsec x) and are defined as follows:

7.6.1 DEFINITION. The inverse sine function, denoted by sin−1, is defined to be the

inverse of the restricted sine function

sin x, −π/2 ≤ x ≤ π/2

7.6.2 DEFINITION. The inverse cosine function, denoted by cos−1, is defined to be

the inverse of the restricted cosine function

cos x, 0 ≤ x ≤ π

7.6.3 DEFINITION. The inverse tangent function, denoted by tan−1, is defined to be

the inverse of the restricted tangent function

tan x, −π/2 < x < π/2

7.6.4 DEFINITION.∗ The inverse secant function, denoted by sec−1, is defined to be

the inverse of the restricted secant function

sec x, 0 ≤ x ≤ π with x �= π/2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The notations sin−1 x, cos−1 x, . . . are reserved exclusively for the inverse

trigonometric functions and are not used for reciprocals of the trigonometric functions. For

example, to denote the reciprocal 1/ sin x in exponent form, we would write (sin x)−1 and

never sin−1 x.

The graphs of the inverse trigonometric functions, which are shown in the bottom part

of Figure 7.6.1, are obtained by reflecting the graphs in the top part of the figure about the

line y = x. If you have trouble visualizing these relationships, then look at Figure 7.6.2

∗
There is no universal agreement on the definition of sec−1 x, and some mathematicians prefer to restrict the

domain of sec x so that 0 ≤ x < π/2 or π ≤ x < 3π/2, which was the definition used in some earlier editions

of this text. Each definition has advantages and disadvantages, but we have changed to the current definition to

conform with the conventions used by the CAS programs Mathematica, Maple, and Derive.
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–1

1

x

y

y = sin x

^ ≤  x ≤ 6

y = sin–1 x y = cos–1 x y = tan–1 x y = sec–1 x

y = tan x

^ < x < 6
y = sec x

0 ≤  x ≤  c, x ≠  6
y = cos x

0 ≤ x ≤  c

–1

1

–1

1

x

y

x

y

x

x

y y

x

y

cC 6^
x

y

x

y

cC 6^cC 6 i^ cC 6 i^I

–1 1

^

6

^

6

–1 1
–1 1

c c

6

Figure 7.6.1

for a more detailed illustration for the inverse sine. It may also help to keep in mind that

reflection about y = x converts vertical lines to horizontal lines, and vice versa, and that

x-intercepts reflect into y-intercepts, and vice versa.

Table 7.6.1 summarizes the basic properties of the inverse sine, cosine, tangent, and

secant functions. You should confirm that the domains and ranges listed in this table are

consistent with the graphs in the bottom part of Figure 7.6.1.

Table 7.6.1

function basic relationshipsdomain range

sin–1

cos–1

tan–1

sec–1

[–1, 1]

[–1, 1]

(–∞, +∞)

(–∞, –1] � [1, +∞)

[–p/2, p/2]

[0, p]

(–p/2, p/2)

[0, p/2) � (p/2, p]

sin–1(sin x) = x  if  –p/2 ≤  x ≤ p/2

sin(sin–1 x) = x  if  –1 ≤  x ≤  1

cos–1(cos x) = x  if   0 ≤  x ≤  p

cos(cos–1 x) = x  if  –1 ≤  x ≤  1

tan–1(tan x) = x  if  –p/2 < x < p/2

tan(tan–1 x) = x  if  –∞ < x < +∞

sec–1(sec x) = x  if   0 ≤  x ≤ p, x 
≠

 p/2

sec(sec–1 x) = x  if   |x| ≥  1

1

1

^

6

–1

–1^ 6
x

y

y = sin x

y = sin–1 x

Figure 7.6.2

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING INVERSE
TRIGONOMETRIC FUNCTIONS

A common problem in trigonometry is to find an angle whose sine is known. For example,

you might want to find an angle x in radian measure such that

sin x = 1
2

(1)

and, more generally, for a given value of y in the interval −1 ≤ y ≤ 1 you might want to

solve the equation

sin x = y (2)

Because sin x repeats periodically, such equations have infinitely many solutions for x;

however, if we solve this equation as

x = sin−1 y
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then we isolate the specific solution that lies in the interval [−π/2, π/2], since this is the

range of the inverse sine. For example, Figure 7.6.3 shows four solutions of Equation (1),

namely, −11π/6, −7π/6, π/6, and 5π/6. Of these, π/6 is the solution in the interval

[−π/2, π/2], so

sin−1
(

1
2

)

= π/6 (3)

M E 2 a o

-1

0.5

1

x

y

Figure 7.6.3

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Refer to the documentation for your calculating utility to determine

how to calculate inverse sines, inverse cosines, and inverse tangents; and then confirm

Equation (3) numerically by showing that

sin−1(0.5) ≈ 0.523598775598 . . . ≈ π/6

In general, if we view x = sin−1 y as an angle in radian measure whose sine is y, then the

restriction −π/2 ≤ θ ≤ π/2 imposes the geometric requirement that the angle x terminate

in either the first or fourth quadrant or on an axis adjacent to those quadrants.

Example 1 Find exact values of

(a) sin−1(1/
√

2 ) (b) sin−1(−1)

by inspection, and confirm your results numerically using a calculating utility.

Solution (a). Because sin−1(1/
√

2 ) > 0, we can view x = sin−1(1/
√

2 ) as that angle

in the first quadrant such that sin θ = 1/
√

2. Thus, sin−1(1/
√

2 ) = π/4. You can confirm

this with your calculating utility by showing that sin−1(1/
√

2 ) ≈ 0.785 ≈ π/4.

Solution (b). Because sin−1(−1) < 0, we can view x = sin−1(−1) as an angle in the

fourth quadrant (or an adjacent axis) such that sin x = −1. Thus, sin−1(−1) = −π/2. You

can confirm this with your calculating utility by showing that sin−1(−1) ≈ −1.57 ≈ −π/2.

◭
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. If x = cos−1 y is viewed as an angle in radian measure whose cosine

is y, in what possible quadrants can x lie? Answer the same question for x = tan−1 y and

x = sec−1 y.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Most calculators do not provide a direct method for calculating inverse

secants. In such situations the identity

sec−1 x = cos−1(1/x) (4)

is useful (Exercise 16). Use this formula to show that

sec−1(2.25) ≈ 1.11 and sec−1(−2.25) ≈ 2.03

If you have a calculating utility (such as a CAS) that can find sec−1 x directly, use it to check

these values.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

IDENTITIES FOR INVERSE
TRIGONOMETRIC FUNCTIONS

If we interpret sin−1 x as an angle in radian measure whose sine is x, and if that angle is

nonnegative, then we can represent sin−1 x geometrically as an angle in a right triangle in

which the hypotenuse has length 1 and the side opposite to the angle sin−1 x has length

x (Figure 7.6.4a). By the Theorem of Pythagoras the side adjacent to the angle sin−1 x

has length
√

1 − x2. Moreover, the third angle in Figure 7.6.4a is cos−1 x, since the cosine

of that angle is x (Figure 7.6.4b). This triangle motivates a number of useful identities

involving inverse trigonometric functions that are valid for −1 ≤ x ≤ 1; for example,

sin−1 x + cos−1 x =
π

2
(5)

cos(sin−1 x) =
√

1 − x2 (6)

sin(cos−1 x) =
√

1 − x2 (7)

tan(sin−1 x) =
x

√

1 − x2
(8)
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sin–1 x

x
1

sin–1 x

cos–1 x
x

1

tan–1 x

x

sec–1 x

x

(a) (b) (c) (d)

1 1√1 – x2 

√x2 – 1 
√1 + x2 

Figure 7.6.4

In a similar manner, tan−1 x and sec−1 x can be represented as angles in the right triangles

shown in Figures 7.6.4c and 7.6.4d (verify). Those triangles reveal more useful identities;

for example,

sec(tan−1 x) =
√

1 + x2 (9)

sin(sec−1 x) =

√

x2 − 1

x
(x ≥ 1) (10a)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. We leave it as an exercise to use (4) and (7) to obtain the following identity

that is valid for x ≥ 1 and x ≤ −1 (Exercise 80):

sin(sec−1 x) =

√

x2 − 1

|x|
(|x| ≥ 1) (10b)

•
•
•
•
•
•
•
•

REMARK. There is nothing to be gained by memorizing these identities; what is important

to understand is the method that was used to obtain them.

Referring to Figure 7.6.1, observe that the inverse sine and inverse tangent are odd func-

tions; that is,

sin−1(−x) = − sin−1(x) and tan−1(−x) = − tan−1(x) (11–12)

Example 2 Figure 7.6.5 shows a computer-generated graph of y = sin−1(sin x). One

might think that this graph should be the line y = x, since sin−1(sin x) = x. Why isn’t it?

∏ Å O C c o å π

C

c

x

y

Figure 7.6.5

Solution. The relationship sin−1(sin x) = x is valid on the interval −π/2 ≤ x ≤ π/2,

so we can say with certainty that the graphs of y = sin−1(sin x) and y = x coincide on

this interval (which is confirmed by Figure 7.6.5). However, outside of this interval the

relationship sin−1(sin x) = x does not hold. For example, if x lies in the interval π/2 ≤
x ≤ 3π/2, then the quantity x − π lies in the interval −π/2 ≤ x ≤ π/2, so

sin−1[sin(x − π)] = x − π

Thus, by using the identity sin(x − π) = − sin x and the fact that sin−1 is an odd function,

we can express sin−1(sin x) as

sin−1(sin x) = sin−1[− sin(x − π)] = − sin−1[sin(x − π)] = −(x − π)

This shows that on the interval π/2 ≤ x ≤ 3π/2 the graph of y = sin−1(sin x) coincides

with the line y = −(x − π), which has slope −1 and an x-intercept at x = π. This agrees

with Figure 7.6.5. ◭



February 9, 2001 11:36 g65-ch7 Sheet number 54 Page number 496 cyan magenta yellow black

496 Exponential, Logarithmic, and Inverse Trigonometric Functions

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF THE INVERSE
TRIGONOMETRIC FUNCTIONS

Recall that if f is a one-to-one function whose derivative is known, then there are two basic

ways to obtain a derivative formula for f −1(x)—we can rewrite the equation y = f −1(x)

as x = f(y), and differentiate implicitly, or we can apply Formula (4) or (5) of Section 7.1.

Here we will use implicit differentiation to obtain the derivative formula for y = sin−1 x.

Rewriting this equation as x = sin y and differentiating implicitly, we obtain

d

dx
[x] =

d

dx
[sin y]

1 = cos y ·
dy

dx

dy

dx
=

1

cos y
=

1

cos(sin−1 x)

At this point we have succeeded in obtaining the derivative; however, this derivative formula

can be simplified by applying Formula (6), which is derived from the triangle in Figure 7.6.6.

This yields

dy

dx
=

1
√

1 − x2

Thus, we have shown that

d

dx
[sin−1 x] =

1
√

1 − x2
(−1 < x < 1) (13)

If u is a differentiable function of x, then (13) and the chain rule produce the following

generalized derivative formula:

d

dx
[sin−1 u] =

1
√

1 − u2

du

dx
(−1 < u < 1) (14)

The method used to obtain this formula can also be used to obtain generalized derivative

formulas for the other inverse trigonometric functions. These formulas, which are valid for

−1 < u < 1, are

d

dx
[sin−1 u] =

1
√

1 − u2

du

dx
(−1 < u < 1) (15)

d

dx
[tan−1 u] =

1

1 + u2

du

dx
(−� < u < +�) (16)

d

dx
[sec−1 u] =

1

|u|
√

u2 − 1

du

dx
(1 < |u|) (17)

sin–1 x

x
1

√1 – x2 

cos(sin–1 x) = √1 – x2

Figure 7.6.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIABILITY OF THE
INVERSE TRIGONOMETRIC
FUNCTIONS

In the derivation of (13) we assumed that sin−1 x is differentiable. However, we can establish

the differentiability with the help of Theorem 7.1.6. Since f(x) = sin x and f ′(x) = cos x,

it follows from that theorem that the function f −1(x) = sin−1 x will be differentiable at any

value of x where cos(sin−1 x)
�
= 0 or from (6) where

√
1 − x2

�
= 0. Thus, sin−1 x is differ-

entiable on the interval (−1, 1). The differentiability of the remaining inverse trigonometric

functions can be deduced similarly.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that sin−1 x is only differentiable on the interval (−1, 1), even though

its domain is [−1, 1]. However, it can be seen geometrically that sin−1 cannot be differen-

tiable at x = ±1. Just observe that the graph of y = sin x has horizontal tangent lines at

(π/2, 1) and (−π/2,−1) and that these become points of vertical tangency for y = sin−1 x

when reflected around the line y = x.

Example 3 Find dy/dx if

(a) y = sin−1(x3) (b) y = sec−1(ex)
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Solution (a). From (14)

dy

dx
=

1
√

1 −�x3�2 (3x2) =
3x2�
1 − x6

Solution (b). From (17)

dy

dx
=

1

ex
√�ex�2 − 1

(ex) =
1�

e2x − 1
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATION FORMULAS
Differentiation formulas (14)–(17) yield useful integration formulas. Those most commonly

needed are�
du�

1 − u2
= sin−1 u + C (18)�

du

1 + u2
= tan−1 u + C (19)�

du

|u|
�
u2 − 1

= sec−1 u + C (20)

Example 4 Evaluate

�
dx

1 + 3x2
.

Solution. Substituting

u =
√

3x, du =
√

3 dx

yields�
dx

1 + 3x2
=

1
√

3

�
du

1 + u2
=

1
√

3
tan−1 u + C =

1
√

3
tan−1(

√
3x) + C ◭

Example 5 Evaluate

�
ex�

1 − e2x
dx.

Solution. Substituting

u = ex, du = ex dx

yields�
ex�

1 − e2x
dx =
�

du�
1 − u2

= sin−1 u + C = sin−1(ex) + C ◭

Example 6 Evaluate

�
dx

a2 + x2
, where a �= 0 is a constant.

Solution. Some simple algebra and an appropriate u-substitution will allow us to use (19).�
dx

a2 + x2
=

1

a

�dx
a

1 +�x
a
�2 =

1

a

�
du

1 + u2
=

1

a
tan−1 u + C =

1

a
tan−1 x

a
+ C

u = x
a

du = dx
a

◭
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The method of Example 6 leads to the following generalizations of (18), (19), and (20)

for a > 0:

∫
du

√

a2 − u2
= sin−1 u

a
+ C (21)

∫
du

a2 + u2
=

1

a
tan−1 u

a
+ C (22)

∫
du

u
√

u2 − a2
=

1

a
sec−1 u

a
+ C (23)

Example 7 Evaluate

∫
dx

√

2 − x2
.

Solution. Applying (21) with u = x and a =
√

2 yields
∫

dx
√

2 − x2
= sin−1 x

√
2

+ C ◭

EXERCISE SET 7.6 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Find the exact value of

(a) sin−1(−1) (b) cos−1(−1)

(c) tan−1(−1) (d) sec−1(1).

2. Find the exact value of

(a) sin−1
(

1
2

√
3
)

(b) cos−1
(

1
2

)

(c) tan−1(1) (d) sec−1(−2).

3. Given that θ = sin−1
(

− 1
2

√
3
)

, find the exact values of

cos θ , tan θ , cot θ , sec θ , and csc θ .

4. Given that θ = cos−1
(

1
2

)

, find the exact values of sin θ ,

tan θ , cot θ , sec θ , and csc θ .

5. Given that θ = tan−1
(

4
3

)

, find the exact values of sin θ ,

cos θ , cot θ , sec θ , and csc θ .

6. Given that θ = sec−1 2.6, find the exact values of sin θ ,

cos θ , tan θ , cot θ , and csc θ .

7. Find the exact value of

(a) sin−1(sinπ/7) (b) sin−1(sinπ)

(c) sin−1(sin 5π/7) (d) sin−1(sin 630).

8. Find the exact value of

(a) cos−1(cosπ/7) (b) cos−1(cosπ)

(c) cos−1(cos 12π/7) (d) cos−1(cos 200).

9. For which values of x is it true that

(a) cos−1(cos x) = x (b) cos(cos−1 x) = x

(c) tan−1(tan x) = x (d) tan(tan−1 x) = x

In Exercises 10 and 11, find the exact value of the given

quantity.

10. sec
[

sin−1
(

− 3
4

)]

11. sin
[

2 cos−1
(

3
5

)]

In Exercises 12 and 13, complete the identities using the tri-

angle method (Figure 7.6.4).

12. (a) sin(cos−1 x) =? (b) tan(cos−1 x) =?

(c) csc(tan−1 x) =? (d) sin(tan−1 x) =?

13. (a) cos(tan−1 x) =? (b) tan(cos−1 x) =?

(c) sin(sec−1 x) =? (d) cot(sec−1 x) =?

14. (a) Use a calculating utility set to radian measure to make

tables of values of y = sin−1 x and y = cos−1 x for

x = −1, −0.8, −0.6, . . . , 0, 0.2, . . . , 1. Round your

answers to two decimal places.

(b) Plot the points obtained in part (a), and use the points to

sketch the graphs of y = sin−1 x and y = cos−1 x. Con-

firm that your sketches agree with those in Figure 7.6.1.

(c) Use your graphing utility to graph y = sin−1 x and

y = cos−1 x; confirm that the graphs agree with those

in Figure 7.6.1.

The function cot−1 x is defined to be the inverse of the re-

stricted cotangent function

cot x, 0 < x < π

and the function csc−1 x is defined to be the inverse of the

restricted cosecant function

csc x, −π/2 < x < π/2, x
�
= 0

Use these definitions in Exercises 15 and 16 and in all sub-

sequent exercises that involve these functions.
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15. (a) Sketch the graphs of cot−1 x and csc−1 x.

(b) Find the domain and range of cot−1 x and csc−1 x.

16. Show that

(a) cot−1 x =

{

tan−1(1/x), if x > 0

π + tan−1(1/x), if x < 0

(b) sec−1 x = cos−1
1

x
, if |x| ≥ 1

(c) csc−1 x = sin−1 1

x
, if |x| ≥ 1.

17. Most scientific calculators have keys for the values of only

sin−1 x, cos−1 x, and tan−1 x. The formulas in Exercise 16 show

how a calculator can be used to obtain values of cot−1 x, sec−1 x,

and csc−1 x for positive values of x. Use these formulas and a

calculator to find numerical values for each of the following in-

verse trigonometric functions. Express your answers in degrees,

rounded to the nearest tenth of a degree.

(a) cot−1 0.7 (b) sec−1 1.2 (c) csc−1 2.3

18. (a) Use Theorem 7.1.6 to prove that

d

dx
[cot−1 x]

∣
∣
∣
∣
x=0

= −1

(b) Use part (a) above, part (a) of Exercise 16, and the chain

rule to show that

d

dx
[cot−1 x] = −

1
√

1 + x2

for −� < x < +�.

(c) Conclude from (b) that

d

dx
[cot−1 u] = −

1
√

1 + u2

du

dx

for −� < u < +�.

19. (a) Use part (c) of Exercise 16, and the chain rule to show that

d

dx
[csc−1 x] = −

1

|x|
√

x2 − 1

for 1 < |x|.
(b) Conclude from (a) that

d

dx
[csc−1 u] = −

1

|u|
√

u2 − 1

du

dx

for 1 < |u|.

In Exercises 20–22, use a calculating utility to approximate

the solution of each equation. Where radians are used, ex-

press your answer to four decimal places, and where degrees

are used, express it to the nearest tenth of a degree. [Note:

In each part, the solution is not in the range of the relevant

inverse trigonometric function.]

20. (a) sin x = 0.37, π/2 < x < π

(b) sin θ = −0.61, 180◦ < θ < 270◦

21. (a) cos x = −0.85, π < x < 3π/2

(b) cos θ = 0.23, −90◦ < θ < 0◦

22. (a) tan x = 3.16, −π < x < −π/2

(b) tan θ = −0.45, 90◦ < θ < 180◦

In Exercises 23–30, find dy/dx.

23. (a) y = sin−1
(

1
3
x
)

(b) y = cos−1(2x + 1)

24. (a) y = tan−1(x2) (b) y = cot−1(
√
x )

25. (a) y = sec−1(x7) (b) y = csc−1(ex)

26. (a) y = (tan x)−1 (b) y =
1

tan−1 x

27. (a) y = sin−1(1/x) (b) y = cos−1(cos x)

28. (a) y = ln(cos−1 x) (b) y =
√

cot−1 x

29. (a) y = ex sec−1 x (b) y = x2
(

sin−1 x
)3

30. (a) y = sin−1 x + cos−1 x (b) y = sec−1 x + csc−1 x

In Exercises 31 and 32, find dy/dx by implicit differentiation.

31. x3 + x tan−1 y = ey

32. sin−1(xy) = cos−1(x − y)

In Exercises 33–46, evaluate the integral.

33.

∫ 1/
√

2

0

dx
√

1 − x2
34.

∫
dx

√

1 − 4x2

35.

∫ 1

−1

dx

1 + x2
36.

∫
dx

1 + 16x2

37.

∫ 2

√
2

dx

x
√

x2 − 1
38.

∫ −2/
√

3

−
√

2

dx

x
√

x2 − 1

39.

∫
sec2 x dx
√

1 − tan2 x
40.

∫ ln(2/
√

3 )

ln 2

e−x dx
√

1 − e−2x

41.

∫
ex

1 + e2x
dx 42.

∫
t

t4 + 1
dt

43.

∫ 3

1

dx
√
x (x + 1)

44.

∫
sin θ

cos2 θ + 1
dθ

45.

∫
dx

x
√

1 − (ln x)2
46.

∫
dx

x
√

9x2 − 1

47. Derive integration Formula (21).

48. Derive integration Formula (23).

In Exercises 49–54, use Formulas (21), (22), and (23) to eval-

uate the integrals.

49. (a)

∫
dx

√

9 − x2
(b)

∫
dx

5 + x2
(c)

∫
dx

x
√

x2 − π

50. (a)

∫
ex

4 + e2x
dx (b)

∫
dx

√

9 − 4x2
(c)

∫
dy

y
√

5y2 − 3
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51.

∫ 1

0

x
√

4 − 3x4
dx 52.

∫ 2

1

1
√
x
√

4 − x
dx

53.

∫ 2/
√

3

0

1

4 + 9x2
dx 54.

∫
√

2

1

x

3 + x4
dx

55. In each part, sketch the graph and check your work with a

graphing utility.

(a) y = sin−1 2x (b) y = tan−1 1
2
x

56. (a) Use a calculating utility to evaluate sin−1(sin−1 0.25)

and sin−1(sin−1 0.9), and explain what you think is hap-

pening in the second calculation.

(b) For what values of x in the interval −1 ≤ x ≤ 1 will

your calculating utility produce a real value for the func-

tion sin−1(sin−1 x)?

57. An Earth-observing satellite has horizon sensors that can

measure the angle θ shown in the accompanying figure. Let

R be the radius of the Earth (assumed spherical) and h the

distance between the satellite and the Earth’s surface.

(a) Show that sin θ =
R

R + h
.

(b) Find θ , to the nearest degree, for a satellite that is 10,000

km from the Earth’s surface (use R = 6378 km).

h

Earth

u

R

Figure Ex-57

58. The number of hours of daylight on a given day at a given

point on the Earth’s surface depends on the latitude λ of the

point, the angle γ through which the Earth has moved in its

orbital plane during the time period from the vernal equinox

(March 21), and the angle of inclination φ of the Earth’s

axis of rotation measured from ecliptic north (φ ≈ 23.45◦ ).

The number of hours of daylight h can be approximated by

the formula

h =









24, D ≥ 1

12 + 2
15

sin−1 D, |D| < 1

0, D ≤ −1

where

D =
sinφ sin γ tan λ
√

1 − sin2 φ sin2 γ

and sin−1 D is in degree measure. Given that Fairbanks,

Alaska, is located at a latitude of λ = 65◦ N and also that

γ = 90◦ on June 20 and γ = 270◦ on December 20, ap-

proximate

(a) the maximum number of daylight hours at Fairbanks to

one decimal place

(b) the minimum number of daylight hours at Fairbanks to

one decimal place.

[Note: This problem was adapted from TEAM, A Path to

Applied Mathematics, The Mathematical Association of

America, Washington, D.C., 1985.]

59. A soccer player kicks a ball with an initial speed of 14 m/s

at an angle θ with the horizontal (see the accompanying fig-

ure). The ball lands 18 m down the field. If air resistance is

neglected, then the ball will have a parabolic trajectory and

the horizontal range R will be given by

R =
v2

g
sin 2θ

where v is the initial speed of the ball and g is the acceler-

ation due to gravity. Using g = 9.8 m/s2, approximate two

values of θ , to the nearest degree, at which the ball could

have been kicked. Which angle results in the shorter time

of flight? Why?

R

u

Figure Ex-59

60. The law of cosines states that

c2 = a2 + b2 − 2ab cos θ

where a, b, and c are the lengths of the sides of a triangle and

θ is the angle formed by sides a and b. Find θ , to the nearest

degree, for the triangle with a = 2, b = 3, and c = 4.

61. An airplane is flying at a constant height of 3000 ft above

water at a speed of 400 ft/s. The pilot is to release a survival

package so that it lands in the water at a sighted point P .

If air resistance is neglected, then the package will follow a

parabolic trajectory whose equation relative to the coordi-

nate system in the accompanying figure is

y = 3000 −
g

2v2
x2

where g is the acceleration due to gravity and v is the speed

of the airplane. Using g = 32 ft/s2, find the “line of sight”

angle θ , to the nearest degree, that will result in the package

hitting the target point.

x

y

u

3000 ft

Line of sight

P

Parabolic

trajectory

of object

Figure Ex-61
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62. (a) A camera is positioned x feet from the base of a mis-

sile launching pad (see the accompanying figure). If a

missile of length a feet is launched vertically, show that

when the base of the missile is b feet above the camera

lens, the angle θ subtended at the lens by the missile is

θ = cot−1 x

a + b
− cot−1 x

b

(b) How far from the launching pad should the camera be

positioned to maximize the angle θ subtended at the

lens by the missile?

x
Camera Launchpad

a

bu

Figure Ex-62

63. A student wants to find the area enclosed by the graphs of

y = 1/
√

1 − x2, y = 0, x = 0, and x = 0.8.

(a) Show that the exact area is sin−1 0.8.
(b) The student uses a calculator to approximate the result

in part (a) to two decimal places and obtains an incorrect

answer of 53.13. What was the student’s error? Find the

correct approximation.

64. Find the area of the region enclosed by the graphs of

y = 1/
√

1 − 9x2, y = 0, x = 0, and x = 1/6.

65. Estimate the value of k (0 < k < 1) so that the region en-

closed by y = 1/
√

1 − x2, y = x, x = 0, and x = k has

an area of 1 square unit.

66. Find the area of the region enclosed by the graphs of

y = sin−1 x, x = 0, and y = π/2.

67. Estimate the area of the region in the first quadrant enclosed

by y = sin 2x and y = sin−1 x.

68. Suppose that a particle moves along a line so that its velocity

v at time t is given by

v(t) =
3

t2 + 1
− 0.5t, t ≥ 0

where t is in seconds and v is in centimeters per second

(cm/sec). Estimate the times at which the particle is 2 cm

from its starting position.

69. Find the volume of the solid generated when the region

bounded by x = 2, x = −2, y = 0, and y = 1/
√

4 + x2 is

revolved about the x-axis.

70. (a) Find the volume V of the solid generated when the re-

gion bounded by y = 1/(1 + x4), y = 0, x = 1, and

x = b (b > 1) is revolved about the y-axis.

(b) Find lim
b→+�

V .

71. Estimate the value of k (k > 0) so that the region enclosed

by y = 1/(1 + kx2), y = 0, x = 0, and x = 2 has an area

of 0.6 square unit.

C 72. Consider the region enclosed by y = sin−1 x, y = 0, and

x = 1. Find the volume of the solid generated by revolving

the region about the x-axis using

(a) disks (b) cylindrical shells.

73. Given points A(2, 1) and B(5, 4), find the point P in the

interval [2, 5] on the x-axis that maximizes angle APB.

74. The lower edge of a painting, 10 ft in height, is 2 ft above

an observer’s eye level. Assuming that the best view is ob-

tained when the angle subtended at the observer’s eye by

the painting is maximum, how far from the wall should the

observer stand?

75. Use Theorem 4.8.2 (the Mean-Value Theorem) to prove that

x

1 + x2
< tan−1 x < x (x > 0)

76. Find lim
n→+�

n∑

k=1

n

n2 + k2
. [Hint: Interpret this as the limit of

a Riemann sum in which the interval [0, 1] is divided into

n subintervals of equal width.]

77. Prove:

(a) sin−1(−x) = − sin−1 x

(b) tan−1(−x) = − tan−1 x.

78. Prove:

(a) cos−1(−x) = π − cos−1 x

(b) sec−1(−x) = π − sec−1 x

79. Prove:

(a) sin−1 x = tan−1
x

√

1 − x2
(|x| < 1)

(b) cos−1 x =
π

2
− tan−1 x

√

1 − x2
(|x| < 1)

80. Prove:

tan−1 x + tan−1 y = tan−1

(
x + y

1 − xy

)

provided −π/2 < tan−1 x + tan−1 y < π/2. [Hint: Use an

identity for tan(α + β).]

81. Use the result in Exercise 80 to show that

(a) tan−1 1
2

+ tan−1 1
3

= π/4

(b) 2 tan−1 1
3

+ tan−1 1
7

= π/4.

82. Use identities (4) and (7) to obtain identity (10b).



February 9, 2001 11:36 g65-ch7 Sheet number 60 Page number 502 cyan magenta yellow black

502 Exponential, Logarithmic, and Inverse Trigonometric Functions

7.7 L’HÔPITAL’S RULE; INDETERMINATE FORMS

In this section we will discuss a general method for using derivatives to find limits.

This method will enable us to establish limits with certainty that earlier in the text we

were only able to conjecture using numerical or graphical evidence. The method that

we will discuss in this section is an extremely powerful tool that is used internally by

many computer programs to calculate limits of various types.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INDETERMINATE FORMS OF
TYPE 0//0

In earlier sections we discussed limits that can be determined by inspection or by some ap-

propriate algebraic manipulation. Two special exceptions to this were the limits in Theorem

2.6.3,

lim
x→0

sin x

x
= 1 and lim

x→0

1 − cos x

x
= 0 (1–2)

Equation (1) was shown using the Squeezing Theorem (2.6.2) and some careful manipula-

tion of inequalities, and Equation (2) then followed using the identity sin2 x + cos2 x = 1.

These in turn were used in Section 3.4 to derive the derivatives of the sine and cosine func-

tions. Equations (1) and (2) are really special cases of these derivatives, as can be seen by

lim
x→0

sin x

x
= lim

x→0

sin x − sin 0

x − 0
=

d

dx
(sin x)

∣
∣
∣
∣
x=0

= cos 0 = 1

and

lim
x→0

1 − cos x

x
= lim

x→0
−

cos x − 1

x
= −

(

lim
x→0

cos x − cos 0

x − 0

)

= −
(

d

dx
(cos x)

∣
∣
∣
∣
x=0

)

= sin 0 = 0

What makes the limits in (1) and (2) bothersome is the fact that the numerator and

denominator both approach 0 as x → 0. Such limits are called indeterminate forms of

type 0//0. As illustrated above, the definition of a derivative provides an important class of

examples of indeterminate forms of type 0/0. Our goal here is to develop a general method,

based on the derivative, for evaluating indeterminate forms.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

L’HÔPITAL’S RULE
Consider the limit

lim
x→0

e2x − 1

sin x
(3)

Unlike (1) and (2), the limit in (3) is not easily seen as the evaluation of the derivative of a

function at x = 0. However, (3) can be expressed as the ratio of two derivatives.

lim
x→0

e2x − 1

sin x
= lim

x→0

(e2x − e2.0)/(x − 0)

(sin x − sin 0)/(x − 0)
=

d

dx
(e2x)

∣
∣
∣
∣
x=0

d

dx
(sin x)

∣
∣
∣
∣
x=0

=
2e(2.0)

cos 0
= 2 (4)

The method of (4) can be stated more generally. Suppose that f and g are differentiable

functions at x = a and that

lim
x→a

f(x)

g(x)
(5)

is an indeterminate form of type 0/0, that is

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0 (6)

In particular, the differentiability of f and g at x = a implies that f and g are continuous

at x = a, and hence from (6)

f(a) = lim
x→a

f(x) = 0 and g(a) = lim
x→a

g(x) = 0
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Further, since f and g are differentiable at x = a,

lim
x→a

f ′(x)

x − a
= lim

x→a

f ′(x) − f(a)

x − a
= f ′(a)

and

lim
x→a

g(x)

x − a
= lim

x→a

g(x) − g(a)

x − a
= g′(a)

If g′(a) �= 0 then the indeterminate form in (5) can be evaluated as the ratio of derivative

values.

lim
x→a

f ′(x)

g(x)
= lim

x→a

f(x)/(x − a)

g(x)/(x − a)
=

lim
x→a

f(x) − f(a)

x − a

lim
x→a

g(x) − g(a)

x − a

=
f ′(a)

g′(a)
(7)

Iff ′(x) andg′(x) are continuous at x = a, the result in (7) is a special case of L’Hôpital’s
∗

rule, which converts an indeterminate form of type 0/0 into a new limit involving derivatives.

Moreover, L’Hôpital’s rule is also true for limits at −� and at +�. We state this result in

Theorem 7.7.1, but omit the proof.

7.7.1 THEOREM (L’Hôpital’s Rule for Form 0//0). Suppose that f and g are differentiable

functions on an open interval containing x = a, except possibly at x = a, and that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

If lim
x→a

[f ′(x)/g′(x)] has a finite limit or if this limit is +� or −�, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Moreover, this statement is also true in the case of a limit as x→a−, x→a+, x→−�,

or as x→+�.

•
•
•
•
•
•
•
•

REMARK. Note that in L’Hôpital’s rule the numerator and denominator are differentiated

separately, which is not the same as differentiating f(x)/g(x).

In the following examples we will apply L’Hôpital’s rule using the following three-step

process:

Step 1. Check that the limit of f(x)/g(x) is an indeterminate form. If it is

not, then L’Hôpital’s rule cannot be used.

Step 2. Differentiate f and g separately.

Step 3. Find the limit of f ′(x)/g′(x). If this limit is finite, +�, or −�, then

it is equal to the limit of f(x)/g(x).

∗
GUILLAUME FRANCOIS ANTOINE DE L’HÔPITAL (1661–1704). French mathematician. L’Hôpital, born to

parents of the French high nobility, held the title of Marquis de Sainte-Mesme Comte d’Autrement. He showed

mathematical talent quite early and at age 15 solved a difficult problem about cycloids posed by Pascal. As a

young man he served briefly as a cavalry officer, but resigned because of nearsightedness. In his own time he

gained fame as the author of the first textbook ever published on differential calculus, L’Analyse des Infiniment

Petits pour l’Intelligence des Lignes Courbes (1696). L’Hôpital’s rule appeared for the first time in that book.

Actually, L’Hôpital’s rule and most of the material in the calculus text were due to John Bernoulli, who was

L’Hôpital’s teacher. L’Hôpital dropped his plans for a book on integral calculus when Leibniz informed him that

he intended to write such a text. L’Hôpital was apparently generous and personable, and his many contacts with

major mathematicians provided the vehicle for disseminating major discoveries in calculus throughout Europe.
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Example 1 In each part confirm that the limit is an indeterminate form of type 0/0, and

evaluate it using L’Hôpital’s rule.

(a) lim
x→2

x2 − 4

x − 2
(b) lim

x→0

sin 2x

x
(c) lim

x→π/2

1 − sin x

cos x
(d) lim

x→0

ex − 1

x3

(e) lim
x→0−

tan x

x2
(f ) lim

x→0

1 − cos x

x2
(g) lim

x→+�

x−4/3

sin(1/x)

Solution (a). The numerator and denominator have a limit of 0, so the limit is a 0/0

indeterminate form. Applying L’Hôpital’s rule yields

lim
x→2

x2 − 4

x − 2
= lim

x→2

d

dx
[x2 − 4]

d

dx
[x − 2]

= lim
x→2

2x

1
= 4

This limit can also be recognized as the derivative of y = x2 at x = 2,

lim
x→2

x2 − 4

x − 2
=

d

dx
(x2)

∣
∣
∣
∣
x=2

= 2 · 2 = 4

Finally, observe that this limit could have been obtained by factoring

lim
x→2

x2 − 4

x − 2
= lim

x→2

(x − 2)(x + 2)

x − 2
= lim

x→2
(x + 2) = 4

Solution (b). The numerator and denominator have a limit of 0, so the limit is a 0/0

indetermiate form. Applying L’Hôpital’s rule yields

lim
x→0

sin 2x

x
= lim

x→0

d

dx
[sin 2x]

d

dx
[x]

= lim
x→0

2 cos 2x

1
= 2

Observe that this result agrees with that obtained by substitution in Example 2(b) of

Section 2.6.

Solution (c). The numerator and denominator have a limit of 0, so the limit is a 0/0

indetermiate form. Applying L’Hôpital’s rule yields

lim
x→π/2

1 − sin x

cos x
= lim

x→π/2

d

dx
[1 − sin x]

d

dx
[cos x]

= lim
x→π/2

− cos x

− sin x
=

0

−1
= 0

Solution (d ). The numerator and denominator have a limit of 0, so the limit is a 0/0

indetermiate form. Applying L’Hôpital’s rule yields

lim
x→0

ex − 1

x3
= lim

x→0

d

dx
[ex − 1]

d

dx
[x3]

= lim
x→0

ex

3x2
= +�

Solution (e). The numerator and denominator have a limit of 0, so the limit is a 0/0

indetermiate form. Applying L’Hôpital’s rule yields

lim
x→0−

tan x

x2
= lim

x→0−

sec2 x

2x
= −�
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Solution ( f ). The numerator and denominator have a limit of 0, so the limit is a 0/0

indetermiate form. Applying L’Hôpital’s rule yields

lim
x→0

1 − cos x

x2
= lim

x→0

sin x

2x

Since the new limit is another indeterminate form of type 0/0, we apply L’Hôpital’s rule

again:

lim
x→0

1 − cos x

x2
= lim

x→0

sin x

2x
= lim

x→0

cos x

2
=

1

2

Solution (g). The numerator and denominator have a limit of 0, so the limit is a 0/0

indetermiate form. Applying L’Hôpital’s rule yields

lim
x→+�

x−4/3

sin(1/x)
= lim

x→+�

− 4
3
x−7/3

(−1/x2) cos(1/x)
= lim

x→+�

4
3
x−1/3

cos(1/x)
=

0

1
= 0 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. Applying L’Hôpital’s rule to limits that are not indeterminate forms can lead

to incorrect results. For example, in the limit

lim
x→0

x + 6

x + 2
=

6

2
= 3

the numerator approaches 6 and the denominator approaches 2, so the limit is not an inde-

terminate form of type 0/0. However, if we ignore this and blindly apply L’Hôpital’s rule,

we reach the following erroneous conclusion:

• W R O N G • W R O N G • W R O N G • W R O N G

• W R O N G • W R O N G • W R O N G • W R O N

G • W R O N G • W R O N G • W R O N G • W R O

N G • W R O N G • W R O N G • W R O N G • W R

O N G • W R O N G • W R O N G • W R O N G • W

R O N G • W R O N G • W R O N G • W R O N G •

lim
x→0

x + 6

x + 2
= lim

x→0

d

dx
[x + 6]

d

dx
[x + 2]

= lim
x→0

1

1
= 1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INDETERMINATE FORMS OF
TYPE ∞//∞

When we want to indicate that the limit (or the one-sided limits) of a function are +� or

−� without being specific about the sign, we will say that the limit is �. For example,

lim
x→a+

f(x) = � means lim
x→a+

f(x) = +� or lim
x→a+

f(x) = −�

lim
x→+�

f(x) = � means lim
x→+�

f(x) = +� or lim
x→+�

f(x) = −�

lim
x→a

f(x) = � means lim
x→a+

f(x) = ±� and lim
x→a−

f(x) = ±�

The limit of a ratio, f(x)/g(x), in which the numerator has limit � and the denomi-

nator has limit � is called an indeterminate form of type �//�. The following version of

L’Hôpital’s rule, which we state without proof, can often be used to evaluate limits of this

type.

7.7.2 THEOREM (L’Hôpital’s Rule for Form �//�). Suppose thatf andg are differentiable

functions on an open interval containing x = a, except possibly at x = a, and that

lim
x→a

f(x) = � and lim
x→a

g(x) = �

If lim
x→a

[f ′(x)/g′(x)] has a finite limit orf if this limit is +� or −�, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Moreover, this statement is also true in the case of a limit as x→a−, x→a+, x→−�,

or as x→+�.
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Example 2 In each part confirm that the limit is an indeterminate form of type �/� and

apply L’Hôpital’s rule.

(a) lim
x→+�

x

ex
(b) lim

x→0+

ln x

csc x

Solution (a). The numerator and denominator both have a limit of +�, so we have an

indeterminate form of type �/�. Applying L’Hôpital’s rule yields

lim
x→+�

x

ex
= lim

x→+�

1

ex
= 0

Solution (b). The numerator has a limit of −� and the denominator has a limit of +�, so

we have an indeterminate form of type �/�. Applying L’Hôpital’s rule yields

lim
x→0+

ln x

csc x
= lim

x→0+

1/x

− csc x cot x
(8)

This last limit is again an indeterminate form of type �/�. Moreover, any additional ap-

plications of L’Hôpital’s rule will yield powers of 1/x in the numerator and expressions

involving csc x and cot x in the denominator; thus, repeated application of L’Hôpital’s rule

simply produces new indeterminate forms. We must try something else. The last limit in

(8) can be rewritten as

lim
x→0+

(

−
sin x

x
tan x

)

= − lim
x→0+

sin x

x
· lim
x→0+

tan x = −(1)(0) = 0

Thus,

lim
x→0+

ln x

csc x
= 0 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ANALYZING THE GROWTH OF
EXPONENTIAL FUNCTIONS USING
L’HÔPITAL’S RULE

If n is any positive integer, then xn → +� as x → +�. Such integer powers of x are

sometimes used as “measuring sticks” to describe how rapidly other functions grow. For

example, we know that ex → +� as x → +� and that the growth of ex is very rapid

(Table 7.2.3); however, the growth of xn is also rapid when n is a high power, so it is

reasonable to ask whether high powers of x grow more or less rapidly than ex . One way

to investigate this is to examine the behavior of the ratio xn/ex as x →+�. For example,

Figure 7.7.1a shows the graph of y = x5/ex . This graph suggests that x5/ex → 0 as

x → +�, and this implies that the growth of the function ex is sufficiently rapid that its

values eventually overtake those of x5 and force the ratio toward zero. Stated informally,

“ex eventually grows more rapidly than x5.” The same conclusion could have been reached

by putting ex on top and examining the behavior of ex/x5 as x → +� (Figure 7.7.1b). In

this case the values of ex eventually overtake those of x5 and force the ratio toward +�.

More generally, we can use L’Hôpital’s rule to show that ex eventually grows more rapidly

than any positive integer power of x, that is,

lim
x→+�

xn

ex
= 0 and lim

x→+�

ex

xn
= +� (9–10)

5 10 15 20

5

10

15

20

x

y

y =
x5

ex
y =

x5

ex

5 10 15 20

2

4

6

8

10

x

y

(a) (b)

Figure 7.7.1
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7.7 L’Hôpital’s Rule; Indeterminate Forms 507

Both limits are indeterminate forms of type �/� that can be evaluated using L’Hôpital’s

rule. For example, to establish (9), we will need to apply L’Hôpital’s rule n times. For this

purpose, observe that successive differentiations of xn reduce the exponent by 1 each time,

thus producing a constant for thenth derivative. For example, the successive derivatives of x3

are 3x2, 6x, and 6. In general, thenth derivative ofxn is the constantn(n−1)(n−2) · · · 1 = n!

(verify).
∗

Thus, applying L’Hôpital’s rule n times to (9) yields

lim
x→+�

xn

ex
= lim

x→+�

n!

ex
= 0

Limit (10) can be established similarly.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INDETERMINATE FORMS OF
TYPE 0 � ∞

Thus far we have discussed indeterminate forms of type 0/0 and �/�. However, these are

not the only possibilities; in general, the limit of an expression that has one of the forms

f(x)

g(x)
, f(x) · g(x), f(x)g(x), f(x) − g(x), f(x) + g(x)

is called an indeterminate form if the limits of f(x) and g(x) individually exert conflicting

influences on the limit of the entire expression. For example, the limit

lim
x→0+

x ln x

is an indeterminate form of type 0 � � because the limit of the first factor is 0, the limit of

the second factor is −�, and these two limits exert conflicting influences on the product.

On the other hand, the limit

lim
x→+�

[
√
x(1 − x2)]

is not an indeterminate form because the first factor has a limit of +�, the second factor has

a limit of −�, and these influences work together to produce a limit of −� for the product.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. It is tempting to argue that an indeterminate form of type 0 · � has value 0

since “zero times anything is zero.” However, this is fallacious since 0 · � is not a product

of numbers, but rather a statement about limits. For example, the following limits are of the

form 0 · �:

lim
x→0+

x ·
1

x
= 1, lim

x→0+
x2 ·

1

x
= 0, lim

x→0+

√
x ·

1

x
= +�

Indeterminate forms of type 0 · � can sometimes be evaluated by rewriting the product

as a ratio, and then applying L’Hôpital’s rule for indeterminate forms of type 0/0 or �/�.

Example 3 Evaluate

(a) lim
x→0+

x ln x (b) lim
x→π/4

(1 − tan x) sec 2x

Solution (a). The factor x has a limit of 0 and the factor ln x has a limit of −�, so the

stated problem is an indeterminate form of type 0 · �. There are two possible approaches:

we can rewrite the limit as

lim
x→0+

ln x

1/x
or lim

x→0+

x

1/ ln x

the first being an indeterminate form of type �/� and the second an indeterminate form of

type 0/0. However, the first form is the preferred initial choice because the derivative of

1/x is less complicated than the derivative of 1/ ln x. That choice yields

lim
x→0+

x ln x = lim
x→0+

ln x

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0

∗
Recall that for n ≥ 1 the expression n!, read n-factorial, denotes the product of the first n positive integers.
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Solution (b). The stated problem is an indeterminate form of type 0 · �. We will convert

it to an indeterminate form of type 0/0:

lim
x→π/4

(1 − tan x) sec 2x = lim
x→π/4

1 − tan x

1/ sec 2x
= lim

x→π/4

1 − tan x

cos 2x

= lim
x→π/4

− sec2 x

−2 sin 2x
=

−2

−2
= 1 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INDETERMINATE FORMS OF
TYPE ∞ – ∞

A limit problem that leads to one of the expressions

(+�) − (+�), (−�) − (−�),

(+�) + (−�), (−�) + (+�)

is called an indeterminate form of type � – �. Such limits are indeterminate because

the two terms exert conflicting influences on the expression: one pushes it in the positive

direction and the other pushes it in the negative direction. However, limit problems that lead

to one of the expressions

(+�) + (+�), (+�) − (−�),

(−�) + (−�), (−�) − (+�)

are not indeterminate, since the two terms work together (those on the top produce a limit

of +� and those on the bottom produce a limit of −�).

Indeterminate forms of type � − � can sometimes be evaluated by combining the terms

and manipulating the result to produce an indeterminate form of type 0/0 or �/�.

Example 4 Evaluate lim
x→0+

(
1

x
−

1

sin x

)

.

Solution. Both terms have a limit of +�, so the stated problem is an indeterminate form

of type � − �. Combining the two terms yields

lim
x→0+

(
1

x
−

1

sin x

)

= lim
x→0+

(
sin x − x

x sin x

)

which is an indeterminate form of type 0/0. Applying L’Hôpital’s rule twice yields

lim
x→0+

(
sin x − x

x sin x

)

= lim
x→0+

cos x − 1

sin x + x cos x

= lim
x→0+

− sin x

cos x + cos x − x sin x
=

0

2
= 0 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INDETERMINATE FORMS OF
TYPE 00, ∞

0, 1∞

Limits of the form

lim f(x)g(x)

give rise to indeterminate forms of the types 00, �
0, and 1�. (The interpretations of these

symbols should be clear.) For example, the limit

lim
x→0+

(1 + x)1/x

whose value we know to be e [see Formula (5) of Section 7.2] is an indeterminate form of

type 1�. It is indeterminate because the expressions 1 + x and 1/x exert two conflicting

influences: the first approaches 1, which drives the expression toward 1, and the second

approaches +�, which drives the expression toward +�.
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Indeterminate forms of types 00, �
0, and 1� can sometimes be evaluated by first intro-

ducing a dependent variable

y = f(x)g(x)

and then calculating the limit of ln y by expressing it as

lim ln y = lim [ln(f(x)g(x))] = lim [g(x) ln f(x)]

Once the limit of ln y is known, the limit of y = f(x)g(x) itself can generally be obtained

by a method that we will illustrate in the next example.

Example 5 Show that lim
x→0

(1 + x)1/x = e.

Solution. As discussed above, we begin by introducing a dependent variable

y = (1 + x)1/x

and taking the natural logarithm of both sides:

ln y = ln(1 + x)1/x =
1

x
ln(1 + x) =

ln(1 + x)

x

Thus,

lim
x→0

ln y = lim
x→0

ln(1 + x)

x

which is an indeterminate form of type 0/0, so by L’Hôpital’s rule

lim
x→0

ln y = lim
x→0

ln(1 + x)

x
= lim

x→0

1/(1 + x)

1
= 1

Since we have shown that ln y → 1 as x → 0, the continuity of the exponential function

implies that eln y →e1 as x→0, and this implies that y→e as x→0. Thus,

lim
x→0

(1 + x)1/x = e ◭

EXERCISE SET 7.7 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, evaluate the given limit without using

L’Hôpital’s rule, and then check that your answer is correct

using L’Hôpital’s rule.

1. (a) lim
x→2

x2 − 4

x2 + 2x − 8
(b) lim

x→+�

2x − 5

3x + 7

2. (a) lim
x→0

sin x

tan x
(b) lim

x→1

x2 − 1

x3 − 1

In Exercises 3–36, find the limit.

3. lim
x→1

ln x

x − 1
4. lim

x→0

sin 2x

sin 5x

5. lim
x→0

ex − 1

sin x
6. lim

x→3

x − 3

3x2 − 13x + 12

7. lim
θ →0

tan θ

θ
8. lim

t→0

tet

1 − et

9. lim
x→π+

sin x

x − π
10. lim

x→0+

sin x

x2

11. lim
x→+�

ln x

x
12. lim

x→+�

e3x

x2

13. lim
x→0+

cot x

ln x
14. lim

x→0+

1 − ln x

e1/x

15. lim
x→+�

x100

ex
16. lim

x→0+

ln(sin x)

ln(tan x)

17. lim
x→0

sin−1 2x

x
18. lim

x→0

x − tan−1 x

x3

19. lim
x→+�

xe−x 20. lim
x→π−

(x − π) tan 1
2
x

21. lim
x→+�

x sin
π

x
22. lim

x→0+
tan x ln x
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23. lim
x→π/2−

sec 3x cos 5x 24. lim
x→π

(x − π) cot x

25. lim
x→+�

(1 − 3/x)x 26. lim
x→0

(1 + 2x)−3/x

27. lim
x→0

(ex + x)1/x 28. lim
x→+�

(1 + a/x)bx

29. lim
x→1

(2 − x)tan[(π/2)x] 30. lim
x→+�

[cos(2/x)]x
2

31. lim
x→0

(csc x − 1/x) 32. lim
x→0

(
1

x2
−

cos 3x

x2

)

33. lim
x→+�

(
√

x2 + x − x) 34. lim
x→0

(
1

x
−

1

ex − 1

)

35. lim
x→+�

[x − ln(x2 + 1)] 36. lim
x→+�

[ln x − ln(1 + x)]

C 37. Use a CAS to check the answers you obtained in Exercises

31–36.

38. Show that for any positive integer n

(a) lim
x→+�

ln x

xn
= 0 (b) lim

x→+�

xn

ln x
= +�

39. (a) Find the error in the following calculation:

lim
x→1

x3 − x2 + x − 1

x3 − x2
= lim

x→1

3x2 − 2x + 1

3x2 − 2x

= lim
x→1

6x − 2

6x − 2
= 1

(b) Find the correct answer.

40. Find lim
x→1

x4 − 4x3 + 6x2 − 4x + 1

x4 − 3x3 + 3x2 − x
.

In Exercises 41–44, make a conjecture about the limit by

graphing the function involved with a graphing utility; then

check your conjecture using L’Hôpital’s rule.

41. lim
x→+�

ln(ln x)
√
x

42. lim
x→0+

xx

43. lim
x→0+

(sin x)3/ln x 44. lim
x→(π/2)−

4 tan x

1 + sec x

In Exercises 45–48, make a conjecture about the equations of

horizontal asymptotes, if any, by graphing the equation with

a graphing utility; then check your answer using L’Hôpital’s

rule.

45. y = ln x − ex 46. y = x − ln(1 + 2ex)

47. y = (ln x)1/x 48. y =
(
x + 1

x + 2

)x

49. Limits of the type

0/�, �/0, 0�, � · �, +� + (+�),

+� − (−�), −� + (−�), −� − (+�)

are not indeterminate forms. Find the following limits by

inspection.

(a) lim
x→0+

x

ln x
(b) lim

x→+�

x3

e−x

(c) lim
x→(π/2)−

(cos x)tan x (d) lim
x→0+

(ln x) cot x

(e) lim
x→0+

(
1

x
− ln x

)

(f ) lim
x→−�

(x + x3)

50. There is a myth that circulates among beginning calculus

students which states that all indeterminate forms of types

00, �
0, and 1� have value 1 because “anything to the zero

power is 1” and “1 to any power is 1.” The fallacy is that

00, �
0, and 1� are not powers of numbers, but rather de-

scriptions of limits. The following examples, which were

suggested by Prof. Jack Staib of Drexel University, show

that such indeterminate forms can have any positive real

value:

(a) lim
x→0+

[

x(ln a)
/(1+ln x)

]

(form 00)

(b) lim
x→+�

[

x(ln a)
/(1+ln x)

]

(form �
0)

(c) lim
x→0

[

(x + 1)(ln a)
/x
]

(form 1�).

Verify these results.

In Exercises 51–54, verify that L’Hôpital’s rule is of no help

in finding the limit, then find the limit, if it exists, by some

other method.

51. lim
x→+�

x + sin 2x

x
52. lim

x→+�

2x − sin x

3x + sin x

53. lim
x→+�

x(2 + sin 2x)

x + 1
54. lim

x→+�

x(2 + sin x)

x2 + 1

55. The accompanying schematic diagram represents an electri-

cal circuit consisting of an electromotive force that produces

a voltage V , a resistor with resistance R, and an inductor

with inductance L. It is shown in electrical circuit theory

that if the voltage is first applied at time t = 0, then the

current I flowing through the circuit at time t is given by

I =
V

R
(1 − e−Rt/L)

What is the effect on the current at a fixed time t if the

resistance approaches 0 (i.e., R→0+)?

R

L

V I

Figure Ex-55

56. (a) Show that lim
x→π/2

(π/2 − x) tan x = 1.
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(b) Show that

lim
x→π/2

(
1

π/2 − x
− tan x

)

= 0

(c) It follows from part (b) that the approximation

tan x ≈
1

π/2 − x

should be good for values of x near π/2. Use a calcula-

tor to find tan x and 1/(π/2−x) for x = 1.57; compare

the results.

C 57. (a) Use a CAS to show that if k is a positive constant, then

lim
x→+�

x(k1/x − 1) = ln k

(b) Confirm this result using L’Hôpital’s rule. [Hint: Ex-

press the limit in terms of t = 1/x.]

(c) If n is a positive integer, then it follows from part (a)

with x = n that the approximation

n(
n
√
k − 1) ≈ ln k

should be good when n is large. Use this result and the

square root key on a calculator to approximate the val-

ues of ln 0.3 and ln 2 with n = 1024, then compare

the values obtained with values of the logarithms gen-

erated directly from the calculator. [Hint: The nth roots

for whichn is a power of 2 can be obtained as successive

square roots.]

58. Let f(x) = x2 sin(1/x).

(a) Are the limits lim
x→0+

f(x) and lim
x→0−

f(x) indeterminate

forms?
(b) Use a graphing utility to generate the graph of f , and

use the graph to make conjectures about the limits in

part (a).
(c) Use the Squeezing Theorem (2.6.2) to confirm that your

conjectures in part (b) are correct.

59. Find all values of k and l such that

lim
x→0

k + cos lx

x2
= −4

60. (a) Explain why L’Hôpital’s rule does not apply to the

problem

lim
x→0

x2 sin(1/x)

sin x

(b) Find the limit.

61. Find lim
x→0+

x sin(1/x)

sin x
if it exists.

7.8 HYPERBOLIC FUNCTIONS AND HANGING CABLES

In this section we will study certain combinations of ex and e−x, called “hyperbolic

functions.” These functions, which arise in various engineering applications, have

many properties in common with the trigonometric functions. This similarity is some-

what surprising, since there is little on the surface to suggest that there should be any

relationship between exponential and trigonometric functions. This is because the rela-

tionship occurs within the context of complex numbers, a topic which we will leave for

more advanced courses.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITIONS OF HYPERBOLIC
FUNCTIONS

To introduce the hyperbolic functions, observe that the function ex can be expressed in the

following way as the sum of an even function and an odd function:

ex =
ex + e−x

2
︸ ︷︷ ︸

Even

+
ex − e−x

2
︸ ︷︷ ︸

Odd

These functions are sufficiently important that there are names and notation associated with

them: the odd function is called the hyperbolic sine of x and the even function is called the

hyperbolic cosine of x. They are denoted by

sinh x =
ex − e−x

2
and cosh x =

ex + e−x

2

where sinh is pronounced “cinch” and cosh rhymes with “gosh.” From these two building

blocks we can create four more functions to produce the following set of six hyperbolic

functions.
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7.8.1 DEFINITION.

Hyperbolic sine sinh x =
ex − e−x

2

Hyperbolic cosine cosh x =
ex + e−x

2

Hyperbolic tangent tanh x =
sinh x

cosh x
=

ex − e−x

ex + e−x

Hyperbolic cotangent coth x =
cosh x

sinh x
=

ex + e−x

ex − e−x

Hyperbolic secant sech x =
1

cosh x
=

2

ex + e−x

Hyperbolic cosecant csch x =
1

sinh x
=

2

ex − e−x

•
•
•
•
•
•
•
•

REMARK. The terms “tanh,” “sech,” and “csch” are pronounced “tanch,” “seech,” and

“coseech,” respectively.

Example 1

sinh 0 =
e0 − e−0

2
=

1 − 1

2
= 0

cosh 0 =
e0 + e−0

2
=

1 + 1

2
= 1

sinh 2 =
e2 − e−2

2
≈ 3.6269 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHS OF THE HYPERBOLIC
FUNCTIONS

The graphs of the hyperbolic functions, which are shown in Figure 7.8.1, can be generated

with a graphing utility, but it is worthwhile to observe that the general shape of the graph of

y = cosh x can be obtained by sketching the graphs of y = 1
2
ex and y = 1

2
e−x separately

and adding the corresponding y-coordinates [see part (a) of the figure]. Similarly, the general

shape of the graph of y = sinh x can be obtained by sketching the graphs of y = 1
2
ex and

y = − 1
2
e−x separately and adding corresponding y-coordinates [see part (b) of the figure].

Observe that sinh x has a domain of (−�,+�) and a range of (−�,+�), whereas cosh x

has a domain of (−�,+�) and a range of [1,+�). Observe also that y = 1
2
ex and y = 1

2
e−x

are curvilinear asymptotes for y = cosh x in the sense that the graph of y = cosh x gets

closer and closer to the graph of y = 1
2
ex as x→+� and gets closer and closer to the graph

of y = 1
2
e−x as x→−�. (See Exercise 2.3.) Similarly, y = 1

2
ex is a curvilinear asymptote

for y = sinh x as x → +� and y = − 1
2
e−x is a curvilinear asymptote as x → −�. Other

properties of the hyperbolic functions are explored in the exercises.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

HANGING CABLES AND OTHER
APPLICATIONS

Hyperbolic functions arise in vibratory motions inside elastic solids and more generally in

many problems where mechanical energy is gradually absorbed by a surrounding medium.

They also occur when a homogeneous, flexible cable is suspended between two points,

as with a telephone line hanging between two poles. Such a cable forms a curve, called

a catenary (from the Latin catena, meaning “chain”). If, as in Figure 7.8.2, a coordinate

system is introduced so that the low point of the cable lies at the point (0, a) on the y-axis,
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-1

1

-1

1 1

y = tanh xy = sinh xy = cosh x

y = coth x y = sech x y = csch x

(d) (e) ( f )

1

2
y = − e−x

1

2
y = ex

1

2
y = ex 1

2
y = e−x

1
1

x

yy

xx

y

x

y

x

y

x

y

(c)(a) (b)

Figure 7.8.1

then it can be shown using principles of physics that the cable has the equation

y = a cosh
(x

a

)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

HYPERBOLIC IDENTITIES
The hyperbolic functions satisfy various identities that are similar to identities for trigono-

metric functions. The most fundamental of these is

cosh2 x − sinh2 x = 1 (1)

which can be proved by writing

cosh2 x − sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

= 1
4
(e2x + 2e0 + e−2x) − 1

4
(e2x − 2e0 + e−2x)

= 1

The design of the Gateway Arch near 

St. Louis is based on an inverted hyper-

bolic cosine curve.

x

y
y = a cosh (x/a)

(0, a)

Figure 7.8.2

Other hyperbolic identities can be derived in a similar manner or, alternatively, by per-

forming algebraic operations on known identities. For example, if we divide (1) by cosh2 x,

we obtain

1 − tanh2 x = sech2x

and if we divide (1) by sinh2 x, we obtain

coth2 x − 1 = csch2x

The following theorem summarizes some of the more useful hyperbolic identities. The

proofs of those not already obtained are left as exercises.
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7.8.2 THEOREM.

cosh x + sinh x = ex sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh x − sinh x = e−x cosh(x + y) = cosh x cosh y + sinh x sinh y

cosh2 x − sinh2 x = 1 sinh(x − y) = sinh x cosh y − cosh x sinh y

1 − tanh2 x = sech2 x cosh(x − y) = cosh x cosh y − sinh x sinh y

coth2 x − 1 = csch2 x sinh 2x = 2 sinh x cosh x

cosh(−x) = cosh x cosh 2x = cosh2 x + sinh2 x

sinh(−x) = − sinh x cosh 2x = 2 sinh2 x + 1

cosh 2x = 2 cosh2 x − 1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

WHY THEY ARE CALLED
HYPERBOLIC FUNCTIONS

Recall that the parametric equations

x = cos t, y = sin t (0 ≤ t ≤ 2π)

represent the unit circle x2 + y2 = 1 (Figure 7.8.3a), as may be seen by writing

x2 + y2 = cos2 t + sin2 t = 1

If 0 ≤ t ≤ 2π, then the parameter t can be interpreted as the angle in radians from the

positive x-axis to the point (cos t , sin t) or, alternatively, as twice the shaded area of the

sector in Figure 7.8.3a (verify). Analogously, the parametric equations

x = cosh t, y = sinh t (−� < t < +�)

represent a portion of the curve x2 − y2 = 1, as may be seen by writing

x2 − y2 = cosh2 t − sinh2 t = 1

and observing that x = cosh t > 0. This curve, which is shown in Figure 7.8.3b, is the right

half of a larger curve called the unit hyperbola; this is the reason why the functions in this

section are called hyperbolic functions. It can be shown that if t ≥ 0, then the parameter t

can be interpreted as twice the shaded area in Figure 7.8.3b. (We omit the details.)

(cosh t, sinh t) 

x2 – y2 = 1

(cos t, sin t) x2 + y2 = 1

x

y

x

y

(a) (b)

Figure 7.8.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVE AND INTEGRAL
FORMULAS

Derivative formulas for sinh x and cosh x can be obtained by expressing these functions in

terms of ex and e−x :

d

dx
[sinh x] =

d

dx

[
ex − e−x

2

]

=
ex + e−x

2
= cosh x

d

dx
[cosh x] =

d

dx

[
ex + e−x

2

]

=
ex − e−x

2
= sinh x
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Derivatives of the remaining hyperbolic functions can be obtained by expressing them in

terms of sinh and cosh and applying appropriate identities. For example,

d

dx
[tanh x] =

d

dx

[
sinh x

cosh x

]

=
cosh x

d

dx
[sinh x] − sinh x

d

dx
[cosh x]

cosh2 x

=
cosh2 x − sinh2 x

cosh2 x
=

1

cosh2 x
= sech2 x

The following theorem provides a complete list of the generalized derivative formulas and

corresponding integration formulas for the hyperbolic functions.

7.8.3 THEOREM.

d

dx
[sinh u] = cosh u

du

dx

∫

cosh u du = sinh u + C

d

dx
[cosh u] = sinh u

du

dx

∫

sinh u du = cosh u + C

d

dx
[tanh u] = sech2 u

du

dx

∫

sech2 u du = tanh u + C

d

dx
[coth u] = −csch2 u

du

dx

∫

csch2 u du = − coth u + C

d

dx
[sech u] = −sech u tanh u

du

dx

∫

sech u tanh u du = −sech u + C

d

dx
[csch u] = −csch u coth u

du

dx

∫

csch u coth u du = −csch u + C

Example 2

d

dx
[cosh(x3)] = sinh(x3) ·

d

dx
[x3] = 3x2 sinh(x3)

d

dx
[ln(tanh x)] =

1

tanh x
·
d

dx
[tanh x] =

sech2 x

tanh x
◭

Example 3
∫

sinh5 x cosh x dx = 1
6

sinh6 x + C
u = sinh x

du = cosh x dx

∫

tanh x dx =
∫

sinh x

cosh x
dx

= ln |cosh x| + C
u = cosh x

du = sinh x dx

= ln(cosh x) + C

We were justified in dropping the absolute value signs since cosh x > 0 for all x. ◭

-10 10

5

10

15

20

x

y

y = 10 cosh (  )
x

10

Figure 7.8.4

Example 4 Find the length of the catenary y = 10 cosh(x/10) from x = −10 to x = 10

(Figure 7.8.4).
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Solution. From Formula (4) of Section 6.4, the length L of the catenary is

L =
∫ 10

−10

√

1 +
(
dy

dx

)2

dx

= 2

∫ 10

0

√

1 +
(
dy

dx

)2

dx
By symmetry

about the y-axis

= 2

∫ 10

0

√

1 + sinh2
( x

10

)

dx

= 2

∫ 10

0

cosh
( x

10

)

dx
By (1) and the fact

that cosh x > 0

= 20 sinh
( x

10

)
]10

0

= 20[sinh 1 − sinh 0] = 20 sinh 1 = 20

(
e − e−1

2

)

≈ 23.50 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Computer algebra systems, such as Mathematica, Maple, and Derive have

built-in capabilities for evaluating hyperbolic functions directly, but some calculators do

not. However, if you need to evaluate a hyperbolic function on a calculator, you can do so

by expressing it in terms of exponential functions, as in this example.

1

x

y

y = cosh x

y = sech x

With the restriction that x ≥  0, 
the curves y = cosh x and

y = sech x pass the horizontal 

line test.

Figure 7.8.5

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INVERSES OF HYPERBOLIC
FUNCTIONS

Referring to Figure 7.8.1, it is evident that the graphs of sinh x, tanh x, coth x, and csch x

pass the horizontal line test, but the graphs of cosh x and sech x do not. In the latter case

restricting x to be nonnegative makes the functions invertible (Figure 7.8.5). The graphs of

the six inverse hyperbolic functions in Figure 7.8.6 were obtained by reflecting the graphs

of the hyperbolic functions (with the appropriate restrictions) about the line y = x.

Table 7.8.1 summarizes the basic properties of the inverse hyperbolic functions. You

should confirm that the domains and ranges listed in this table agree with the graphs in

Figure 7.8.6.

Table 7.8.1

function basic relationshipsdomain range

sinh–1 x

cosh–1 x

tanh–1 x

coth–1 x

sech–1 x

csch–1 x

(–∞, +∞)

[1, +∞)

(–1, 1)

(–∞, –1) � (1, +∞)

(0, 1]

(–∞, 0) � (0, +∞)

(–∞, +∞)

[0, +∞)

(–∞, +∞)

(–∞, 0) � (0, +∞)

[0, +∞)

(–∞, 0) � (0, +∞)

sinh–1(sinh x) = x     if –∞ < x < +∞

sinh(sinh–1 x) = x     if –∞ < x < +∞

cosh–1(cosh x) = x   if   x ≥  0

cosh(cosh–1 x) = x   if  x ≥  1

tanh–1(tanh x) = x    if  –∞ < x < +∞

tanh(tanh–1 x) = x    if  –1 < x < 1

coth–1(coth x) = x    if   x < 0 or x > 0

coth(coth–1 x) = x    if   x < –1 or x > 1

sech–1(sech x) = x    if   x ≥  0

sech(sech–1 x) = x    if  0 < x ≤  1

csch–1(csch x) = x    if  x < 0 or x > 0

csch(csch–1 x) = x    if   x < 0 or x > 0
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-1 1

y = sinh–1 x y = cosh–1 x y = tanh–1 x

y = coth–1 x

1

y = sech–1 x y = csch–1 x

1

-1 1

x

y

x

y

x

y

x

y

x

y

x

y

Figure 7.8.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOGARITHMIC FORMS OF INVERSE
HYPERBOLIC FUNCTIONS

Because the hyperbolic functions are expressible in terms of ex , it should not be surprising

that the inverse hyperbolic functions are expressible in terms of natural logarithms; the next

theorem shows that this is so.

7.8.4 THEOREM. The following relationships hold for all x in the domains of the

stated inverse hyperbolic functions:

sinh−1 x = ln(x +
√

x2 + 1 ) cosh−1 x = ln(x +
√
x2 − 1 )

tanh−1 x =
1

2
ln

(
1 + x

1 − x

)

coth−1 x =
1

2
ln

(
x + 1

x − 1

)

sech−1 x = ln

(

1 +
√

1 − x2

x

)

csch−1 x = ln

(

1

x
+

√

1 + x2

|x|

)

We will show how to derive the first formula in this theorem, and leave the rest as exercises.

The basic idea is to write the equation x = sinh y in terms of exponential functions and

solve this equation for y as a function of x. This will produce the equation y = sinh−1 x

with sinh−1 x expressed in terms of natural logarithms. Expressing x = sinh y in terms of

exponentials yields

x = sinh y =
ey − e−y

2

which can be rewritten as

ey − 2x − e−y = 0
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Multiplying this equation through by ey we obtain

e2y − 2xey − 1 = 0

and applying the quadratic formula yields

ey =
2x ±

√
4x2 + 4

2
= x ±

√

x2 + 1

Since ey > 0, the solution involving the minus sign is extraneous and must be discarded.

Thus,

ey = x +
√

x2 + 1

Taking natural logarithms yields

y = ln(x +
√

x2 + 1 ) or sinh−1 x = ln(x +
√

x2 + 1 )

Example 5

sinh−1 1 = ln(1 +
√

12 + 1 ) = ln(1 +
√

2 ) ≈ 0.8814

tanh−1

(
1

2

)

=
1

2
ln

(

1 + 1
2

1 − 1
2

)

=
1

2
ln 3 ≈ 0.5493 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES AND INTEGRALS
INVOLVING INVERSE HYPERBOLIC
FUNCTIONS

Theorem 7.1.6 can be used to establish the differentiability of the inverse hyperbolic func-

tions (we omit the details), and formulas for the derivatives can be obtained from Theorem

7.8.4. For example,

d

dx
[sinh−1 x] =

d

dx
[ln(x +

√

x2 + 1 )] =
1

x +
√

x2 + 1

(

1 +
x

√

x2 + 1

)

=

√

x2 + 1 + x

(x +
√

x2 + 1 )(
√

x2 + 1 )
=

1
√

x2 + 1

This computation leads to two integral formulas, a formula that involves sinh−1 x and an

equivalent formula that involves logarithms:
∫

dx
√

x2 + 1
= sinh−1 x + C = ln(x +

√

x2 + 1 ) + C

•
•
•
•
•
•
•
•

FOR THE READER. The derivative of sinh−1 x can also be obtained by letting y = sinh−1 x

and differentiating the equation x = sinh y implicitly. Try it.

The following two theorems list the generalized derivative formulas and corresponding

integration formulas for the inverse hyperbolic functions. Some of the proofs appear as

exercises.

7.8.5 THEOREM.

d

dx
(sinh−1 u) =

1
√

1 + u2

du

dx

d

dx
(coth−1 u) =

1

1 − u2

du

dx
, |u| > 1

d

dx
(cosh−1 u) =

1
√

u2 − 1

du

dx
, u > 1

d

dx
(sech−1 u) = −

1

u
√

1 − u2

du

dx
, 0 < u < 1

d

dx
(tanh−1 u) =

1

1 − u2

du

dx
, |u| < 1

d

dx
(csch−1 u) = −

1

|u|
√

1 + u2

du

dx
, u

�
= 0
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7.8.6 THEOREM. If a > 0, then
∫

du
√

a2 + u2
= sinh−1

(u

a

)

+ C or ln(u +
√

u2 + a2 ) + C

∫
du

√

u2 − a2
= cosh−1

(u

a

)

+ C or ln(u +
√

u2 − a2 ) + C, u > a

∫
du

a2 − u2
=











1

a
tanh−1

(u

a

)

+ C, |u| < a

1

a
coth−1

(u

a

)

+ C, |u| > a

or
1

2a
ln

∣
∣
∣
∣

a + u

a − u

∣
∣
∣
∣
+ C, |u| �= a

∫
du

u
√

a2 − u2
= −

1

a
sech−1

∣
∣
∣

u

a

∣
∣
∣+ C or −

1

a
ln

(

a +
√

a2 − u2

|u|

)

+ C, 0 < |u| < a

∫
du

u
√

a2 + u2
= −

1

a
csch−1

∣
∣
∣

u

a

∣
∣
∣+ C or −

1

a
ln

(

a +
√

a2 + u2

|u|

)

+ C, u �= 0

Example 6 Evaluate

∫
dx

√

4x2 − 9
, x >

3

2
.

Solution. Let u = 2x. Thus, du = 2 dx and
∫

dx
√

4x2 − 9
=

1

2

∫
2 dx

√

4x2 − 9
=

1

2

∫
du

√

u2 − 32

=
1

2
cosh−1

(u

3

)

+ C =
1

2
cosh−1

(
2x

3

)

+ C

Alternatively, we can use the logarithmic equivalent of cosh−1(2x/3),

cosh−1

(
2x

3

)

= ln(2x +
√

4x2 − 9 ) − ln 3

(verify), and express the answer as
∫

dx
√

4x2 − 9
=

1

2
ln(2x +

√

4x2 − 9 ) + C ◭

EXERCISE SET 7.8 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, approximate the expression to four dec-

imal places.

1. (a) sinh 3 (b) cosh(−2) (c) tanh(ln 4)

(d) sinh−1(−2) (e) cosh−1 3 (f ) tanh−1 3
4

2. (a) csch(−1) (b) sech(ln 2) (c) coth 1

(d) sech−1 1
2

(e) coth−1 3 (f ) csch−1(−
√

3 )

3. In each part, find the exact numerical value of the expression.

(a) sinh(ln 3) (b) cosh(− ln 2)

(c) tanh(2 ln 5) (d) sinh(−3 ln 2)

4. In each part, rewrite the expression as a ratio of polynomials.

(a) cosh(ln x) (b) sinh(ln x)

(c) tanh(2 ln x) (d) cosh(− ln x)

5. In each part, a value for one of the hyperbolic functions is

given at an unspecified positive number x0. Use appropri-

ate identities to find the exact values of the remaining five

hyperbolic functions at x0.

(a) sinh x0 = 2 (b) cosh x0 = 5
4

(c) tanh x0 = 4
5

6. Obtain the derivative formulas for csch x, sech x, and coth x

from the derivative formulas for sinh x, cosh x, and tanh x.

7. Find the derivatives of sinh−1 x, cosh−1 x, and tanh−1 x by

differentiating the equations x = sinh y, x = cosh y, and

x = tanh y implicitly.

C 8. Use a CAS to find the derivatives of sinh−1 x, cosh−1 x,

tanh−1 x, coth−1 x, sech−1 x, and csch−1 x, and confirm that

your answers are consistent with those in Theorem 7.8.5.

In Exercises 9–28, find dy/dx.
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9. y = sinh(4x − 8) 10. y = cosh(x4)

11. y = coth(ln x) 12. y = ln(tanh 2x)

13. y = csch(1/x) 14. y = sech(e2x)

15. y =
√

4x + cosh2(5x) 16. y = sinh3(2x)

17. y = x3 tanh2(
√
x ) 18. y = sinh(cos 3x)

19. y = sinh−1
(

1
3
x
)

20. y = sinh−1(1/x)

21. y = ln(cosh−1 x) 22. y = cosh−1(sinh−1 x)

23. y =
1

tanh−1 x
24. y = (coth−1 x)2

25. y = cosh−1(cosh x) 26. y = sinh−1(tanh x)

27. y = ex sech−1
√
x 28. y = (1 + x csch−1 x)10

C 29. Use a CAS to find the derivatives in Example 2. If the an-

swers produced by the CAS do not match those in the text,

then use appropriate identities to show that the answers are

equivalent.

C 30. For each of the derivatives you obtained in Exercises 9–28,

use a CAS to check your answer. If the answer produced

by the CAS does not match your own, show that the two

answers are equivalent.

In Exercises 31–46, evaluate the integrals.

31.

∫

sinh6 x cosh x dx 32.

∫

cosh(2x − 3) dx

33.

∫ √
tanh x sech2 x dx 34.

∫

csch2(3x) dx

35.

∫

tanh x dx 36.

∫

coth2 x csch2 x dx

37.

∫ ln 3

ln 2

tanh x sech3 x dx 38.

∫ ln 3

0

ex − e−x

ex + e−x
dx

39.

∫
dx

√

1 + 9x2
40.

∫
dx

√

x2 − 2
(x >

√
2 )

41.

∫
dx

√

1 − e2x
(x < 0) 42.

∫
sin θ dθ

√

1 + cos2 θ

43.

∫
dx

x
√

1 + 4x2
44.

∫
dx

√

9x2 − 25
(x > 5/3)

45.

∫ 1/2

0

dx

1 − x2
46.

∫
√

3

0

dt
√

t2 + 1

C 47. For each of the integrals you evaluated in Exercises 31–46,

use a CAS to check your answer. If the answer produced

by the CAS does not match your own, show that the two

answers are equivalent.

48. Use a graphing utility to generate the graphs of sinh x,

cosh x, and tanh x by expressing these functions in terms

of ex and e−x . If your graphing utility can graph the hyper-

bolic functions directly, then generate the graphs that way

as well.

49. Find the area enclosed by y = sinh 2x, y = 0, and x = ln 3.

50. Find the volume of the solid that is generated when the re-

gion enclosed by y = sech x, y = 0, x = 0, and x = ln 2

is revolved about the x-axis.

51. Find the volume of the solid that is generated when the re-

gion enclosed by y = cosh 2x, y = sinh 2x, x = 0, and

x = 5 is revolved about the x-axis.

52. Approximate the positive value of the constant a such that

the area enclosed by y = cosh ax, y = 0, x = 0, and

x = 1 is 2 square units. Express your answer to at least five

decimal places.

53. Find the arc length of y = cosh x between x = 0 and

x = ln 2.

54. Find the arc length of the catenaryy = a cosh(x/a)between

x = 0 and x = x1 (x1 > 0).

55. Prove that sinh x is an odd function of x and that cosh x is

an even function of x, and check that this is consistent with

the graphs in Figure 7.8.1.

In Exercises 56 and 57, prove the identities.

56. (a) cosh x + sinh x = ex

(b) cosh x − sinh x = e−x

(c) sinh(x + y) = sinh x cosh y + cosh x sinh y

(d) sinh 2x = 2 sinh x cosh x

(e) cosh(x + y) = cosh x cosh y + sinh x sinh y

(f ) cosh 2x = cosh2 x + sinh2 x

(g) cosh 2x = 2 sinh2 x + 1

(h) cosh 2x = 2 cosh2 x − 1

57. (a) 1 − tanh2 x = sech2 x

(b) tanh(x + y) =
tanh x + tanh y

1 + tanh x tanh y

(c) tanh 2x =
2 tanh x

1 + tanh2 x

58. Prove:

(a) cosh−1 x = ln(x +
√
x2 − 1 ), x ≥ 1

(b) tanh−1 x =
1

2
ln

(
1 + x

1 − x

)

, −1 < x < 1.

59. Use Exercise 58 to obtain the derivative formulas for

cosh−1 x and tanh−1 x.

60. Prove:

sech−1 x = cosh−1(1/x), 0 < x ≤ 1

coth−1 x = tanh−1(1/x), |x| > 1

csch−1 x = sinh−1(1/x), x �= 0

61. Use Exercise 60 to express the integral
∫

du

1 − u2

entirely in terms of tanh−1.

62. Show that

(a)
d

dx
[sech−1|x|] = −

1

x
√

1 − x2

(b)
d

dx
[csch−1|x|] = −

1

x
√

1 + x2
.
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63. Find the limits, and confirm that they are consistent with

the graphs in Figures 7.8.1 and 7.8.6.

(a) lim
x→+�

sinh x (b) lim
x→−�

sinh x

(c) lim
x→+�

tanh x (d) lim
x→−�

tanh x

(e) lim
x→+�

sinh−1 x (f ) lim
x→1−

tanh−1 x

64. In each part, find the limit.

(a) lim
x→+�

(cosh−1 x − ln x) (b) lim
x→+�

cosh x

ex

65. Use the first and second derivatives to show that the graph

of y = tanh−1 x is always increasing and has an inflection

point at the origin.

66. The integration formulas for 1/
√
u2 − a2 in Theorem 7.8.6

are valid for u > a. Show that the following formula is valid

for u < −a:
∫

du
√

u2 − a2
= − cosh−1

(

−
u

a

)

+C = ln

∣
∣
∣u+

√

u2 − a2

∣
∣
∣+C

67. Show that (sinh x + cosh x)n = sinh nx + cosh nx.

68. Show that
∫ a

−a

etx dx =
2 sinh at

t

69. A cable is suspended between two poles as shown in Fig-

ure 7.8.2. The equation of the curve formed by the cable is

y = a cosh(x/a), where a is a positive constant. Suppose

that the x-coordinates of the points of support are x = −b

and x = b, where b > 0.

(a) Show that the length L of the cable is given by

L = 2a sinh
b

a

(b) Show that the sag S (the vertical distance between the

highest and lowest points on the cable) is given by

S = a cosh
b

a
− a

Exercises 70 and 71 refer to the hanging cable described in

Exercise 69.

70. Assuming that the cable is 120 ft long and the poles are 100

ft apart, approximate the sag in the cable by approximating

a. Express your final answer to the nearest tenth of a foot.

[Hint: First let u = 50/a.]

71. Assuming that the poles are 400 ft apart and the sag in the

cable is 30 ft, approximate the length of the cable by approx-

imating a. Express your final answer to the nearest tenth of

a foot. [Hint: First let u = 200/a.]

72. The accompanying figure shows a person pulling a boat by

holding a rope of length a attached to the bow and walk-

ing along the edge of a dock. If we assume that the rope is

always tangent to the curve traced by the bow of the boat,

then this curve, which is called a tractrix, has the property

that the segment of the tangent line between the curve and

the y-axis has a constant length a. It can be proved that the

equation of this tractrix is

y = a sech−1 x

a
−
√

a2 − x2

(a) Show that to move the bow of the boat to a point (x, y),

the person must walk a distance

D = a sech−1 x

a

from the origin.

(b) If the rope has a length of 15 m, how far must the person

walk from the origin to bring the boat 10 m from the

dock? Round your answer to two decimal places.

(c) Find the distance traveled by the bow along the tractrix

as it moves from its initial position to the point where

it is 5 m from the dock.

y

(a, 0)

x

Dock
Initial

position

(x, y)

Figure Ex-72

SUPPLEMENTARY EXERCISES

Graphing Utility C CAS

1. (a) State conditions under which two functions, f and g,

will be inverses, and give several examples of such

functions.

(b) In words, what is the relationship between the graphs

of y = f(x) and y = g(x) when f and g are inverse

functions?

(c) What is the relationship between the domains and

ranges of inverse functions f and g?

(d) What condition must be satisfied for a function f to

have an inverse? Give some examples of functions that

do not have inverses.

(e) If f and g are inverse functions and f is continuous,

must g be continuous? Give a reasonable informal ar-

gument to support your answer.

(f ) If f and g are inverse functions and f is differentiable,

must g be differentiable? Give a reasonable informal

argument to support your answer.
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2. (a) State the restrictions on the domains of sin x, cos x,

tan x, and sec x that are imposed to make those func-

tions one-to-one in the definitions of sin−1 x, cos−1 x,

tan−1 x, and sec−1 x.

(b) Sketch the graphs of the restricted trigonometric func-

tions in part (a) and their inverses.

3. In each part, find f −1(x) if the inverse exists.

(a) f(x) = 8x3 − 1 (b) f(x) = x2 − 2x + 1

(c) f(x) = (ex)2 + 1 (d) f(x) = (x + 2)/(x − 1)

4. Let f(x) = (ax + b)/(cx + d). What conditions on a, b, c,

d guarantee that f −1 exists? Find f −1(x).

5. Express the following function as a rational function of x:

3 ln
(

e2x(ex)3
)

+ 2 exp(ln 1)

6. In each part, find the exact numerical value of the given

expression.

(a) cos[cos−1(4/5) + sin−1(5/13)]

(b) sin[sin−1(4/5) + cos−1(5/13)]

7. In each part, prove the identity

(a) cosh 3x = 4 cosh3 x − 3 cosh x

(b) cosh 1
2
x =

√

1
2
(cosh x + 1)

(c) sinh 1
2
x = ±

√

1
2
(cosh x − 1)

8. Suppose that y = Cekt , where C and k are constants, and

let Y = ln y. Show that the graph of Y versus t is a line, and

state its slope and Y -intercept.

9. (a) Sketch the curves y = ±e−x/2 and y = e−x/2 sin 2x for

−π/2 ≤ x ≤ 3π/2 in the same coordinate system, and

check your work using a graphing utility.

(b) Find all x-intercepts of the curve y = e−x/2 sin 2x in the

stated interval, and find the x-coordinates of all points

where this curve intersects the curves y = ±e−x/2.

10. In each part, sketch the graph, and check your work with a

graphing utility.

(a) f(x) = 3 sin−1(x/2)

(b) f(x) = cos−1 x − π/2

(c) f(x) = 2 tan−1(−3x)

(d) f(x) = cos−1 x + sin−1 x

11. The design of the Gateway Arch in St. Louis, Missouri, by

architect Eero Saarinan was implemented using equations

provided by Dr. Hannskarl Badel. The equation used for the

centerline of the arch was

y = 693.8597 − 68.7672 cosh(0.0100333x) ft

for x between −299.2239 and 299.2239.

(a) Use a graphing utility to graph the centerline of the arch.

(b) Find the length of the centerline to four decimal places.

(c) For what values of x is the height of the arch 100 ft?

Round your answers to four decimal places.

(d) Approximate, to the nearest degree, the acute angle that

the tangent line to the centerline makes with the ground

at the ends of the arch.

C 12. (a) Show that for x > 0 and k �= 0 the equations

xk = ex and
ln x

x
=

1

k

have the same solutions.

(b) Use the graph of y = (ln x)/x to determine the values

of k for which the equation xk = ex has two distinct

positive solutions.

(c) Estimate the positive solution(s) of x8 = ex .

13. (a) Show that the graphs of y = ln x and y = x0.2 intersect.

(b) Approximate the solution(s) of the equation ln x = x0.2

to three decimal places.

14. Suppose that a hollow tube rotates with a constant angular

velocity of ω rad/s about a horizontal axis at one end of the

tube, as shown in the accompanying figure. Assume that an

object is free to slide without friction in the tube while the

tube is rotating. Let r be the distance from the object to the

pivot point at time t ≥ 0, and assume that the object is at

rest and r = 0 when t = 0. It can be shown that if the tube is

horizontal at time t = 0 and rotating as shown in the figure,

then

r =
g

2ω2
[sinh(ωt) − sin(ωt)]

during the period that the object is in the tube. Assume that

t is in seconds and r is in meters, and use g = 9.8 m/s2 and

ω = 2 rad/s.

(a) Graph r versus t for 0 ≤ t ≤ 1.

(b) Assuming that the tube has a length of 1 m, approxi-

mately how long does it take for the object to reach the

end of the tube?

(c) Use the result of part (b) to approximate dr/dt at the

instant that the object reaches the end of the tube.

v

r

Figure Ex-14

15. In each part, use any appropriate method to find dy/dx.

(a) y = eln(x3+1) (b) y =
a

1 + be−x

(c) y = ln

(√
x

3
√
x + 1

sin x sec x

)

(d) y = (1 + x)1/x

(e) y = x(e
x ) (f ) x2 sinh y = 1

16. Show that the function y = eax sin bx satisfies

y ′′ − 2ay ′ + (a2 + b2)y = 0

for any real constants a and b.

17. Show that the function y = tan−1 x satisfies

y ′′ = −2 sin y cos3 y

18. Show that for any constant a, the function y = sinh(ax)

satisfies the equation y ′′ = a2y.
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19. Find the value of b so that the line y = x is tangent to the

graph of y = logb x. Confirm your result by graphing both

y = x and y = logb x in the same coordinate system.

20. In each part, find the value of k for which the graphs of

y = f(x) and y = ln x share a common tangent line at their

point of intersection. Confirm your result by graphing

y = f(x) and y = ln x in the same coordinate system.

(a) f(x) =
√
x + k (b) f(x) = k

√
x

In Exercises 21 and 22, find the absolute minimum m and

the absolute maximum M of f on the given interval (if they

exist), and state where the absolute extrema occur.

21. f(x) = ex/x2; (0,+�) 22. f(x) = xx ; (0,+�)

23. For f(x) = 1/x, find all values of x∗ in the interval [1, e]

that satisfy Equation (7) in the Mean-Value Theorem for In-

tegrals (5.6.2), and explain what these numbers represent.

C 24. Suppose that the number of individuals at time t in a certain

wildlife population is given by

N(t) =
340

1 + 9(0.77)t
, t ≥ 0

where t is in years. At approximately what instant of time

is the size of the population increasing most rapidly?

In Exercises 25–28, evaluate the integrals by hand, and check

your answers with a CAS if you have one.

25.

∫ e2

e

dx

x ln x
26.

∫ 1

0

dx
√
ex

27.

∫ ln
√

2

0

1 + cos(e−2x)

e2x
dx

28.

∫
e2x

ex + 3
dx

[Hint: Divide ex + 3 into e2x .]

29. Give a convincing geometric argument to show that

∫ e

1

ln x dx +
∫ 1

0

ex dx = e

30. Find the limit by interpreting it as a limit of Riemann sums

in which the interval [0, 1] is divided into n subintervals of

equal length.

lim
n→+�

e1/n + e2/n + e3/n + · · · + en/n

n

31. (a) Divide the interval [1, 2] into 5 subintervals of equal

length, and use appropriate Riemann sums to show that

0.2
[

1
1.2

+ 1
1.4

+ 1
1.6

+ 1
1.8

+ 1
2.0

]

< ln 2

< 0.2
[

1
1.0

+ 1
1.2

+ 1
1.4

+ 1
1.6

+ 1
1.8

]

(b) Show that if the interval [1, 2] is divided into n subin-

tervals of equal length, then

n∑

k=1

1

n + k
< ln 2 <

n−1∑

k=0

1

n + k

(c) Show that the difference between the two sums in part

(b) is 1/(2n), and use this result to show that the sums

in part (a) approximate ln 2 with an error of at most 0.1.

(d) How large must n be to ensure that the sums in part (b)

approximate ln 2 to three decimal places?

32. Find the left endpoint, right endpoint, and midpoint approx-

imations of the area under the curve y = ex over the interval

[0, 5] using n = 5 subintervals.

In Exercises 33 and 34, use a calculating utility to find the

left endpoint, right endpoint, and midpoint approximations

to the area under the curve y = f(x) over the stated interval

using n = 10 subintervals.

33. y = ln x; [1, 2] 34. y = ex ; [0, 1]

35. Express the limit as a definite integral over [0, 1], and then

evaluate the limit by evaluating the integral.

lim
max�xk →0

n∑

k=1

ex
∗
k�x

k

36. Suppose that lim f(x) = ±� and lim g(x) = ±�. In each

of the four possible cases, state whether lim [f(x) − g(x)]

is an indeterminate form, and give a reasonable informal

argument to support your answer.

37. (a) Under what conditions will a limit of the form

lim
x→a

[f(x)/g(x)]

be an indeterminate form?

(b) If limx→a g(x) = 0, must limx→a [f(x)/g(x)] be an

indeterminate form? Give some examples to support

your

answer.

38. In each part, find the limit.

(a) lim
x→+�

(ex − x2) (b) lim
x→1

√

ln x

x4 − 1

(c) lim
x→0

ax − 1

x
, a > 0


