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PRINCIPLES 

OF INTEGRAL 

EVALUATION

n earlier chapters we obtained many basic integra-

tion formulas from the corresponding differentiation for-

mulas. For example, knowing that the derivative of sin x is

cos x enabled us to deduce that the integral of cos x is sin x.

Subsequently, we expanded our integration repertoire by

introducing the method ofu-substitution. That method en-

abled us to integrate many functions by transforming the

integrand of an unfamiliar integral into a familiar form.

However, u-substitution alone is not adequate to handle

the wide variety of integrals that arise in applications, so

additional integration techniques are still needed. In this

chapter we will discuss some of those techniques, and we

will provide a more systematic procedure for attacking

unfamiliar integrals. We will talk more about numerical

approximations of definite integrals, and we will explore

the idea of integrating over infinite intervals.



February 15, 2001 14:00 g65-ch8 Sheet number 2 Page number 526 cyan magenta yellow black

526 Principles of Integral Evaluation

8.1 AN OVERVIEW OF INTEGRATION METHODS

In this section we will give a brief overview of methods for evaluating integrals, and

we will review the integration formulas that were discussed in earlier sections.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

METHODS FOR APPROACHING
INTEGRATION PROBLEMS

There are three basic approaches for evaluating unfamiliar integrals:

• Technology—CAS programs such as Mathematica, Maple, and Derive are capable of

evaluating extremely complicated integrals, and for both the computer and handheld

calculator such programs are increasingly available.

• Tables—Prior to the development of CAS programs, scientists relied heavily on tables

to evaluate difficult integrals arising in applications. Such tables were compiled over

many years, incorporating the skills and experience of many people. One such table

appears in the endpapers of this text, but more comprehensive tables appear in various

reference books such as the CRC Standard Mathematical Tables and Formulae, CRC

Press, Inc., 1996.

• Transformation Methods—Transformation methods are methods for converting un-

familiar integrals into familiar integrals. These include u-substitution, algebraic manip-

ulation of the integrand, and other methods that we will discuss in this chapter.

None of the three methods is perfect; for example, CAS programs often encounter integrals

that they cannot evaluate and they sometimes produce answers that are excessively compli-

cated, tables are not exhaustive and hence may not include a particular integral of interest,

and transformation methods rely on human ingenuity that may prove to be inadequate in

difficult problems.

In this chapter we will focus on transformation methods and tables, so it will not be

necessary to have a CAS such as Mathematica, Maple, or Derive. However, if you have a

CAS, then you can use it to confirm the results in the examples, and there are exercises that

are designed to be solved with a CAS. If you have a CAS, keep in mind that many of the

algorithms that it uses are based on the methods we will discuss here, so an understanding

of these methods will help you to use your technology in a more informed way.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A REVIEW OF FAMILIAR
INTEGRATION FORMULAS

The following is a list of basic integrals that we have encountered thus far:

CONSTANTS, POWERS, EXPONENTIALS

1.

∫

du = u+ C 2.

∫

a du = a

∫

du = au+ C

3.

∫

ur du =
ur+1

r + 1
+ C, r �= −1 4.

∫
du

u
= ln |u| + C

5.

∫

eu du = eu + C 6.

∫

bu du =
bu

ln b
+ C, b > 0, b �= 1

TRIGONOMETRIC FUNCTIONS

7.

∫

sin u du = − cos u+ C 8.

∫

cos u du = sin u+ C

9.

∫

sec2 u du = tan u+ C 10.

∫

csc2 u du = − cot u+ C

11.

∫

sec u tan u du = sec u+ C 12.

∫

csc u cot u du = − csc u+ C

13.

∫

tan u du = − ln | cos u| + C 14.

∫

cot u du = ln |sin u| + C
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HYPERBOLIC FUNCTIONS

15.

∫

sinh u du = cosh u+ C 16.

∫

cosh u du = sinh u+ C

17.

∫

sech2 u du = tanh u+ C 18.

∫

csch2 u du = − coth u+ C

19.

∫

sech u tanh u du = −sech u+ C 20.

∫

csch u coth u du = −csch u+ C

ALGEBRAIC FUNCTIONS (a > 0)

21.

∫
du

√

a2 − u2
= sin−1 u

a
+ C (|u| < a)

22.

∫
du

a2 + u2
=

1

a
tan−1 u

a
+ C

23.

∫
du

u
√

u2 − a2
=

1

a
sec−1

∣
∣
∣

u

a

∣
∣
∣ + C (0 < a < |u|)

24.

∫
du

√

a2 + u2
= ln(u+

√

u2 + a2)+ C

25.

∫
du

√

u2 − a2
= ln

∣
∣
∣u+

√

u2 − a2

∣
∣
∣ + C (0 < a < |u|)

26.

∫
du

a2 − u2
=

1

2a
ln

∣
∣
∣
∣

a + u

a − u

∣
∣
∣
∣
+ C

27.

∫
du

u
√

a2 − u2
= −

1

a
ln

∣
∣
∣
∣
∣

a +
√

a2 − u2

u

∣
∣
∣
∣
∣
+ C (0 < |u| < a)

28.

∫
du

u
√

a2 + u2
= −

1

a
ln

∣
∣
∣
∣
∣

a +
√

a2 + u2

u

∣
∣
∣
∣
∣
+ C

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Formula 23 is equivalent to Formula 23 of Section 7.6 (verify). Formula 25 is

a generalization of a result in Theorem 7.8.6. Readers who did not cover Section 7.8 can

ignore Formulas 24–28 for now, since we will develop other methods for obtaining them in

this chapter.

EXERCISE SET 8.1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Review: Without looking at the text, complete the following integration formulas and then check your results by referring to

the list of formulas at the beginning of this section.

Constants, Powers, Exponentials
∫

du =
∫

a du =
∫

ur du =
∫

du

u
=

∫

eu du =
∫

bu du =

Trigonometric Functions
∫

sin u du =
∫

cos u du =
∫

sec2 u du =
∫

csc2 u du =
∫

sec u tan u du =
∫

csc u cot u du =
∫

tan u du =
∫

cot u du =
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Algebraic Functions
∫

du
√

1 − u2
=

∫
du

1 + u2
=

∫
du

u
√

u2 − 1
=

∫
du

√

1 + u2
=

∫
du

√

u2 − 1
=

∫
du

1 − u2
=

∫
du

u
√

1 − u2
=

∫
du

u
√

1 + u2
=

Hyperbolic Functions
∫

sinh u du =
∫

cosh u du =
∫

sech2 u du =
∫

csch2 u du =
∫

sech u tanh u du =
∫

csch u coth u du =

In Exercises 1–30, evaluate the integrals by making appro-

priate u-substitutions and applying the formulas reviewed in

this section.

1.

∫

(3 − 2x)3 dx 2.

∫ √
4 + 9x dx

3.

∫

x sec2(x2) dx 4.

∫

4x tan(x2) dx

5.

∫
sin 3x

2 + cos 3x
dx 6.

∫
1

4 + 9x2
dx

7.

∫

ex sinh(ex) dx 8.

∫
sec(ln x) tan(ln x)

x
dx

9.

∫

ecot x csc2 x dx 10.

∫
x

√

1 − x4
dx

11.

∫

cos5 7x sin 7x dx 12.

∫
cos x

sin x
√

sin2 x + 1
dx

13.

∫
ex

√

4 + e2x
dx 14.

∫
etan−1 x

1 + x2
dx

15.

∫
e
√
x−2

√
x − 2

dx

16.

∫

(3x + 1) cot(3x2 + 2x) dx

17.

∫
cosh

√
x

√
x

dx 18.

∫
dx

x ln x

19.

∫
dx

√
x 3

√
x

20.

∫

sec(sin θ) tan(sin θ) cos θ dθ

21.

∫
csch2(2/x)

x2
dx 22.

∫
dx

√

x2 − 3

23.

∫
e−x

4 − e−2x
dx 24.

∫
cos(ln x)

x
dx

25.

∫
ex

√

1 − e2x
dx 26.

∫
sinh(x−1/2)

x3/2
dx

27.

∫
x

sec(x2)
dx 28.

∫
ex

√

4 − e2x
dx

29.

∫

x4−x2

dx 30.

∫

2πx dx

8.2 INTEGRATION BY PARTS

In this section we will discuss an integration technique that is essentially an anti-

derivative formulation of the formula for differentiating a product of two functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE PRODUCT RULE AND
INTEGRATION BY PARTS

We saw in Section 5.3 that the u-substitution method of integration is based on the chain

rule for differentiation. In this section we will examine a method of integration that is based

on the product rule for differentiation. To motivate the general formula, we will consider

the problem of evaluating
∫

x cos x dx. Our approach to this problem will be by means of

a two-step process. The first step is to choose a function whose derivative is the sum of two

functions, one of which is x cos x. For example, the function x sin x has this property, since

by the product rule

d

dx
(x sin x) = x cos x + sin x
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(Note that x sin x may be obtained from x cos x by integrating the cos x “part” of x cos x

while leaving the x “part” alone.) The second step in evaluating
∫

x cos x dx is to subtract

from our chosen function an antiderivative for the “extra” function that is produced by the

product rule. What results will then be an antiderivative for x cos x. For example, from the

function x sin x, we would need to subtract an antiderivative of sin x. Since − cos x is an

antiderivative of sin x, we conclude that

x sin x − (− cos x) = x sin x + cos x

is an antiderivative of x cos x. Indeed, this conclusion is easily verified since

d

dx
(x sin x + cos x) = x cos x + sin x − sin x = x cos x

It follows that
∫

x cos x dx = x sin x + cos x + C

This two-step process is an illustration of a method of integration known as integra-

tion by parts. More generally, suppose that we wish to evaluate an integral of the form
∫

f(x)g(x) dx. IfG(x) is an antiderivative of g(x), then by the product rule for derivatives,

the function f(x)G(x) satisfies the equation

d

dx
(f(x)G(x)) = f(x)g(x)+ f ′(x)G(x)

Consequently, if we subtract an antiderivative for f ′(x)G(x) from the function f(x)G(x),

the result will be an antiderivative for f(x)g(x). We may express this conclusion symboli-

cally by writing

∫

f(x)g(x) dx = f(x)G(x)−
∫

f ′(x)G(x) dx (1)

which is one version of the integration by parts formula. By using this formula we can

sometimes reduce a difficult integration problem to an easier one.

In practice, it is usual to rewrite (1) by letting

u = f(x), du = f ′(x) dx

v = G(x), dv = G′(x) dx = g(x) dx

This yields the following alternative form for (1):

∫

u dv = uv −
∫

v du (2)

To illustrate the use of Formula (2) we will reevaluate
∫

x cos x dx. The first step is to

make a choice of u and dv. We will let u = x and dv = cos x dx from which it follows that

du = dx and v = sin x. Then, from Formula (2)
∫

x cos x dx = x sin x −
∫

sin x dx

= x sin x − (− cos x)+ C = x sin x + cos x + C

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In the calculation of v = sin x from dv = cos x dx, we omitted a constant

of integration. Had we included a constant of integration and written v = sin x + C1, the

constant C1 would have eventually canceled out [Exercise 62(a)]. This is always the case in

integration by parts [Exercise 62(b)], and it is common to omit consideration of a constant

of integration when going from dv to v. However, in certain cases a clever choice of a

constant of integration can simplify the computation of
∫

v du [Exercises 63–65].
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. To use integration by parts successfully, the choice of u and dv must be made

so that the new integral is easier than the original. For example, if we decided above to let

u = cos x, dv = x dx, du = − sin x dx, v =
x2

2

then we would have obtained
∫

x cos x dx =
x2

2
cos x −

∫
x2

2
(− sin x) dx =

x2

2
cos x +

1

2

∫

x2 sin x dx

For this choice of u and dv, the new integral is actually more complicated than the original.

In general there are no hard and fast rules for choosing u and dv; it is mainly a matter of

experience that comes from lots of practice.

For the case in which the integrand is the product of different “types” of functions, an

interesting mnemonic device was suggested by Herbert Kasube in his article “A Technique

for Integration by Parts” (American Mathematical Monthly, Vol. 90, 1983, pp. 210–211). In

this article the author suggests the use of the acronym LIATE, which is short for logarithmic,

inverse trigonometric, algebraic, trigonometric, and exponential. According to the author,

when the integrand of an integration by parts problem consists of the product of two different

types of functions, we should let u designate the function that appears first in LIATE, and

let dv denote the rest. For example, since the integrand of
∫

x cos x dx is the product of

the algebraic function x with the trigonometric function cos x, we should let u = x and

dv = cos x dx, which agrees with our choice in the reevaluation of this integral. Although

LIATE does not always produce the correct choice ofu anddv, it does work much of the time.

Example 1 Evaluate

∫

xex dx.

Solution. In this case the integrand is the product of the algebraic function x with the

exponential function ex . According to LIATE we should let

u = x and dv = ex dx

so that

du = dx and v = ex

Thus, from (2)
∫

xex dx =
∫

u dv = uv −
∫

v du = xex −
∫

ex dx = xex − ex + C ◭

In some cases there is only one reasonable choice of u and dv.

Example 2 Evaluate

∫

ln x dx.

Solution. One choice is to let u = 1 and dv = ln x dx. But with this choice finding

v is equivalent to evaluating
∫

ln x dx and we have gained nothing. Therefore, the only

reasonable choice is to let u = ln x and dv = dx, so that du = (1/x) dx and v = x. Thus,

from (2)
∫

ln x dx =
∫

u dv = uv −
∫

v du = x ln x −
∫

dx = x ln x − x + C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

REPEATED INTEGRATION BY PARTS
It is sometimes necessary to use integration by parts more than once in the same problem.

Example 3 Evaluate

∫

x2e−x dx.

Solution. Let

u = x2, dv = e−x dx, du = 2x dx, v = −e−x
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so that from (2)
∫

x2e−x dx =
∫

u dv = uv −
∫

v du = x2(−e−x)−
∫

−e−x(2x) dx

= − x2e−x + 2

∫

xe−x dx

The last integral is similar to the original except that we have replaced x2 by x. Another

integration by parts applied to
∫

xe−x dx will complete the problem. We let

u = x, dv = e−x dx, du = dx, v = −e−x

so that
∫

xe−x dx = x(−e−x)−
∫

−e−x dx = −xe−x +
∫

e−x dx = −xe−x − e−x + C

Since −xe−x − e−x is an antiderivative for xe−x , it follows that
∫

x2e−x dx = −x2e−x + 2

∫

xe−x dx = −x2e−x + 2(−xe−x − e−x)+ C

= − (x2 + 2x + 2)e−x + C ◭

Note that the integrand in Example 3 is of the form p(x)q(x), where p(x) = x2 is a

polynomial and q(x) = e−x is a function that can be repeatedly integrated. For integrands

of this form, repeated integration by parts can be done more efficiently by means of a

procedure known as tabular integration by parts. The procedure depends on the fact that

repeated differentiation of a polynomial eventually results in 0. Since the method is easier

to illustrate than to describe. we will show how tabular integration by parts may be used to

evaluate the integral in Example 3. The first step is to create the following table:

repeated
differentiation

repeated
antidifferentiation

x2

2x
2
0

e–x

–e–x

e–x

–e–x

+
–

+

The entries in the left column of the table are obtained by starting with p(x) = x2 and

repeatedly differentiating until 0 results. The entries in the right column are obtained by

starting with q(x) = e−x and repeatedly integrating until an entry is opposite the 0 in the

left column. The diagonal segments shown in the table are alternately labeled with + and

− signs. To evaluate
∫

x2e−x dx, we sum the products of the entries joined by a diagonal,

incorporating the sign of the corresponding diagonal into each product. It follows that
∫

x2e−x dx = −x2e−x − 2xe−x − 2e−x + C = −(x2 + 2x + 2)e−x + C

which agrees with our result in Example 3.

A second example should make the procedure clear.

Example 4 In Example 9 of Section 5.3 we evaluated
∫

x2
√
x − 1 dx using u-substitu-

tion. Evaluate this integral using tabular integration by parts.

Solution. The integrand is the product of a polynomial p(x) = x2 and a function

q(x) =
√
x − 1 = (x − 1)1/2

that can be repeatedly integrated. First we form the table:



February 15, 2001 14:00 g65-ch8 Sheet number 8 Page number 532 cyan magenta yellow black

532 Principles of Integral Evaluation

repeated
differentiation

repeated
antidifferentiation

x2

2x

2

0

+

–

+

(x – 1)1/2

(x – 1)3/2

(x – 1)5/2

(x – 1)7/2

2_
3

8
105

4
15

Then it follows that
∫

x2
√
x − 1 dx = 2

3
x2(x − 1)3/2 − 8

15
x(x − 1)5/2 + 16

105
(x − 1)7/2 + C

We leave it for the reader to show that this solution is equivalent to that of Example 9 in

Section 5.3. ◭

The next illustration of repeated integration by parts deserves special attention.

Example 5 Evaluate

∫

ex cos x dx.

Solution. Let

u = ex, dv = cos x dx, du = ex dx, v = sin x

Thus,
∫

ex cos x dx =
∫

u dv = uv −
∫

v du = ex sin x −
∫

ex sin x dx (3)

Since the integral
∫

ex sin x dx is similar in form to the original integral
∫

ex cos x dx, it

seems that nothing has been accomplished. However, let us integrate this new integral by

parts. We let

u = ex, dv = sin x dx, du = ex dx, v = − cos x

Thus,
∫

ex sin x dx =
∫

u dv = uv −
∫

v du = −ex cos x +
∫

ex cos x dx

Together with Equation (3) this yields
∫

ex cos x dx = ex sin x + ex cos x −
∫

ex cos x dx (4)

It appears that we are going in circles since our original integral has now reappeared on

the right side of this equation. However, at this point it is helpful to remind ourselves of

the meaning of Equation (4). Equation (4) is a symbolic way of stating that if F(x) is any

antiderivative of ex cos x, then the function ex sin x + ex cos x − F(x) is also an antideriva-

tive of ex cos x. In other words,

ex cos x =
d

dx
[ex sin x + ex cos x − F(x)] =

d

dx
[ex sin x + ex cos x] − F ′(x)

=
d

dx
[ex sin x + ex cos x] − ex cos x

Equivalently,

2ex cos x =
d

dx
[ex sin x + ex cos x]

or

ex cos x =
1

2

d

dx
[ex sin x + ex cos x] =

d

dx

[
1

2
(ex sin x + ex cos x)

]
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[Note that this last equation may also be verified by direct computation of the derivative of
1
2
(ex sin x + ex cos x).] It follows that
∫

ex cos x dx = 1
2
(ex sin x + ex cos x)+ C (5)

We can also obtain Equation (5) directly from Equation (4) by an informal argument.

The idea is to “solve” Equation (4) for
∫

ex cos x dx, adding the (necessary) constant of

integration only at the very end. That is, from Equation (4) we obtain

2

∫

ex cos x dx = ex sin x + ex cos x

or
∫

ex cos x dx = 1
2
(ex sin x + ex cos x)

Since the left side of this equation is an indefinite integral, we need a constant of integration

C on the right side. Adding thisC to the right side results in Equation (5). Although informal

arguments such as these can save time, they must be used with care (Exercise 66).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATION BY PARTS FOR
DEFINITE INTEGRALS

For definite integrals the formula corresponding to (2) is

∫ b

a

u dv = uv

]b

a

−
∫ b

a

v du (6)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It is important to keep in mind that the variables u and v in this formula are

functions of x and that the limits of integration in (6) are limits on the variable x. Sometimes

it is helpful to emphasize this by writing (6) as

∫ x=b

x=a
u dv = uv

]x=b

x=a
−

∫ x=b

x=a
v du (7)

The next example illustrates how integration by parts can be used to integrate the inverse

trigonometric functions.

Example 6 Evaluate

∫ 1

0

tan−1 x dx.

Solution. Let

u = tan−1 x, dv = dx, du =
1

1 + x2
dx, v = x

Thus,
∫ 1

0

tan−1 x dx =
∫ 1

0

u dv = uv

]1

0

−
∫ 1

0

v du

= x tan−1 x

]1

0

−
∫ 1

0

x

1 + x2
dx

The limits of integration refer
to x; that is, x = 0 and x = 1.

But
∫ 1

0

x

1 + x2
dx =

1

2

∫ 1

0

2x

1 + x2
dx =

1

2
ln(1 + x2)

]1

0

=
1

2
ln 2

so
∫ 1

0

tan−1 x dx = x tan−1 x

]1

0

−
1

2
ln 2 =

(π

4
− 0

)

−
1

2
ln 2 =

π

4
− ln

√
2 ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

REDUCTION FORMULAS
Integration by parts can be used to derive reduction formulas for integrals. These are

formulas that express an integral involving a power of a function in terms of an integral that

involves a lower power of that function. For example, if n is a positive integer and n ≥ 2,

then integration by parts can be used to obtain the reduction formulas

∫

sinn x dx = −
1

n
sinn−1 x cos x +

n− 1

n

∫

sinn−2 x dx (8)

∫

cosn x dx =
1

n
cosn−1 x sin x +

n− 1

n

∫

cosn−2 x dx (9)

To illustrate how such formulas can be obtained, let us derive (9). We begin by writing

cosn x as cosn−1 x · cos x and letting

u = cosn−1 x dv = cos x dx

du = (n− 1) cosn−2 x(− sin x) dx v = sin x

= −(n− 1) cosn−2 x sin x dx

so that
∫

cosn x dx =
∫

cosn−1 x cos x dx =
∫

u dv = uv −
∫

v du

= cosn−1 x sin x + (n− 1)

∫

sin2 x cosn−2 x dx

= cosn−1 x sin x + (n− 1)

∫

(1 − cos2 x) cosn−2 x dx

= cosn−1 x sin x + (n− 1)

∫

cosn−2 x dx − (n− 1)

∫

cosn x dx

We now appeal to an informal argument and “solve” for
∫

cosn x dx. (See our comments

following Example 5.) Transposing the last term on the right to the left side yields

n

∫

cosn x dx = cosn−1 x sin x + (n− 1)

∫

cosn−2 x dx

from which (9) follows.

Reduction formulas (8) and (9) reduce the exponent of sine (or cosine) by 2. Thus, if

the formulas are applied repeatedly, the exponent can eventually be reduced to 0 if n is

even or 1 if n is odd, at which point the integration can be completed. We will discuss this

method in more detail in the next section, but for now, here is an example that illustrates

how reduction formulas work.

Example 7 Evaluate

∫

cos4 x dx.

Solution. From (9) with n = 4
∫

cos4 x dx =
1

4
cos3 x sin x +

3

4

∫

cos2 x dx Now apply (9)
with n = 2.

=
1

4
cos3 x sin x +

3

4

(
1

2
cos x sin x +

1

2

∫

dx

)

=
1

4
cos3 x sin x +

3

8
cos x sin x +

3

8
x + C ◭



February 15, 2001 14:00 g65-ch8 Sheet number 11 Page number 535 cyan magenta yellow black

8.2 Integration by Parts 535

EXERCISE SET 8.2
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–40, evaluate the integral.

1.

∫

xe−x dx 2.

∫

xe3x dx

3.

∫

x2ex dx 4.

∫

x2e−2x dx

5.

∫

x sin 2x dx 6.

∫

x cos 3x dx

7.

∫

x2 cos x dx 8.

∫

x2 sin x dx

9.

∫ √
x ln x dx 10.

∫

x ln x dx

11.

∫

(ln x)2 dx 12.

∫
ln x
√
x
dx

13.

∫

ln(2x + 3) dx 14.

∫

ln(x2 + 4) dx

15.

∫

sin−1 x dx 16.

∫

cos−1(2x) dx

17.

∫

tan−1(2x) dx 18.

∫

x tan−1 x dx

19.

∫

ex sin x dx 20.

∫

e2x cos 3x dx

21.

∫

eax sin bx dx 22.

∫

e−3θ sin 5θ dθ

23.

∫

sin(ln x) dx 24.

∫

cos(ln x) dx

25.

∫

x sec2 x dx 26.

∫

x tan2 x dx

27.

∫

x3ex
2

dx 28.

∫
xex

(x + 1)2
dx

29.

∫ 1

0

xe−5x dx 30.

∫ 2

0

xe2x dx

31.

∫ e

1

x2 ln x dx 32.

∫ e

√
e

ln x

x2
dx

33.

∫ 2

−2

ln(x + 3) dx 34.

∫ 1/2

0

sin−1 x dx

35.

∫ 4

2

sec−1
√
θ dθ 36.

∫ 2

1

x sec−1 x dx

37.

∫ π/2

0

x sin 4x dx 38.

∫ π

0

(x + x cos x) dx

39.

∫ 3

1

√
x tan−1

√
x dx 40.

∫ 2

0

ln(x2 + 1) dx

41. In each part, evaluate the integral by making au-substitution

and then integrating by parts.

(a)

∫

e
√
x dx (b)

∫

cos
√
x dx

42. Prove that tabular integration by parts gives the correct an-

swer for
∫

p(x)q(x) dx

where p(x) is any quadratic polynomial and q(x) is any

function that can be repeatedly integrated.

In Exercises 43–46, evaluate the integral using tabular inte-

gration by parts.

43.

∫

(3x2 − x + 2)e−x dx 44.

∫

(x2 + x + 1) sin x dx

45.

∫

8x4 cos 2x dx 46.

∫

x3
√

2x + 1 dx

47. (a) Find the area of the region enclosed by y = ln x, the

line x = e, and the x-axis.

(b) Find the volume of the solid generated when the region

in part (a) is revolved about the x-axis.

48. Find the area of the region between y = x sin x and y = x

for 0 ≤ x ≤ π/2.

49. Find the volume of the solid generated when the region be-

tween y = sin x and y = 0 for 0 ≤ x ≤ π is revolved about

the y-axis.

50. Find the volume of the solid generated when the region en-

closed between y = cos x and y = 0 for 0 ≤ x ≤ π/2 is

revolved about the y-axis.

51. A particle moving along the x-axis has velocity function

v(t) = t2e−t . How far does the particle travel from time

t = 0 to t = 5?

52. The study of sawtooth waves in electrical engineering leads

to integrals of the form
∫ π/ω

−π/ω
t sin(kωt) dt

where k is an integer and ω is a nonzero constant. Evaluate

the integral.

53. Use reduction formula (8) to evaluate

(a)

∫

sin3 x dx (b)

∫ π/4

0

sin4 x dx.

54. Use reduction formula (9) to evaluate

(a)

∫

cos5 x dx (b)

∫ π/2

0

cos6 x dx.

55. Derive reduction formula (8).

56. In each part, use integration by parts or other methods to

derive the reduction formula.

(a)

∫

secn x dx =
secn−2 x tan x

n− 1
+
n− 2

n− 1

∫

secn−2 x dx

(b)

∫

tann x dx =
tann−1 x

n− 1
−

∫

tann−2 x dx

(c)

∫

xnex dx = xnex − n

∫

xn−1ex dx
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In Exercises 57 and 58, use the reduction formulas in Exercise

56 to evaluate the integrals.

57. (a)

∫

tan4 x dx (b)

∫

sec4 x dx (c)

∫

x3ex dx

58. (a)

∫

x2e3x dx (b)

∫ 1

0

xe−
√
x dx

[Hint: First make a substitution.]

59. Let f be a function whose second derivative is continuous

on [−1, 1]. Show that

∫ 1

−1

xf ′′(x) dx = f ′(1)+ f ′(−1)− f(1)+ f(−1)

60. Recall from Theorem 7.1.4 and the discussion preceding it

that if f ′(x) > 0, then the function f is increasing and has

an inverse function. The purpose of this problem is to show

that if this condition is satisfied and if f ′ is continuous, then

a definite integral of f −1 can be expressed in terms of a

definite integral of f .

(a) Use integration by parts to show that
∫ b

a

f(x) dx = bf(b)− af(a)−
∫ b

a

xf ′(x) dx

(b) Use the result in part (a) to show that if y = f(x), then
∫ b

a

f(x) dx = bf(b)− af(a)−
∫ f(b)

f(a)

f −1(y) dy

(c) Show that if we let α = f(a) and β = f(b), then the

result in part (b) can be written as
∫ β

α

f −1(x) dx = βf −1(β)− αf −1(α)−
∫ f −1(β)

f −1(α)

f(x) dx

61. In each part, use the result in Exercise 60 to obtain the equa-

tion, and then confirm that the equation is correct by per-

forming the integrations.

(a)

∫ 1/2

0

sin−1 x dx = 1
2

sin−1
(

1
2

)

−
∫ π/6

0

sin x dx

(b)

∫ e2

e

ln x dx = (2e2 − e)−
∫ 2

1

ex dx

62. (a) In the integral
∫

x cos x dx, let

u = x, dv = cos x dx,

du = dx, v = sin x + C1

Show that the constant C1 cancels out, thus giving the

same solution obtained by omitting C1.

(b) Show that in general

uv −
∫

v du = u(v + C1)−
∫

(v + C1) du

thereby justifying the omission of the constant of inte-

gration when calculating v in integration by parts.

63. Evaluate
∫

ln(x + 1) dx using integration by parts. Sim-

plify the computation of
∫

v du by introducing a constant

of integration C1 = 1 when going from dv to v.

64. Evaluate
∫

ln(2x + 3) dx using integration by parts. Sim-

plify the computation of
∫

v du by introducing a constant

of integration C1 = 3
2

when going from dv to v. Compare

your solution with your answer to Exercise 13.

65. Evaluate
∫

x tan−1 x dx using integration by parts. Simplify

the computation of
∫

v du by introducing a constant of in-

tegration C1 = 1
2

when going from dv to v.

66. What equation results if integration by parts is applied to

the integral
∫

1

x ln x
dx

with the choices

u =
1

ln x
and dv =

1

x
dx?

In what sense is this equation true? In what sense is it false?

8.3 TRIGONOMETRIC INTEGRALS

In the last section we derived reduction formulas for integrating positive integer pow-

ers of sine, cosine, tangent, and secant. In this section we will show how to work with

those reduction formulas, and we will discuss methods for integrating other kinds of

integrals that involve trigonometric functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATING POWERS OF SINE
AND COSINE

We begin by recalling two reduction formulas from the preceding section.

∫

sinn x dx = −
1

n
sinn−1 x cos x +

n− 1

n

∫

sinn−2 x dx (1)

∫

cosn x dx =
1

n
cosn−1 x sin x +

n− 1

n

∫

cosn−2 x dx (2)
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In the case where n = 2, these formulas yield
∫

sin2 x dx = −
1

2
sin x cos x +

1

2

∫

dx =
1

2
x −

1

2
sin x cos x + C (3)

∫

cos2 x dx =
1

2
cos x sin x +

1

2

∫

dx =
1

2
x +

1

2
sin x cos x + C (4)

Alternative forms of these integration formulas can be derived from the trigonometric

identities

sin2 x = 1
2
(1 − cos 2x) and cos2 x = 1

2
(1 + cos 2x) (5–6)

which follow from the double-angle formulas

cos 2x = 1 − 2 sin2 x and cos 2x = 2 cos2 x − 1

These identities yield

∫

sin2 x dx =
1

2

∫

(1 − cos 2x) dx =
1

2
x −

1

4
sin 2x + C (7)

∫

cos2 x dx =
1

2

∫

(1 + cos 2x) dx =
1

2
x +

1

4
sin 2x + C (8)

Observe that the antiderivatives in Formulas (3) and (4) involve both sines and cosines,

whereas those in (7) and (8) involve sines alone. However, the apparent discrepancy is easy

to resolve by using the identity

sin 2x = 2 sin x cos x

to rewrite (7) and (8) in forms (3) and (4), or conversely.

In the case where n = 3, the reduction formulas for integrating sin3 x and cos3 x yield
∫

sin3 x dx = −
1

3
sin2 x cos x+

2

3

∫

sin x dx = −
1

3
sin2 x cos x−

2

3
cos x+C (9)

∫

cos3 x dx =
1

3
cos2 x sin x +

2

3

∫

cos x dx =
1

3
cos2 x sin x +

2

3
sin x + C (10)

If desired, Formula (9) can be expressed in terms of cosines alone by using the identity

sin2 x = 1 − cos2 x, and Formula (10) can be expressed in terms of sines alone by using

the identity cos2 x = 1 − sin2 x. We leave it for you to do this and confirm that

∫

sin3 x dx = 1
3

cos3 x − cos x + C (11)

∫

cos3 x dx = sin x − 1
3

sin3 x + C (12)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. When asked to integrate sin3 x and cos3 x, the Maple CAS produces

forms (11) and (12). However, the Mathematica CAS produces
∫

sin3 x dx = − 3
4

cos x + 1
12

cos 3x + C

∫

cos3 x dx = 3
4

sin x + 1
12

sin 3x + C

See if you can reconcile Mathematica’s results with (11) and (12).
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We leave it as an exercise to obtain the following formulas by first applying the reduction

formulas, and then using appropriate trigonometric identities.

∫

sin4 x dx = 3
8
x − 1

4
sin 2x + 1

32
sin 4x + C (13)

∫

cos4 x dx = 3
8
x + 1

4
sin 2x + 1

32
sin 4x + C (14)

Example 1 Find the volume V of the solid that is obtained when the region under the

curve y = sin2 x over the interval [0, π] is revolved about the x-axis (Figure 8.3.1).

Solution. Using the method of disks, Formula (5) of Section 6.2 yields

V =
∫ π

0

π sin4 x dx = π
[

3
8
x − 1

4
sin 2x + 1

32
sin 4x

]π

0
= 3

8
π2 ◭

c0

x

y

y = sin2 x

Figure 8.3.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATING PRODUCTS OF
SINES AND COSINES

If m and n are positive integers, then the integral
∫

sinm x cosn x dx

can be evaluated by one of the three procedures stated in Table 8.3.1, depending on whether

m and n are odd or even.

Table 8.3.1

procedure relevant identitiessinm x cosn x dx

•  Split off a factor of cos x.

•  Apply the relevant identity.

•  Make the substitution u = sin x.

n odd cos2 x = 1 – sin2 x

•  Split off a factor of sin x.

•  Apply the relevant identity.

•  Make the substitution u = cos x.

m odd sin2 x = 1 – cos2 x

•  Use the relevant identities to reduce

   the powers on sin x and cos x.

m even

n even

sin2 x =   (1 – cos 2x)1
2

cos2 x =   (1 + cos 2x)1
2

Example 2 Evaluate

(a)

∫

sin4 x cos5 x dx (b)

∫

sin4 x cos4 x dx

Solution (a). Since n = 5 is odd, we will follow the first procedure in Table 8.3.1:
∫

sin4 x cos5 x dx =
∫

sin4 x cos4 x cos x dx

=
∫

sin4 x(1 − sin2 x)2 cos x dx

=
∫

u4(1 − u2)2 du

=
∫

(u4 − 2u6 + u8) du

= 1
5
u5 − 2

7
u7 + 1

9
u9 + C

= 1
5

sin5 x − 2
7

sin7 x + 1
9

sin9 x + C
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Solution (b). Since m = n = 4, both exponents are even, so we will follow the third

procedure in Table 8.3.1:
∫

sin4 x cos4 x dx =
∫

(sin2 x)2(cos2 x)2 dx

=
∫ (

1

2
[1 − cos 2x]

)2 (
1

2
[1 + cos 2x]

)2

dx

=
1

16

∫

(1 − cos2 2x)2 dx

=
1

16

∫

sin4 2x dx
Note that this can be obtained more
directly from the original integral using
the identity sin x cos x = 1

2
sin 2x.

=
1

32

∫

sin4 u du
u = 2x
du = 2 dx or dx = 1

2
du

=
1

32

(
3

8
u−

1

4
sin 2u+

1

32
sin 4u

)

+ C Formula (13)

=
3

128
x −

1

128
sin 4x +

1

1024
sin 8x + C ◭

Integrals of the form
∫

sinmx cos nx dx,

∫

sinmx sin nx dx,

∫

cosmx cos nx dx (15)

can be found by using the trigonometric identities

sinα cosβ = 1
2
[sin(α − β)+ sin(α + β)] (16)

sinα sinβ = 1
2
[cos(α − β)− cos(α + β)] (17)

cosα cosβ = 1
2
[cos(α − β)+ cos(α + β)] (18)

to express the integrand as a sum or difference of sines and cosines.

Example 3 Evaluate

∫

sin 7x cos 3x dx.

Solution. Using (16) yields
∫

sin 7x cos 3x dx =
1

2

∫

(sin 4x + sin 10x) dx = −
1

8
cos 4x −

1

20
cos 10x + C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATING POWERS OF
TANGENT AND SECANT

The procedures for integrating powers of tangent and secant closely parallel those for sine

and cosine. The idea is to use the following reduction formulas (which were derived in

Exercise 56 of Section 8.2) to reduce the exponent in the integrand until the resulting

integral can be evaluated:

∫

tann x dx =
tann−1 x

n− 1
−

∫

tann−2 x dx (19)

∫

secn x dx =
secn−2 x tan x

n− 1
+
n− 2

n− 1

∫

secn−2 x dx (20)
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In the case where n is odd, the exponent can be reduced to 1, leaving us with the problem

of integrating tan x or sec x. These integrals are given by

∫

tan x dx = ln |sec x| + C (21)

∫

sec x dx = ln |sec x + tan x| + C (22)

Formula (21) can be obtained by writing
∫

tan x dx =
∫

sin x

cos x
dx

= − ln |cos x| + C
u = cos x
du = − sin x dx

= ln |sec x| + C ln | cos x| = − ln
1

| cos x|

Formula (22) requires a trick. We write
∫

sec x dx =
∫

sec x

(
sec x + tan x

sec x + tan x

)

dx =
∫

sec2 x + sec x tan x

sec x + tan x
dx

= ln |sec x + tan x| + C
u = sec x + tan x

du = (sec2 x + sec x tan x) dx

The following basic integrals occur frequently and are worth noting:

∫

tan2 x dx = tan x − x + C (23)

∫

sec2 x dx = tan x + C (24)

Formula (24) is already known to us, since the derivative of tan x is sec2 x. Formula (23)

can be obtained by applying reduction formula (19) with n = 2 (verify) or, alternatively,

by using the identity

1 + tan2 x = sec2 x

to write
∫

tan2 x dx =
∫

(sec2 x − 1) dx = tan x − x + C

The formulas
∫

tan3 x dx = 1
2

tan2 x − ln |sec x| + C (25)

∫

sec3 x dx = 1
2

sec x tan x + 1
2

ln |sec x + tan x| + C (26)

can be deduced from (21), (22), and reduction formulas (19) and (20) as follows:
∫

tan3 x dx =
1

2
tan2 x −

∫

tan x dx =
1

2
tan2 x − ln |sec x| + C

∫

sec3 x dx =
1

2
sec x tan x +

1

2

∫

sec x dx =
1

2
sec x tan x+

1

2
ln |sec x+ tan x| +C

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATING PRODUCTS OF
TANGENTS AND SECANTS

If m and n are positive integers, then the integral
∫

tanm x secn x dx

can be evaluated by one of the three procedures stated in Table 8.3.2, depending on whether

m and n are odd or even.



February 15, 2001 14:00 g65-ch8 Sheet number 17 Page number 541 cyan magenta yellow black

8.3 Trigonometric Integrals 541

Table 8.3.2

procedure relevant identitiestanm x secn x dx

•  Split off a factor of sec2 x.

•  Apply the relevant identity.

•  Make the substitution u = tan x.

n even sec2 x = tan2 x + 1

•  Split off a factor of sec x tan x.

•  Apply the relevant identity.

•  Make the substitution u = sec x.

m odd tan2 x = sec2 x – 1

tan2 x = sec2 x – 1
•  Use the relevant identities to reduce
   the integrand to powers of sec x alone.

•  Then use the reduction formula for
    powers of sec x.

m even

n odd

Example 4 Evaluate

(a)

∫

tan2 x sec4 x dx (b)

∫

tan3 x sec3 x dx (c)

∫

tan2 x sec x dx

Solution (a). Since n = 4 is even, we will follow the first procedure in Table 8.3.2:
∫

tan2 x sec4 x dx =
∫

tan2 x sec2 x sec2 x dx

=
∫

tan2 x(tan2 x + 1) sec2 x dx

=
∫

u2(u2 + 1) du

= 1
5
u5 + 1

3
u3 + C = 1

5
tan5 x + 1

3
tan3 x + C

Solution (b). Since m = 3 is odd, we will follow the second procedure in Table 8.3.2:
∫

tan3 x sec3 x dx =
∫

tan2 x sec2 x(sec x tan x) dx

=
∫

(sec2 x − 1) sec2 x(sec x tan x) dx

=
∫

(u2 − 1)u2 du

= 1
5
u5 − 1

3
u3 + C = 1

5
sec5 x − 1

3
sec3 x + C

Solution (c). Since m = 2 is even and n = 1 is odd, we will follow the third procedure in

Table 8.3.2:
∫

tan2 x sec x dx =
∫

(sec2 x − 1) sec x dx

=
∫

sec3 x dx −
∫

sec x dx See (26) and (22).

= 1
2

sec x tan x + 1
2

ln |sec x + tan x| − ln |sec x + tan x| + C

= 1
2

sec x tan x − 1
2

ln |sec x + tan x| + C ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

AN ALTERNATIVE METHOD FOR
INTEGRATING POWERS OF SINE,
COSINE, TANGENT, AND SECANT

The methods in Tables 8.3.1 and 8.3.2 can sometimes be applied if m = 0 or n = 0

to integrate positive integer powers of sine, cosine, tangent, and secant without reduction

formulas. For example, instead of using the reduction formula to integrate sin3 x, we can

apply the second procedure in Table 8.3.1.
∫

sin3 x dx =
∫

(sin2 x) sin x dx

=
∫

(1 − cos2 x) sin x dx
u = cos x
du = − sin x dx

= −
∫

(1 − u2) du

= 1
3
u3 − u+ C = 1

3
cos3 x − cos x + C

which agrees with (11).

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. With the aid of the identity 1 + cot2 x = csc2 x the techniques in Table 8.3.2

can be adapted to treat integrals of the form
∫

cotm x cscn x dx

Also, there are reduction formulas for powers of cosecant and cotangent that are analogous

to Formulas (19) and (20).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MERCATOR’S MAP OF THE WORLD
The integral of sec x plays an important role in the design of navigational maps for chart-

ing nautical and aeronautical courses. Sailors and pilots usually chart their courses along

paths with constant compass headings; for example, the course might be 30◦ northeast or

135◦ southwest. Except for courses that are parallel to the equator or run due north or

south, a course with constant compass heading spirals around the Earth toward one of the

poles (as in Figure 8.3.2a). However, in 1569 the Flemish mathematician and geographer

Gerhard Kramer (1512–1594) (better known by the Latin name Mercator) devised a world

map, called the Mercator projection, in which spirals of constant compass headings ap-

pear as straight lines. This was extremely important because it enabled sailors to determine

compass headings between two points by connecting them with a straight line on a map

(Figure 8.3.2b).

A flight with constant compass 

heading from New York City to 

Moscow as it appears on a globe

A flight with constant compass 

heading from New York City to 

Moscow as it appears on a 

Mercator projection

(a) (b)

Figure 8.3.2
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If the Earth is assumed to be a sphere of radius 4000 mi, then the lines of latitude at

1◦ increments are equally spaced about 70 mi apart (why?). However, in the Mercator

projection, the lines of latitude become wider apart toward the poles, so that two widely

spaced latitude lines near the poles may be actually the same distance apart on the Earth as

two closely spaced latitude lines near the equator. It can be proved that on a Mercator map

in which the equatorial line has length L, the vertical distance Dβ on the map between the

equator (latitude 0◦ ) and the line of latitude β ◦ is

Dβ =
L

2π

∫ βπ/180

0

sec x dx (27)

(see Exercises 59 and 60).

EXERCISE SET 8.3
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–52, evaluate the integral.

1.

∫

cos5 x sin x dx 2.

∫

sin4 3x cos 3x dx

3.

∫

sin ax cos ax dx 4.

∫

cos2 3x dx

5.

∫

sin2 5θ dθ 6.

∫

cos3 at dt

7.

∫

cos5 θ dθ 8.

∫

sin3 x cos3 x dx

9.

∫

sin2 2t cos3 2t dt 10.

∫

sin3 2x cos2 2x dx

11.

∫

sin2 x cos2 x dx 12.

∫

sin2 x cos4 x dx

13.

∫

sin x cos 2x dx 14.

∫

sin 3θ cos 2θ dθ

15.

∫

sin x cos(x/2) dx 16.

∫

cos1/5 x sin x dx

17.

∫ π/4

0

cos3 x dx 18.

∫ π/2

0

sin2 x

2
cos2 x

2
dx

19.

∫ π/3

0

sin4 3x cos3 3x dx 20.

∫ π

−π
cos2 5θ dθ

21.

∫ π/6

0

sin 2x cos 4x dx 22.

∫ 2π

0

sin2 kx dx

23.

∫

sec2(3x + 1) dx 24.

∫

tan 5x dx

25.

∫

e−2x tan(e−2x) dx 26.

∫

cot 3x dx

27.

∫

sec 2x dx 28.

∫
sec(

√
x)

√
x

dx

29.

∫

tan2 x sec2 x dx 30.

∫

tan5 x sec4 x dx

31.

∫

tan3 4x sec4 4x dx 32.

∫

tan4 θ sec4 θ dθ

33.

∫

sec5 x tan3 x dx 34.

∫

tan5 θ sec θ dθ

35.

∫

tan4 x sec x dx 36.

∫

tan2 x

2
sec3 x

2
dx

37.

∫

tan 2t sec3 2t dt 38.

∫

tan x sec5 x dx

39.

∫

sec4 x dx 40.

∫

sec5 x dx

41.

∫

tan4 x dx 42.

∫

tan3 4x dx

43.

∫ √
tan x sec4 x dx 44.

∫

tan x sec3/2 x dx

45.

∫ π/6

0

tan2 2x dx 46.

∫ π/6

0

sec3 θ tan θ dθ

47.

∫ π/2

0

tan5 x

2
dx 48.

∫ 1/4

0

secπx tanπx dx

49.

∫

cot3 x csc3 x dx 50.

∫

cot2 3t sec 3t dt

51.

∫

cot3 x dx 52.

∫

csc4 x dx

53. Let m, n be distinct nonnegative integers. Use Formulas

(16) – (18) to prove:

(a)

∫ 2π

0

sinmx cos nx dx = 0

(b)

∫ 2π

0

cosmx cos nx dx = 0

(c)

∫ 2π

0

sinmx sin nx dx = 0.

54. Evaluate the integrals in Exercise 53 when m and n denote

the same nonnegative integer.

55. Find the arc length of the curve y = ln(cos x) over the

interval [0, π/4].
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56. Find the volume of the solid generated when the region en-

closed by y = tan x, y = 1, and x = 0 is revolved about

the x-axis.

57. Find the volume of the solid that results when the region

enclosed by y = cos x, y = sin x, x = 0, and x = π/4 is

revolved about the x-axis.

58. The region bounded below by the x-axis and above by the

portion of y = sin x from x = 0 to x = π is revolved about

the x-axis. Find the volume of the resulting solid.

59. Use Formula (27) to show that if the length of the equatorial

line on a Mercator projection isL, then the vertical distance

D between the latitude lines at α ◦ and β ◦ on the same side

of the equator (where α < β) is

D =
L

2π
ln

∣
∣
∣
∣

secβ ◦ + tanβ ◦

secα ◦ + tanα ◦

∣
∣
∣
∣

60. Suppose that the equator has a length of 100 cm on a Mer-

cator projection. In each part, use the result in Exercise 59

to answer the question.

(a) What is the vertical distance on the map between the

equator and the line at 25◦ north latitude?
(b) What is the vertical distance on the map between New

Orleans, Louisiana, at 30◦ north latitude and Winnepeg,

Canada, at 50◦ north latitude?

61. (a) Show that
∫

csc x dx = − ln |csc x + cot x| + C

(b) Show that the result in part (a) can also be written as
∫

csc x dx = ln |csc x − cot x| + C

and
∫

csc x dx = ln
∣
∣tan 1

2
x
∣
∣ + C

62. Rewrite sin x + cos x in the form

A sin(x + φ)

and use your result together with Exercise 61 to evaluate
∫

dx

sin x + cos x

63. Use the method of Exercise 62 to evaluate
∫

dx

a sin x + b cos x
(a, b not both zero)

64. (a) Use Formula (8) in Section 8.2 to show that

∫ π/2

0

sinn x dx =
n− 1

n

∫ π/2

0

sinn−2 x dx (n ≥ 2)

(b) Use this result to derive the Wallis sine formulas:
∫ π/2

0

sinn x dx =
π

2
·

1 · 3 · 5 · · · (n− 1)

2 · 4 · 6 · · · n

(
n even

and ≥ 2

)

∫ π/2

0

sinn x dx =
2 · 4 · 6 · · · (n− 1)

3 · 5 · 7 · · · n

(
n odd

and ≥ 3

)

65. Use the Wallis formulas in Exercise 64 to evaluate

(a)

∫ π/2

0

sin3 x dx (b)

∫ π/2

0

sin4 x dx

(c)

∫ π/2

0

sin5 x dx (d)

∫ π/2

0

sin6 x dx.

66. Use Formula (9) in Section 8.2 and the method of Exercise

64 to derive the Wallis cosine formulas:
∫ π/2

0

cosn x dx =
π

2
·

1 · 3 · 5 · · · (n− 1)

2 · 4 · 6 · · · n

(
n even

and ≥ 2

)

∫ π/2

0

cosn x dx =
2 · 4 · 6 · · · (n− 1)

3 · 5 · 7 · · · n

(
n odd

and ≥ 3

)

8.4 TRIGONOMETRIC SUBSTITUTIONS

In this section we will discuss a method for evaluating integrals containing radicals

by making substitutions involving trigonometric functions. We will also show how inte-

grals containing quadratic polynomials can sometimes be evaluated by completing the

square.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE METHOD OF TRIGONOMETRIC
SUBSTITUTION

To start, we will be concerned with integrals that contain expressions of the form
√

a2 − x2,
√

x2 + a2,
√

x2 − a2

in which a is a positive constant. The basic idea for evaluating such integrals is to make a

substitution for x that will eliminate the radical. For example, to eliminate the radical in the

expression
√

a2 − x2, we can make the substitution

x = a sin θ, −π/2 ≤ θ ≤ π/2 (1)



February 15, 2001 14:00 g65-ch8 Sheet number 21 Page number 545 cyan magenta yellow black

8.4 Trigonometric Substitutions 545

which yields
√

a2 − x2 =
√

a2 − a2 sin2 θ =
√

a2(1 − sin2 θ)

= a
√

cos2 θ = a|cos θ | = a cos θ cos θ ≥ 0 since −π/2 ≤ θ ≤ π/2

The restriction on θ in (1) serves two purposes—it enables us to replace |cos θ | by cos θ

to simplify the calculations, and it also ensures that the substitutions can be rewritten as

θ = sin−1(x/a), if needed.

Example 1 Evaluate

∫
dx

x2
√

4 − x2
.

u

2
x

√4 – x2 

x = 2 sin u

Figure 8.4.1

Solution. To eliminate the radical we make the substitution

x = 2 sin θ, dx = 2 cos θ dθ

This yields
∫

dx

x2
√

4 − x2
=

∫
2 cos θ dθ

(2 sin θ)2
√

4 − 4 sin2 θ

=
∫

2 cos θ dθ

(2 sin θ)2(2 cos θ)
=

1

4

∫
dθ

sin2 θ

=
1

4

∫

csc2 θ dθ = −
1

4
cot θ + C (2)

At this point we have completed the integration; however, because the original integral was

expressed in terms of x, it is desirable to express cot θ in terms of x as well. This can be

done using trigonometric identities, but the expression can also be obtained by writing the

substitution x = 2 sin θ as sin θ = x/2 and representing it geometrically as in Figure 8.4.1.

From that figure we obtain

cot θ =

√

4 − x2

x

Substituting this in (2) yields

∫
dx

x2
√

4 − x2
= −

1

4

√

4 − x2

x
+ C ◭

Example 2 Evaluate

∫
√

2

1

dx

x2
√

4 − x2
.

Solution. There are two possible approaches: we can make the substitution in the indefinite

integral (as in Example 1) and then evaluate the definite integral using the x-limits of

integration, or we can make the substitution in the definite integral and convert the x-limits

to the corresponding θ -limits.

Method 1. Using the result from Example 1 with the x-limits of integration yields

∫
√

2

1

dx

x2
√

4 − x2
= −

1

4

[√

4 − x2

x

]
√

2

1

= −
1

4
[1 −

√
3 ] =

√
3 − 1

4

Method 2. The substitutionx = 2 sin θ can be expressed asx/2 = sin θ or θ = sin−1(x/2),

so the θ -limits that correspond to x = 1 and x =
√

2 are

x = 1: θ = sin−1(1/2) = π/6

x =
√

2: θ = sin−1(
√

2/2) = π/4
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Thus, from (2) in Example 1 we obtain
∫

√
2

1

dx

x2
√

4 − x2
= −

1

4

[

cot θ
]π/4

π/6
= −

1

4
[1 −

√
3 ] =

√
3 − 1

4
◭

x

y

a

b

0

x2

a2

y2

b2
+      = 1

Figure 8.4.2

Example 3 Find the area of the ellipse

x2

a2
+
y2

b2
= 1

Solution. Because the ellipse is symmetric about both axes, its area A is four times the

area in the first quadrant (Figure 8.4.2). If we solve the equation of the ellipse for y in terms

of x, we obtain

y = ±
b

a

√

a2 − x2

where the positive square root gives the equation of the upper half. Thus, the areaA is given

by

A = 4

∫ a

0

b

a

√

a2 − x2 dx =
4b

a

∫ a

0

√

a2 − x2 dx

To evaluate this integral, we will make the substitution x = a sin θ (dx = a cos θ dθ) and

convert the x-limits of integration to θ -limits. Since the substitution can be expressed as

θ = sin−1(x/a), the θ -limits of integration are

x = 0: θ = sin−1(0) = 0

x = a : θ = sin−1(1) = π/2

Thus, we obtain

A =
4b

a

∫ a

0

√

a2 − x2 dx =
4b

a

∫ π/2

0

a cos θ · a cos θ dθ

= 4ab

∫ π/2

0

cos2 θ dθ = 4ab

∫ π/2

0

1

2
(1 + cos 2θ) dθ

= 2ab

[

θ +
1

2
sin 2θ

]π/2

0

= 2ab
[π

2
− 0

]

= πab ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In the special case where a = b, the ellipse becomes a circle of radius a, and

the area formula becomes A = πa2, as expected. It is worth noting that
∫ a

−a

√

a2 − x2 dx = 1
2
πa2 (3)

since this integral represents the area of the upper semicircle (Figure 8.4.3).

x

y

a–a

y = √a2 – x2 

Figure 8.4.3

•
•
•
•
•
•
•
•

FOR THE READER. If you have a calculating utility with a numerical integration capability,

use it and Formula (3) to approximate π to three decimal places.

Thus far, we have focused on using the substitution x = a sin θ to evaluate integrals

involving radicals of the form
√

a2 − x2. Table 8.4.1 summarizes this method and describes

some other substitutions of this type.

1

1

x

y

y = x2/2 

Figure 8.4.4

Example 4 Find the arc length of the curve y = x2/2 from x = 0 to x = 1 (Figure 8.4.4).

Solution. From Formula (4) of Section 6.4 the arc length L of the curve is

L =
∫ 1

0

√

1 +
(
dy

dx

)2

dx =
∫ 1

0

√

1 + x2 dx

The integrand involves a radical of the form
√
a2 + x2 with a = 1, so from Table 8.4.1 we
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Table 8.4.1

expression in
the integrand substitution restriction on u simplification

√a2 – x2 a2 – x2 =  a2 – a2 sin2 u =  a2 cos2 ux = a sin u –p/2 ≤  u ≤ p/2

√a2 + x2 a2 + x2 =  a2 + a2 tan2 u =  a2 sec2 ux = a tan u –p/2 < u < p/2

√x2 – a2 x2 – a2 = a2 sec2 u – a2 =  a2 tan2 ux = a sec u
0 ≤  u < p/2   (if x ≥  a)

p/2 < u ≤  p  (if x ≤  –a)

make the substitution

x = tan θ, −π/2 < θ < π/2

dx

dθ
= sec2 θ or dx = sec2 θ dθ

Since this substitution can be expressed as θ = tan−1 x, the θ -limits of integration that

correspond to the x-limits, x = 0 and x = 1, are

x = 0: θ = tan−1 0 = 0

x = 1: θ = tan−1 1 = π/4

Thus,

L =
∫ 1

0

√

1 + x2 dx =
∫ π/4

0

√

1 + tan2 θ sec2 θ dθ

=
∫ π/4

0

√
sec2 θ sec2 θ dθ

=
∫ π/4

0

|sec θ |sec2 θ dθ

=
∫ π/4

0

sec3 θ dθ sec θ > 0 since −π/2 < θ < π/2

=
[

1
2

sec θ tan θ + 1
2

ln |sec θ + tan θ |
]π/4

0
Formula (26)
of Section 8.3

= 1
2
[
√

2 + ln(
√

2 + 1)] ≈ 1.148 ◭

Example 5 Evaluate

∫
√

x2 − 25

x
dx, assuming that x ≥ 5.

Solution. The integrand involves a radical of the form
√
x2 − a2 with a = 5, so from

Table 8.4.1 we make the substitution

x = 5 sec θ, 0 ≤ θ < π/2

dx

dθ
= 5 sec θ tan θ or dx = 5 sec θ tan θ dθ

Thus,
∫

√

x2 − 25

x
dx =

∫
√

25 sec2 θ − 25

5 sec θ
(5 sec θ tan θ) dθ

=
∫

5|tan θ |
5 sec θ

(5 sec θ tan θ) dθ

= 5

∫

tan2 θ dθ
tan θ ≥ 0 since
0 ≤ θ < π/2

= 5

∫

(sec2 θ − 1) dθ = 5 tan θ − 5θ + C
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To express the solution in terms of x, we will represent the substitution x = 5 sec θ geo-

metrically by the triangle in Figure 8.4.5, from which we obtain

tan θ =

√

x2 − 25

5

From this and the fact that the substitution can be expressed as θ = sec−1(x/5), we obtain
∫

√

x2 − 25

x
dx =

√

x2 − 25 − 5 sec−1
(x

5

)

+ C ◭

u

x

5 

√x2 – 25

x = 5 sec u

Figure 8.4.5

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRALS INVOLVING
ax2 + bx + c

Integrals that involve a quadratic expression ax2 + bx + c, where a �= 0 and b �= 0, can

often be evaluated by first completing the square, then making an appropriate substitution.

The following examples illustrate this idea.

Example 6 Evaluate

∫
x

x2 − 4x + 8
dx.

Solution. Completing the square yields

x2 − 4x + 8 = (x2 − 4x + 4)+ 8 − 4 = (x − 2)2 + 4

Thus, the substitution

u = x − 2, du = dx

yields
∫

x

x2 − 4x + 8
dx =

∫
x

(x − 2)2 + 4
dx =

∫
u+ 2

u2 + 4
du

=
∫

u

u2 + 4
du+ 2

∫
du

u2 + 4

=
1

2

∫
2u

u2 + 4
du+ 2

∫
du

u2 + 4

=
1

2
ln(u2 + 4)+ 2

(
1

2

)

tan−1 u

2
+ C

=
1

2
ln[(x − 2)2 + 4] + tan−1

(
x − 2

2

)

+ C ◭

Example 7 Evaluate

∫
dx

√

5 − 4x − 2x2
.

Solution. Completing the square yields

5 − 4x − 2x2 = 5 − 2(x2 + 2x) = 5 − 2(x2 + 2x + 1)+ 2

= 5 − 2(x + 1)2 + 2 = 7 − 2(x + 1)2

Thus,
∫

dx
√

5 − 4x − 2x2
=

∫
dx

√

7 − 2(x + 1)2

=
∫

du
√

7 − 2u2

u = x + 1
du = dx

=
1

√
2

∫
du

√

(7/2)− u2

=
1

√
2

sin−1

(
u

√
7/2

)

+ C
Formula 21, Section 8.1 with

a =
√

7/2

=
1

√
2

sin−1(
√

2/7(x + 1))+ C ◭
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EXERCISE SET 8.4 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–26, evaluate the integral.

1.

∫
√

4 − x2 dx 2.

∫
√

1 − 4x2 dx

3.

∫
x2

√

9 − x2
dx 4.

∫
dx

x2
√

16 − x2

5.

∫
dx

(4 + x2)2
6.

∫
x2

√

5 + x2
dx

7.

∫
√

x2 − 9

x
dx 8.

∫
dx

x2
√

x2 − 16

9.

∫
x3

√

2 − x2
dx 10.

∫

x3
√

5 − x2 dx

11.

∫
dx

x2
√

4x2 − 9
12.

∫
√

1 + t2

t
dt

13.

∫
dx

(1 − x2)3/2
14.

∫
dx

x2
√

x2 + 25

15.

∫
dx

√

x2 − 1
16.

∫
dx

1 + 2x2 + x4

17.

∫
dx

(9x2 − 1)3/2
18.

∫
x2

√

x2 − 25
dx

19.

∫

ex
√

1 − e2x dx 20.

∫
cos θ

√

2 − sin2 θ
dθ

21.

∫ 4

0

x3
√

16 − x2 dx 22.

∫ 1/3

0

dx

(4 − 9x2)2

23.

∫ 2

√
2

dx

x2
√

x2 − 1
24.

∫ 2

√
2

√

2x2 − 4

x
dx

25.

∫ 3

1

dx

x4
√

x2 + 3
26.

∫ 3

0

x3

(3 + x2)5/2
dx

27. The integral

∫
x

x2 + 4
dx

can be evaluated either by a trigonometric substitution or by

the substitution u = x2 + 4. Do it both ways and show that

the results are equivalent.

28. The integral
∫

x2

x2 + 4
dx

can be evaluated either by a trigonometric substitution or

by algebraically rewriting the numerator of the integrand as

(x2 + 4)− 4. Do it both ways and show that the results are

equivalent.

29. Find the arc length of the curve y = ln x from x = 1 to

x = 2.

30. Find the arc length of the curve y = x2 from x = 0 to

x = 1.

31. Find the area of the surface generated when the curve in

Exercise 30 is revolved about the x-axis.

32. Find the volume of the solid generated when the region en-

closed by x = y(1 − y2)1/4, y = 0, y = 1, and x = 0 is

revolved about the y-axis.

In Exercise 33, the trigonometric substitutions x = a sec θ

and x = a tan θ lead to difficult integrals; for such integrals

it is sometimes possible to use the hyperbolic substitutions

x = a sinh u for integrals involving
√
x2 + a2

x = a cosh u for integrals involving
√
x2 − a2, x ≥ a

These substitutions are useful because in each case the hy-

perbolic identity

a2 cosh2 u− a2 sinh2 u = a2

removes the radical.

33. (a) Evaluate
∫

dx
√

x2 + 9

using the hyperbolic substitution that is suggested

above.

(b) Evaluate the integral in part (a) by a trigonometric sub-

stitution and show that the results in parts (a) and (b)

agree.

(c) Use a hyperbolic substitution to evaluate
∫

√

x2 − 1 dx, x ≥ 1

34. In Example 3 we found the area of an ellipse by making the

substitution x = a sin θ in the required integral. Find the

area by making the substitution x = a cos θ , and discuss

any restrictions on θ that are needed.

In Exercises 35–46, evaluate the integral.

35.

∫
dx

x2 − 4x + 13
36.

∫
dx

√

2x − x2

37.

∫
dx

√

8 + 2x − x2
38.

∫
dx

16x2 + 16x + 5

39.

∫
dx

√

x2 − 6x + 10
40.

∫
x

x2 + 6x + 10
dx

41.

∫
√

3 − 2x − x2 dx 42.

∫
ex

√

1 + ex + e2x
dx

43.

∫
dx

2x2 + 4x + 7
44.

∫
2x + 3

4x2 + 4x + 5
dx

45.

∫ 2

1

dx
√

4x − x2
46.

∫ 1

0

√

x(4 − x) dx
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In Exercises 47 and 48, there is a good chance that your CAS

will not be able to evaluate the integral as stated. If this is

so, make a substitution that converts the integral into one that

your CAS can evaluate.

C 47.

∫

cos x sin x
√

1 − sin4 x dx

C 48.

∫

(x cos x + sin x)
√

1 + x2 sin2 x dx

8.5 INTEGRATING RATIONAL FUNCTIONS BY PARTIAL
FRACTIONS

Recall that a rational function is a ratio of two polynomials. In this section we will

give a general method for integrating rational functions that is based on the idea of

decomposing a rational function into a sum of simple rational functions that can be

integrated by the methods studied in earlier sections.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PARTIAL FRACTIONS
In algebra one learns to combine two or more fractions into a single fraction by finding a

common denominator. For example,

2

x − 4
+

3

x + 1
=

2(x + 1)+ 3(x − 4)

(x − 4)(x + 1)
=

5x − 10

x2 − 3x − 4
(1)

However, for purposes of integration, the left side of (1) is preferable to the right side since

each of the terms is easy to integrate:
∫

5x − 10

x2 − 3x − 4
dx =

∫
2

x − 4
dx +

∫
3

x + 1
dx = 2 ln |x − 4| + 3 ln |x + 1| + C

Thus, it is desirable to have some method that will enable us to obtain the left side of (1),

starting with the right side. To illustrate how this can be done, we begin by noting that

on the left side the numerators are constants and the denominators are the factors of the

denominator on the right side. Thus, to find the left side of (1), starting from the right side,

we could factor the denominator of the right side and look for constants A and B such that

5x − 10

(x − 4)(x + 1)
=

A

x − 4
+

B

x + 1
(2)

One way to find the constants A and B is to multiply (2) through by (x− 4)(x+ 1) to clear

fractions. This yields

5x − 10 = A(x + 1)+ B(x − 4) (3)

This relationship holds for all x, so it holds in particular if x = 4 or x = −1. Substituting

x = 4 in (3) makes the second term on the right drop out and yields the equation 10 = 5A

or A = 2; and substituting x = −1 in (3) makes the first term on the right drop out and

yields the equation −15 = −5B or B = 3. Substituting these values in (2) we obtain

5x − 10

(x − 4)(x + 1)
=

2

x − 4
+

3

x + 1
(4)

which agrees with (1).

A second method for finding the constants A and B is to multiply out the right side of

(3) and collect like powers of x to obtain

5x − 10 = (A+ B)x + (A− 4B)

Since the polynomials on the two sides are identical, their corresponding coefficients must

be the same. Equating the corresponding coefficients on the two sides yields the following
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system of equations in the unknowns A and B:

A+ B = 5

A− 4B = −10

Solving this system yields A = 2 and B = 3 as before (verify).

The terms on the right side of (4) are called partial fractions of the expression on the left

side because they each constitute part of that expression. To find those partial fractions we

first had to make a guess about their form, and then we had to find the unknown constants.

Our next objective is to extend this idea to general rational functions. For this purpose,

suppose that P(x)/Q(x) is a proper rational function, by which we mean that the degree

of the numerator is less than the degree of the denominator. There is a theorem in advanced

algebra which states that every proper rational function can be expressed as a sum

P(x)

Q(x)
= F1(x)+ F2(x)+ · · · + Fn(x)

where F1(x), F2(x), . . . , Fn(x) are rational functions of the form

A

(ax + b)k
or

Ax + B

(ax2 + bx + c)k

in which the denominators are factors of Q(x). The sum is called the partial fraction

decomposition of P(x)/Q(x), and the terms are called partial fractions. As in our opening

example, there are two parts to finding a partial fraction decomposition: determining the

exact form of the decomposition and finding the unknown constants.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FINDING THE FORM OF A PARTIAL
FRACTION DECOMPOSITION

The first step in finding the form of the partial fraction decomposition of a proper rational

function P(x)/Q(x) is to factor Q(x) completely into linear and irreducible quadratic

factors, and then collect all repeated factors so that Q(x) is expressed as a product of

distinct factors of the form

(ax + b)m and (ax2 + bx + c)m

From these factors we can determine the form of the partial fraction decomposition using

two rules that we will now discuss.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LINEAR FACTORS
If all of the factors ofQ(x) are linear, then the partial fraction decomposition of P(x)/Q(x)

can be determined by using the following rule:

LINEAR FACTOR RULE. For each factor of the form (ax + b)m, the partial fraction

decomposition contains the following sum of m partial fractions:

A1

ax + b
+

A2

(ax + b)2
+ · · · +

Am

(ax + b)m

where A1, A2, . . . , Am are constants to be determined. In the case where m = 1, only

the first term in the sum appears.

Example 1 Evaluate

∫
dx

x2 + x − 2
.

Solution. The integrand is a proper rational function that can be written as

1

x2 + x − 2
=

1

(x − 1)(x + 2)

The factors x − 1 and x + 2 are both linear and appear to the first power, so each con-

tributes one term to the partial fraction decomposition by the linear factor rule. Thus, the
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decomposition has the form

1

(x − 1)(x + 2)
=

A

x − 1
+

B

x + 2
(5)

where A and B are constants to be determined. Multiplying this expression through by

(x − 1)(x + 2) yields

1 = A(x + 2)+ B(x − 1) (6)

As discussed earlier, there are two methods for finding A and B: we can substitute values

of x that are chosen to make terms on the right drop out, or we can multiply out on the right

and equate corresponding coefficients on the two sides to obtain a system of equations that

can be solved for A and B. We will use the first approach.

Setting x = 1 makes the second term in (6) drop out and yields 1 = 3A or A = 1
3
;

and setting x = −2 makes the first term in (6) drop out and yields 1 = −3B or B = − 1
3
.

Substituting these values in (5) yields the partial fraction decomposition

1

(x − 1)(x + 2)
=

1
3

x − 1
+

− 1
3

x + 2

The integration can now be completed as follows:
∫

dx

(x − 1)(x + 2)
=

1

3

∫
dx

x − 1
−

1

3

∫
dx

x + 2

=
1

3
ln |x − 1| −

1

3
ln |x + 2| + C =

1

3
ln

∣
∣
∣
∣

x − 1

x + 2

∣
∣
∣
∣
+ C ◭

If the factors of Q(x) are linear and none are repeated, as in the last example, then the

recommended method for finding the constants in the partial fraction decomposition is to

substitute appropriate values of x to make terms drop out. However, if some of the linear

factors are repeated, then it will not be possible to find all of the constants in this way. In this

case the recommended procedure is to find as many constants as possible by substitution

and then find the rest by equating coefficients. This is illustrated in the next example.

Example 2 Evaluate

∫
2x + 4

x3 − 2x2
dx.

Solution. The integrand can be rewritten as

2x + 4

x3 − 2x2
=

2x + 4

x2(x − 2)

Although x2 is a quadratic factor, it is not irreducible since x2 = xx. Thus, by the linear

factor rule, x2 introduces two terms (since m = 2) of the form

A

x
+

B

x2

and the factor x − 2 introduces one term (since m = 1) of the form

C

x − 2

so the partial fraction decomposition is

2x + 4

x2(x − 2)
=
A

x
+

B

x2
+

C

x − 2
(7)

Multiplying by x2(x − 2) yields

2x + 4 = Ax(x − 2)+ B(x − 2)+ Cx2 (8)

which, after multiplying out and collecting like powers of x, becomes

2x + 4 = (A+ C)x2 + (−2A+ B)x − 2B (9)
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Setting x = 0 in (8) makes the first and third terms drop out and yields B = −2, and setting

x = 2 in (8) makes the first and second terms drop out and yields C = 2 (verify). However,

there is no substitution in (8) that produces A directly, so we look to Equation (9) to find

this value. This can be done by equating the coefficients of x2 on the two sides to obtain

A+ C = 0 or A = −C = −2

Substituting the values A = −2, B = −2, and C = 2 in (7) yields the partial fraction

decomposition

2x + 4

x2(x − 2)
=

−2

x
+

−2

x2
+

2

x − 2

Thus,
∫

2x + 4

x2(x − 2)
dx = −2

∫
dx

x
− 2

∫
dx

x2
+ 2

∫
dx

x − 2

= −2 ln |x| +
2

x
+ 2 ln |x − 2| + C = 2 ln

∣
∣
∣
∣

x − 2

x

∣
∣
∣
∣
+

2

x
+ C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

QUADRATIC FACTORS
If some of the factors of Q(x) are irreducible quadratics, then the contribution of those

factors to the partial fraction decomposition of P(x)/Q(x) can be determined from the

following rule:

QUADRATIC FACTOR RULE. For each factor of the form (ax2 + bx + c)m, the partial

fraction decomposition contains the following sum of m partial fractions:

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2
+ · · · +

Amx + Bm

(ax2 + bx + c)m

whereA1,A2, . . . , Am,B1,B2, . . . , Bm are constants to be determined. In the case where

m = 1, only the first term in the sum appears.

Example 3 Evaluate

∫
x2 + x − 2

3x3 − x2 + 3x − 1
dx.

Solution. The denominator in the integrand can be factored by grouping:

x2 + x − 2

3x3 − x2 + 3x − 1
=

x2 + x − 2

x2(3x − 1)+ (3x − 1)
=

x2 + x − 2

(3x − 1)(x2 + 1)

By the linear factor rule, the factor 3x − 1 introduces one term; namely

A

3x − 1

and by the quadratic factor rule, the factor x2 + 1 introduces one term; namely

Bx + C

x2 + 1

Thus, the partial fraction decomposition is

x2 + x − 2

(3x − 1)(x2 + 1)
=

A

3x − 1
+
Bx + C

x2 + 1
(10)

Multiplying by (3x − 1)(x2 + 1) yields

x2 + x − 2 = A(x2 + 1)+ (Bx + C)(3x − 1) (11)

We could find A by substituting x = 1
3

to make the last term drop out, and then find the rest

of the constants by equating corresponding coefficients. However, in this case it is just as
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easy to find all of the constants by equating coefficients and solving the resulting system.

For this purpose we multiply out the right side of (11) and collect like terms:

x2 + x − 2 = (A+ 3B)x2 + (−B + 3C)x + (A− C)

Equating corresponding coefficients gives

A + 3B = 1

− B + 3C = 1

A − C = −2

To solve this system, subtract the third equation from the first to eliminate A. Then use the

resulting equation together with the second equation to solve forB andC. Finally, determine

A from the first or third equation. This yields (verify)

A = − 7
5
, B = 4

5
, C = 3

5

Thus, (10) becomes

x2 + x − 2

(3x − 1)(x2 + 1)
=

− 7
5

3x − 1
+

4
5
x + 3

5

x2 + 1

and
∫

x2 + x − 2

(3x − 1)(x2 + 1)
dx = −

7

5

∫
dx

3x − 1
+

4

5

∫
x

x2 + 1
dx +

3

5

∫
dx

x2 + 1

= −
7

15
ln |3x − 1| +

2

5
ln(x2 + 1)+

3

5
tan−1 x + C ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Computer algebra systems have built-in capabilities for finding partial

fraction decompositions. If you have a CAS, read the documentation on partial fraction

decompositions, and use your CAS to find the decompositions in Examples 1, 2, and 3.

Example 4 Evaluate

∫
3x4 + 4x3 + 16x2 + 20x + 9

(x + 2)(x2 + 3)2
dx.

Solution. Observe that the integrand is a proper rational function since the numerator

has degree 4 and the denominator has degree 5. Thus, the method of partial fractions is

applicable. By the linear factor rule, the factor x + 2 introduces the single term

A

x + 2

and by the quadratic factor rule, the factor (x2 + 3)2 introduces two terms (since m = 2):

Bx + C

x2 + 3
+

Dx + E

(x2 + 3)2

Thus, the partial fraction decomposition of the integrand is

3x4 + 4x3 + 16x2 + 20x + 9

(x + 2)(x2 + 3)2
=

A

x + 2
+
Bx + C

x2 + 3
+

Dx + E

(x2 + 3)2
(12)

Multiplying by (x + 2)(x2 + 3)2 yields

3x4 + 4x3 + 16x2 + 20x + 9

= A(x2 + 3)2 + (Bx + C)(x2 + 3)(x + 2)+ (Dx + E)(x + 2) (13)

which, after multiplying out and collecting like powers of x, becomes

3x4 + 4x3 + 16x2 + 20x + 9

= (A+ B)x4 + (2B + C)x3 + (6A+ 3B + 2C +D)x2

+ (6B + 3C + 2D + E)x + (9A+ 6C + 2E) (14)

Equating corresponding coefficients in (14) yields the following system of five linear equa-
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tions in five unknowns:

A+ B = 3

2B + C = 4

6A+ 3B + 2C +D = 16

6B + 3C + 2D + E = 20

9A+ 6C + 2E = 9

(15)

Efficient methods for solving systems of linear equations such as this are studied in a

branch of mathematics called linear algebra; those methods are outside the scope of this

text. However, as a practical matter most linear systems of any size are solved by computer,

and most computer algebra systems have commands that in many cases can solve linear

systems exactly. In this particular case we can simplify the work by first substituting x = −2

in (13), which yields A = 1. Substituting this known value of A in (15) yields the simpler

system

B = 2

2B + C = 4

3B + 2C +D = 10

6B + 3C + 2D + E = 20

6C + 2E = 0

(16)

This system can be solved by starting at the top and working down, first substituting B = 2

in the second equation to get C = 0, then substituting the known values of B and C in the

third equation to get D = 4, and so forth. This yields

A = 1, B = 2, C = 0, D = 4, E = 0

Thus, (12) becomes

3x4 + 4x3 + 16x2 + 20x + 9

(x + 2)(x2 + 3)2
=

1

x + 2
+

2x

x2 + 3
+

4x

(x2 + 3)2

and so
∫

3x4 + 4x3 + 16x2 + 20x + 9

(x + 2)(x2 + 3)2
dx

=
∫

dx

x + 2
+

∫
2x

x2 + 3
dx + 4

∫
x

(x2 + 3)2
dx

= ln |x + 2| + ln(x2 + 3)−
2

x2 + 3
+ C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATING IMPROPER
RATIONAL FUNCTIONS

Although the method of partial fractions only applies to proper rational functions, an im-

proper rational function can be integrated by performing a long division and expressing the

function as the quotient plus the remainder over the divisor. The remainder over the divisor

will be a proper rational function, which can then be decomposed into partial fractions. This

idea is illustrated in the following example:

Example 5 Evaluate

∫
3x4 + 3x3 − 5x2 + x − 1

x2 + x − 2
dx.

Solution. The integrand is an improper rational function since the numerator has degree

4 and the denominator has degree 2. Thus, we first perform the long division

3x2 + 1

x2 + x − 2 3x4 + 3x3 − 5x2 + x − 1

3x4 + 3x3 − 6x2

x2 + x − 1

x2 + x − 2

1
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It follows that the integrand can be expressed as

3x4 + 3x3 − 5x2 + x − 1

x2 + x − 2
= (3x2 + 1)+

1

x2 + x − 2

and hence
∫

3x4 + 3x3 − 5x2 + x − 1

x2 + x − 2
dx =

∫

(3x2 + 1) dx +
∫

dx

x2 + x − 2

The second integral on the right now involves a proper rational function and can thus be

evaluated by a partial fraction decomposition. Using the result of Example 1 we obtain
∫

3x4 + 3x3 − 5x2 + x − 1

x2 + x − 2
dx = x3 + x +

1

3
ln

∣
∣
∣
∣

x − 1

x + 2

∣
∣
∣
∣
+ C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONCLUDING REMARKS
There are some cases in which the method of partial fractions is inappropriate. For example,

it would be illogical to use partial fractions to perform the integration
∫

3x2 + 2

x3 + 2x − 8
dx = ln |x3 + 2x − 8| + C

since the substitution u = x3 + 2x − 8 is more direct. Similarly, the integration
∫

2x − 1

x2 + 1
dx =

∫
2x

x2 + 1
dx −

∫
dx

x2 + 1
= ln(x2 + 1)− tan−1 x + C

requires only a little algebra since the integrand is already in partial-fraction form.

EXERCISE SET 8.5 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–8, write out the form of the partial fraction

decomposition. (Do not find the numerical values of the co-

efficients.)

1.
3x − 1

(x − 2)(x + 5)
2.

5

x(x2 − 9)

3.
2x − 3

x3 − x2
4.

x2

(x + 2)3

5.
1 − 5x2

x3(x2 + 1)
6.

2x

(x − 1)(x2 + 5)

7.
4x3 − x

(x2 + 5)2
8.

1 − 3x4

(x − 2)(x2 + 1)2

In Exercises 9–32, evaluate the integral.

9.

∫
dx

x2 + 3x − 4
10.

∫
dx

x2 + 8x + 7

11.

∫
11x + 17

2x2 + 7x − 4
dx 12.

∫
5x − 5

3x2 − 8x − 3
dx

13.

∫
2x2 − 9x − 9

x3 − 9x
dx 14.

∫
dx

x(x2 − 1)

15.

∫
x2 + 2

x + 2
dx 16.

∫
x2 − 4

x − 1
dx

17.

∫
3x2 − 10

x2 − 4x + 4
dx 18.

∫
x2

x2 − 3x + 2
dx

19.

∫
x5 + 2x2 + 1

x3 − x
dx 20.

∫
2x5 − x3 − 1

x3 − 4x
dx

21.

∫
2x2 + 3

x(x − 1)2
dx 22.

∫
3x2 − x + 1

x3 − x2
dx

23.

∫
x2 + x − 16

(x + 1)(x − 3)2
dx 24.

∫
2x2 − 2x − 1

x3 − x2
dx

25.

∫
x2

(x + 2)3
dx 26.

∫
2x2 + 3x + 3

(x + 1)3
dx

27.

∫
2x2 − 1

(4x − 1)(x2 + 1)
dx 28.

∫
dx

x3 + x

29.

∫
x3 + 3x2 + x + 9

(x2 + 1)(x2 + 3)
dx 30.

∫
x3 + x2 + x + 2

(x2 + 1)(x2 + 2)
dx

31.

∫
x3 − 3x2 + 2x − 3

x2 + 1
dx

32.

∫
x4 + 6x3 + 10x2 + x

x2 + 6x + 10
dx

In Exercises 33 and 34, evaluate the integral by making a

substitution that converts the integrand to a rational function.

33.

∫
cos θ

sin2 θ + 4 sin θ − 5
dθ 34.

∫
et

e2t − 4
dt
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35. Find the volume of the solid generated when the region en-

closed by y = x2/(9 − x2), y = 0, x = 0, and x = 2 is

revolved about the x-axis.

36. Find the area of the region under the curve y = 1/(1 + ex),

over the interval [− ln 5, ln 5]. [Hint: Make a substitution

that converts the integrand to a rational function.]

In Exercises 37 and 38, use a CAS to evaluate the integral in

two ways: (i) integrate directly; (ii) use the CAS to find the

partial fraction decomposition and integrate the decomposi-

tion. Integrate by hand to check the results.

C 37.

∫
x2 + 1

(x2 + 2x + 3)2
dx

C 38.

∫
x5 + x4 + 4x3 + 4x2 + 4x + 4

(x2 + 2)3
dx

In Exercises 39 and 40, integrate by hand and check your

answers using a CAS.

C 39.

∫
dx

x4 − 3x3 − 7x2 + 27x − 18

C 40.

∫
dx

16x3 − 4x2 + 4x − 1

41. Show that
∫ 1

0

x

x4 + 1
dx =

π

8

42. Use partial fractions to derive the integration formula
∫

1

a2 − x2
dx =

1

2a
ln

∣
∣
∣
∣

a + x

a − x

∣
∣
∣
∣
+ C

8.6 USING TABLES OF INTEGRALS AND COMPUTER
ALGEBRA SYSTEMS

In this section we will discuss how to integrate using tables, and we will address some

of the issues that relate to using computer algebra systems for integration. Readers

who are not using computer algebra systems can skip that material with no problem.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRAL TABLES
Tables of integrals are useful for eliminating tedious hand computation. The endpapers of

this text contain a relatively brief table of integrals that we will refer to as the Endpaper

Integral Table; more comprehensive tables are published in standard reference books such

as the CRC Standard Mathematical Tables and Formulae, CRC Press, Inc., 1996.

All integral tables have their own scheme for classifying integrals according to the form

of the integrand. For example, the Endpaper Integral Table classifies the integrals into

15 categories; Basic Functions, Reciprocals of Basic Functions, Powers of Trigonometric

Functions, Products of Trigonometric Functions, and so forth. The first step in working

with tables is to read through the classifications so that you understand the classification

scheme and know where to look in the table for integrals of different types.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PERFECT MATCHES
If you are lucky, the integral you are attempting to evaluate will match up perfectly with

one of the forms in the table. However, when looking for matches you may have to make

an adjustment for the variable of integration. For example, the integral
∫

x2 sin x dx

is a perfect match with Formula (46) in the Endpaper Integral Table, except for the letter

used for the variable of integration. Thus, to apply Formula (46) to the given integral we

need to change the variable of integration in the formula from u to x. With that minor

modification we obtain
∫

x2 sin x dx = 2x sin x + (2 − x2) cos x + C

Here are some more examples of perfect matches:
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Example 1 Use the Endpaper Integral Table to evaluate

(a)

∫

sin 7x cos 2x dx (b)

∫

x2
√

7 + 3x dx

(c)

∫
√

2 − x2

x
dx (d )

∫

(x3 + 7x + 1) sinπx dx

Solution (a). The integrand can be classified as a product of trigonometric functions.

Thus, from Formula (40) with m = 7 and n = 2 we obtain
∫

sin 7x cos 2x dx = −
cos 9x

18
−

cos 5x

10
+ C

Solution (b). The integrand can be classified as a power of x multiplying
√
a + bx. Thus,

from Formula (103) with a = 7 and b = 3 we obtain
∫

x2
√

7 + 3x dx =
2

2835
(135x2 − 252x + 392)(7 + 3x)3/2 + C

Solution (c). The integrand can be classified as a power of x dividing
√
a2 − x2. Thus,

from Formula (79) with a =
√

2 we obtain
∫

√

2 − x2

x
dx =

√

2 − x2 −
√

2 ln

∣
∣
∣
∣
∣

√
2 +

√
2 − x2

x

∣
∣
∣
∣
∣
+ C

Solution (d ). The integrand can be classified as a polynomial multiplying a trigonometric

function. Thus, we apply Formula (58) with p(x) = x3 +7x+1 and a = π. The successive

nonzero derivatives of p(x) are

p′(x) = 3x2 + 7, p′′(x) = 6x, p′′′(x) = 6

and hence
∫

(x3 + 7x + 1) sinπx dx

= −
x3 + 7x + 1

π
cosπx +

3x2 + 7

π2
sinπx +

6x

π3
cosπx −

6

π4
sinπx + C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MATCHES REQUIRING
SUBSTITUTIONS

Sometimes an integral that does not match any table entry can be made to match by making

an appropriate substitution. Here are some examples.

Example 2 Use the Endpaper Integral Table to evaluate

∫
√

x − 4x2 dx.

Solution. The integrand does not match any of the forms in the table precisely. It comes

closest to matching Formula (112), but it misses because of the factor of 4 multiplying x2

inside the radical. However, if we make the substitution

u = 2x, du = 2 dx

then the 4x2 will become a u2, and the transformed integral will be
∫

√

x − 4x2 dx =
1

2

∫ √

1
2
u− u2 du

which matches Formula (112) with a = 1
4
. Thus, we obtain

∫
√

x − 4x2 dx =
1

2

[

u− 1
4

2

√

1
2
u− u2 +

1

32
sin−1

(

u− 1
4

1
4

)]

+ C

=
1

2

[

2x − 1
4

2

√

x − 4x2 +
1

32
sin−1

(

2x − 1
4

1
4

)]

+ C

=
8x − 1

16

√

x − 4x2 +
1

64
sin−1(8x − 1)+ C ◭
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Example 3 Use the Endpaper Integral Table to evaluate

(a)

∫

eπx sin−1(eπx) dx (b)

∫

x
√

x2 − 4x + 5 dx

Solution (a). The integrand does not even come close to matching any of the forms in the

table. However, a little thought suggests the substitution

u = eπx, du = πeπx dx

from which we obtain
∫

eπx sin−1(eπx) dx =
1

π

∫

sin−1 u du

The integrand is now a basic function, and Formula (7) yields
∫

eπx sin−1(eπx) dx =
1

π
[u sin−1 u+

√

1 − u2] + C

=
1

π
[eπx sin−1(eπx)+

√

1 − e2πx] + C

Solution (b). Again, the integrand does not closely match any of the forms in the table.

However, a little thought suggests that it may be possible to bring the integrand closer to

the form x
√
x2 + a2 by completing the square to eliminate the term involving x inside the

radical. Doing this yields
∫

x
√

x2 − 4x + 5 dx =
∫

x
√

(x2 − 4x + 4)+ 1 dx =
∫

x
√

(x − 2)2 + 1 dx (1)

At this point we are closer to the form x
√
x2 + a2, but we are not quite there because of the

(x − 2)2 rather than x2 inside the radical. However, we can resolve that problem with the

substitution

u = x − 2, du = dx

With this substitution we have x = u+ 2, so (1) can be expressed in terms of u as
∫

x
√

x2 − 4x + 5 dx =
∫

(u+ 2)
√

u2 + 1 du =
∫

u
√

u2 + 1 du+ 2

∫
√

u2 + 1 du

The first integral on the right is now a perfect match with Formula (84) with a = 1, and

the second is a perfect match with Formula (72) with a = 1. Thus, applying these formulas

and dropping the unnecessary absolute value signs we obtain
∫

x
√

x2 − 4x + 5 dx =
[

1

3
(u2 + 1)3/2

]

+ 2

[
u

2

√

u2 + 1 +
1

2
ln(u+

√

u2 + 1)

]

+ C

If we now replace u by x − 2 (in which case u2 + 1 = x2 − 4x + 5), we obtain
∫

x
√

x2 − 4x + 5 dx = 1
3
(x2 − 4x + 5)3/2 + (x − 2)

√

x2 − 4x + 5

+ ln(x − 2 +
√

x2 − 4x + 5)+ C

Although correct, this form of the answer has an unnecessary mixture of radicals and

fractional exponents. If desired, we can “clean up” the answer by writing

(x2 − 4x + 5)3/2 = (x2 − 4x + 5)
√

x2 − 4x + 5

from which it follows that (verify)
∫

x
√

x2 − 4x + 5 dx = 1
3
(x2 − x − 1)

√

x2 − 4x + 5

+ ln(x − 2 +
√

x2 − 4x + 5)+ C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MATCHES REQUIRING REDUCTION
FORMULAS

In cases where the entry in an integral table is a reduction formula, that formula will have

to be applied first to reduce the given integral to a form in which it can be evaluated.
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Example 4 Use the Endpaper Integral Table to evaluate

∫
x3

√
1 + x

dx.

Solution. The integrand can be classified as a power of x multiplying the reciprocal of√
a + bx. Thus, from Formula (107) with a = 1, b = 1, and n = 3, followed by Formula

(106), we obtain
∫

x3

√
1 + x

dx =
2x3

√
1 + x

7
−

6

7

∫
x2

√
1 + x

dx

=
2x3

√
1 + x

7
−

6

7

[
2

15
(3x2 − 4x + 8)

√
1 + x

]

+ C

=
(

2x3

7
−

12x2

35
+

16x

35
−

32

35

) √
1 + x + C ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MATCHES REQUIRING SPECIAL
SUBSTITUTIONS

The Endpaper Integral Table has numerous entries involving an exponent of 3/2 or involving

square roots (exponent 1/2), but it has no entries with other fractional exponents. However,

integrals involving fractional powers of x can often be simplified by making the substitution

u = x1/n in which n is the least common multiple of the denominators of the exponents.

Here are some examples.

Example 5 Evaluate

(a)

∫ √
x

1 + 3
√
x
dx (b)

∫
dx

2 + 2
√
x

(c)

∫ √
1 + ex dx

Solution (a). The integrand contains x1/2 and x1/3, so we make the substitution u = x1/6,

from which we obtain

x = u6, dx = 6u5 du

Thus,
∫ √

x

1 + 3
√
x
dx =

∫
(u6)1/2

1 + (u6)1/3
(6u5) du = 6

∫
u8

1 + u2
du

By long division

u8

1 + u2
= u6 − u4 + u2 − 1 +

1

1 + u2

from which it follows that
∫ √

x

1 + 3
√
x
dx = 6

∫ (

u6 − u4 + u2 − 1 +
1

1 + u2

)

du

= 6
7
u7 − 6

5
u5 + 2u3 − 6u+ 6 tan−1 u+ C

= 6
7
x7/6 − 6

5
x5/6 + 2x1/2 − 6x1/6 + 6 tan−1(x1/6)+ C

Solution (b). The integrand contains x1/2 but does not match any of the forms in the

Endpaper Integral Table. Thus, we make the substitution u = x1/2, from which we obtain

x = u2, dx = 2u du

Making this substitution yields
∫

dx

2 + 2
√
x

=
∫

2u

2 + 2u
du

=
∫ (

1 −
1

1 + u

)

du Long division

= u− ln |1 + u| + C

=
√
x − ln(1 +

√
x)+ C Absolute value not needed
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Solution (c). Again, the integral does not match any of the forms in the Endpaper Integral

Table. However, the integrand contains (1 + ex)1/2, which is analogous to the situation in

part (b), except that here it is 1 + ex rather than x that is raised to the 1/2 power. This

suggests the substitution u = (1 + ex)1/2, from which we obtain (verify)

x = ln(u2 − 1), dx =
2u

u2 − 1
du

Thus,
∫ √

1 + ex dx =
∫

u

(
2u

u2 − 1

)

du

=
∫

2u2

u2 − 1
du

=
∫ (

2 +
2

u2 − 1

)

du Long division

= 2u+
∫ (

1

u− 1
−

1

u+ 1

)

du Partial fractions

= 2u+ ln |u− 1| − ln |u+ 1| + C

= 2u+ ln

∣
∣
∣
∣

u− 1

u+ 1

∣
∣
∣
∣
+ C

= 2
√

1 + ex + ln

[√
1 + ex − 1

√
1 + ex + 1

]

+ C Absolute value
not needed

◭

Functions that consist of finitely many sums, differences, quotients, and products of sin x

and cos x are called rational functions of sin x and cos x. Some examples are

sin x + 3 cos2 x

cos x + 4 sin x
,

sin x

1 + cos x − cos2 x
,

3 sin5 x

1 + 4 sin x

The Endpaper Integral Table gives a few formulas for integrating rational functions of

sin x and cos x under the heading Reciprocals of Basic Functions. For example, it follows

from Formula (18) that
∫

1

1 + sin x
dx = tan x − sec x + C (2)

However, since the integrand is a rational function of sin x, it may be desirable in a particular

application to express the value of the integral in terms of sin x and cos x and rewrite (2) as
∫

1

1 + sin x
dx =

sin x − 1

cos x
+ C

x/2

1

u
√1 + u2

Figure 8.6.1

Many rational functions of sin x and cos x can be evaluated by an ingenious method that

was discovered by the mathematician Karl Weierstrass (see p. 140). The idea is to make the

substitution

u = tan(x/2), −π/2 < x/2 < π/2

from which it follows that

x = 2 tan−1 u, dx =
2

1 + u2
du

To implement this substitution we need to express sin x and cos x in terms of u. For this

purpose we will use the identities

sin x = 2 sin(x/2) cos(x/2) (3)

cos x = cos2(x/2)− sin2(x/2) (4)

and the following relationships suggested by Figure 8.6.1:

sin(x/2) =
u

√

1 + u2
and cos(x/2) =

1
√

1 + u2
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Substituting these expressions in (3) and (4) yields

sin x = 2

(

u
√

1 + u2

) (

1
√

1 + u2

)

=
2u

1 + u2

cos x =

(

1
√

1 + u2

)2

−

(

u
√

1 + u2

)2

=
1 − u2

1 + u2

In summary, we have shown that the substitution u = tan(x/2) can be implemented in a

rational function of sin x and cos x by letting

sin x =
2u

1 + u2
, cos x =

1 − u2

1 + u2
, dx =

2

1 + u2
du (5)

Example 6 Evaluate

∫
dx

1 − sin x + cos x
.

Solution. The integrand is a rational function of sin x and cos x that does not match any

of the formulas in the Endpaper Integral Table, so we make the substitution u = tan(x/2).

Thus, from (5) we obtain

∫
dx

1 − sin x + cos x
=

∫
2 du

1 + u2

1 −
(

2u

1 + u2

)

+
(

1 − u2

1 + u2

)

=
∫

2 du

(1 + u2)− 2u+ (1 − u2)

=
∫

du

1 − u
= − ln |1 − u| + C = − ln |1 − tan(x/2)| + C ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The substitution u = tan(x/2) will convert any rational function of sin x and

cos x to an ordinary rational function of u. However, the method can lead to cumbersome

partial fraction decompositions, so it may be worthwhile to explore the existence of simpler

methods when hand computation is to be used.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATING WITH COMPUTER
ALGEBRA SYSTEMS

Integration tables are rapidly giving way to computerized integration using computer al-

gebra systems. However, as with many powerful tools, a knowledgeable operator is an

important component of the system.

Sometimes computer algebra systems do not produce the most general form of the in-

definite integral. For example, the integral formula
∫

dx

x − 1
= ln |x − 1| + C

which can be obtained by inspection or by using the substitution u = x−1, is valid for x > 1

or for x < 1. However, Mathematica, Maple, Derive, and the computer algebra systems

used by the Texas Instruments TI-89 and Hewlett-Packard HP-49 calculators evaluate this

integral as
∗

ln(−1 + x), ln(x − 1), ln(x − 1), ln(|x − 1|), ln(x − 1)

Mathematica Maple Derive TI-89 HP-49

Observe that none of the systems include the constant of integration—the answer produced

is a particular antiderivative and not the most general antiderivative (indefinite integral).

∗
Results produced by Mathematica, Maple, Derive, the TI-89, and the HP-49 may vary depending on the version

of the software that is used.
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Observe also that only the TI-89 includes the absolute value signs; consequently, the an-

tiderivatives produced in this instance by the other systems are valid only for x > 1. All

systems, however, are able to recover to correctly calculate the definite integral
∫ 1/2

0

dx

x − 1
= − ln 2

Now let us examine how these systems handle the integral
∫

x
√

x2 − 4x + 5 dx = 1
3
(x2 − x − 1)

√

x2 − 4x + 5

+ ln(x − 2 +
√

x2 − 4x + 5 ) (6)

which we obtained in Example 3(b) (with the constant of integration included). Derive, the

TI-89, and the HP-49 produce this result in slightly different algebraic forms, but Maple

produces the result
∫

x
√

x2 − 4x + 5 dx = 1
3
(x2 − 4x+ 5)3/2 + 1

2
(2x− 4)

√

x2 − 4x+ 5 + sinh−1(x− 2)

This can be rewritten as (6) by expressing the fractional exponent in radical form and

expressing sinh−1(x − 2) in logarithmic form using Theorem 7.8.4 (verify). Mathematica

produces the result
∫

x
√

x2 − 4x + 5 dx = 1
3
(x2 − x − 1)

√

x2 − 4x + 5 − sinh−1(2 − x)

which can be rewritten in form (6) by using Theorem 7.8.4 together with the identity

sinh−1(−x) = − sinh−1 x (verify).

Computer algebra systems can sometimes produce inconvenient or unnatural answers

to integration problems. For example, the systems mentioned above produce the following

results when asked to integrate (x + 1)7:

(x + 1)8

8
, 1

8
x8 + x7 + 7

2
x6 + 7x5 + 35

4
x4 + 7x3 + 7

2
x2 + x

Mathematica, Maple, Derive, TI-89 HP-49

The answers produced by the majority of these systems are in keeping with the hand

computation
∫

(x + 1)7 dx =
(x + 1)8

8
+ C

that uses the substitution u = x + 1, whereas the answer produced by the HP-49 appears

to be based on expanding (x + 1)7 and integrating term by term.

•
•
•
•
•
•
•
•
•

FOR THE READER. If you expand the expression 1
8
(x + 1)8, you will discover that it

contains a summand 1
8

that does not appear in the HP-49 result. What is the explanation?

In Example 2(a) of Section 8.3 we showed that
∫

sin4 x cos5 x dx = 1
5

sin5 x − 2
7

sin7 x + 1
9

sin9 x + C

This is the answer produced by the HP-49. In contrast, Mathematica integrates this as

3
128

sin x − 1
192

sin 3x − 1
320

sin 5x + 1
1792

sin 7x + 1
2304

sin 9x

and Maple, Derive, and the TI-89 essentially integrate it as

− 1
9

sin3 x cos6 x − 1
21

sin x cos6 x + 1
105

cos4 x sin x + 4
315

cos2 x sin x + 8
315

sin x

Although these three results look quite different, they can be obtained from one another

using appropriate trigonometric identities.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

COMPUTER ALGEBRA SYSTEMS
HAVE LIMITATIONS

A computer algebra system combines a set of integration rules (such as substitution) with

a library of functions that it can use to construct antiderivatives. Such libraries contain

elementary functions, such as polynomials, rational functions, trigonometric functions, as

well as various nonelementary functions that arise in engineering, physics, and other applied

fields. Just as our Endpaper Integral Table has only 121 indefinite integrals, these libraries

are not exhaustive of all possible integrands. If the system cannot manipulate the integrand

to a form matching one in its library, the program will give some indication that it cannot

evaluate the integral. For example, when asked to evaluate the integral
∫

(1 + ln x)
√

1 + (x ln x)2 dx (7)

all of the systems mentioned above respond by displaying some form of the unevaluated

integral as an answer, indicating that they could not perform the integration.

•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Sometimes integrals that cannot be evaluated by a CAS in their given

form can be evaluated by first rewriting them in a different form or by making a substitution.

Make a u-substitution in (7) that will enable you to evaluate the integral with your CAS.

Sometimes computer algebra systems respond by expressing an integral in terms of

another integral. For example, if you try to integrate ex
2

using Mathematica, Maple, or

Derive, you will obtain an expression involving erf (which stands for error function). The

function erf(x) is defined as

erf(x) =
2

√
π

∫ x

0

e−t2 dt

so all three programs essentially rewrite the given integral in terms of a closely related

integral. Indeed, this is what we did in integrating 1/x, since the natural logarithm function

is (formally) defined as

ln x =
∫ x

1

1

t
dt

(see Section 7.5).

Example 7 A particle moves along an x-axis in such a way that its velocity v(t) at time

t is

v(t) = 30 cos7 t sin4 t (t ≥ 0)

Graph the position versus time curve for the particle, given that the particle is at x = 1

when t = 0.

5 10 15 20

0.5

1

1.5

2

t

x

Figure 8.6.2

Solution. Since dx/dt = v(t) and x = 1 when t = 0, the position function x(t) is given

by

x(t) = 1 +
∫ t

0

v(s) ds

Many computer algebra systems will allow us to enter this expression directly into a com-

mand for plotting functions, but it is often more efficient to perform the integration first.

Using the HP-49 to perform the integration (the other systems mentioned above produce

equivalent results), and including the constant of integration, yields

x =
∫

30 cos7 t sin4 t dt

= − 30
11

sin11 t + 10 sin9 t − 90
7

sin7 t + 6 sin5 t + C

Using the initial condition x(0) = 1, we substitute the values x = 1 and t = 0 into this

equation to find that C = 1, so

x(t) = − 30
11

sin11 t + 10 sin9 t − 90
7

sin7 t + 6 sin5 t + 1 (t ≥ 0)

The graph of x versus t is shown in Figure 8.6.2. ◭
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EXERCISE SET 8.6 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–24:

(a) Use the Endpaper Integral Table to evaluate the integral.

(b) If you have a CAS, use it to evaluate the integral, and

then confirm that the result is equivalent to the one that

you found in part (a).

1.

∫
3x

4x − 1
dx 2.

∫
x

(2 − 3x)2
dx

3.

∫
1

x(2x + 5)
dx 4.

∫
1

x2(1 − 5x)
dx

5.

∫

x
√

2x − 3 dx 6.

∫
x

√
2 − x

dx

7.

∫
1

x
√

4 − 3x
dx 8.

∫
1

x
√

3x − 4
dx

9.

∫
1

5 − x2
dx 10.

∫
1

x2 − 9
dx

11.

∫
√

x2 − 3 dx 12.

∫
√

x2 + 5

x2
dx

13.

∫
x2

√

x2 + 4
dx 14.

∫
1

x2
√

x2 − 2
dx

15.

∫
√

9 − x2 dx 16.

∫
√

4 − x2

x2
dx

17.

∫
√

3 − x2

x
dx 18.

∫
1

x
√

6x − x2
dx

19.

∫

sin 3x sin 2x dx 20.

∫

sin 2x cos 5x dx

21.

∫

x3 ln x dx 22.

∫
ln x
√
x
dx

23.

∫

e−2x sin 3x dx 24.

∫

ex cos 2x dx

In Exercises 25–36:

(a) Make the indicated u-substitution, and then use the End-

paper Integral Table to evaluate the integral.

(b) If you have a CAS, use it to evaluate the integral, and

then confirm that the result is equivalent to the one that

you found in part (a).

25.

∫
e4x

(4 − 3e2x)2
dx, u = e2x

26.

∫
cos 2x

(sin 2x)(3 − sin 2x)
dx, u = sin 2x

27.

∫
1

√
x(9x + 4)

dx, u = 3
√
x

28.

∫
cos 4x

9 + sin2 4x
dx, u = sin 4x

29.

∫
1

√

9x2 − 4
dx, u = 3x

30.

∫

x
√

2x4 + 3 dx, u =
√

2x2

31.

∫
x5

√

5 − 9x4
dx, u = 3x2

32.

∫
1

x2
√

3 − 4x2
dx, u = 2x

33.

∫
sin2(ln x)

x
dx, u = ln x

34.

∫

e−2x cos2(e−2x) dx, u = e−2x

35.

∫

xe−2x dx, u = −2x

36.

∫

ln(5x − 1) dx, u = 5x − 1

In Exercises 37–48:

(a) Make an appropriate u-substitution, and then use the

Endpaper Integral Table to evaluate the integral.

(b) If you have a CAS, use it to evaluate the integral (no sub-

stitution), and then confirm that the result is equivalent

to that in part (a).

37.

∫
sin 3x

(cos 3x)(cos 3x + 1)2
dx

38.

∫
ln x

x
√

4 ln x − 1
dx

39.

∫
x

16x4 − 1
dx 40.

∫
ex

3 − 4e2x
dx

41.

∫

ex
√

3 − 4e2x dx 42.

∫
√

4 − 9x2

x2
dx

43.

∫
√

5x − 9x2 dx 44.

∫
1

x
√

x − 5x2
dx

45.

∫

x sin 3x dx 46.

∫

cos
√
x dx

47.

∫

e−
√
x dx 48.

∫

x ln(2 − 3x2) dx

In Exercises 49–52:

(a) Complete the square, make an appropriateu-substitution,

and then use the Endpaper Integral Table to evaluate the

integral.

(b) If you have a CAS, use it to evaluate the integral (no sub-

stitution or square completion), and then confirm that the

result is equivalent to that in part (a).

49.

∫
1

x2 + 4x − 5
dx 50.

∫
√

3 − 2x − x2 dx

51.

∫
x

√

5 + 4x − x2
dx 52.

∫
x

x2 + 6x + 13
dx
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In Exercises 53–66:

(a) Make an appropriate u-substitution of the form u = x1/n,

u = (x + a)1/n, or u = xn, and then use the Endpaper

Integral Table to evaluate the integral.

(b) If you have a CAS, use it to evaluate the integral, and

then confirm that the result is equivalent to the one that

you found in part (a).

53.

∫

x
√
x − 2 dx 54.

∫
x

√
x + 1

dx

55.

∫

x5
√

x3 + 1 dx 56.

∫
1

x
√

x3 − 1
dx

57.

∫
dx

√
x + 3

√
x

58.

∫
dx

x − x3/5

59.

∫
dx

x(1 − x1/4)
60.

∫
x2/3

x + 1
dx

61.

∫
dx

x1/2 − x1/3
62.

∫
1 +

√
x

1 −
√
x
dx

63.

∫
x3

√
1 + x2

dx 64.

∫
x

(x + 3)1/5
dx

65.

∫

sin
√
x dx 66.

∫

e
√
x dx

In Exercises 67–72:

(a) Make u-substitution (5) to convert the integrand to a ra-

tional function of u, and then use the Endpaper Integral

Table to evaluate the integral.

(b) If you have a CAS, use it to evaluate the integral (no sub-

stitution), and then confirm that the result is equivalent

to that in part (a).

67.

∫
dx

1 + sin x + cos x
68.

∫
dx

2 + sin x

69.

∫
dθ

1 − cos θ
70.

∫
dx

4 sin x − 3 cos x

71.

∫
cos x

2 − cos x
dx 72.

∫
dx

sin x + tan x

In Exercises 73 and 74, use any method to solve for x.

73.

∫ x

2

1

t (4 − t)
dt = 0.5, 2 < x < 4

74.

∫ x

1

1

t
√

2t − 1
dt = 1, x > 1

2

In Exercises 75–78, use any method to find the area of the

region enclosed by the curves.

75. y =
√

25 − x2, y = 0, x = 0, x = 4

76. y =
√

9x2 − 4, y = 0, x = 2

77. y =
1

25 − 16x2
, y = 0, x = 0, x = 1

78. y =
√
x ln x, y = 0, x = 4

In Exercises 79–82, use any method to find the volume of

the solid generated when the region enclosed by the curves

is revolved about the y-axis.

79. y = cos x, y = 0, x = 0, x = π/2

80. y =
√
x − 4, y = 0, x = 8

81. y = e−x, y = 0, x = 0, x = 3

82. y = ln x, y = 0, x = 5

In Exercises 83 and 84, use any method to find the arc length

of the curve.

83. y = 2x2, 0 ≤ x ≤ 2

84. y = 3 ln x, 1 ≤ x ≤ 3

In Exercises 85 and 86, use any method to find the area of the

surface generated by revolving the curve about the x-axis.

85. y = sin x, 0 ≤ x ≤ π

86. y = 1/x, 1 ≤ x ≤ 4

In Exercises 87 and 88, information is given about the motion

of a particle moving along a coordinate line.

(a) Use a CAS to find the position function of the particle for

t ≥ 0. You may approximate the constants of integration,

where necessary.

(b) Graph the position versus time curve.

C 87. v(t) = 20 cos6 t sin3 t, s(0) = 2

C 88. a(t) = e−t sin 2t sin 4t, v(0) = 0, s(0) = 10

89. (a) Use the substitution u = tan(x/2) to show that
∫

sec x dx = ln

∣
∣
∣
∣

1 + tan(x/2)

1 − tan(x/2)

∣
∣
∣
∣
+ C

and confirm that this is consistent with Formula (22)

of Section 8.3.
(b) Use the result in part (a) to show that

∫

sec x dx = ln
∣
∣
∣tan

(π

4
+
x

2

)∣
∣
∣ + C

90. Use the substitution u = tan(x/2) to show that
∫

csc x dx =
1

2
ln

[
1 − cos x

1 + cos x

]

+ C

and confirm that this is consistent with the result in Exercise

61(a) of Section 8.3.

91. Find a substitution that can be used to integrate rational

functions of sinh x and cosh x and use your substitution to

evaluate
∫

dx

2 cosh x + sinh x

without expressing the integrand in terms of ex and e−x .
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8.7 NUMERICAL INTEGRATION; SIMPSON’S RULE

Our usual procedure for evaluating a definite integral is to find an antiderivative of the

integrand and apply the Fundamental Theorem of Calculus. However, if an anti-

derivative of the integrand cannot be found, then we must settle for a numerical

approximation of the integral. In Section 5.4 we discussed three procedures for ap-

proximating areas using Riemann sums—left endpoint approximation, right endpoint

approximation, and midpoint approximation. In this section we will adapt those ideas

to approximating general definite integrals, and we will discuss some new approxima-

tion methods that often provide more accuracy with less computation.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A REVIEW OF RIEMANN SUM
APPROXIMATIONS

Recall from Section 5.5 that the definite integral of a continuous function f over an interval

[a, b] may be computed as
∫ b

a

f(x) dx = lim
n→+�

n∑

k=1

f(x∗
k ),x

where the sum that appears on the right side is called a Riemann sum. In this formula, the

interval [a, b] is divided into n subintervals of width ,x = (b − a)/n, and x∗
k denotes an

arbitrary point in the kth subinterval. It follows that as n increases the Riemann sum will

eventually be a good approximation to the integral, which we denote by writing
∫ b

a

f(x) dx ≈
n∑

k=1

f(x∗
k ),x

or, equivalently,
∫ b

a

f(x) dx ≈ ,x
[

f(x∗
1 )+ f(x∗

2 )+ · · · + f(x∗
n)

]

In this section we will denote the values of f at the endpoints of the subintervals by

y0 = f(a), y1 = f(x1), y2 = f(x2), . . . , yn−1 = f(xn−1), yn = f(b)

and we will denote the values of f at the midpoints of the subintervals by

ym1
, ym2

, . . . , ymn

(Figure 8.7.1).

Figure 8.7.1
m2m1

. . .. . . mna x1 x2 xn–1 b

y0 y1 y2 yn–1 yn
x

y

x

y

ym1
ym2

ymn

With this notation the left endpoint, right endpoint, and midpoint approximations dis-

cussed in Section 5.4 can be expressed as shown in Table 8.7.1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TRAPEZOIDAL APPROXIMATION
The left-hand and right-hand endpoint approximations are rarely used in applications; how-

ever, if we take the average of the left-hand and right-hand endpoint approximations, we

obtain a result, called the trapezoidal approximation, which is commonly used:

Trapezoidal Approximation
∫ b

a

f(x) dx ≈
(
b − a

2n

)

[y0 + 2y1 + · · · + 2yn−1 + yn] (1)



February 15, 2001 14:00 g65-ch8 Sheet number 44 Page number 568 cyan magenta yellow black

568 Principles of Integral Evaluation

Table 8.7.1

m2m1
. . . mna b

y1 y2 yn–1 yn
x

y

a b

y0 y1 y2 yn–1
x

y

x

y

ym1
ym2

ymn

left endpoint approximation right endpoint approximation midpoint approximation

f (x) dx ≈ (     )[y0 + y1 + . . . + yn–1]
b – a

na

b

f (x) dx ≈ (     )[y1 + y2 + . . . + yn]
b – a

na

b

f (x) dx ≈ (     )[ym1
 + ym2

 + . . . + ymn]
b – a

na

b

The name trapezoidal approximation can be explained by considering the case in which

f(x) ≥ 0 on [a, b], so that
∫ b

a
f(x) dx represents the area under f(x) over [a, b]. Geometri-

cally, the trapezoidal approximation formula results if we approximate this area by the sum

of the trapezoidal areas shown in Figure 8.7.2 (Exercise 43).

a b

Trapezoidal approximation

y0 y1 y2 yn–1 yn
x

y

Figure 8.7.2

Example 1 In Table 8.7.2 we have approximated

ln 2 =
∫ 2

1

1

x
dx

using the midpoint approximation and the trapezoidal approximation. In each case we used

n = 10 subdivisions of the interval [1, 2], so that

b − a

n
=

2 − 1

10
= 0.1

︸ ︷︷ ︸

and
b − a

2n
=

2 − 1

20
= 0.05

︸ ︷︷ ︸

Midpoint Trapezoidal

◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In Example 1 we rounded the numerical values to nine places to the right of

the decimal point; we will follow this procedure throughout this section. If your calculator

cannot produce this many places, then you will have to make the appropriate adjustments.

What is important here is that you understand the principles involved.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

COMPARISON OF THE MIDPOINT
AND TRAPEZOIDAL
APPROXIMATIONS

The value of ln 2 rounded to nine decimal places is

ln 2 =
∫ 2

1

1

x
dx ≈ 0.693147181 (2)

so that the midpoint approximation in Example 1 produced a more accurate result than the
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Table 8.7.2

midpoint
mii ymi

 =  f (mi) = 1/mi

1

2

3

4

5

6

7

8

9

10

1.05

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

0.952380952

0.869565217

0.800000000

0.740740741

0.689655172

0.645161290

0.606060606

0.571428571

0.540540541

0.512820513

6.928353603

2

1

1
x dx ≈  (0.1)(6.928353603) ≈ 0.692835360

endpoint
xii yi =  f (xi) = 1/xi

0

1

2

3

4

5

6

7

8

9

10

wiyi

1.000000000

1.818181818

1.666666667

1.538461538

1.428571429

1.333333333

1.250000000

1.176470588

1.111111111

1.052631579

0.500000000

13.875428063

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1.000000000

0.909090909

0.833333333

0.769230769

0.714285714

0.666666667

0.625000000

0.588235294

0.555555556

0.526315789

0.500000000

multiplier
wi

1

2

2

2

2

2

2

2

2

2

1

2

1

1
x dx ≈  (0.05)(13.875428063) ≈ 0.693771403

Midpoint Approximation Trapezoidal Approximation

trapezoidal approximation (verify). To see why this should be so, we need to look at the

midpoint approximation from another viewpoint. [For simplicity in the explanations, we

will assume that f(x) ≥ 0, but the conclusions will be true without this assumption.] For

differentiable functions, the midpoint approximation is sometimes called the tangent line

approximation because over each subinterval the area of the rectangle used in the midpoint

approximation is equal to the area of the trapezoid whose upper boundary is the tangent

line to y = f(x) at the midpoint of the interval (Figure 8.7.3). The equality of these areas

follows from the fact that the shaded triangles in Figure 8.7.3 are congruent.mk

The shaded triangles

have equal areas.

Figure 8.7.3

In this section we will denote the midpoint and trapezoidal approximations of
∫ b

a
f(x) dx

with n subintervals by Mn and Tn, respectively, and we will denote the errors in these

approximations by

|EM | =
∣
∣
∣
∣

∫ b

a

f(x) dx −Mn

∣
∣
∣
∣

and |ET | =
∣
∣
∣
∣

∫ b

a

f(x) dx − Tn

∣
∣
∣
∣

In Figure 8.7.4a we have isolated a subinterval of [a, b] on which the graph of a function

f is concave down, and we have shaded the areas that represent the errors in the midpoint

and trapezoidal approximations over the subinterval. In Figure 8.7.4b we show a succession

of four illustrations which make it evident that the error from the midpoint approximation

is less than that from the trapezoidal approximation. If the graph of f were concave up,

analogous figures would lead to the same conclusion. (This argument, due to Frank Buck,

appeared in The College Mathematics Journal, Vol. 16, No. 1, 1985.)

Blue area Blue area Blue area Yellow area< <=

Midpoint

error

Trapezoidal

error

mk

(a) (b)

Figure 8.7.4
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Figure 8.7.4a also suggests that on a subinterval where the graph is concave down,

the midpoint approximation is larger than the value of the integral and the trapezoidal

approximation is smaller. On an interval where the graph is concave up it is the other way

around. In summary, we have the following result, which we state without formal proof:

8.7.1 THEOREM. Let f be continuous on [a, b], and let |EM | and |ET | be the absolute

errors that result from the midpoint and trapezoidal approximations of
∫ b

a
f(x) dx using

n subintervals.

(a) If the graph of f is either concave up or concave down on (a, b), then |EM | < |ET |,
that is, the error from the midpoint approximation is less than that from the trape-

zoidal approximation.

(b) If the graph of f is concave down on (a, b), then

Tn <

∫ b

a

f(x) dx < Mn

(c) If the graph of f is concave up on (a, b), then

Mn <

∫ b

a

f(x) dx < Tn

Example 2 As observed earlier and illustrated in Table 8.7.3, the midpoint approximation

of
∫ 2

1

1

x
dx = ln 2

in Example 1 is more accurate than the trapezoidal approximation when partitioning [1, 2]

inton = 10 subintervals. This is consistent with part (a) of Theorem 8.7.1, sincef(x) = 1/x

is continuous on [1, 2] and concave up on (1, 2). Moreover, M10 < ln 2 < T10, as predicted

by part (c) of Theorem 8.7.1. ◭

Table 8.7.3

ln 2
(nine decimal places) differenceapproximation

0.693147181

0.693147181

T10 ≈ 0.693771403

M10 ≈ 0.692835360

 ET  = ln 2 – T10 ≈ – 0.000624222

EM  = ln 2 – M10 ≈   0.000311821

Example 3 In Table 8.7.4 we have approximated

sin 1 =
∫ 1

0

cos x dx

using the midpoint and trapezoidal approximations with n = 5 subdivisions of the interval

[0, 1]. (As before, the numerical values are rounded to nine decimal places.) Note that

f(x) = cos x is continuous on [0, 1] and concave down on (0, 1). Thus, Theorem 8.7.1(a)

guarantees that |EM | < |ET |, as shown in Table 8.7.4. Also, T5 < sin 1 < M5, as predicted

Table 8.7.4

sin 1
(nine decimal places) differenceapproximation

0.841470985

0.841470985

T5 ≈ 0.838664210

M5 ≈ 0.842875074

 ET  = sin 1 – T5  ≈    0.002806775

EM  = sin 1 – M5  ≈ – 0.001404089
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by Theorem 8.7.1(b).

Table 8.7.5 shows approximations for

sin 3 =
∫ 3

0

cos x dx

using the midpoint and trapezoidal approximations with n = 10 subdivisions of the interval

[0, 3]. Note that |EM | < |ET | and T10 < sin 3 < M10, although these results are not guaran-

teed by Theorem 8.7.1 since f(x) = cos x changes concavity on the interval (0, 3). ◭

Table 8.7.5

sin 3
(nine decimal places) differenceapproximation

0.141120008

0.141120008

T10 ≈ 0.140060017

M10 ≈ 0.141650601

ET   = sin 3 – T10 ≈    0.001059991

EM = sin 3 – M10 ≈ – 0.000530592

•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. Do not conclude that the midpoint approximation is always better than the

trapezoidal approximation; for some values of n, the trapezoidal approximation can be more

accurate over an interval on which the function changes concavity.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SIMPSON’S RULE
Over an interval on which the integrand does not change concavity, Theorem 8.7.1 guar-

antees that a definite integral is better approximated by the midpoint approximation than

by the trapezoidal approximation and that the value of the definite integral lies between

these two approximations. The numerical evidence in Tables 8.7.3 and 8.7.4 (and even in

Table 8.7.5, despite the change in concavity of the integrand over the interval) reveals that

ET ≈ −2EM in these instances. This suggests that

3

∫ b

a

f(x) dx = 2

∫ b

a

f(x) dx +
∫ b

a

f(x) dx

= 2(Mn + EM)+ (Tn + ET )

= (2Mn + Tn)+ (2EM + ET ) ≈ 2Mn + Tn

That is,
∫ b

a

f(x) dx ≈ 1
3
(2Mn + Tn)

Table 8.7.6 displays the approximations 1
3
(2Mn + Tn) corresponding to the data in Ta-

bles 8.7.3 to 8.7.5. Thus, with little extra effort, we have much improved approximations

for these definite integrals.

Table 8.7.6

calculator value
(nine decimal places) differencedefinite integral approximation

ln 2  ≈ 0.693147181

sin 1 ≈ 0.841470985

sin 3 ≈ 0.141120008

– 0.000000194

– 0.000000468

– 0.000000398

∫  (1/x) dx ≈   (2M10 + T10) ≈ 0.693147375

∫  cos x dx ≈     (2M5 +  T5)  ≈ 0.841471453

∫   cos x dx ≈   (2M10 + T10) ≈ 0.141120406

2

1

3

1

0

0

1
3

1
3

1
3

Using the midpoint and trapezoidal approximation formulas in Table 8.7.1 and Formula

(1), we can derive a similar formula for this approximation. For convenience, we partition

the interval [a, b] into 2n subintervals, each of length (b − a)/(2n). As before, label the

endpoints of these subintervals by a = x0, x1, x2, . . . , x2n = b. Then x0, x2, x4, . . . , x2n
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define a partition of [a, b] into n equal subintervals, and the midpoints of these subintervals

are x1, x3, x5, . . . , x2n−1, respectively. Using yi = f(xi), we have

Mn =
(
b − a

n

)

[y1 + y3 + · · · + y2n−1] =
(
b − a

2n

)

[2y1 + 2y3 + · · · + 2y2n−1]

Tn =
(
b − a

2n

)

[y0 + 2y2 + 2y4 + · · · + 2y2n−2 + y2n]

Now define S2n by

S2n =
1

3
(2Mn + Tn)

=
1

3

(
b − a

2n

)

[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2y2n−2 + 4y2n−1 + y2n]

(3)

The approximation
∫ b

a

f(x) dx ≈ S2n

as given in (3) is known as Simpson’s
∗

rule. We denote the absolute error in this approxi-

mation by

|ES | =
∣
∣
∣
∣

∫ b

a

f(x) dx − S2n

∣
∣
∣
∣

Example 4 Table 8.7.6 shows the Simpson’s rule approximations

S20 = 1
3
(2M10 + T10), S10 = 1

3
(2M5 + T5), and S20 = 1

3
(2M10 + T10)

for the definite integrals
∫ 2

1

1

x
dx,

∫ 1

0

cos x dx, and

∫ 3

0

cos x dx

respectively.

In Table 8.7.7 we have approximated

ln 2 =
∫ 2

1

1

x
dx

using (3) for Simpson’s rule, where the interval [1, 2] is partitioned into 2n = 10 subinter-

vals. Thus,

1

3

(
b − a

2n

)

=
1

3

(
2 − 1

10

)

=
1

30

∗
THOMAS SIMPSON (1710–1761). English mathematician. Simpson was the son of a weaver. He was trained

to follow in his father’s footsteps and had little formal education in his early life. His interest in science and

mathematics was aroused in 1724, when he witnessed an eclipse of the Sun and received two books from a

peddler, one on astrology and the other on arithmetic. Simpson quickly absorbed their contents and soon became

a successful local fortune teller. His improved financial situation enabled him to give up weaving and marry his

landlady, an older woman. Then in 1733 some mysterious “unfortunate incident” forced him to move. He settled

in Derby, where he taught in an evening school and worked at weaving during the day. In 1736 he moved to

London and published his first mathematical work in a periodical called the Ladies’ Diary (of which he later

became the editor). In 1737 he published a successful calculus textbook that enabled him to give up weaving

completely and concentrate on textbook writing and teaching. His fortunes improved further in 1740 when one

Robert Heath accused him of plagiarism. The publicity was marvelous, and Simpson proceeded to dash off a

succession of best-selling textbooks: Algebra (ten editions plus translations), Geometry (twelve editions plus

translations), Trigonometry (five editions plus translations), and numerous others. It is interesting to note that

Simpson did not discover the rule that bears his name. It was a well-known result by Simpson’s time.
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Table 8.7.7 Simpson’s Rule

endpoint
xii yi =  f (xi) = 1/xi

0

1

2

3

4

5

6

7

8

9

10

wiyi

1.000000000

3.636363636

1.666666667

3.076923077

1.428571429

2.666666667

1.250000000

2.352941176

1.111111111

2.105263158

0.500000000

20.794506921

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1.000000000

0.909090909

0.833333333

0.769230769

0.714285714

0.666666667

0.625000000

0.588235294

0.555555556

0.526315789

0.500000000

multiplier
wi

1

4

2

4

2

4

2

4

2

4

1

2

1

1
x

1
30

dx ≈  (    )(20.794506921) ≈ 0.693150231

Then

|ES | =
∣
∣
∣
∣

∫ 2

1

1

x
dx − S10

∣
∣
∣
∣

= | ln 2 − S10| ≈ |0.693147181 − 0.693150231| = 0.000003050

By contrast, M5 ≈ 0.691907886 and T5 ≈ 0.695634921 have absolute errors

|EM | ≈ 0.001239295 and |ET | ≈ 0.002487740

respectively, so S10 is a much more accurate approximation of ln 2 than either M5 or T5.

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GEOMETRIC INTERPRETATION OF
SIMPSON’S RULE

Both the midpoint and trapezoidal approximations for a definite integral are obtained by

approximating a segment of the curve y = f(x) by a linear segment (Figure 8.7.5). Formula

(3) for Simpson’s rule can be obtained by approximating a segment of the curve y = f(x)

by a segment of a quadratic function y = Ax2 +Bx +C, thus capturing some sense of the

concavity of the function.

a b

Trapezoidal approximation

y0 y1 y2 yn–1 yn
x

y

a b

Midpoint approximation

x

y

ym1
ym2

ymn

Figure 8.7.5

For this interpretation of Simpson’s rule we start with the observation that for

a ≤ X0 < X2 ≤ b
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there is a unique function g(x) of the form

g(x) = Ax2 + Bx + C

such that

g(X0) = f(X0), g(X2) = f(X2), and g(X1) = f(X1)

where X1 = (X0 +X2)/2 (Figure 8.7.6). That is, we approximate f(x) on [X0, X2] by fit-

ting a polynomial g(x) of degree at most 2 to the points on the graph of y = f(x) corre-

sponding to x = X0, X1, and X2. We then use
∫ X2

X0
g(x) dx to approximate

∫ X2

X0
f(x) dx.

x

y y = f (x)

y = Ax2 + Bx + C

Y0

X0 X1 X2

Y1 Y2

∆x ∆x

Figure 8.7.6

Setting

,x =
X2 −X0

2

so that

X2 = X0 + 2,x, Y0 = f(X0), Y1 = f(X1), and Y2 = f(X2)

the key result to establish is
∫ X2

X0

g(x) dx =
∫ X2

X0

(Ax2 + Bx + C) dx =
,x

3
[Y0 + 4Y1 + Y2] (4)

We verify (4) by working from both ends to arrive at a common middle. Starting with

the expression Y0 + 4Y1 + Y2 on the right side of Equation (4),

Y0 + 4Y1 + Y2

= g(X0)+ 4g(X1)+ g(X2)

= A[X2
0 + 4X2

1 +X2
2] + B[X0 + 4X1 +X2] + C[1 + 4 + 1]

= A

[

X2
0 + 4

(
X0 +X2

2

)2

+X2
2

]

+ B

[

X0 + 4

(
X0 +X2

2

)

+X2

]

+ 6C

= A[X2
0 + (X0 +X2)

2 +X2
2] + B[3X0 + 3X2] + 6C

= 2A[X2
0 +X0X2 +X2

2] + 3B[X0 +X2] + 6C (5)

Furthermore,

∫ X2

X0

g(x) dx =
∫ X2

X0

(Ax2 + Bx + C) dx =
A

3
x3 +

B

2
x2 + Cx

]X2

X0

=
A

3
(X3

2 −X3
0)+

B

2
(X2

2 −X2
0)+ C(X2 −X0)

=
(
X2 −X0

3

) [

A(X2
2 +X2X0 +X2

0)+
3B

2
(X2 +X0)+ 3C

]

=
(

2,x

3

) [

A(X2
2 +X2X0 +X2

0)+
3B

2
(X2 +X0)+ 3C

]

=
,x

3
[2A(X2

2 +X2X0 +X2
0)+ 3B(X2 +X0)+ 6C] (6)

Substituting (5) into (6) gives (4).

Using the partition a = x0, x1, x2, . . . , x2n = b of the interval [a, b] into 2n subintervals,

each of width

,x =
b − a

2n

and applying (4) to the subintervals [x0, x2], [x2, x4], . . . , [x2n−2, x2n], we can now derive



February 15, 2001 14:00 g65-ch8 Sheet number 51 Page number 575 cyan magenta yellow black

8.7 Numerical Integration; Simpson’s Rule 575

Simpson’s rule in (3) as the integral of a piecewise-quadratic approximation to f(x):
∫ b=x2n

a=x0

f(x) dx

=
∫ x2

x0

f(x) dx +
∫ x4

x2

f(x) dx + · · · +
∫ x2n

x2n−2

f(x) dx

≈
,x

3
[y0 + 4y1 + y2] +

,x

3
[y2 + 4y3 + y4] + · · · +

,x

3
[y2n−2 + 4y2n−1 + y2n]

=
,x

3
[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2y2n−2 + 4y2n−1 + y2n]

= S2n

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ERROR ESTIMATES
With all the methods studied in this section, there are two sources of error: the intrinsic

or truncation error due to the approximation formula, and the roundoff error introduced

in the calculations. In general, increasing n reduces the truncation error but increases the

roundoff error, since more computations are required for larger n. In practical applications,

it is important to know how large n must be taken to ensure that a specified degree of

accuracy is obtained. The analysis of roundoff error is complicated and will not be consid-

ered here. However, the following theorems, which are proved in books on numerical

analysis, provide upper bounds on the truncation errors in the midpoint, trapezoidal, and

Simpson’s rule approximations.

8.7.2 THEOREM (Midpoint and Trapezoidal Error Estimates). If f ′′ is continuous on [a, b]

and if K2 is the maximum value of |f ′′(x)| on [a, b], then for n subintervals of [a, b]

(a) |EM | =
∣
∣
∣
∣

∫ b

a

f(x) dx −Mn

∣
∣
∣
∣
≤
(b − a)3K2

24n2
(7)

(b) |ET | =
∣
∣
∣
∣

∫ b

a

f(x) dx − Tn

∣
∣
∣
∣
≤
(b − a)3K2

12n2
(8)

8.7.3 THEOREM (Simpson Error Estimate). If f (4) is continuous on [a, b] and if K4 is

the maximum value of |f (4)(x)| on [a, b], then for 2n subintervals of [a, b]

|ES | =
∣
∣
∣
∣

∫ b

a

f(x) dx − S2n

∣
∣
∣
∣
≤
(b − a)5K4

180(2n)4
(9)

Example 5 Find an upper bound on the absolute error that results from approximating

ln 2 =
∫ 2

1

1

x
dx

using (a) the midpoint approximation M10 with n = 10 subintervals, (b) the trapezoidal

approximation T10 with n = 10 subintervals, and (c) Simpson’s rule S10 with 2n = 10

subintervals.

Solution. We will apply Formulas (7), (8), and (9) with

f(x) =
1

x
, a = 1, and b = 2

For (7) and (8) we use n = 10; for (9) we use 2n = 10, or n = 5. We have

f ′(x) = −
1

x2
, f ′′(x) =

2

x3
, f ′′′(x) = −

6

x4
, f (4)(x) =

24

x5
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Thus,

|f ′′(x)| =
∣
∣
∣
∣

2

x3

∣
∣
∣
∣
=

2

x3
, |f (4)(x)| =

∣
∣
∣
∣

24

x5

∣
∣
∣
∣
=

24

x5
(10–11)

where we have dropped the absolute values because f ′′(x) and f (4)(x) have positive values

for 1 ≤ x ≤ 2. Since (10) and (11) are continuous and decreasing on [1, 2], both functions

have their maximum values at x = 1; for (10) this maximum value is 2 and for (11) the

maximum value is 24. Thus we can take K2 = 2 in (7) and (8), and K4 = 24 in (9). This

yields

|EM | ≤
(b − a)3K2

24n2
=

13 · 2

24 · 102
≈ 0.000833333

|ET | ≤
(b − a)3K2

12n2
=

13 · 2

12 · 102
≈ 0.001666667

|ES | ≤
(b − a)5K4

180(2n)4
=

15 · 24

180 · 104
≈ 0.000013333 ◭

Note that the error bounds calculated in the preceding example are consistent with the

values of EM , ET , and ES calculated in Examples 2 and 4. In fact, these errors are consid-

erably smaller in absolute value than the upper bounds of Example 5. It is quite common

that the actual errors in the approximations Mn, Tn, and S2n are substantially smaller than

the upper bounds given in Theorems 8.7.2 and 8.7.3.

Example 6 How many subintervals should be used in approximating

ln 2 =
∫ 2

1

1

x
dx

by Simpson’s rule for five decimal-place accuracy?

Solution. To obtain five decimal-place accuracy, we must choose the number of subin-

tervals so that

|ES | ≤ 0.000005 = 5 × 10−6

From (9), this can be achieved by taking 2n in Simpson’s rule to satisfy

(b − a)5K4

180(2n)4
≤ 5 × 10−6

Taking a = 1, b = 2, and K4 = 24 (found in Example 5) in this inequality yields

15 · 24

180 · (2n)4
≤ 5 × 10−6

which, on taking reciprocals, can be rewritten as

(2n)4 ≥
2 × 106

75
or n4 ≥

104

6

Thus,

n ≥
10
4
√

6
≈ 6.389

Since nmust be an integer, the smallest value of n that satisfies this requirement is n = 7, or

2n = 14. Thus, the approximation S14 using 14 subintervals will produce five decimal-place

accuracy. ◭
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REMARK. In cases where it is difficult to find the values of K2 and K4 in Formulas (7),

(8), and (9), these constants may be replaced by any larger constants. For example, suppose

that a constant K can be easily found with the certainty that |f ′′(x)| < K on the interval.

Then K2 ≤ K and

|ET | ≤
(b − a)3K2

12n2
≤
(b − a)3K

12n2
(12)

so the right side of (12) is also an upper bound on the value of |ET |. UsingK , however, will

likely increase the computed value ofn needed for a given error tolerance. Many applications

involve the resolution of competing practical issues, here illustrated through the trade-off

between the convenience of finding a crude bound for |f ′′(x)| versus the efficiency of using

the smallest possible n for a desired accuracy.

Example 7 How many subintervals should be used in approximating
∫ 1

0

cos(x2) dx

by the midpoint approximation for three decimal-place accuracy?

1

1

2

3

4

x

y

y = | f ′′(x) | = |4x2 cos (x2) + 2 sin (x2) |

Figure 8.7.7

Solution. To obtain three decimal-place accuracy, we must choose n so that

|EM | ≤ 0.0005 = 5 × 10−4 (13)

From (7) with f(x) = cos(x2), a = 0, and b = 1, an upper bound on |EM | is given by

|EM | ≤
K2

24n2
(14)

where |K2| is the maximum value of |f ′′(x)| on the interval [0, 1]. But,

f ′(x) = −2x sin(x2)

f ′′(x) = −4x2 cos(x2)− 2 sin(x2) = −[4x2 cos(x2)+ 2 sin(x2)]

so that

|f ′′(x)| = |4x2 cos(x2)+ 2 sin(x2)| (15)

It would be tedious to look for the maximum value of this function on the interval [0, 1]. For

x in [0, 1], it is easy to see that each of the expressions x2, cos(x2), and sin(x2) is bounded

in absolute value by 1, so |4x2 cos(x2)+ 2 sin(x2)| ≤ 4 + 2 = 6 on [0, 1]. We can improve

on this by using a graphing utility to sketch |f ′′(x)|, as shown in Figure 8.7.7. It is evident

from the graph that

|f ′′(x)| < 4 for 0 ≤ x ≤ 1

Thus, it follows from (14) that

|EM | ≤
K2

24n2
<

4

24n2
=

1

6n2

and hence we can satisfy (13) by choosing n so that

1

6n2
< 5 × 10−4

which, on taking reciprocals, can be written as

n2 >
104

30
or n >

102

√
30

≈ 18.257

The smallest integer value of n satisfying this inequality is n = 19. Thus, the midpoint ap-

proximationM19 using 19 subintervals will produce three decimal-place accuracy. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A COMPARISON OF THE THREE
METHODS

Of the three methods studied in this section, Simpson’s rule generally produces more ac-

curate results than the midpoint or trapezoidal approximations for an equivalent amount of

effort. To make this plausible, let us express (7), (8), and (9) in terms of the subinterval

width

,x =
b − a

n
for Mn and Tn

and

,x =
b − a

2n
for S2n

We obtain

|EM | ≤
1

24
K2(b − a)(,x)2 (16)

|ET | ≤
1

12
K2(b − a)(,x)2 (17)

|ES | ≤
1

180
K4(b − a)(,x)4 (18)

(verify). Thus, for Simpson’s rule the upper bound on the absolute error is proportional

to (,x)4, whereas the upper bound on the absolute error for the midpoint and trapezoidal

approximations is proportional to (,x)2. Thus, reducing the interval width by a factor of

10, for example, reduces the error bound by a factor of 100 for the midpoint and trapezoidal

approximations but reduces the error bound by a factor of 10,000 for Simpson’s rule. This

suggests that, as n increases, the accuracy of Simpson’s rule improves much more rapidly

than that of the other approximations.

As a final note, observe that if f(x) is a polynomial of degree 3 or less, then we have

f (4)(x) = 0 for all x, so K4 = 0 in (9) and consequently |ES | = 0. Thus, Simpson’s rule

gives exact results for polynomials of degree 3 or less. Similarly, the midpoint and trape-

zoidal approximations give exact results for polynomials of degree 1 or less. (You should

also be able to see that this is so geometrically.)

EXERCISE SET 8.7 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–6, use n = 10 subintervals to approximate

the integral by (a) the midpoint approximation, (b) the trape-

zoidal approximation, and use 2n = 10 subintervals to ap-

proximate the integral by (c) Simpson’s rule. In each case,

find the exact value of the integral and approximate the ab-

solute error. Express your answers to at least four decimal

places.

1.

∫ 3

0

√
x + 1 dx 2.

∫ 4

1

1
√
x
dx 3.

∫ π

0

sin x dx

4.

∫ 1

0

cos x dx 5.

∫ 3

1

e−x dx 6.

∫ 1

−1

1

2x + 3
dx

In Exercises 7–12, use inequalities (7), (8), and (9) to find

upper bounds on the errors in parts (a), (b), and (c) of the

indicated exercise.

7. Exercise 1 8. Exercise 2 9. Exercise 3

10. Exercise 4 11. Exercise 5 12. Exercise 6

In Exercises 13–18, use inequalities (7), (8), and (9) to find a

number n of subintervals for (a) the midpoint approximation

and (b) the trapezoidal approximation to ensure that the ab-

solute error of the approximation will be less than the given

value. Also, (c) find a number 2n of subintervals to ensure

that the absolute error for the Simpson’s rule approximation

will be less than the given value.

13. Exercise 1; 5 × 10−4 14. Exercise 2; 5 × 10−4

15. Exercise 3; 10−3 16. Exercise 4; 10−3

17. Exercise 5; 10−6 18. Exercise 6; 10−6

In Exercises 19 and 20, find a function g(x) of the form

g(x) = Ax2 + Bx + C

whose graph contains the points (X0, f (X0)), (X1, f(X1)),

and (X2, f(X2)), for the given function f(x) and the given

values X0, X1, and X2. Verify that
∫ X2

X0

g(x) dx =
,x

3
[f(X0)+ 4f(X1)+ f(X2)]

where ,x = (X2 −X0)/2 as asserted with Formula (4).
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19. f(x) =
1

x
; X0 = 2, X1 = 3, X2 = 4

20. f(x) = cos2(πx); X0 = 0, X1 = 1
6
, X2 = 1

3

In Exercises 21–26, approximate the integral using Simpson’s

rule with 2n = 10 subintervals, and compare your answer to

that produced by a calculating utility with a numerical in-

tegration capability. Express your answers to at least four

decimal places.

21.

∫ 1

0

e−x2

dx 22.

∫ 2

0

x
√

1 + x3
dx

23.

∫ 2

1

√

1 + x3 dx 24.

∫ π

0

1

2 − sin x
dx

25.

∫ 2

0

sin(x2) dx 26.

∫ 3

1

√
ln x dx

In Exercises 27 and 28, the exact value of the integral is π

(verify). Use n = 10 subintervals to approximate the integral

by (a) the midpoint approximation and (b) the trapezoidal

approximation, and use 2n = 10 subintervals to approximate

the integral by (c) Simpson’s rule. Estimate the absolute error,

and express your answers to at least four decimal places.

27.

∫ 1

0

4

1 + x2
dx 28.

∫ 2

0

√

4 − x2 dx

29. In Example 6 we showed that taking 2n = 14 subdivisions

ensures that the approximation of

ln 2 =
∫ 2

1

1

x
dx

by Simpson’s rule is accurate to five decimal places. Con-

firm this by comparing the approximation of ln 2 produced

by Simpson’s rule with 2n = 14 to the value produced di-

rectly by your calculating utility.

30. In parts (a) and (b), determine whether an approximation

of the integral by the trapezoidal rule would be less than or

would be greater than the exact value of the integral.

(a)

∫ 2

1

e−x2

dx (b)

∫ 0.5

0

e−x2

dx

In Exercises 31 and 32, find a value for n to ensure that the

absolute error in approximating the integral by the midpoint

rule will be less than 10−4.

31.

∫ 2

0

x sin x dx 32.

∫ 1

0

ecos x dx

In Exercises 33 and 34, show that inequalities (7) and (8) are

of no value in finding an upper bound on the absolute error

that results from approximating the integral using either the

midpoint approximation or the trapezoidal approximation.

33.

∫ 1

0

√
x dx 34.

∫ 1

0

sin
√
x dx

In Exercises 35 and 36, use Simpson’s rule with 2n = 10

subintervals to approximate the length of the curve. Express

your answers to at least four decimal places.

35. y = sin x, 0 ≤ x ≤ π 36. y = 1/x, 1 ≤ x ≤ 3

Numerical integration methods can be used in problems

where only measured or experimentally determined values

of the integrand are available. In Exercises 37–42, use Simp-

son’s rule to estimate the value of the relevant integral.

37. A graph of the speed v versus time t for a test run of an

Infiniti G20 automobile is shown in the accompanying fig-

ure. Estimate the speeds at t = 0, 5, 10, 15, and 20 s from

the graph, convert to ft/s using 1 mi/h = 22/15 ft/s, and

use these speeds to approximate the number of feet traveled

during the first 20 s. Round your answer to the nearest foot.

[Hint: Distance traveled =
∫ 20

0
v(t) dt .] [Data from Road

and Track, October 1990.]
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Figure Ex-37

38. A graph of the acceleration a versus time t for an object

moving on a straight line is shown in the accompanying fig-

ure. Estimate the accelerations at t = 0, 1, 2, . . . , 8 s from

the graph and use them to approximate the change in veloc-

ity from t = 0 to t = 8 s. Round your answer to the nearest

tenth cm/s. [Hint: Change in velocity =
∫ 8

0
a(t) dt .]
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Figure Ex-38

39. The accompanying table gives the speeds, in miles per sec-

ond, at various times for a test rocket that was fired upward

from the surface of the Earth. Use these values to approx-

imate the number of miles traveled during the first 180 s.

Round your answer to the nearest tenth of a mile.

[Hint: Distance traveled =
∫ 180

0
v(t) dt .]
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40. The accompanying table gives the speeds of a bullet at vari-

ous distances from the muzzle of a rifle. Use these values to

approximate the number of seconds for the bullet to travel

1800 ft. Express your answer to the nearest hundredth of a

second. [Hint: If v is the speed of the bullet and x is the

distance traveled, then v = dx/dt so that dt/dx = 1/v and

t =
∫ 1800

0
(1/v) dx.]

time t (s) speed v (mi/s)

0

30

60

90

120

150

180

0.00

0.03

0.08

0.16

0.27

0.42

0.65

Table Ex-39

distance x (ft) speed v (ft/s)

0

300

600

900

1200

1500

1800

3100

2908

2725

2549

2379

2216

2059

Table Ex-40

41. Measurements of a pottery shard recovered from an archae-

ological dig reveal that the shard came from a pot with a flat

bottom and circular cross sections (see the accompanying

figure). The figure shows interior radius measurements of

the shard made every 4 cm from the bottom of the pot to

the top. Use those values to approximate the interior vol-

ume of the pot to the nearest tenth of a liter (1 L = 1000

cm3). [Hint: Use 6.2.3 (volume by cross sections) to set up

an appropriate integral for the volume.]

y (cm)

16

12

8

8.5 cm

11.5 cm

13.8 cm

15.4 cm

16.8 cm

4

Figure Ex-41

42. Engineers want to construct a straight and level road 600 ft

long and 75 ft wide by making a vertical cut through an in-

tervening hill (see the accompanying figure). Heights of the

hill above the centerline of the proposed road, as obtained at

various points from a contour map of the region, are shown

in the accompanying figure. To estimate the construction

costs, the engineers need to know the volume of earth that

must be removed. Approximate this volume, rounded to the

nearest cubic foot. [Hint: First, set up an integral for the

cross-sectional area of the cut along the centerline of the

road, then assume that the height of the hill does not vary

between the centerline and edges of the road.]

x

75 ft

600 ft

Centerline

horizontal
distance x (ft)

height
h (ft)

0

100

200

300

400

500

600

0

7

16

24

25

16

0

Figure Ex-42

43. Derive the trapezoidal rule by summing the areas of the

trapezoids in Figure 8.7.2.

44. Let f be a function that is positive, continuous, decreas-

ing, and concave down on the interval [a, b]. Assuming that

[a, b] is subdivided into n equal subintervals, arrange the

following approximations of
∫ b

a
f(x) dx in order of increas-

ing value: left endpoint, right endpoint, midpoint, and trape-

zoidal.

C 45. Let f(x) = cos(x2).

(a) Use a CAS to approximate the maximum value of

|f ′′(x)| on the interval [0, 1].
(b) How large must n be in the midpoint approximation of

∫ 1

0
f(x) dx to ensure that the absolute error is less than

5 × 10−4? Compare your result with that obtained in

Example 7.
(c) Estimate the integral using the midpoint approximation

with the value of n obtained in part (b).

C 46. Let f(x) =
√

1 + x3.

(a) Use a CAS to approximate the maximum value of

|f ′′(x)| on the interval [0, 1].
(b) How large must n be in the trapezoidal approximation

of
∫ 1

0
f(x) dx to ensure that the absolute error is less

than 10−3?
(c) Estimate the integral using the trapezoidal approxima-

tion with the value of n obtained in part (b).

C 47. Let f(x) = cos(x2).

(a) Use a CAS to approximate the maximum value of

|f (4)(x)| on the interval [0, 1].
(b) How large must the value of n be in the approxima-

tion of
∫ 1

0
f(x) dx by Simpson’s rule to ensure that the

absolute error is less than 10−4?
(c) Estimate the integral using Simpson’s rule with the

value of n obtained in part (b).

C 48. Let f(x) =
√

1 + x3.

(a) Use a CAS to approximate the maximum value of

|f (4)(x)| on the interval [0, 1].
(b) How large must the value of n be in the approxima-

tion of
∫ 1

0
f(x) dx by Simpson’s rule to ensure that the

absolute error is less than 10−5?
(c) Estimate the integral using Simpson’s rule with the

value of n obtained in part (b).
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8.8 IMPROPER INTEGRALS

Up to now we have focused on definite integrals with continuous integrands and finite

intervals of integration. In this section we will extend the concept of a definite integral

to include infinite intervals of integration and integrands that become infinite within

the interval of integration.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

IMPROPER INTEGRALS
It is assumed in the definition of the definite integral

∫ b

a

f(x) dx

that [a, b] is a finite interval and that the limit that defines the integral exists; that is, the

function f is integrable. We observed in Theorems 5.5.2 and 5.5.8 that continuous functions

are integrable, as are bounded functions with finitely many points of discontinuity. We also

observed in Theorem 5.5.8 that functions that are not bounded on the interval of integration

are not integrable. Thus, for example, a function with a vertical asymptote within the interval

of integration would not be integrable.

Our main objective in this section is to extend the concept of a definite integral to allow for

infinite intervals of integration and integrands with vertical asymptotes within the interval

of integration. We will call the vertical asymptotes infinite discontinuities, and we will call

integrals with infinite intervals of integration or infinite discontinuities within the interval

of integration improper integrals. Here are some examples:

• Improper integrals with infinite intervals of integration:
∫ +�

1

dx

x2
,

∫ 0

−�

ex dx,

∫ +�

−�

dx

1 + x2

• Improper integrals with infinite discontinuities in the interval of integration:
∫ 3

−3

dx

x2
,

∫ 2

1

dx

x − 1
,

∫ π

0

tan x dx

• Improper integrals with infinite discontinuities and infinite intervals of integration:
∫ +�

0

dx
√
x
,

∫ +�

−�

dx

x2 − 9
,

∫ +�

1

sec x dx

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRALS OVER INFINITE
INTERVALS

To motivate a reasonable definition for improper integrals of the form
∫ +�

a

f(x) dx

let us begin with the case where f is continuous and nonnegative on [a,+�), so we can think

of the integral as the area under the curve y = f(x) over the interval [a,+�) (Figure 8.8.1).

At first, you might be inclined to argue that this area is infinite because the region has infinite

extent. However, such an argument would be based on vague intuition rather than precise

mathematical logic, since the concept of area has only been defined over intervals of finite

extent. Thus, before we can make any reasonable statements about the area of the region

in Figure 8.8.1, we need to begin by defining what we mean by the area of this region. For

that purpose, it will help to focus on a specific example.

x

y

a

+∞

a

f (x) dx

Figure 8.8.1 Suppose we are interested in the area A of the region that lies below the curve y = 1/x2

and above the interval [1,+�) on the x-axis. Instead of trying to find the entire area at

once, let us begin by calculating the portion of the area that lies above a finite interval [1, ℓ],
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where ℓ > 1 is arbitrary. That area is
∫ ℓ

1

dx

x2
= −

1

x

]ℓ

1

= 1 −
1

ℓ

(Figure 8.8.2). If we now allow ℓ to increase so that ℓ→+�, then the portion of the area over

the interval [1, ℓ] will begin to fill out the area over the entire interval [1,+�) (Figure 8.8.3),

and hence we can reasonably define the area A under y = 1/x2 over the interval [1,+�)

to be

A =
∫ +�

1

dx

x2
= lim

ℓ→+�

∫ ℓ

1

dx

x2
= lim

ℓ→+�

(

1 −
1

ℓ

)

= 1 (1)

Thus, the area has a finite value of 1 and is not infinite as we first conjectured.

1 �

x

y

y =
1

x2

1

�

dx

x2

�

1

= 1 –Area =

Figure 8.8.2

1 2

x

y

1 3

x

y

1 4

x

y

1

x

y
y =

1

x2

Area =
1

2

y =
1

x2

Area =
2

3

y =
1

x2

Area =
3

4

y =
1

x2

Area = 1

Figure 8.8.3

With the preceding discussion as our guide, we make the following definition (which is

applicable to functions with both positive and negative values):

8.8.1 DEFINITION. The improper integral of f over the interval [a, +∞) is defined

as

∫ +�

a

f(x) dx = lim
ℓ→+�

∫ ℓ

a

f(x) dx

In the case where the limit exists, the improper integral is said to converge, and the limit

is defined to be the value of the integral. In the case where the limit does not exist, the

improper integral is said to diverge, and it is not assigned a value.

If f is nonnegative on [a,+�) and the improper integral converges, then the value of the

integral is regarded to be the area under the graph of f over the interval [a,+�); and if the

integral diverges, then the area under the graph of f over the interval [a,+�) is regarded

to be infinite.

Example 1 Evaluate

(a)

∫ +�

1

dx

x3
(b)

∫ +�

1

dx

x

Solution (a). Following the definition, we replace the infinite upper limit by a finite upper

limit ℓ, and then take the limit of the resulting integral. This yields
∫ +�

1

dx

x3
= lim

ℓ→+�

∫ ℓ

1

dx

x3
= lim

ℓ→+�

[

−
1

2x2

]ℓ

1

= lim
ℓ→+�

(
1

2
−

1

2ℓ2

)

=
1

2

Solution (b).
∫ +�

1

dx

x
= lim

ℓ→+�

∫ ℓ

1

dx

x
= lim

ℓ→+�

[

ln x
]ℓ

1
= lim

ℓ→+�

ln ℓ = +�

In this case the integral diverges and hence has no value. ◭
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Because the functions 1/x3, 1/x2, and 1/x are nonnegative over the interval [1,+�),

it follows from (1) and the last example that over this interval the area under y = 1/x3 is
1
2
, the area under y = 1/x2 is 1, and the area under y = 1/x is infinite. However, on the

surface the graphs of the three functions seem very much alike (Figure 8.8.4), and there

is nothing to suggest why one of the areas should be infinite and the other two finite. One

explanation is that 1/x3 and 1/x2 approach zero more rapidly than 1/x as x→+�, so that

the area over the interval [1, ℓ] accumulates less rapidly under the curves y = 1/x3 and

y = 1/x2 than under y = 1/x as ℓ→ +�, and the difference is just enough that the first

two areas are finite and the third is infinite.
1 2 3 4

1

2

3

x

y

y =
1

x2

y =
1

x3

y =
1
x

Figure 8.8.4

Example 2 For what values of p does the integral

∫ +�

1

dx

xp
converge?

Solution. We know from the preceding example that the integral diverges if p = 1, so let

us assume that p �= 1. In this case we have

∫ +�

1

dx

xp
= lim

ℓ→+�

∫ ℓ

1

x−p dx = lim
ℓ→+�

x1−p

1 − p

]ℓ

1

= lim
ℓ→+�

[
ℓ1−p

1 − p
−

1

1 − p

]

If p > 1, then the exponent 1 − p is negative and ℓ1−p→0 as ℓ→+�; and if p < 1, then

the exponent 1 − p is positive and ℓ1−p →+� as ℓ→+�. Thus, the integral converges if

p > 1 and diverges otherwise. In the convergent case the value of the integral is
∫ +�

1

dx

xp
=

[

0 −
1

1 − p

]

=
1

p − 1
(p > 1) ◭

The following theorem summarizes this result:

8.8.2 THEOREM.

∫ +�

1

dx

xp
=







1

p − 1
if p > 1

diverges if p ≤ 1

Example 3 Evaluate

∫ +�

0

(1 − x)e−x dx.

1 2 3

1

x

y

y = (1 – x)e–x

The net signed area between the 

graph and the interval [0, +∞) is 
zero.

Figure 8.8.5

Solution. Integrating by parts with u = 1 − x and dv = e−x dx yields
∫

(1 − x)e−x dx = −e−x(1 − x)−
∫

e−x dx = −e−x + xe−x + e−x +C = xe−x +C

Thus,
∫ +�

0

(1 − x)e−x dx = lim
ℓ→+�

[

xe−x]ℓ
0

= lim
ℓ→+�

ℓ

eℓ

The limit is an indeterminate form of type �/�, so we will apply L’Hôpital’s rule by

differentiating the numerator and denominator with respect to ℓ. This yields
∫ +�

0

(1 − x)e−x dx = lim
ℓ→+�

1

eℓ
= 0

An explanation of why this integral is zero can be obtained by interpreting the integral

as the net signed area between the graph of y = (1 − x)e−x and the interval [0,+�)

(Figure 8.8.5). ◭
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We also make the following definition:

8.8.3 DEFINITION. The improper integral of f over the interval (–∞, b] is defined as

∫ b

−�

f(x) dx = lim
k→−�

∫ b

k

f(x) dx (2)

The integral is said to converge if the limit exists and diverge if it does not. The improper

integral of f over the interval (–∞, +∞) is defined as

∫ +�

−�

f(x) dx =
∫ c

−�

f(x) dx +
∫ +�

c

f(x) dx (3)

where c is any real number. The improper integral is said to converge if both terms

converge and diverge if either term diverges.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In this definition, if f is nonnegative on the interval of integration, then the

improper integral is regarded to be the area under the graph of f over that interval; the area

has a finite value if the integral converges and is infinite if it diverges. We also note that in

(3) it is usual to choose c = 0, but the choice does not matter; it can be proved that neither

the convergence nor the value of the integral depends on the choice of c.

Example 4 Evaluate

∫ +�

−�

dx

1 + x2
.

Solution. We will evaluate the integral by choosing c = 0 in (3). With this value for c we

obtain
∫ +�

0

dx

1 + x2
= lim

ℓ→+�

∫ ℓ

0

dx

1 + x2
= lim

ℓ→+�

[

tan−1 x
]ℓ

0
= lim

ℓ→+�

(tan−1 ℓ) =
π

2

∫ 0

−�

dx

1 + x2
= lim

k→−�

∫ 0

k

dx

1 + x2
= lim

k→−�

[

tan−1 x
]0

k
= lim

k→−�

(− tan−1 k) =
π

2

Thus, the integral converges and its value is
∫ +�

−�

dx

1 + x2
=

∫ 0

−�

dx

1 + x2
+

∫ +�

0

dx

1 + x2
=
π

2
+
π

2
= π

Since the integrand is nonnegative on the interval (−�,+�), the integral represents the area

of the region shown in Figure 8.8.6. ◭

1

x

y

Area = p
y =

1

1 + x2

Figure 8.8.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRALS WHOSE INTEGRANDS
HAVE INFINITE DISCONTINUITIES

Next we will consider improper integrals whose integrands have infinite discontinuities.

We will start with the case where the interval of integration is a finite interval [a, b] and the

infinite discontinuity occurs at the right-hand endpoint.

To motivate an appropriate definition for such an integral let us consider the case where

f is nonnegative on [a, b], so we can interpret the improper integral
∫ b

a
f(x) dx as the area

of the region in Figure 8.8.7a. The problem of finding the area of this region is complicated

by the fact that it extends indefinitely in the positive y-direction. However, instead of trying

to find the entire area at once, we can proceed indirectly by calculating the portion of the

area over the interval [a, ℓ] and then letting ℓ approach b to fill out the area of the entire

region (Figure 8.8.7b). Motivated by this idea, we make the following definition:



February 15, 2001 14:00 g65-ch8 Sheet number 61 Page number 585 cyan magenta yellow black

8.8 Improper Integrals 585

x

y

a b 

f (x) dx
a

b

(a)

x

y

a � b 

f (x) dx
a

�

(b)

Figure 8.8.7

8.8.4 DEFINITION. If f is continuous on the interval [a, b], except for an infinite

discontinuity at b, then the improper integral of f over the interval [a, b] is defined as

∫ b

a

f(x) dx = lim
ℓ→b−

∫ ℓ

a

f(x) dx (4)

In the case where the limit exists, the improper integral is said to converge, and the limit

is defined to be the value of the integral. In the case where the limit does not exist, the

improper integral is said to diverge, and it is not assigned a value.

Example 5 Evaluate

∫ 1

0

dx
√

1 − x
.

Solution. The integral is improper because the integrand approaches +� as x approaches

the upper limit 1 from the left. From (4),
∫ 1

0

dx
√

1 − x
= lim

ℓ→1−

∫ ℓ

0

dx
√

1 − x
= lim

ℓ→1−

[

− 2
√

1 − x
]ℓ

0

= lim
ℓ→1−

[−2
√

1 − ℓ+ 2] = 2 ◭

Improper integrals with an infinite discontinuity at the left-hand endpoint or inside the

interval of integration are defined as follows.

8.8.5 DEFINITION. If f is continuous on the interval [a, b], except for an infinite

discontinuity at a, then the improper integral of f over the interval [a, b] is defined as

∫ b

a

f(x) dx = lim
k→a+

∫ b

k

f(x) dx (5)

The integral is said to converge if the limit exists and diverge if it does not. If f is

continuous on the interval [a, b], except for an infinite discontinuity at a point c in

(a, b), then the improper integral of f over the interval [a, b] is defined as

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx (6)

The improper integral is said to converge if both terms converge and diverge if either

term diverges (Figure 8.8.8).

x

y

a c b

f (x) dx
a

c
f (x) dx

c

b

Figure 8.8.8

1 2

x

y

y = 
1

1 – x

Figure 8.8.9

Example 6 Evaluate

(a)

∫ 2

1

dx

1 − x
(b)

∫ 4

1

dx

(x − 2)2/3
(c)

∫ +�

0

dx
√
x(x + 1)

Solution (a). The integral is improper because the integrand approaches −� as x ap-

proaches the lower limit 1 from the right (Figure 8.8.9). From Definition 8.8.5 we obtain
∫ 2

1

dx

1 − x
= lim

k→1+

∫ 2

k

dx

1 − x
= lim

k→1+

[

− ln |1 − x|
]2

k

= lim
k→1+

[

− ln | − 1| + ln |1 − k|
]

= lim
k→1+

ln |1 − k| = −�

so the integral diverges.
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Solution (b). The integral is improper because the integrand approaches +� at the point

x = 2, which is inside the interval of integration. From Definition 8.8.5 we obtain
∫ 4

1

dx

(x − 2)2/3
=

∫ 2

1

dx

(x − 2)2/3
+

∫ 4

2

dx

(x − 2)2/3
(7)

But
∫ 2

1

dx

(x − 2)2/3
= lim

ℓ→2−

∫ ℓ

1

dx

(x − 2)2/3
= lim

ℓ→2−
[3(ℓ− 2)1/3 − 3(1 − 2)1/3] = 3

∫ 4

2

dx

(x − 2)2/3
= lim

k→2+

∫ 4

k

dx

(x − 2)2/3
= lim

k→2+
[3(4 − 2)1/3 − 3(k − 2)1/3] = 3

3
√

2

Thus, from (7)
∫ 4

1

dx

(x − 2)2/3
= 3 + 3

3
√

2

Solution (c). This integral is improper for two reasons—the interval of integration is

infinite, and there is an infinite discontinuity at x = 0. To evaluate this integral we will split

the interval of integration at a convenient point, say x = 1, and write
∫ +�

0

dx
√
x(x + 1)

=
∫ 1

0

dx
√
x(x + 1)

+
∫ +�

1

dx
√
x(x + 1)

The integrand in these two improper integrals does not match any of the forms in the

Endpaper Integral Table, but the radical suggests the substitution x = u2, dx = 2u du,

from which we obtain
∫

dx
√
x(x + 1)

=
∫

2u du

u(u2 + 1)
= 2

∫
du

u2 + 1

= 2 tan−1 u+ C = 2 tan−1
√
x + C

Thus,
∫ +�

0

dx
√
x(x + 1)

= 2 lim
k→0+

[

tan−1
√
x
]1

k
+ 2 lim

ℓ→+�

[

tan−1
√
x
]ℓ

1

= 2
[π

4
− 0

]

+ 2
[π

2
−
π

4

]

= π ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. It is sometimes tempting to apply the Fundamental Theorem of Calculus

directly to an improper integral without taking the appropriate limits. To illustrate what can

go wrong with this procedure, suppose we ignore the fact that the integral
∫ 2

0

dx

(x − 1)2
(8)

is improper and write

∫ 2

0

dx

(x − 1)2
= −

1

x − 1

]2

0

= −1 − (1) = −2

This result is clearly nonsense because the integrand is never negative and consequently the

integral cannot be negative! To evaluate (8) correctly we should write
∫ 2

0

dx

(x − 1)2
=

∫ 1

0

dx

(x − 1)2
+

∫ 2

1

dx

(x − 1)2

But
∫ 1

0

dx

(x − 1)2
= lim

ℓ→1−

∫ ℓ

0

dx

(x − 1)2
= lim

ℓ→1−

[

−
1

ℓ− 1
− 1

]

= +�

so that (8) diverges.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE APPLICATION OF IMPROPER
INTEGRALS TO ARC LENGTH AND
SURFACE AREA

In Definitions 6.4.2 and 6.5.2 for arc length and surface area we required the function f to

be smooth (continuous first derivative) to ensure the integrability in the resulting formula.

However, smoothness is overly restrictive since some of the most basic formulas in geometry

involve functions that are not smooth but lead to convergent improper integrals. Accordingly,

let us agree to extend the definitions of arc length and surface area to allow functions that

are not smooth, but for which the resulting integral in the formula converges.

Example 7 Derive the formula for the circumference of a circle of radius r .

Solution. For convenience, let us assume that the circle is centered at the origin, in which

case its equation is x2 + y2 = r2. We will find the arc length of the portion of the circle that

lies in the first quadrant and then multiply by 4 to obtain the total circumference (Figure

8.8.10).

x

y

–r r0

y = √r2 – x2 

Figure 8.8.10

Since the equation of the upper semicircle is y =
√
r2 − x2, it follows from Formula (4)

of Section 6.4 that the circumference C is

C = 4

∫ r

0

√

1 + (dy/dx)2 dx = 4

∫ r

0

√

1 +
(

− x
√

r2 − x2

)2

dx

= 4r

∫ r

0

dx
√

r2 − x2

This integral is improper because of the infinite discontinuity at x = r , and hence we

evaluate it by writing

C = 4r lim
ℓ→r−

∫ ℓ

0

dx
√

r2 − x2

= 4r lim
ℓ→r−

[

sin−1
(x

r

)]ℓ

0

Formula (77) in the
Endpaper Integral Table

= 4r lim
ℓ→r−

[

sin−1

(
ℓ

r

)

− sin−1 0

]

= 4r[sin−1 1 − sin−1 0] = 4r
(π

2
− 0

)

= 2πr ◭

EXERCISE SET 8.8 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, determine whether the integral is improper,

and if so, explain why.

(a)

∫ 5

1

dx

x − 3
(b)

∫ 5

1

dx

x + 3
(c)

∫ 1

0

ln x dx

(d)

∫ +�

1

e−x dx (e)

∫ +�

−�

dx
3
√
x − 1

(f )

∫ π/4

0

tan x dx

2. In each part, determine all values of p for which the integral

is improper.

(a)

∫ 1

0

dx

xp
(b)

∫ 2

1

dx

x − p
(c)

∫ 1

0

e−px dx

In Exercises 3–30, evaluate the integrals that converge.

3.

∫ +�

0

e−x dx 4.

∫ +�

−1

x

1 + x2
dx

5.

∫ +�

4

2

x2 − 1
dx 6.

∫ +�

0

xe−x2

dx

7.

∫ +�

c

1

x ln3 x
dx 8.

∫ +�

2

1

x
√

ln x
dx

9.

∫ 0

−�

dx

(2x − 1)3
10.

∫ 2

−�

dx

x2 + 4

11.

∫ 0

−�

e3x dx 12.

∫ 0

−�

ex dx

3 − 2ex

13.

∫ +�

−�

x3 dx 14.

∫ +�

−�

x
√

x2 + 2
dx

15.

∫ +�

−�

x

(x2 + 3)2
dx 16.

∫ +�

−�

e−t

1 + e−2t
dt

17.

∫ 4

3

dx

(x − 3)2
18.

∫ 8

0

dx
3
√
x
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19.

∫ π/2

0

tan x dx 20.

∫ 9

0

dx
√

9 − x

21.

∫ 1

0

dx
√

1 − x2
22.

∫ 1

−3

x dx
√

9 − x2

23.

∫ π/6

0

cos x
√

1 − 2 sin x
dx 24.

∫ π/4

0

sec2 x

1 − tan x
dx

25.

∫ 3

0

dx

x − 2
26.

∫ 2

−2

dx

x2

27.

∫ 8

−1

x−1/3 dx 28.

∫ 4

0

dx

(x − 2)2/3

29.

∫ +�

0

1

x2
dx 30.

∫ +�

1

dx

x
√

x2 − 1

In Exercises 31–34, make the u-substitution and evaluate the

resulting definite integral.

31.

∫ +�

0

e−
√
x

√
x
dx; u =

√
x [Note: u→+� as x→+�.]

32.

∫ +�

0

dx
√
x(x + 4)

; u =
√
x

33.

∫ +�

0

e−x
√

1 − e−x
dx; u = 1 − e−x

[Note: u→1 as x→+�.]

34.

∫ +�

0

e−x
√

1 − e−2x
dx; u = e−x

In Exercises 35 and 36, express the improper integral as a

limit, and then evaluate that limit with a CAS. Confirm the

answer by evaluating the integral directly with the CAS.

C 35.

∫ +�

0

e−x cos x dx C 36.

∫ +�

0

xe−3x dx

C 37. In each part, try to evaluate the integral exactly with a CAS.

If your result is not a simple numerical answer, then use the

CAS to find a numerical approximation of the integral.

(a)

∫ +�

−�

1

x8 + x + 1
dx (b)

∫ +�

0

1
√

1 + x3
dx

(c)

∫ +�

1

ln x

ex
dx (d)

∫ +�

1

sin x

x2
dx

C 38. In each part, confirm the result with a CAS.

(a)

∫ +�

0

sin x
√
x
dx =

√

π

2
(b)

∫ +�

−�

e−x2

dx =
√
π

(c)

∫ 1

0

ln x

1 + x
dx = −

π2

12

39. Find the length of the curve y = (4 − x2/3)3/2 over the in-

terval [0, 8].

40. Find the length of the curve y =
√

9 − x2 over the interval

[0, 3].

In Exercises 41 and 42, use L’Hôpital’s rule to help evaluate

the improper integral.

41.

∫ 1

0

ln x dx 42.

∫ +�

1

ln x

x2
dx

43. Find the area of the region between the x-axis and the curve

y = e−3x for x ≥ 0.

44. Find the area of the region between the x-axis and the curve

y = 8/(x2 − 4) for x ≥ 3.

45. Suppose that the region between the x-axis and the curve

y = e−x for x ≥ 0 is revolved about the x-axis.

(a) Find the volume of the solid that is generated.

(b) Find the surface area of the solid.

46. Suppose that f and g are continuous functions and that

0 ≤ f(x) ≤ g(x)

if x ≥ a. Give a reasonable informal argument using areas

to explain why the following results are true.

(a) If
∫ +�

a
f(x) dx diverges, then

∫ +�

a
g(x) dx diverges.

(b) If
∫ +�

a
g(x) dx converges, then

∫ +�

a
f(x) dx converges

and
∫ +�

a
f(x) dx ≤

∫ +�

a
g(x) dx.

[Note: The results in this exercise are sometimes called com-

parison tests for improper integrals.]

In Exercises 47–51, use the results in Exercise 46.

47. (a) Confirm graphically and algebraically that e−x2 ≤ e−x

if x ≥ 1.

(b) Evaluate the integral
∫ +�

1

e−x dx

(c) What does the result obtained in part (b) tell you about

the integral
∫ +�

1

e−x2

dx?

48. (a) Confirm graphically and algebraically that

1

2x + 1
≤

ex

2x + 1
(x ≥ 0)

(b) Evaluate the integral
∫ +�

0

dx

2x + 1

(c) What does the result obtained in part (b) tell you about

the integral
∫ +�

0

ex

2x + 1
dx?

49. Let R be the region to the right of x = 1 that is bounded

by the x-axis and the curve y = 1/x. When this region is

revolved about the x-axis it generates a solid whose surface

is known as Gabriel’s Horn (for reasons that should be clear

from the accompanying figure). Show that the solid has a

finite volume but its surface has an infinite area. [Note: It has

been suggested that if one could saturate the interior of the

solid with paint and allow it to seep through to the surface,

then one could paint an infinite surface with a finite amount

of paint! What do you think?]
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x

y

1

y =
1
x

Figure Ex-49

50. In each part, use Exercise 46 to determine whether the in-

tegral converges or diverges. If it converges, then use part

(b) of that exercise to find an upper bound on the value of

the integral.

(a)

∫ +�

2

√

x3 + 1

x
dx (b)

∫ +�

2

x

x5 + 1
dx

(c)

∫ +�

0

xex

2x + 1
dx

51. Show that

lim
x→+�

∫ 2x

0

√
1 + t3 dt

x5/2

is an indeterminate form of type �/�, and then use

L’Hôpital’s rule to find the limit.

52. (a) Give a reasonable informal argument, based on areas,

that explains why the integrals

∫ +�

0

sin x dx and

∫ +�

0

cos x dx

diverge.

(b) Show that

∫ +�

0

cos
√
x

√
x

dx diverges.

53. In electromagnetic theory, the magnetic potential at a point

on the axis of a circular coil is given by

u =
2πNIr

k

∫ +�

a

dx

(r2 + x2)3/2

where N, I, r, k, and a are constants. Find u.

C 54. The average speed, v̄, of the molecules of an ideal gas is

given by

v̄ =
4

√
π

(

M

2RT

)3/2 ∫ +�

0

v3e−Mv2/(2RT ) dv

and the root-mean-square speed, vrms, by

v2
rms =

4
√
π

(

M

2RT

)3/2 ∫ +�

0

v4e−Mv2/(2RT ) dv

where v is the molecular speed, T is the gas temperature,M

is the molecular weight of the gas, andR is the gas constant.

(a) Use a CAS to show that

∫ +�

0

x3e−a2x2

dx =
1

2a4
, a > 0

and use this result to show that v̄ =
√

8RT /πM .

(b) Use a CAS to show that

∫ +�

0

x4e−a2x2

dx =
3
√
π

8a5
, a > 0

and use this result to show that vrms =
√

3RT /M .

55. In Exercise 19 of Section 6.6, we determined the work re-

quired to lift a 6000-lb satellite to an orbital position that is

1000 mi above the Earth’s surface. The ideas discussed in

that exercise will be needed here.

(a) Find a definite integral that represents the work required

to lift a 6000-lb satellite to a position ℓ miles above the

Earth’s surface.

(b) Find a definite integral that represents the work required

to lift a 6000-lb satellite an “infinite distance” above the

Earth’s surface. Evaluate the integral. [Note: The result

obtained here is sometimes called the work required to

“escape” the Earth’s gravity.]

A transform is a formula that converts or “transforms” one

function into another. Transforms are used in applications to

convert a difficult problem into an easier problem whose so-

lution can then be used to solve the original difficult problem.

The Laplace transform of a functionf(t), which plays an im-

portant role in the study of differential equations, is denoted

by �{f(t)} and is defined by

�{f(t)} =
∫ +�

0

e−stf(t) dt

In this formula s is treated as a constant in the integration pro-

cess; thus, the Laplace transform has the effect of transform-

ing f(t) into a function of s. Use this formula in Exercises

56 and 57.

56. Show that

(a) �{1} =
1

s
, s > 0 (b) �{e2t } =

1

s − 2
, s > 2

(c) �{sin t} =
1

s2 + 1
, s > 0

(d) �{cos t} =
s

s2 + 1
, s > 0.

57. In each part, find the Laplace transform.

(a) f(t) = t , s > 0 (b) f(t) = t2, s > 0

(c) f(t) =

{

0, t < 3

1, t ≥ 3
, s > 0

C 58. Later in the text, we will show that
∫ +�

0

e−x2

dx = 1
2

√
π

Confirm that this is reasonable by using a CAS or a calcu-

lator with a numerical integration capability.

59. Use the result in Exercise 58 to show that

(a)

∫ +�

−�

e−ax2

dx =
√

π

a
, a > 0

(b)
1

√
2πσ

∫ +�

−�

e−x2/2σ 2

dx = 1, σ > 0.
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A convergent improper integral over an infinite interval can

be approximated by first replacing the infinite limit(s) of in-

tegration by finite limit(s), then using a numerical integration

technique, such as Simpson’s rule, to approximate the integral

with finite limit(s). This technique is illustrated in Exercises

60 and 61.

60. Suppose that the integral in Exercise 58 is approximated by

first writing it as
∫ +�

0

e−x2

dx =
∫ K

0

e−x2

dx +
∫ +�

K

e−x2

dx

then dropping the second term, and then applying Simpson’s

rule to the integral
∫ K

0

e−x2

dx

The resulting approximation has two sources of error: the

error from Simpson’s rule and the error

E =
∫ +�

K

e−x2

dx

that results from discarding the second term. We call E the

truncation error.

(a) Approximate the integral in Exercise 58 by applying

Simpson’s rule with 2n = 10 subdivisions to the inte-

gral
∫ 3

0

e−x2

dx

Round your answer to four decimal places and compare

it to 1
2

√
π rounded to four decimal places.

(b) Use the result that you obtained in Exercise 46 and the

fact that e−x2 ≤ 1
3
xe−x2

for x ≥ 3 to show that the trun-

cation error for the approximation in part (a) satisfies

0 < E < 2.1 × 10−5.

61. (a) It can be shown that
∫ +�

0

1

x6 + 1
dx =

π

3

Approximate this integral by applying Simpson’s rule

with 2n = 20 subdivisions to the integral
∫ 4

0

1

x6 + 1
dx

Round your answer to three decimal places and com-

pare it to π/3 rounded to three decimal places.

(b) Use the result that you obtained in Exercise 46 and the

fact that 1/(x6 + 1) < 1/x6 for x ≥ 4 to show that the

truncation error for the approximation in part (a) satis-

fies 0 < E < 2 × 10−4.

62. For what values of p does

∫ +�

0

epx dx converge?

63. Show that

∫ 1

0

dx

xp
converges ifp < 1 and diverges ifp ≥ 1.

C 64. It is sometimes possible to convert an improper integral into

a “proper” integral having the same value by making an

appropriate substitution. Evaluate the following integral by

making the indicated substitution, and investigate what hap-

pens if you evaluate the integral directly using a CAS.

∫ 1

0

√

1 + x

1 − x
dx; u =

√
1 − x

In Exercises 65 and 66, transform the given improper inte-

gral into a proper integral by making the statedu-substitution,

then approximate the proper integral by Simpson’s rule with

2n = 10 subdivisions. Round your answer to three decimal

places.

65.

∫ 1

0

cos x
√
x
dx; u =

√
x

66.

∫ 1

0

sin x
√

1 − x
dx; u =

√
1 − x

SUPPLEMENTARY EXERCISES

C CAS

1. Consider the following methods for evaluating integrals:

u-substitution, integration by parts, partial fractions, reduc-

tion formulas, and trigonometric substitutions. In each part,

state the approach that you would try first to evaluate the

integral. If none of them seems appropriate, then say so.

You need not evaluate the integral.

(a)

∫

x sin x dx (b)

∫

cos x sin x dx

(c)

∫

tan7 x dx (d)

∫

tan7 x sec2 x dx

(e)

∫

3x2

x3 + 1
dx (f )

∫

3x2

(x + 1)3
dx

(g)

∫

tan−1 x dx (h)

∫

√

4 − x2 dx

(i)

∫

x
√

4 − x2 dx

2. Consider the following trigonometric substitutions:

x = 3 sin θ, x = 3 tan θ, x = 3 sec θ

In each part, state the substitution that you would try first to

evaluate the integral. If none seems appropriate, then state

a trigonometric substitution that you would use. You need

not evaluate the integral.

(a)

∫

√

9 + x2 dx (b)

∫

√

9 − x2 dx
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(c)

∫

√

1 − 9x2 dx (d)

∫

√

x2 − 9 dx

(e)

∫

√

9 + 3x2 dx (f )

∫

√

1 + (9x)2 dx

3. (a) What condition must a rational function satisfy for the

method of partial fractions to be applicable directly?

(b) If the condition in part (a) is not satisfied, what must

you do if you want to use partial fractions?

4. What is an improper integral?

5. In each part, find the number of the formula in the Endpaper

Integral Table that you would apply to evaluate the integral.

You need not evaluate the integral.

(a)

∫

sin 7x cos 9x dx (b)

∫

(x7 − x5)e9x dx

(c)

∫

x
√

x − x2 dx (d)

∫

dx

x
√

4x + 3

(e)

∫

x9πx dx (f )

∫

3x − 1

2 + x2
dx

6. Evaluate the integral

∫ 1

0

x3

√

x2 + 1
dx using

(a) integration by parts

(b) the substitution u =
√
x2 + 1.

7. In each part, evaluate the integral by making an appropriate

substitution and applying a reduction formula.

(a)

∫

sin4 2x dx (b)

∫

x cos5(x2) dx

8. Consider the integral

∫

1

x3 − x
dx.

(a) Evaluate the integral using the substitution x = sec θ .

For what values of x is your result valid?

(b) Evaluate the integral using the substitution x = sin θ .

For what values of x is your result valid?

(c) Evaluate the integral using the method of partial frac-

tions. For what values of x is your result valid?

9. (a) Evaluate the integral
∫

1
√

2x − x2
dx

three ways: using the substitution u =
√
x, using the

substitution u =
√

2 − x, and completing the square.

(b) Show that the answers in part (a) are equivalent.

10. Find the area of the region that is enclosed by the curves

y = (x − 3)/(x3 + x2), y = 0, x = 1, and x = 2.

11. Sketch the region whose area is

∫ +�

0

dx

1 + x2
, and use your

sketch to show that
∫ +�

0

dx

1 + x2
=
∫ 1

0

√

1 − y

y
dy

12. Find the area that is enclosed between the x-axis and the

curve y = (ln x − 1)/x2 for x ≥ e.

13. Find the volume of the solid that is generated when the re-

gion between the x-axis and the curve y = e−x for x ≥ 0 is

revolved about the y-axis.

14. Find a positive value of a that satisfies the equation
∫ +�

0

1

x2 + a2
dx = 1

In Exercises 15–30, evaluate the integral.

15.

∫ √
cos θ sin θ dθ 16.

∫ π/4

0

tan7 θ dθ

17.

∫

x tan2(x2) sec2(x2) dx 18.

∫ 1/
√

2

−1/
√

2

(1 − 2x2)3/2 dx

19.

∫

dx

(3 + x2)3/2

20.

∫

cos θ

sin2 θ − 6 sin θ + 12
dθ

21.

∫

x + 3
√
x2 + 2x + 2

dx 22.

∫

sec2 θ

tan3 θ − tan2 θ
dθ

23.

∫

dx

(x − 1)(x + 2)(x − 3)
24.

∫

dx

x(x2 + x + 1)

25.

∫ 8

4

√
x − 4

x
dx 26.

∫ 9

0

√
x

x + 9
dx

27.

∫

1
√
ex + 1

dx 28.

∫ ln 2

0

√
ex − 1 dx

29.

∫ +�

a

x dx

(x2 + 1)2

30.

∫ +�

0

dx

a2 + b2x2
, a, b > 0

Some integrals that can be evaluated by hand cannot be eval-

uated by all computer algebra systems. In Exercises 31–34,

evaluate the integral by hand, and determine if it can be eval-

uated on your CAS.

C 31.

∫

x3

√

1 − x8
dx

C 32.

∫

(cos32 x sin30 x − cos30 x sin32 x) dx

C 33.

∫
√

x −
√

x2 − 4 dx. [Hint: 1
2
(
√
x + 2 −

√
x − 2)2 =?]

C 34.

∫

1

x10 + x
dx. [Hint: Rewrite the denominator as

x10(1 + x−9).]

C 35. Let

f(x) =
−2x5 + 26x4 + 15x3 + 6x2 + 20x + 43

x6 − x5 − 18x4 − 2x3 − 39x2 − x − 20

(a) Use a CAS to factor the denominator, and then write

down the form of the partial fraction decomposition.

You need not find the values of the constants.

(b) Check your answer in part (a) by using the CAS to find

the partial fraction decomposition of f .

(c) Integrate f by hand, and then check your answer by

integrating with the CAS.
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36. The Gamma function, Ŵ(x), is defined as

Ŵ(x) =
∫ +�

0

tx−1e−t dt

It can be shown that this improper integral converges if and

only if x > 0.

(a) Find Ŵ(1).
(b) Prove: Ŵ(x + 1) = xŴ(x) for all x > 0. [Hint: Use

integration by parts.]
(c) Use the results in parts (a) and (b) to find Ŵ(2), Ŵ(3),

and Ŵ(4); and then make a conjecture about Ŵ(n) for

positive integer values of n.
(d) Show that Ŵ

(

1
2

)

=
√
π. [Hint: See Exercise 58 of Sec-

tion 8.8.]
(e) Use the results obtained in parts (b) and (d) to show that

Ŵ
(

3
2

)

= 1
2

√
π and Ŵ

(

5
2

)

= 3
4

√
π.

37. Refer to the Gamma function defined in Exercise 36 to show

that

(a)

∫ 1

0

(ln x)n dx = (−1)nŴ(n+ 1), n > 0.

[Hint: Let t = − ln x.]

(b)

∫ +�

0

e−xn dx = Ŵ

(

n+ 1

n

)

, n > 0.

[Hint: Let t = xn. Use the result in Exercise 36(b).]

C 38. A simple pendulum consists of a mass that swings in a ver-

tical plane at the end of a massless rod of lengthL, as shown

in the accompanying figure. Suppose that a simple pendu-

lum is displaced through an angle θ0 and released from rest.

It can be shown that in the absence of friction, the time T

required for the pendulum to make one complete back-and-

forth swing, called the period, is given by

T =

√

8L

g

∫ θ0

0

1
√

cos θ − cos θ0

dθ (1)

where θ = θ(t) is the angle the pendulum makes with the

vertical at time t . The improper integral in (1) is difficult

to evaluate numerically. By a substitution outlined below it

can be shown that the period can be expressed as

T = 4

√

L

g

∫ π/2

0

1
√

1 − k2 sin2 φ
dφ (2)

where k = sin(θ0/2). The integral in (2) is called a com-

plete elliptic integral of the first kind and is more easily

evaluated by numerical methods.

(a) Obtain (2) from (1) by substituting

cos θ = 1 − 2 sin2(θ/2)

cos θ0 = 1 − 2 sin2(θ0/2)

k = sin(θ0/2)

and then making the change of variable

sinφ = sin(θ/2)/sin(θ0/2) = sin(θ/2)/k

(b) Use (2) and the numerical integration capability of your

CAS to estimate the period of a simple pendulum for

which L = 1.5 ft, θ0 = 20◦ , and g = 32 ft/s2.

L
u

0

Figure Ex-38

EXPANDING THE CALCULUS HORIZON

Railroad Design

Your company has a contract to construct a track bed for a railroad line between towns A and B shown on the contour

map in Figure 1. The bed can be created by cutting trenches through the surface or by using some combination of

trenches and tunnels. As chief engineer, your assignment is to analyze the costs of trenches and tunnels and to propose

a design strategy for minimizing the total construction cost.

Engineering Requirements

The Transportation Board submits the following engineering requirements to your company:

• The track bed is to be straight and 10 m wide. The grade is to increase at a constant rate

from the existing elevation of 100 m at town A to an elevation of 110 m at point M and then

decrease at a constant rate to the existing elevation of 88 m at town B.
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• From town A to point M and from point N to town B the track bed is to be created by

excavating a trench whose vertical cross sections are trapezoids with the dimensions shown

in Figure 2.

• Between pointsM andN your company must decide whether to excavate a trench of the type

in Figure 2 or to excavate a tunnel whose vertical cross sections have the dimensions shown

in Figure 3.
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Cost Factors

Surface excavation of railbeds is performed using bulldozers, hydraulic excavators (backhoes),

loading tractors, and other specialized equipment. Typically, the excavated dirt is piled at the side

of the tracks to form sloped embankments, and the excavation cost is estimated from the volume

of dirt to be removed and piled.

Tunnels in rock are often excavated by drilling shafts and inserting boring machines (called

moles) to loosen and remove rock and dirt. Tunnels in soft ground are often excavated by starting

at the tunnel face and using bucket or rotary excavators housed inside of shields. As the excavator

progresses, tunnel liners are inserted behind it to support the earth and prevent cave-ins. Dirt

removal is performed using conveyors or sometimes using railcars (called muck cars) that run

on specially constructed tracks. Ventilation and air compression are other factors that add to

the excavation cost of tunnels. In general, the excavation cost for a tunnel can be estimated
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from two components, the total volume of dirt to be removed and a cost that increases with the

distance to the tunnel opening.

Make the following cost assumptions:

• The excavation and dirt-piling cost for a trench is $4.00 per cubic meter.

• The drilling and dirt-piling cost for a tunnel is $8.00 per cubic meter, and the costs involved

in moving a load of dirt inside the tunnel a distance of 1 m toward the entrance along the track

line is $0.06 per cubic meter.

Cost Analysis of Trenches

Assume that variations in elevation are negligible for short distances at right angles to the track,

so that the cross sections of the dirt to be excavated always have the trapezoidal shape shown in

Figure 2 (straight horizontal edges at the surface).

• • • • • • • • • • •

Exercise 1 Complete Table 1, and then use the table and Simpson’s rule with 2n = 10 to

approximate the cost of a trench from town A to point M .

Table 1

distance x from
town A (m)

terrain elevation
(m)

track elevation
(m)

depth of cut
(m)

cross-sectional area f(x)
of cut (m2)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

100

105

100

101

0

4

0

56

• • • • • • • • • • •

Exercise 2 As in Exercise 1, use Simpson’s rule with 2n = 10 to approximate the cost of

constructing a trench from (a) point M to point N , and (b) point N to town B.

• • • • • • • • • • •

Exercise 3 Find the total cost of the project if a trench is used along the entire line from town

A to town B.

Cost Analysis of a Tunnel

• • • • • • • • • • •

Exercise 4

(a) Find the volume of dirt that must be removed from the tunnel, and calculate the drilling and

dirt-piling cost.

(b) Find an integral for the cost of moving all of the dirt inside the tunnel to the tunnel entrance.

[Suggestion: Use Riemann sums.]

(c) Find the total cost of excavating the tunnel.
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• • • • • • • • • • •

Exercise 5 Find the total cost of the project using a trench from town A to point M , a tunnel

from pointM to pointN , and a trench from pointN to town B. Compare the cost to that obtained

in Exercise 3 and state which method is cheaper.
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