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INFINITE 

SERIES

n this chapter we will be concerned with infinite

series, which are sums that involve infinitely many terms.

Infinite series play a fundamental role in both mathematics

and science—they are used, for example, to approximate

trigonometric functions and logarithms, to solve differen-

tial equations, to evaluate difficult integrals, to create new

functions, and to construct mathematical models of phys-

ical laws. Since it is impossible to add up infinitely many

numbers directly, one goal will be to define exactly what

we mean by the sum of an infinite series. However, unlike

finite sums, it turns out that not all infinite series actually

have a sum, so we will need to develop tools for deter-

mining which infinite series have sums and which do not.

Once the basic ideas have been developed we will begin

to apply our work; we will show how infinite series are

used to evaluate such quantities as sin 17◦ and ln 5, how

they are used to create functions, and finally, how they are

used to model physical laws.
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10.1 MACLAURIN AND TAYLOR POLYNOMIAL APPROXIMATIONS

In Chapter 3 we used a tangent line to the graph of a function to obtain a linear ap-

proximation to the function near the point of tangency. In this section we will see how

to improve such local approximations by using polynomials. We conclude the section

by obtaining a bound on the error in these approximations. We have placed this sec-

tion here for those who want an early discussion of Maclaurin and Taylor polynomials.

If desired, this section can be delayed and used as a prelude to Section 10.8.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOCAL QUADRATIC
APPROXIMATIONS

Recall from Formula (1) in Section 3.8 that the local linear approximation of a function f

at x0 is

f(x) ≈ f(x0) + f ′(x0)(x − x0) (1)

In this formula, the approximating function

p(x) = f(x0) + f ′(x0)(x − x0)

is a first-degree polynomial satisfying p(x0) = f(x0) and p′(x0) = f ′(x0) (verify). Thus,

the local linear approximation of f at x0 has the property that its value and the values of its

first derivative match those of f at x0.

If the graph of a function f has a pronounced “bend” at x0, then we can expect that the

accuracy of the local linear approximation of f at x0 will decrease rapidly as we progress

away from x0 (Figure 10.1.1). One way to deal with this problem is to approximate the

function f at x0 by a polynomial p of degree 2 with the property that the value of p and the

values of its first two derivatives match those of f at x0. This ensures that the graphs of f

and p not only have the same tangent line at x0, but they also bend in the same direction at

x0 (both concave up or concave down). As a result, we can expect that the graph of p will

remain close to the graph of f over a larger interval around x0 than the graph of the local

linear approximation. The polynomial p is called the local quadratic approximation of f

at x = x0.

Local linear

approximation

f

x0

x

y

Figure 10.1.1

To illustrate this idea, let us try to find a formula for the local quadratic approximation

of a function f at x = 0. This approximation has the form

f(x) ≈ c0 + c1x + c2x
2 (2)

where c0, c1, and c2 must be chosen so that the values of

p(x) = c0 + c1x + c2x
2

and its first two derivatives match those of f at 0. Thus, we want

p(0) = f(0), p′(0) = f ′(0), p′′(0) = f ′′(0) (3)

But the values of p(0), p′(0), and p′′(0) are as follows:

p(x) = c0 + c1x + c2x
2 p(0) = c0

p′(x) = c1 + 2c2x p′(0) = c1

p′′(x) = 2c2 p′′(0) = 2c2

Thus, it follows from (3) that

c0 = f(0), c1 = f ′(0), c2 =
f ′′(0)

2

and substituting these in (2) yields the following formula for the local quadratic approxi-

mation of f at x = 0:

f(x) ≈ f(0) + f ′(0)x +
f ′′(0)

2
x2 (4)
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REMARK. Observe that with x0 = 0, Formula (1) becomes

f(x) ≈ f(0) + f ′(0)x (5)

and hence the linear part of the local quadratic approximation of f at 0 is the local linear

approximation of f at 0.

Example 1 Find the local linear and quadratic approximations of ex at x = 0, and graph

ex and the two approximations together.

Solution. If we let f(x) = ex , then f ′(x) = f ′′(x) = ex ; and hence

f(0) = f ′(0) = f ′′(0) = e0 = 1

Thus, from (4) the local quadratic approximation of ex at x = 0 is

ex ≈ 1 + x +
x2

2

and the local linear approximation (which is the linear part of the local quadratic approxi-

mation) is

ex ≈ 1 + x

The graphs of ex and the two approximations are shown in Figure 10.1.2. As expected, the

local quadratic approximation is more accurate than the local linear approximation near

x = 0. ◭

-2 2

2

x

y

y = ex

y =  1 + x
y = 1 + x + 

x2

2

Figure 10.1.2

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MACLAURIN POLYNOMIALS
It is natural to ask whether one can improve on the accuracy of a local quadratic approxi-

mation by using a polynomial of degree 3. Specifically, one might look for a polynomial of

degree 3 with the property that its value and the values of its first three derivatives match

those of f at a point; and if this provides an improvement in accuracy, why not go on to

polynomials of even higher degree? Thus, we are led to consider the following general

problem.

10.1.1 PROBLEM. Given a function f that can be differentiated n times at x = x0,

find a polynomial p of degree n with the property that the value of p and the values of

its first n derivatives match those of f at x0.

We will begin by solving this problem in the case where x0 = 0. Thus, we want a

polynomial

p(x) = c0 + c1x + c2x
2 + c3x

3 + · · · + cnx
n (6)

such that

f(0) = p(0), f ′(0) = p′(0), f ′′(0) = p′′(0), . . . , f (n)(0) = p(n)(0) (7)

But

p(x) = c0 + c1x + c2x
2 + c3x

3 + · · · + cnx
n

p′(x) = c1 + 2c2x + 3c3x
2 + · · · + ncnx

n−1

p′′(x) = 2c2 + 3 · 2c3x + · · · + n(n − 1)cnx
n−2

p′′′(x) = 3 · 2c3 + · · · + n(n − 1)(n − 2)cnx
n−3

...

p(n)(x) = n(n − 1)(n − 2) · · · (1)cn
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Thus, to satisfy (7) we must have
∗

f(0) = p(0) = c0

f ′(0) = p′(0) = c1

f ′′(0) = p′′(0) = 2c2 = 2!c2

f ′′′(0) = p′′′(0) = 3 · 2c3 = 3!c3

...

f (n)(0) = p(n)(0) = n(n − 1)(n − 2) · · · (1)cn = n!cn

which yields the following values for the coefficients of p(x):

c0 = f(0), c1 = f ′(0), c2 =
f ′′(0)

2!
, c3 =

f ′′′(0)

3!
, . . . , cn =

f (n)(0)

n!

The polynomial that results by using these coefficients in (6) is called the nth Maclaurin
†

polynomial for f .

10.1.2 DEFINITION. If f can be differentiated n times at 0, then we define the nth

Maclaurin polynomial for f to be

pn(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · +

f (n)(0)

n!
xn (8)

This polynomial has the property that its value and the values of its first n derivatives

match the values of f and its first n derivatives at x = 0.

•
•
•
•
•
•
•
•

REMARK. Observe that p1(x) is the local linear approximation of f at 0 and p2(x) is the

local quadratic approximation of f at x = 0.

Example 2 Find the Maclaurin polynomials p0, p1, p2, p3, and pn for ex .

Solution. Let f(x) = ex . Thus,

f ′(x) = f ′′(x) = f ′′′(x) = · · · = f (n)(x) = ex

and

f(0) = f ′(0) = f ′′(0) = f ′′′(0) = · · · = f (n)(0) = e0 = 1

∗
Recall that if n is a positive integer, then the symbol n! (read “n factorial”) denotes the product of the first n

positive integers; that is,

n! = 1 · 2 · 3 · · · n or equivalently, n! = n(n − 1)(n − 2) · · · 1

Moreover, it is agreed by convention that 0! = 1.

†
COLIN MACLAURIN (1698–1746). Scottish mathematician. Maclaurin’s father, a minister, died when the boy

was only six months old, and his mother when he was nine years old. He was then raised by an uncle who

was also a minister. Maclaurin entered Glasgow University as a divinity student, but transferred to mathematics

after one year. He received his Master’s degree at age 17 and, in spite of his youth, began teaching at Marischal

College in Aberdeen, Scotland. He met Isaac Newton during a visit to London in 1719 and from that time

on became Newton’s disciple. During that era, some of Newton’s analytic methods were bitterly attacked by

major mathematicians and much of Maclaurin’s important mathematical work resulted from his efforts to defend

Newton’s ideas geometrically. Maclaurin’s work, A Treatise of Fluxions (1742), was the first systematic formulation

of Newton’s methods. The treatise was so carefully done that it was a standard of mathematical rigor in calculus

until the work of Cauchy in 1821. Maclaurin was also an outstanding experimentalist; he devised numerous

ingenious mechanical devices, made important astronomical observations, performed actuarial computations for

insurance societies, and helped to improve maps of the islands around Scotland.
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Therefore,

p0(x) = f(0) = 1

p1(x) = f(0) + f ′(0)x = 1 + x

p2(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 = 1 + x +

x2

2!
= 1 + x +

1

2
x2

p3(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3

= 1 + x +
x2

2!
+

x3

3!
= 1 + x +

1

2
x2 +

1

6
x3

pn(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · +

f (n)(0)

n!
xn

= 1 + x +
x2

2!
+ · · · +

xn

n!
◭
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Figure 10.1.3

Figure 10.1.3 shows the graphs of ex (in blue) and the graphs of the first four Maclaurin

polynomials. Note that the graphs of p1(x), p2(x), and p3(x) are virtually indistinguishable

from the graph of ex near x = 0, so that these polynomials are good approximations of ex

for x near 0. However, the farther x is from 0, the poorer these approximations become. This

is typical of the Maclaurin polynomials for a function f(x); they provide good approxima-

tions of f(x) near 0, but the accuracy diminishes as x progresses away from 0. However,

it is usually the case that the higher the degree of the polynomial, the larger the interval on

which it provides a specified accuracy. Accuracy issues will be investigated later.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TAYLOR POLYNOMIALS
Up to now we have focused on approximating a function f in the vicinity of x = 0. Now we

will consider the more general case of approximating f in the vicinity of an arbitrary domain

value x0. The basic idea is the same as before; we want to find an nth-degree polynomial p

with the property that its value and the values of its first n derivatives match those of f at

x0. However, rather than expressing p(x) in powers of x, it will simplify the computations

if we express it in powers of x − x0; that is,

p(x) = c0 + c1(x − x0) + c2(x − x0)
2 + · · · + cn(x − x0)

n (9)

We will leave it as an exercise for you to imitate the computations used in the case where

x0 = 0 to show that

c0 = f(x0), c1 = f ′(x0), c2 =
f ′′(x0)

2!
, c3 =

f ′′′(x0)

3!
, . . . , cn =

f (n)(x0)

n!

Substituting these values in (9) we obtain a polynomial called the nth Taylor
∗

polynomial

about x = x0 for f .

∗
BROOK TAYLOR (1685–1731). English mathematician. Taylor was born of well-to-do parents. Musicians and

artists were entertained frequently in the Taylor home, which undoubtedly had a lasting influence on young Brook.

In later years, Taylor published a definitive work on the mathematical theory of perspective and obtained major

mathematical results about the vibrations of strings. There also exists an unpublished work, On Musick, that was

intended to be part of a joint paper with Isaac Newton. Taylor’s life was scarred with unhappiness, illness, and

tragedy. Because his first wife was not rich enough to suit his father, the two men argued bitterly and parted

ways. Subsequently, his wife died in childbirth. Then, after he remarried, his second wife also died in childbirth,

though his daughter survived. Taylor’s most productive period was from 1714 to 1719, during which time he wrote

on a wide range of subjects—magnetism, capillary action, thermometers, perspective, and calculus. In his final

years, Taylor devoted his writing efforts to religion and philosophy. According to Taylor, the results that bear his

name were motivated by coffeehouse conversations about works of Newton on planetary motion and works of

Halley (“Halley’s comet”) on roots of polynomials. Unfortunately, Taylor’s writing style was so terse and hard to

understand that he never received credit for many of his innovations.
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10.1.3 DEFINITION. If f can be differentiated n times at x0, then we define the nth

Taylor polynomial for f about x = x0 to be

pn(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2

+
f ′′′(x0)

3!
(x − x0)

3 + · · · +
f (n)(x0)

n!
(x − x0)

n (10)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that the Maclaurin polynomials are special cases of the Taylor poly-

nomials; that is, the nth-order Maclaurin polynomial is the nth-order Taylor polynomial

about x = 0. Observe also that p1(x) is the local linear approximation of f at x = x0 and

p2(x) is the local quadratic approximation of f at x = x0.

Example 3 Find the first four Taylor polynomials for ln x about x = 2.

Solution. Let f(x) = ln x. Thus,

f(x) = ln x f(2) = ln 2

f ′(x) = 1/x f ′(2) = 1/2

f ′′(x) = −1/x2 f ′′(2) = −1/4

f ′′′(x) = 2/x3 f ′′′(2) = 1/4

Substituting in (10) with x0 = 2 yields

p0(x) = f(2) = ln 2

p1(x) = f(2) + f ′(2)(x − 2) = ln 2 + 1
2
(x − 2)

p2(x) = f(2) + f ′(2)(x − 2) +
f ′′(2)

2!
(x − 2)2 = ln 2 + 1

2
(x − 2) − 1

8
(x − 2)2

p3(x) = f(2) + f ′(2)(x − 2) +
f ′′(2)

2!
(x − 2)2 +

f ′′′(2)

3!
(x − 2)3

= ln 2 + 1
2
(x − 2) − 1

8
(x − 2)2 + 1

24
(x − 2)3

The graph of ln x (in blue) and its first four Taylor polynomials about x = 2 are shown in

Figure 10.1.4. As expected, these polynomials produce their best approximations of ln x

near 2. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SIGMA NOTATION FOR TAYLOR
AND MACLAURIN POLYNOMIALS

Frequently, we will want to express Formula (10) in sigma notation. To do this, we use the

notation f (k)(x0) to denote the kth derivative of f at x = x0, and we make the convention

that f (0)(x0) denotes f(x0). This enables us to write

n
∑

k=0

f (k)(x0)

k!
(x − x0)

k = f(x0) + f ′(x0)(x − x0)

+
f ′′(x0)

2!
(x − x0)

2 + · · · +
f (n)(x0)

n!
(x − x0)

n (11)

In particular, we can write the nth-order Maclaurin polynomial for f(x) as

n
∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2!
x2 + · · · +

f (n)(0)

n!
xn (12)

Example 4 Find the nth Maclaurin polynomials for

(a) sin x (b) cos x (c)
1

1 − x
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Solution (a). In the Maclaurin polynomials for sin x, only the odd powers of x appear

explicitly. To see this, let f(x) = sin x; thus,

f(x) = sin x f(0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sin x f ′′(0) = 0

f ′′′(x) = − cos x f ′′′(0) = −1

Since f (4)(x) = sin x = f(x), the pattern 0, 1, 0, −1 will repeat as we evaluate successive

derivatives at 0. Therefore, the successive Maclaurin polynomials for sin x are

p0(x) = 0

p1(x) = 0 + x

p2(x) = 0 + x + 0

p3(x) = 0 + x + 0 −
x3

3!

p4(x) = 0 + x + 0 −
x3

3!
+ 0

p5(x) = 0 + x + 0 −
x3

3!
+ 0 +

x5

5!

p6(x) = 0 + x + 0 −
x3

3!
+ 0 +

x5

5!
+ 0

p7(x) = 0 + x + 0 −
x3

3!
+ 0 +

x5

5!
+ 0 −

x7

7!

Because of the zero terms, each even-order Maclaurin polynomial [after p0(x)] is the same

as the preceding odd-order Maclaurin polynomial. That is,

p2k+1(x) = p2k+2(x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · + (−1)k

x2k+1

(2k + 1)!
(k = 0, 1, 2, . . .)

The graphs of sin x, p1(x), p3(x), p5(x), and p7(x) are shown in Figure 10.1.5.

Solution (b). In the Maclaurin polynomials for cos x, only the even powers of x appear

explicitly; the computations are similar to those in part (a). The reader should be able to

show that

p0(x) = p1(x) = 1

p2(x) = p3(x) = 1 −
x2

2!

p4(x) = p5(x) = 1 −
x2

2!
+

x4

4!

p6(x) = p7(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!

In general, the Maclaurin polynomials for cos x are given by

p2k(x) = p2k+1(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · · + (−1)k

x2k

(2k)!
(k = 0, 1, 2, . . .)

The graphs of cos x, p0(x), p2(x), p4(x), and p6(x) are shown in Figure 10.1.6.
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Solution (c). Let f(x) = 1/(1 − x). The values of f and its first k derivatives at x = 0

are as follows:

f(x) =
1

1 − x
f(0) = 1 = 0!

f ′(x) =
1

(1 − x)2
f ′(0) = 1 = 1!

f ′′(x) =
2

(1 − x)3
f ′′(0) = 2 = 2!

f ′′′(x) =
3 · 2

(1 − x)4
f ′′′(0) = 3!

f (4)(x) =
4 · 3 · 2

(1 − x)5
f (4)(0) = 4!

...
...

f (k)(x) =
k!

(1 − x)k+1
f (k)(0) = k!

Thus, substituting f (k)(0) = k! into Formula (12) yields the nth Maclaurin polynomial for

1/(1 − x):

pn(x) =
n

∑

k=0

xk = 1 + x + x2 + · · · + xn (n = 0, 1, 2, . . .) ◭

Example 5 Find the nth Taylor polynomial for 1/x about x = 1.

Solution. Let f(x) = 1/x. The computations are similar to those in part (c) of Example

4. We leave it for you to show that

f(1) = 1, f ′(1) = −1, f ′′(1) = 2!, f ′′′(1) = −3!,

f (4)(1) = 4!, . . . , f (k)(1) = (−1)kk!

Thus, substituting f (k)(1) = (−1)kk! into Formula (11) with x0 = 1 yields the nth Taylor

polynomial for 1/x:

n
∑

k=0

(−1)k(x − 1)k = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · · + (−1)n(x − 1)n ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. CAS programs have commands for generating Taylor polynomials of

any specified degree. If you have a CAS, read the documentation to determine how this is

done, and then use the CAS to confirm the computations in the examples in this section.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE nTH REMAINDER
The nth Taylor polynomial pn for a function f about x = x0 has been introduced as a tool

to obtain good approximations to values of f(x) for x near x0. We now develop a method

to forecast how good these approximations will be.
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It is convenient to develop a notation for the error in using pn(x) to approximate f(x),

so we define Rn(x) to be the difference between f(x) and its nth Taylor polynomial. That

is,

Rn(x) = f(x) − pn(x) = f(x) −
n

∑

k=0

f (k)(x0)

k!
(x − x0)

k (13)

This can also be written as

f(x) = pn(x) + Rn(x) =
n

∑

k=0

f (k)(x0)

k!
(x − x0)

k + Rn(x) (14)

which is called Taylor’s formula with remainder.

Finding a bound for Rn(x) gives an indication of the accuracy of the approximation

pn(x) ≈ f(x). The following theorem, which is proved in Appendix G, provides such a

bound.

10.1.4 THEOREM (The Remainder Estimation Theorem). If the function f can be differ-

entiated n + 1 times on an interval I containing the number x0, and if M is an upper

bound for |f (n+1)(x)| on I, that is, |f (n+1)(x)| ≤ M for all x in I, then

|Rn(x)| ≤
M

(n + 1)!
|x − x0|n+1 (15)

for all x in I .

Example 6 Use an nth Maclaurin polynomial for ex to approximate e to five decimal-

place accuracy.

Solution. We note first that the exponential function ex has derivatives of all orders for

every real number x. From Example 2, the nth Maclaurin polynomial for ex is

n
∑

k=0

xk

k!
= 1 + x +

x2

2!
+ · · · +

xn

n!

from which we have

e = e1 ≈
n

∑

k=0

1k

k!
= 1 + 1 +

1

2!
+ · · · +

1

n!

Thus, our problem is to determine how many terms to include in a Maclaurin polynomial for

ex to achieve five decimal-place accuracy; that is, we want to choose n so that the absolute

value of the nth remainder at x = 1 in the Maclaurin series satisfies

|Rn(x)| ≤ 0.000005

To determine n we apply the Remainder Estimation Theorem with f(x) = ex, x = 1, x0 =
0, and I being the interval [0, 1]. In this case it follows from Formula (15) that

|Rn(1)| ≤
M

(n + 1)!
(16)

where M is an upper bound on the value of f (n+1)(x) = ex for x in the interval [0, 1].

However, ex is an increasing function, so its maximum value on the interval [0, 1] occurs

at x = 1; that is, ex ≤ e on this interval. Thus, we can take M = e in (16) to obtain

|Rn(1)| ≤
e

(n + 1)!
(17)
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Unfortunately, this inequality is not very useful because it involves e, which is the very

quantity we are trying to approximate. However, if we accept that e < 3, then we can

replace (17) with the following less precise, but more easily applied, inequality:

|Rn(1)| ≤
3

(n + 1)!

Thus, we can achieve five decimal-place accuracy by choosing n so that

3

(n + 1)!
≤ 0.000005 or (n + 1)! ≥ 600,000

Since 9! = 362,880 and 10! = 3,628,800, the smallest value of n that meets this criterion

is n = 9. Thus, to five decimal-place accuracy

e ≈ 1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+

1

9!
≈ 2.71828

As a check, a calculator’s twelve-digit representation of e is e ≈ 2.71828182846, which

agrees with the preceding approximation when rounded to five decimal places. ◭

EXERCISE SET 10.1 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find the local quadratic approximation of f at

x = x0, and use that approximation to find the local linear

approximation of f at x0.

(a) f(x) = e−x ; x0 = 0

(b) f(x) = cos x; x0 = 0

(c) f(x) = sin x; x0 = π/2

(d) f(x) =
√
x; x0 = 1

C 2. In each part, use a CAS to find the local quadratic approx-

imation of f at x = x0, and use that approximation to find

the local linear approximation of f at x = x0.

(a) f(x) = esin x ; x0 = 0

(b) f(x) =
√
x; x0 = 9

(c) f(x) = sec−1 x; x0 = 2

(d) f(x) = sin−1 x; x0 = 0

3. (a) Find the local quadratic approximation of
√
x at x0 = 1.

(b) Use the result obtained in part (a) to approximate
√

1.1,

and compare your approximation to that produced di-

rectly by your calculating utility. [See Example 1 of

Section 3.8.]

4. (a) Find the local quadratic approximation of cos x at

x0 = 0.

(b) Use the result obtained in part (a) to approximate cos 2◦ ,

and compare the approximation to that produced di-

rectly by your calculating utility.

5. Use an appropriate local quadratic approximation to approx-

imate tan 61◦ , and compare the result to that produced di-

rectly by your calculating utility.

6. Use an appropriate local quadratic approximation to approx-

imate
√

36.03, and compare the result to that produced di-

rectly by your calculating utility.

In Exercises 7–16, find the Maclaurin polynomials of orders

n = 0, 1, 2, 3, and 4, and then find the nth Maclaurin poly-

nomials for the function in sigma notation.

7. e−x 8. eax 9. cosπx

10. sinπx 11. ln(1 + x) 12.
1

1 + x

13. cosh x 14. sinh x 15. x sin x

16. xex

In Exercises 17–24, find the Taylor polynomials of orders

n = 0, 1, 2, 3, and 4 about x = x0, and then find the nth

Taylor polynomials for the function in sigma notation.

17. ex ; x0 = 1 18. e−x ; x0 = ln 2

19.
1

x
; x0 = −1 20.

1

x + 2
; x0 = 3

21. sinπx; x0 =
1

2
22. cos x; x0 =

π

2

23. ln x; x0 = 1 24. ln x; x0 = e

25. (a) Find the third Maclaurin polynomial for

f(x) = 1 + 2x − x2 + x3

(b) Find the third Taylor polynomial about x = 1 for

f(x) = 1 + 2(x − 1) − (x − 1)2 + (x − 1)3

26. (a) Find the nth Maclaurin polynomial for

f(x) = c0 + c1x + c2x
2 + · · · + cnx

n

(b) Find the nth Taylor polynomial about x = 1 for

f(x) = c0 + c1(x − 1) + c2(x − 1)2 + · · · + cn(x − 1)n
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In Exercises 27–30, find the first four distinct Taylor poly-

nomials about x = x0, and use a graphing utility to graph

the given function and the Taylor polynomials on the same

screen.

27. f(x) = e−2x ; x0 = 0 28. f(x) = sin x; x0 = π/2

29. f(x) = cos x; x0 = π 30. ln(x + 1); x0 = 0

31. Use the method of Example 6 to approximate
√
e to four

decimal-place accuracy, and check your work by comparing

your answer to that produced directly by your calculating

utility. [Suggestion: Write
√
e as e0.5.]

32. Use the method of Example 6 to approximate 1/e to three

decimal-place accuracy, and check your work by comparing

your answer to that produced directly by your calculating

utility.

33. Which of the functions graphed in the following figure is

most likely to have p(x) = 1 − x + 2x2 as its second-order

Maclaurin polynomial? Explain your reasoning.

x

y

x

y

x

y

x

y

I II III IV

34. Suppose that the values of a function f and its first three

derivatives at x = 1 are

f(1) = 2, f ′(1) = −3, f ′′(1) = 0, f ′′′(1) = 6

Find as many Taylor polynomials for f as you can about

x = 1.

35. Show that the nth Taylor polynomial for sinh x about

x = ln 4 is
n

∑

k=0

16 − (−1)k

8k!
(x − ln 4)k

36. (a) The accompanying figure shows a sector of radius r and

central angle 2α. Assuming that the angle α is small,

use the local quadratic approximation of cosα at α = 0

to show that x ≈ rα2/2.

(b) Assuming that the Earth is a sphere of radius 4000 mi,

use the result in part (a) to approximate the maximum

amount by which a 100-mi arc along the equator will

diverge from its chord.

x

r ra

Figure Ex-36

37. Let p1(x) and p2(x) be the local linear and local quadratic

approximations of f(x) = esin x at x = 0.

(a) Use a graphing utility to generate the graphs of f(x),

p1(x), and p2(x) on the same screen for −1 ≤ x ≤ 1.

(b) Construct a table of values of f(x), p1(x), and p2(x)

for x = −1.00, −0.75, −0.50, −0.25, 0, 0.25, 0.50,

0.75, 1.00. Round the values to three decimal places.

(c) Generate the graph of |f(x)−p1(x)|, and use the graph

to determine an interval on which p1(x) approximates

f(x) with an error of at most ±0.01. [Suggestion: Re-

view the discussion relating to Figure 3.8.5.]

(d) Generate the graph of |f(x)−p2(x)|, and use the graph

to determine an interval on which p2(x) approximates

f(x) with an error of at most ±0.01.

38. (a) Find an interval [0, b] over which ex can be approxi-

mated by 1 + x + (x2/2!) to three decimal-place accu-

racy throughout the interval.

(b) Check your answer in part (a) by graphing
∣

∣

∣

∣

ex −
(

1 + x +
x2

2!

)∣

∣

∣

∣

over the interval you obtained.

39. (a) Use the Remainder Estimation Theorem to find an in-

terval containing x = 0 over which sin x can be approx-

imated by x − (x3/3!) to three decimal-place accuracy

throughout the interval.

(b) Check your answer in part (a) by graphing
∣

∣

∣

∣

sin x −
(

x −
x3

3!

)
∣

∣

∣

∣

over the interval you obtained.

10.2 SEQUENCES

In everyday language, the term “sequence” means a succession of things in a definite

order—chronological order, size order, or logical order, for example. In mathematics,

the term “sequence” is commonly used to denote a succession of numbers whose or-

der is determined by a rule or a function. In this section, we will develop some of the

basic ideas concerning sequences of numbers.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF A SEQUENCE
Stated informally, an infinite sequence, or more simply a sequence, is an unending succes-

sion of numbers, called terms. It is understood that the terms have a definite order; that is,

there is a first term a1, a second term a2, a third term a3, a fourth term a4, and so forth. Such

a sequence would typically be written as

a1, a2, a3, a4, . . .

where the dots are used to indicate that the sequence continues indefinitely. Some specific

examples are

1, 2, 3, 4, . . . , 1, 1
2
, 1

3
, 1

4
, . . . ,

2, 4, 6, 8, . . . , 1,−1, 1,−1, . . .

Each of these sequences has a definite pattern that makes it easy to generate additional

terms if we assume that those terms follow the same pattern as the displayed terms. However,

such patterns can be deceiving, so it is better to have a rule or formula for generating the

terms. One way of doing this is to look for a function that relates each term in the sequence

to its term number. For example, in the sequence

2, 4, 6, 8, . . .

each term is twice the term number; that is, the nth term in the sequence is given by the

formula 2n. We denote this by writing the sequence as

2, 4, 6, 8, . . . , 2n, . . .

We call the function f(n) = 2n the general term of this sequence. Now, if we want to know

a specific term in the sequence, we need only substitute its term number in the formula for

the general term. For example, the 37th term in the sequence is 2 · 37 = 74.

Example 1 In each part, find the general term of the sequence.

(a) 1
2
, 2

3
, 3

4
, 4

5
, . . . (b) 1

2
, 1

4
, 1

8
, 1

16
, . . .

(c) 1
2
,− 2

3
, 3

4
,− 4

5
, . . . (d) 1, 3, 5, 7, . . .

Solution (a). In Table 10.2.1, the four known terms have been placed below their term

numbers, from which we see that the numerator is the same as the term number and the

denominator is one greater than the term number. This suggests that the nth term has

numerator n and denominator n + 1, as indicated in the table. Thus, the sequence can be

expressed as

1

2
,

2

3
,

3

4
,

4

5
, . . . ,

n

n + 1
, . . .

Solution (b). In Table 10.2.2, the denominators of the four known terms have been ex-

pressed as powers of 2 and the first four terms have been placed below their term numbers,

from which we see that the exponent in the denominator is the same as the term number.

This suggests that the denominator of the nth term is 2n, as indicated in the table. Thus, the

sequence can be expressed as

1

2
,

1

4
,

1

8
,

1

16
, . . . ,

1

2n
, . . .

Table 10.2.1

1 2 3 4 n . . .. . .

. . .. . .

term

number

term
1

2

2

3

3

4

4

5

n

n + 1

Table 10.2.2

1 2 3 4 n . . .. . .

. . .. . .

term

number

term
1

2

1

22
1

23
1

24
1

2n
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Solution (c). This sequence is identical to that in part (a), except for the alternating signs.

Thus, the nth term in the sequence can be obtained by multiplying the nth term in part (a)

by (−1)n+1. This factor produces the correct alternating signs, since its successive values,

starting with n = 1, are 1, −1, 1, −1, . . . . Thus, the sequence can be written as

1

2
, −

2

3
,

3

4
, −

4

5
, . . . , (−1)n+1 n

n + 1
, . . .

Solution (d ). In Table 10.2.3, the four known terms have been placed below their term

numbers, from which we see that each term is one less than twice its term number. This

suggests that the nth term in the sequence is 2n − 1, as indicated in the table. Thus, the

sequence can be expressed as

1, 3, 5, 7, . . . , 2n − 1, . . . ◭

Table 10.2.3

1 2 3 4 n . . .. . .

1 3 5 7 2n – 1 . . .. . .

term

number

term

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Consider the sequence whose general term is

f(n) = 1
3
(3 − 5n + 6n2 − n3)

Calculate the first three terms, and make a conjecture about the fourth term. Check your

conjecture by calculating the fourth term. What message does this convey?

When the general term of a sequence

a1, a2, a3, . . . , an, . . . (1)

is known, there is no need to write out the initial terms, and it is common to write only the

general term enclosed in braces. Thus, (1) might be written as

{an}+�

n=1

For example, here are the four sequences in Example 1 expressed in brace notation.

sequence brace notation

2

1

3

2

4

3

5

4

n + 1

n

n + 1

n

n + 1

n

n + 1

n
, , , , . . . , , . . .

n=1

+∞

2

1

4

1

8

1

16

1

2n
1

2n
1

, , , , . . . , , . . .
n=1

+∞

2

1

3

2

4

3

5

4
, – , , – , . . . , (–1)n+1

1, 3, 5, 7, . . . , 2n – 1, . . . {2n – 1}

(–1)n+1, . . .
n=1

+∞

n=1
+∞

The letter n in (1) is called the index for the sequence. It is not essential to use n for

the index; any letter not reserved for another purpose can be used. For example, we might

view the general term of the sequence a1, a2, a3, . . . to be the kth term, in which case we

would denote this sequence as {ak}+�

k=1. Moreover, it is not essential to start the index at

1; sometimes it is more convenient to start it at 0 (or some other integer). For example,

consider the sequence

1,
1

2
,

1

22
,

1

23
, . . .
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One way to write this sequence is
{

1

2n−1

}+�

n=1

However, the general term will be simpler if we think of the initial term in the sequence as

the zeroth term, in which case we can write the sequence as
{

1

2n

}+�

n=0

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In general discussions that involve sequences in which the specific terms and

the starting point for the index are not important, it is common to write {an} rather than

{an}+�

n=1 or {an}+�

n=0. Moreover, we can distinguish between different sequences by using

different letters for their general terms; thus, {an}, {bn}, and {cn} denote three different

sequences.

We began this section by describing a sequence as an unending succession of numbers.

Although this conveys the general idea, it is not a satisfactory mathematical definition

because it relies on the term “succession,” which is itself an undefined term. To motivate a

precise definition, consider the sequence

2, 4, 6, 8, . . . , 2n, . . .

If we denote the general term by f(n) = 2n, then we can write this sequence as

f(1), f(2), f(3), . . . , f(n), . . .

which is a “list” of values of the function

f(n) = 2n, n = 1, 2, 3, . . .

whose domain is the set of positive integers. This suggests the following definition.

10.2.1 DEFINITION. A sequence is a function whose domain is a set of integers.

Specifically, we will regard the expression {an}+�

n=1 to be an alternative notation for the

function f(n) = an, n = 1, 2, 3, . . . .

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHS OF SEQUENCES
Since sequences are functions, it makes sense to talk about the graph of a sequence. For

example, the graph of the sequence {1/n}+�

n=1 is the graph of the equation

y =
1

n
, n = 1, 2, 3, . . .

Because the right side of this equation is defined only for positive integer values of n, the

graph consists of a succession of isolated points (Figure 10.2.1a). This is in distinction to

the graph of

y =
1

x
, x ≥ 1

which is a continuous curve (Figure 10.2.1b).

1 2 3 4 5

1

x

y

1
x

y =     , x ≥  1

(b)

1 2 3 4 5

1

n

y

1
n

y =     , n = 1, 2, 3, ...

(a)

Figure 10.2.1
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMIT OF A SEQUENCE
Since sequences are functions, we can inquire about their limits. However, because a se-

quence {an} is only defined for integer values of n, the only limit that makes sense is the

limit of an as n→+�. In Figure 10.2.2 we have shown the graphs of four sequences, each

of which behaves differently as n→+�:

• The terms in the sequence {n + 1} increase without bound.

• The terms in the sequence {(−1)n+1} oscillate between −1 and 1.

• The terms in the sequence {n/(n + 1)} increase toward a “limiting value” of 1.

• The terms in the sequence
{

1 +
(

− 1
2

)n}

also tend toward a “limiting value” of 1, but do

so in an oscillatory fashion.

{n + 1}
+∞

n = 1 {(–1)n+1}
n

n + 1{ } 1

2
–1 + ( )n}{

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

-1

1

1 2 3 4 5 6 7 8 9

1

1

2

n

y

n

n

yy

n

y

+∞

n = 1

+∞

n = 1

+∞

n = 1

1 2 3 4 5 6 7 8 9

1

Figure 10.2.2

Informally speaking, the limit of a sequence {an} is intended to describe how an behaves

as n → +�. To be more specific, we will say that a sequence {an} approaches a limit L

if the terms in the sequence eventually become arbitrarily close to L. Geometrically, this

means that for any positive number ǫ there is a point in the sequence after which all terms

lie between the lines y = L − ǫ and y = L + ǫ (Figure 10.2.3).

n

y

1 2 3 4 N

y = L + e

y = L – e
L

From this point on, the terms 

in the sequence are all within 

e units of L.

. . .

Figure 10.2.3

The following definition makes these ideas precise.

10.2.2 DEFINITION. A sequence {an} is said to converge to the limit L if given any

ǫ > 0, there is a positive integer N such that |an − L| < ǫ for n ≥ N . In this case we

write

lim
n→+�

an = L

A sequence that does not converge to some finite limit is said to diverge.
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Example 2 The first two sequences in Figure 10.2.2 diverge, and the second two converge

to 1; that is,

lim
n→+�

n

n + 1
= 1 and lim

n→+�

(

1 +
(

− 1
2

)n) = 1 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. How would you define

lim
n→+�

an = +� and lim
n→+�

an = −�?

The following theorem, which we state without proof, shows that the familiar properties

of limits apply to sequences. This theorem ensures that the algebraic techniques used to

find limits of the form lim
x→+�

can also be used for limits of the form lim
n→+�

.

10.2.3 THEOREM. Suppose that the sequences {an} and {bn} converge to limits L1

and L2, respectively, and c is a constant. Then

(a) lim
n→+�

c = c

(b) lim
n→+�

can = c lim
n→+�

an = cL1

(c) lim
n→+�

(an + bn) = lim
n→+�

an + lim
n→+�

bn = L1 + L2

(d ) lim
n→+�

(an − bn) = lim
n→+�

an − lim
n→+�

bn = L1 − L2

(e) lim
n→+�

(anbn) = lim
n→+�

an · lim
n→+�

bn = L1L2

( f ) lim
n→+�

(

an

bn

)

=
lim

n→+�

an

lim
n→+�

bn

=
L1

L2

(if L2 �= 0)

Example 3 In each part, determine whether the sequence converges or diverges. If it

converges, find the limit.

(a)

{

n

2n + 1

}+�

n=1

(b)

{

(−1)n+1 n

2n + 1

}+�

n=1

(c)

{

(−1)n+1 1

n

}+�

n=1

(d) {8 − 2n}+�

n=1

Solution (a). Dividing numerator and denominator by n yields

lim
n→+�

n

2n + 1
= lim

n→+�

1

2 + 1/n
=

lim
n→+�

1

lim
n→+�

(2 + 1/n)
=

lim
n→+�

1

lim
n→+�

2 + lim
n→+�

1/n

=
1

2 + 0
=

1

2

Thus, the sequence converges to 1
2
.

Solution (b). This sequence is the same as that in part (a), except for the factor of (−1)n+1,

which oscillates between +1 and −1. Thus, the terms in this sequence oscillate between

positive and negative values, with the odd-numbered terms being identical to those in part

(a) and the even-numbered terms being the negatives of those in part (a). Since the sequence

in part (a) has a limit of 1
2
, it follows that the odd-numbered terms in this sequence approach

1
2
, and the even-numbered terms approach − 1

2
. Therefore, this sequence has no limit—it

diverges.

Solution (c). Since limn→+�
1/n = 0, the product (−1)n+1(1/n) oscillates between

positive and negative values, with the odd-numbered terms approaching 0 through positive
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values and the even-numbered terms approaching 0 through negative values. Thus,

lim
n→+�

(−1)n+1 1

n
= 0

so the sequence converges to 0.

Solution (d ). lim
n→+�

(8 − 2n) = −�, so the sequence {8 − 2n}+�

n=1 diverges. ◭

If the general term of a sequence is f(n), and if we replace n by x, where x can vary

over the entire interval [1,+�), then the values of f(n) can be viewed as “sample values”

of f(x) taken at the positive integers. Thus, if f(x)→L as x →+�, then it must also be

true that f(n) → L as n → +� (Figure 10.2.4a). However, the converse is not true; that

is, one cannot infer that f(x) → L as x → +� from the fact that f(n) → L as n → +�

(Figure 10.2.4b).

1 2 3 4 5 6 7 8

f (1)

f (2)
f (3)

L

x

y

If f (x) → L as x → +∞, 
then f (n) → L as n → +∞.

1 2 3 4 5 6 7 8

L

x

y

f (n) → L as n → +∞, but f (x) 

diverges by oscillation as  x → +∞.

f (x)

(b)

(a)

Figure 10.2.4

Example 4 In each part, determine whether the sequence converges, and if so, find its

limit.

(a) 1,
1

2
,

1

22
,

1

23
, . . . ,

1

2n
, . . . (b) 1, 2, 22, 23, . . . , 2n, . . .

Solution. Replacing n by x in the first sequence produces the power function (1/2)x , and

replacing n by x in the second sequence produces the power function 2x . Now recall that if

0 < b < 1, then bx →0 as x→+�, and if b > 1, then bx →+� as x→+� (Figure 7.2.1).

Thus,

lim
n→+�

1

2n
= 0 and lim

n→+�

2n = +� ◭

Example 5 Find the limit of the sequence
{ n

en

}+�

n=1
.

Solution. The expression n/en is an indeterminate form of type �/� as n → +�, so

L’Hôpital’s rule is indicated. However, we cannot apply this rule directly to n/en because

the functions n and en have been defined here only at the positive integers, and hence are

not differentiable functions. To circumvent this problem, we extend the domains of these

functions to all real numbers, here implied by replacing n by x, and apply L’Hôpital’s rule

to the limit of the quotient x/ex . This yields

lim
x→+�

x

ex
= lim

x→+�

1

ex
= 0

from which we can conclude that

lim
n→+�

n

en
= 0 ◭

Example 6 Show that lim
n→+�

n
√
n = 1.

Solution.

lim
n→+�

n
√
n = lim

n→+�

n1/n = lim
n→+�

e(1
/n) ln n = e0 = 1

By L’Hôpital’s rule applied

to (1/x) ln x
◭

Sometimes the even-numbered and odd-numbered terms of a sequence behave suffi-

ciently differently that it is desirable to investigate their convergence separately. The fol-

lowing theorem, whose proof is omitted, is helpful for that purpose.

10.2.4 THEOREM. A sequence converges to a limit L if and only if the sequences of

even-numbered terms and odd-numbered terms both converge to L.
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Example 7 The sequence

1

2
,

1

3
,

1

22
,

1

32
,

1

23
,

1

33
, . . .

converges to 0, since the even-numbered terms and the odd-numbered terms both converge

to 0, and the sequence

1, 1
2
, 1, 1

3
, 1, 1

4
, . . .

diverges, since the odd-numbered terms converge to 1 and the even-numbered terms con-

verge to 0. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE SQUEEZING THEOREM FOR
SEQUENCES

The following theorem, which we state without proof, is an adaptation of the Squeezing

Theorem (2.6.2) to sequences. This theorem will be useful for finding limits of sequences

that cannot be obtained directly.

10.2.5 THEOREM (The Squeezing Theorem for Sequences). Let {an}, {bn}, and {cn} be

sequences such that

an ≤ bn ≤ cn ( for all values of n beyond some index N)

If the sequences {an} and {cn} have a common limit L as n→ +�, then {bn} also has

the limit L as n→+�.

Example 8 Use numerical evidence to make a conjecture about the limit of the sequence
∗

{

n!

nn

}+�

n=1

and then confirm that your conjecture is correct.

Table 10.2.4

1

2

3

4

5

6

7

8

9

10

11

12

1.0000000000

0.5000000000

0.2222222222

0.0937500000

0.0384000000

0.0154320988

0.0061198990

0.0024032593

0.0009366567

0.0003628800

0.0001399059

0.0000537232

n
n!

nn

Solution. Table 10.2.4, which was obtained with a calculating utility, suggests that the

limit of the sequence may be 0. To confirm this we need to examine the limit of

an =
n!

nn

as n → +�. Although this is an indeterminate form of type �/�, L’Hôpital’s rule is not

helpful because we have no definition of x! for values of x that are not integers. However,

let us write out some of the initial terms and the general term in the sequence:

a1 = 1, a2 =
1 · 2

2 · 2
, a3 =

1 · 2 · 3

3 · 3 · 3
, . . . , an =

1 · 2 · 3 · · · n
n · n · n · · · n

, . . .

We can rewrite the general term as

an =
1

n

(

2 · 3 · · · n
n · n · · · n

)

from which it is evident that

0 ≤ an ≤
1

n

However, the two outside expressions have a limit of 0 as n→+�; thus, the Squeezing The-

orem for Sequences implies that an →0 as n→+�, which confirms our conjecture. ◭

The following theorem is often useful for finding the limit of a sequence with both

positive and negative terms—it states that if the sequence {|an|} that is obtained by taking

the absolute value of each term in the sequence {an} converges to 0, then {an} also converges

to 0.

∗
The symbol n! (read “n factorial”) is defined on page 642.
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10.2.6 THEOREM. If lim
n→+�

|an| = 0, then lim
n→+�

an = 0.

Proof. Depending on the sign of an, either an = |an| or an = −|an|. Thus, in all cases we

have

−|an| ≤ an ≤ |an|

However, the limit of the two outside terms is 0, and hence the limit of an is 0 by the

Squeezing Theorem for Sequences.

Example 9 Consider the sequence

1, −
1

2
,

1

22
, −

1

23
, . . . , (−1)n

1

2n
, . . .

If we take the absolute value of each term, we obtain the sequence

1,
1

2
,

1

22
,

1

23
, . . . ,

1

2n
, . . .

which, as shown in Example 4, converges to 0. Thus, from Theorem 10.2.6 we have

lim
n→+�

[

(−1)n
1

2n

]

= 0 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SEQUENCES DEFINED
RECURSIVELY

Some sequences do not arise from a formula for the general term, but rather from a formula

or set of formulas that specify how to generate each term in the sequence from terms that

precede it; such sequences are said to be defined recursively, and the defining formulas

are called recursion formulas. A good example is the mechanic’s rule for approximating

square roots. In Exercise 19 of Section 4.7 you were asked to show that

x1 = 1, xn+1 =
1

2

(

xn +
a

xn

)

(2)

describes the sequence produced by Newton’s Method to approximate
√
a as a root of the

function f(x) = x2 − a. Table 10.2.5 shows the first five terms in an application of the

mechanic’s rule to approximate
√

2.

Table 10.2.5

n

 

1

2

3

4

5

1.00000000000

1.50000000000

1.41666666667

1.41421568627

1.41421356237

1.41421356237

decimal approximation

x6 = 
1

2

2

665,857/470,832

886,731,088,897

627,013,566,048] =[            +

x5 = 
1

2

2

577/408

665,857

470,832] =[       +

x4 = 
1

2

2

17/12 

577

408] =[    +

x3 = 
1

2

2

3/2

17

12] =[   +

x2 = 
1

2

2

1

3

2] =[1 +

x1 = 1     (Starting value)

3

2

 17

 12

577

408

665,857

470,832

x1 = 1,    xn+1 =    (xn +      ) 
1

2

2
xn
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It would take us too far afield to investigate the convergence of sequences defined re-

cursively, but we will conclude this section with a useful technique that can sometimes be

used to compute limits of such sequences.

Example 10 Assuming that the sequence in Table 10.2.5 converges, show that the limit

is
√

2.

Solution. Assume that xn → L, where L is to be determined. Since n + 1 → +� as

n → +�, it is also true that xn+1 → L as n → +�. Thus, if we take the limit of the

expression

xn+1 =
1

2

(

xn +
2

xn

)

as n→+�, we obtain

L =
1

2

(

L +
2

L

)

which can be rewritten as L2 = 2. The negative solution of this equation is extraneous

because xn > 0 for all n, so L =
√

2. ◭

EXERCISE SET 10.2 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find a formula for the general term of the se-

quence, starting with n = 1.

(a) 1,
1

3
,

1

9
,

1

27
, . . . (b) 1, −

1

3
,

1

9
, −

1

27
, . . .

(c)
1

2
,

3

4
,

5

6
,

7

8
, . . . (d)

1
√
π
,

4
3
√
π
,

9
4
√
π
,

16
5
√
π
, . . .

2. In each part, find two formulas for the general term of the

sequence, one starting with n = 1 and the other with n = 0.

(a) 1,−r, r2,−r3, . . . (b) r,−r2, r3,−r4, . . .

3. (a) Write out the first four terms of the sequence

{1 + (−1)n}, starting with n = 0.

(b) Write out the first four terms of the sequence {cos nπ},
starting with n = 0.

(c) Use the results in parts (a) and (b) to express the gen-

eral term of the sequence 4, 0, 4, 0, . . . in two different

ways, starting with n = 0.

4. In each part, find a formula for the general term using fac-

torials and starting with n = 1.

(a) 1 · 2, 1 · 2 · 3 · 4, 1 · 2 · 3 · 4 · 5 · 6,

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8, . . .

(b) 1, 1 · 2 · 3, 1 · 2 · 3 · 4 · 5, 1 · 2 · 3 · 4 · 5 · 6 · 7, . . .

In Exercises 5–22, write out the first five terms of the se-

quence, determine whether the sequence converges, and if so

find its limit.

5.

{

n

n + 2

}+�

n=1

6.

{

n2

2n + 1

}+�

n=1

7. {2}+�

n=1

8.

{

ln

(

1

n

)}+�

n=1

9.

{

ln n

n

}+�

n=1

10.
{

n sin
π

n

}+�

n=1

11. {1 + (−1)n}+�

n=1 12.

{

(−1)n+1

n2

}+�

n=1

13.

{

(−1)n
2n3

n3 + 1

}+�

n=1

14.
{ n

2n

}+�

n=1

15.

{

(n + 1)(n + 2)

2n2

}+�

n=1

16.

{

πn

4n

}+�

n=1

17.

{

cos
3

n

}+�

n=1

18.
{

cos
πn

2

}+�

n=1

19. {n2e−n}+�

n=1 20. {
√

n2 + 3n − n}+�

n=1

21.

{(

n + 3

n + 1

)n}+�

n=1

22.

{(

1 −
2

n

)n}+�

n=1

In Exercises 23–30, find the general term of the sequence,

starting with n = 1, determine whether the sequence con-

verges, and if so find its limit.

23.
1

2
,

3

4
,

5

6
,

7

8
, . . . 24. 0,

1

22
,

2

32
,

3

42
, . . .

25.
1

3
,

1

9
,

1

27
,

1

81
, . . . 26. −1, 2,−3, 4,−5, . . .

27.

(

1 −
1

2

)

,

(

1

2
−

1

3

)

,

(

1

3
−

1

4

)

,

(

1

4
−

1

5

)

, . . .

28. 3,
3

2
,

3

22
,

3

23
, . . .

29. (
√

2 −
√

3 ), (
√

3 −
√

4 ), (
√

4 −
√

5 ), . . .

30.
1

35
, −

1

36
,

1

37
, −

1

38
, . . .
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31. (a) Starting with n = 1, write out the first six terms of the

sequence {an}, where

an =
{

1, if n is odd

n, if n is even

(b) Starting with n = 1, and considering the even and odd

terms separately, find a formula for the general term of

the sequence

1,
1

22
, 3,

1

24
, 5,

1

26
, . . .

(c) Starting with n = 1, and considering the even and odd

terms separately, find a formula for the general term of

the sequence

1,
1

3
,

1

3
,

1

5
,

1

5
,

1

7
,

1

7
,

1

9
,

1

9
, . . .

(d) Determine whether the sequences in parts (a), (b), and

(c) converge. For those that do, find the limit.

32. For what positive values of b does the sequence b, 0, b2, 0,

b3, 0, b4, . . . converge? Justify your answer.

C 33. (a) Use numerical evidence to make a conjecture about the

limit of the sequence { n
√
n3 }+�

n=2.

(b) Use a CAS to confirm your conjecture.

C 34. (a) Use numerical evidence to make a conjecture about the

limit of the sequence { n
√

3n + n3}+�

n=2.

(b) Use a CAS to confirm your conjecture.

35. Assuming that the sequence given in Formula (2) of this

section converges, use the method of Example 10 to show

that the limit of this sequence is
√
a.

36. Consider the sequence

a1 =
√

6

a2 =
√

6 +
√

6

a3 =

√

6 +
√

6 +
√

6

a4 =

√

6 +

√

6 +
√

6 +
√

6

...

(a) Find a recursion formula for an+1.

(b) Assuming that the sequence converges, use the method

of Example 10 to find the limit.

37. Consider the sequence {an}+�

n=1, where

an =
1

n2
+

2

n2
+ · · · +

n

n2

(a) Find a1, a2, a3, and a4.

(b) Use numerical evidence to make a conjecture about the

limit of the sequence.

(c) Confirm your conjecture by expressing an in closed

form and calculating the limit.

38. Follow the directions in Exercise 37 with

an =
12

n3
+

22

n3
+ · · · +

n2

n3

In Exercises 39 and 40, use numerical evidence to make a

conjecture about the limit of the sequence, and then use the

Squeezing Theorem for Sequences (Theorem 10.2.5) to con-

firm that your conjecture is correct.

39. lim
n→+�

sin2 n

n
40. lim

n→+�

(

1 + n

2n

)n

41. (a) A bored student enters the number 0.5 in a calculator

display and then repeatedly computes the square of the

number in the display. Taking a0 = 0.5, find a formula

for the general term of the sequence {an} of numbers

that appear in the display.

(b) Try this with a calculator and make a conjecture about

the limit of an.

(c) Confirm your conjecture by finding the limit of an.

(d) For what values of a0 will this procedure produce a con-

vergent sequence?

42. Let

f(x) =
{

2x, 0 ≤ x < 0.5

2x − 1, 0.5 ≤ x < 1

Does the sequence f(0.2), f(f(0.2)), f(f(f(0.2))), . . .

converge? Justify your reasoning.

43. (a) Use a graphing utility to generate the graph of the equa-

tion y = (2x + 3x)1/x , and then use the graph to make

a conjecture about the limit of the sequence

{(2n + 3n)1/n}+�

n=1

(b) Confirm your conjecture by calculating the limit.

44. Consider the sequence {an}+�

n=1 whose nth term is

an =
1

n

n
∑

k=1

1

1 + (k/n)

Show that limn→+�
an = ln 2 by interpreting an as the Rie-

mann sum of a definite integral.

45. Let an be the average value of f(x) = 1/x over the interval

[1, n]. Determine whether the sequence {an} converges, and

if so find its limit.

46. The sequence whose terms are 1, 1, 2, 3, 5, 8, 13, 21, . . . is

called the Fibonacci sequence in honor of Leonardo (“Fi-

bonacci”) da Pisa (c. 1170–1250). This sequence has the

property that after starting with two 1’s, each term is the

sum of the preceding two.

(a) Denoting the sequence by {an} and starting with a1 = 1

and a2 = 1, show that

an+2

an+1

= 1 +
an

an+1

if n ≥ 1

(b) Give a reasonable informal argument to show that if the

sequence {an+1/an} converges to some limit L, then the

sequence {an+2/an+1} must also converge to L.

(c) Assuming that the sequence {an+1/an} converges, show

that its limit is (1 +
√

5 )/2.
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47. If we accept the fact that the sequence {1/n}+�

n=1 converges

to the limit L = 0, then according to Definition 10.2.2, for

every ǫ > 0, there exists a positive integer N such that

|an − L| = |(1/n) − 0| < ǫ when n ≥ N . In each part, find

the smallest possible value of N for the given value of ǫ.

(a) ǫ = 0.5 (b) ǫ = 0.1 (c) ǫ = 0.001

48. If we accept the fact that the sequence
{

n

n + 1

}+�

n=1

converges to the limit L = 1, then according to Definition

10.2.2, for every ǫ > 0 there exists an integer N such that

|an − L| =
∣

∣

∣

∣

n

n + 1
− 1

∣

∣

∣

∣

< ǫ

when n ≥ N . In each part, find the smallest value of N for

the given value of ǫ.

(a) ǫ = 0.25 (b) ǫ = 0.1 (c) ǫ = 0.001

49. Use Definition 10.2.2 to prove that

(a) the sequence {1/n}+�

n=1 converges to 0

(b) the sequence

{

n

n + 1

}+�

n=1

converges to 1.

50. Find limn→+�
rn, where r is a real number. [Hint: Consider

the cases |r| < 1, |r| > 1, r = 1, and r = −1 separately.]

10.3 MONOTONE SEQUENCES

There are many situations in which it is important to know whether a sequence con-

verges, but the value of the limit is not relevant to the problem at hand. In this section

we will study several techniques that can be used to determine whether a sequence

converges.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TERMINOLOGY
We begin with some terminology.

10.3.1 DEFINITION. A sequence {an}+�

n=1 is called

strictly increasing if a1 < a2 < a3 < · · · < an < · · ·
increasing if a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ · · ·
strictly decreasing if a1 > a2 > a3 > · · · > an > · · ·
decreasing if a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ · · ·

In words, a sequence is strictly increasing if each term is larger than its predecessor, in-

creasing if each term is the same as or larger than its predecessor, strictly decreasing if each

term is smaller than its predecessor, and decreasing if each term is the same as or smaller

than its predecessor. It follows that every strictly increasing sequence is increasing (but not

conversely), and every strictly decreasing sequence is decreasing (but not conversely). A

sequence that is either strictly increasing or strictly decreasing is called strictly monotone,

and a sequence that is either increasing or decreasing is called monotone.

Example 1

sequence description

2

1

3

2

4

3

n + 1

n
, , , . . . , , . . .

2

1

3

1

n

1

n

1

,1, , . . . , , . . .

2

1

2

1
,

3

1

3

1
,,1, 1, , . . . 

2

1

3

1

4

1
1, – , , – , . . . , (–1)n+1 , . . . 

1, 1, 2, 2, 3, 3, . . .

Strictly increasing

Strictly decreasing

Increasing; not strictly increasing

Decreasing; not strictly decreasing

Neither increasing nor decreasing
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The first and second sequences are strictly monotone, and the third and fourth sequences

are monotone but not strictly monotone. The fifth sequence is not monotone. ◭

• FOR THE READER. Can a sequence be both increasing and decreasing? Explain.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TESTING FOR MONOTONICITY
In order for a sequence to be strictly increasing, all pairs of successive terms, an and

an+1, must satisfy an < an+1 or, equivalently, an+1 − an > 0. More generally, monotone

sequences can be classified as follows:

difference between

successive terms classification

an + 1 – an > 0

an + 1 – an < 0

an + 1 – an ≥  0

an + 1 – an ≤  0

Strictly increasing

Strictly decreasing

Increasing

Decreasing

Frequently, one can guess whether a sequence is monotone or strictly monotone by

writing out some of the initial terms. However, to be certain that the guess is correct, one

must give a precise mathematical argument. The following example illustrates one method

for doing this.

Example 2 Show that

1

2
,

2

3
,

3

4
, . . . ,

n

n + 1
, . . .

is a strictly increasing sequence.

Solution. The pattern of the initial terms suggests that the sequence is strictly increasing.

To prove that this is so, let

an =
n

n + 1

We can obtain an+1 by replacing n by n + 1 in this formula. This yields

an+1 =
n + 1

(n + 1) + 1
=

n + 1

n + 2

Thus, for n ≥ 1

an+1 − an =
n + 1

n + 2
−

n

n + 1
=

n2 + 2n + 1 − n2 − 2n

(n + 1)(n + 2)
=

1

(n + 1)(n + 2)
> 0

which proves that the sequence is strictly increasing. ◭

If an and an+1 are any successive terms in a strictly increasing sequence, then an < an+1.

If the terms in the sequence are all positive, then we can divide both sides of this inequality

by an to obtain 1 < an+1/an or, equivalently, an+1/an > 1. More generally, monotone

sequences with positive terms can be classified as follows:

ratio of

successive terms conclusion

an + 1/an > 1

an + 1/an < 1

an + 1/an ≥ 1

an + 1/an ≤ 1

Strictly increasing

Strictly decreasing

Increasing

Decreasing
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Example 3 Show that the sequence in Example 2 is strictly increasing by examining the

ratio of successive terms.

Solution. As shown in the solution of Example 2,

an =
n

n + 1
and an+1 =

n + 1

n + 2

Thus,

an+1

an

=
(n + 1)/(n + 2)

n/(n + 1)
=

n + 1

n + 2
·
n + 1

n
=

n2 + 2n + 1

n2 + 2n
(1)

Since the numerator in (1) exceeds the denominator, it follows that an+1/an > 1 for n ≥ 1.

This proves that the sequence is strictly increasing. ◭

The following example illustrates still a third technique for determining whether a se-

quence is strictly monotone.

Example 4 In Examples 2 and 3 we proved that the sequence

1

2
,

2

3
,

3

4
, . . . ,

n

n + 1
, . . .

is strictly increasing by considering the difference and ratio of successive terms. Alterna-

tively, we can proceed as follows. Let

f(x) =
x

x + 1

so that the nth term in the given sequence is an = f(n). The function f is increasing for

x ≥ 1 since

f ′(x) =
(x + 1)(1) − x(1)

(x + 1)2
=

1

(x + 1)2
> 0

Thus,

an = f(n) < f(n + 1) = an+1

which proves that the given sequence is strictly increasing. ◭

In general, if f(n) = an is the nth term of a sequence, and if f is differentiable for

x ≥ 1, then we have the following results:

derivative of f
for x ≥  1

conclusion for

the sequence with

an =  f (n)

f ′(x) > 0
f ′(x) < 0
f ′(x) ≥  0
f ′(x) ≤  0

Strictly increasing
Strictly decreasing
Increasing
Decreasing

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PROPERTIES THAT HOLD
EVENTUALLY

Sometimes a sequence will behave erratically at first and then settle down into a definite

pattern. For example, the sequence

9,−8,−17, 12, 1, 2, 3, 4, . . . (2)

is strictly increasing from the fifth term on, but the sequence as a whole cannot be classified

as strictly increasing because of the erratic behavior of the first four terms. To describe such

sequences, we introduce the following terminology.
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10.3.2 DEFINITION. If discarding finitely many terms from the beginning of a se-

quence produces a sequence with a certain property, then the original sequence is said

to have that property eventually.

For example, although we cannot say that sequence (2) is strictly increasing, we can say

that it is eventually strictly increasing.

Example 5 Show that the sequence

{

10n

n!

}+�

n=1

is eventually strictly decreasing.

Solution. We have

an =
10n

n!
and an+1 =

10n+1

(n + 1)!

so

an+1

an

=
10n+1/(n + 1)!

10n/n!
=

10n+1n!

10n(n + 1)!
= 10

n!

(n + 1)n!
=

10

n + 1
(3)

From (3), an+1/an < 1 for alln ≥ 10, so the sequence is eventually strictly decreasing. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

AN INTUITIVE VIEW OF
CONVERGENCE

Informally stated, the convergence or divergence of a sequence does not depend on the

behavior of its initial terms, but rather on how the terms behave eventually. For example,

the sequence

3, −9, −13, 17, 1,
1

2
,

1

3
,

1

4
, . . .

eventually behaves like the sequence

1,
1

2
,

1

3
, . . . ,

1

n
, . . .

and hence has a limit of 0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONVERGENCE OF MONOTONE
SEQUENCES

The following two theorems, whose proofs are discussed at the end of this section, show

that a monotone sequence either converges or becomes infinite—divergence by oscillation

cannot occur.

10.3.3 THEOREM. If a sequence {an} is eventually increasing, then there are two

possibilities:

(a) There is a constant M, called an upper bound for the sequence, such that an ≤ M

for all n, in which case the sequence converges to a limit L satisfying L ≤ M .

(b) No upper bound exists, in which case lim
n→+�

an = +�.

10.3.4 THEOREM. If a sequence {an} is eventually decreasing, then there are two

possibilities:

(a) There is a constant M, called a lower bound for the sequence, such that an ≥ M

for all n, in which case the sequence converges to a limit L satisfying L ≥ M .

(b) No lower bound exists, in which case lim
n→+�

an = −�.

Note that these results do not give a method for obtaining limits; they tell us only whether

a limit exists.
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Example 6 Show that the sequence

{

10n

n!

}+�

n=1

converges and find its limit.

Solution. We showed in Example 5 that the sequence is eventually strictly decreasing.

Since all terms in the sequence are positive, it is bounded below by M = 0, and hence

Theorem 10.3.4 guarantees that it converges to a nonnegative limit L. However, the limit

is not evident directly from the formula 10n/n! for the nth term, so we will need some

ingenuity to obtain it.

Recall from Formula (3) of Example 5 that successive terms in the given sequence are

related by the recursion formula

an+1 =
10

n + 1
an (4)

where an = 10n/n!. We will take the limit as n→+� of both sides of (4) and use the fact

that

lim
n→+�

an+1 = lim
n→+�

an = L

We obtain

L = lim
n→+�

an+1 = lim
n→+�

(

10

n + 1
an

)

= lim
n→+�

10

n + 1
lim

n→+�

an = 0 · L = 0

so that

L = lim
n→+�

10n

n!
= 0 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In the exercises we will show that the technique illustrated in this example can

be adapted to obtain the limit

lim
n→+�

xn

n!
= 0 (5)

for any real value of x (Exercise 26). This result will be useful in our later work.

THE COMPLETENESS AXIOM

In this text we have accepted the familiar properties of real numbers without proof, and

indeed, we have not even attempted to define the term real number. Although this is sufficient

for many purposes, it was recognized by the late nineteenth century that the study of limits

and functions in calculus requires a precise axiomatic formulation of the real numbers

analogous to the axiomatic development of Euclidean geometry. Although we will not

attempt to pursue this development, we will need to discuss one of the axioms about real

numbers in order to prove Theorems 10.3.3 and 10.3.4. But first we will introduce some

terminology.

If S is a nonempty set of real numbers, then we call u an upper bound for S if u is greater

than or equal to every number in S, and we call ℓ a lower bound for S if ℓ is smaller than

or equal to every number in S. For example, if S is the set of numbers in the interval (1, 3),

then u = 4, 10, and 100 are upper bounds for S and ℓ = −10, 0, and 1
2

are lower bounds

for S. Observe also that u = 3 is the smallest of all upper bounds and ℓ = 1 is the largest

of all lower bounds. The existence of a smallest upper bound and a greatest lower bound

for S is not accidental; it is a consequence of the following axiom.

10.3.5 AXIOM (The Completeness Axiom). If a nonempty set S of real numbers has an

upper bound, then it has a smallest upper bound (called the least upper bound ), and if

a nonempty set S of real numbers has a lower bound, then it has a largest lower bound

(called the greatest lower bound ).
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Proof of Theorem 10.3.3.

(a) We will prove the result for increasing sequences, and leave it for the reader to adapt the

argument to sequences that are eventually increasing. Assume there exists a number

M such that an ≤ M for n = 1, 2, . . . . Then M is an upper bound for the set of

terms in the sequence. By the Completeness Axiom there is a least upper bound for

the terms, call it L. Now let ǫ be any positive number. Since L is the least upper bound

for the terms, L − ǫ is not an upper bound for the terms, which means that there is at

least one term aN such that

aN > L − ǫ

Moreover, since {an} is an increasing sequence, we must have

an ≥ aN > L − ǫ (6)

when n ≥ N . But an cannot exceed L since L is an upper bound for the terms. This

observation together with (6) tells us that L ≥ an > L − ǫ for n ≥ N , so all terms

from the N th on are within ǫ units of L. This is exactly the requirement to have

lim
n→+�

an = L

Finally, L ≤ M since M is an upper bound for the terms and L is the least upper

bound. This proves part (a).

(b) If there is no number M such that an ≤ M for n = 1, 2, . . . , then no matter how large

we choose M , there is a term aN such that

aN > M

and, since the sequence is increasing,

an ≥ aN > M

when n ≥ N . Thus, the terms in the sequence become arbitrarily large as n increases.

That is,

lim
n→+�

an = +�

The proof of Theorem 10.3.4 will be omitted since it is similar to that of 10.3.3.

EXERCISE SET 10.3
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–6, use an+1 − an to show that the given se-

quence {an} is strictly increasing or strictly decreasing.

1.

{

1

n

}+�

n=1

2.

{

1 −
1

n

}+�

n=1

3.

{

n

2n + 1

}+�

n=1

4.

{

n

4n − 1

}+�

n=1

5. {n − 2n}+�

n=1 6. {n − n2}+�

n=1

In Exercises 7–12, use an+1/an to show that the given se-

quence {an} is strictly increasing or strictly decreasing.

7.

{

n

2n + 1

}+�

n=1

8.

{

2n

1 + 2n

}+�

n=1

9. {ne−n}+�

n=1

10.

{

10n

(2n)!

}+�

n=1

11.

{

nn

n!

}+�

n=1

12.

{

5n

2(n2)

}+�

n=1

In Exercises 13–18, use differentiation to show that the se-

quence is strictly increasing or strictly decreasing.

13.

{

n

2n + 1

}+�

n=1

14.

{

3 −
1

n

}+�

n=1

15.

{

1

n + ln n

}+�

n=1

16. {ne−2n}+�

n=1

17.

{

ln(n + 2)

n + 2

}+�

n=1

18. {tan−1 n}+�

n=1

In Exercises 19–24, use any method to show that the given se-

quence is eventually strictly increasing or eventually strictly

decreasing.

19. {2n2 − 7n}+�

n=1 20. {n3 − 4n2}+�

n=1
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21.

{

n

n2 + 10

}+�

n=1

22.

{

n +
17

n

}+�

n=1

23.

{

n!

3n

}+�

n=1

24. {n5e−n}+�

n=1

25. (a) Suppose that {an} is a monotone sequence such that

1 ≤ an ≤ 2. Must the sequence converge? If so, what

can you say about the limit?

(b) Suppose that {an} is a monotone sequence such that

an ≤ 2. Must the sequence converge? If so, what can

you say about the limit?

26. The goal in this exercise is to prove Formula (5) in this sec-

tion. The case where x = 0 is obvious, so we will focus on

the case where x �= 0.

(a) Let an = |x|n/n!. Show that

an+1 =
|x|

n + 1
an

(b) Show that the sequence {an} is eventually strictly de-

creasing.

(c) Show that the sequence {an} converges.

(d) Use the results in parts (a) and (c) to show that an →0

as n→+�.

(e) Obtain Formula (5) from the result in part (d).

27. Let {an} be the sequence defined recursively by a1 =
√

2

and an+1 =
√

2 + an for n ≥ 1.

(a) List the first three terms of the sequence.

(b) Show that an < 2 for n ≥ 1.

(c) Show that a2
n+1 − a2

n = (2 − an)(1 + an) for n ≥ 1.

(d) Use the results in parts (b) and (c) to show that {an}
is a strictly increasing sequence. [Hint: If x and y are

positive real numbers such that x2 − y2 > 0, then it

follows by factoring that x − y > 0.]

(e) Show that {an} converges and find its limit L.

28. Let {an} be the sequence defined recursively by a1 = 1 and

an+1 = 1
2
[an + (3/an)] for n ≥ 1.

(a) Show that an ≥
√

3 for n ≥ 2. [Hint: What is the

minimum value of 1
2
[x + (3/x)] for x > 0?]

(b) Show that {an} is eventually decreasing. [Hint: Examine

an+1 − an or an+1/an and use the result in part (a).]

(c) Show that {an} converges and find its limit L.

29. (a) Compare appropriate areas in the accompanying figure

to deduce the following inequalities for n ≥ 2:
∫ n

1

ln x dx < ln n! <

∫ n+1

1

ln x dx

(b) Use the result in part (a) to show that

nn

en−1
< n! <

(n + 1)n+1

en
, n > 1

(c) Use the Squeezing Theorem for Sequences (Theorem

10.2.5) and the result in part (b) to show that

lim
n→+�

n
√
n!

n
=

1

e

1 2 3 n

y

x

. . . 1 2 3 n n + 1

y

x

. . .

y = ln x y = ln x

Figure Ex-29

30. Use the left inequality in Exercise 29(b) to show that

lim
n→+�

n
√
n! = +�

10.4 INFINITE SERIES

The purpose of this section is to discuss sums that contain infinitely many terms. The

most familiar examples of such sums occur in the decimal representations of real

numbers. For example, when we write 1
3

in the decimal form 1
3

= 0.3333 . . . , we mean

1

3
= 0.3 + 0.03 + 0.003 + 0.0003 + · · ·

which suggests that the decimal representation of 1
3

can be viewed as a sum of in-

finitely many real numbers.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SUMS OF INFINITE SERIES
Our first objective is to define what is meant by the “sum” of infinitely many real numbers.

We begin with some terminology.

10.4.1 DEFINITION. An infinite series is an expression that can be written in the form
�

∑

k=1

uk = u1 + u2 + u3 + · · · + uk + · · ·

The numbers u1, u2, u3, . . . are called the terms of the series.
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Since it is impossible to add infinitely many numbers together directly, sums of infinite

series are defined and computed by an indirect limiting process. To motivate the basic idea,

consider the decimal

0.3333 . . . (1)

This can be viewed as the infinite series

0.3 + 0.03 + 0.003 + 0.0003 + · · ·

or, equivalently,

3

10
+

3

102
+

3

103
+

3

104
+ · · · (2)

Since (1) is the decimal expansion of 1
3
, any reasonable definition for the sum of an infinite

series should yield 1
3

for the sum of (2). To obtain such a definition, consider the following

sequence of (finite) sums:

s1 =
3

10
= 0.3

s2 =
3

10
+

3

102
= 0.33

s3 =
3

10
+

3

102
+

3

103
= 0.333

s4 =
3

10
+

3

102
+

3

103
+

3

104
= 0.3333

...

The sequence of numbers s1, s2, s3, s4, . . . can be viewed as a succession of approximations

to the “sum” of the infinite series, which we want to be 1
3
. As we progress through the

sequence, more and more terms of the infinite series are used, and the approximations get

better and better, suggesting that the desired sum of 1
3

might be the limit of this sequence

of approximations. To see that this is so, we must calculate the limit of the general term in

the sequence of approximations, namely

sn =
3

10
+

3

102
+ · · · +

3

10n
(3)

The problem of calculating

lim
n→+�

sn = lim
n→+�

(

3

10
+

3

102
+ · · · +

3

10n

)

is complicated by the fact that both the last term and the number of terms in the sum change

with n. It is best to rewrite such limits in a closed form in which the number of terms does

not vary, if possible. (See the discussion of closed form and open form following Example

3 in Section 5.4.) To do this, we multiply both sides of (3) by 1
10

to obtain

1

10
sn =

3

102
+

3

103
+ · · · +

3

10n
+

3

10n+1
(4)

and then subtract (4) from (3) to obtain

sn −
1

10
sn =

3

10
−

3

10n+1

9

10
sn =

3

10

(

1 −
1

10n

)

sn =
1

3

(

1 −
1

10n

)
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Since 1/10n →0 as n→+�, it follows that

lim
n→+�

sn = lim
n→+�

1

3

(

1 −
1

10n

)

=
1

3

which we denote by writing

1

3
=

3

10
+

3

102
+

3

103
+ · · · +

3

10n
+ · · ·

Motivated by the preceding example, we are now ready to define the general concept of

the “sum” of an infinite series

u1 + u2 + u3 + · · · + uk + · · ·

We begin with some terminology: Let sn denote the sum of the initial terms of the series,

up to and including the term with index n. Thus,

s1 = u1

s2 = u1 + u2

s3 = u1 + u2 + u3

...

sn = u1 + u2 + u3 + · · · + un =
n

∑

k=1

uk

The number sn is called the nth partial sum of the series and the sequence {sn}+�

n=1 is called

the sequence of partial sums.

•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. In everyday language the words “sequence” and “series” are often used in-

terchangeably. However, this is not so in mathematics—mathematically, a sequence is a

succession and a series is a sum. It is essential that you keep this distinction in mind.

As n increases, the partial sum sn = u1 + u2 + · · · + un includes more and more terms

of the series. Thus, if sn tends toward a limit as n→+�, it is reasonable to view this limit

as the sum of all the terms in the series. This suggests the following definition.

10.4.2 DEFINITION. Let {sn} be the sequence of partial sums of the series

u1 + u2 + u3 + · · · + uk + · · ·
If the sequence {sn} converges to a limit S, then the series is said to converge to S, and

S is called the sum of the series. We denote this by writing

S =
�

∑

k=1

uk

If the sequence of partial sums diverges, then the series is said to diverge. A divergent

series has no sum.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Sometimes it will be desirable to start the summation index in an infinite series

at k = 0 rather than k = 1, in which case we will view u0 as the zeroth term and s0 = u0

as the zeroth partial sum. It can be proved that changing the starting value for the index has

no effect on the convergence or divergence of an infinite series.

Example 1 Determine whether the series

1 − 1 + 1 − 1 + 1 − 1 + · · ·

converges or diverges. If it converges, find the sum.
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Solution. It is tempting to conclude that the sum of the series is zero by arguing that the

positive and negative terms cancel one another. However, this is not correct; the problem

is that algebraic operations that hold for finite sums do not carry over to infinite series in

all cases. Later, we will discuss conditions under which familiar algebraic operations can

be applied to infinite series, but for this example we turn directly to Definition 10.4.2. The

partial sums are

s1 = 1

s2 = 1 − 1 = 0

s3 = 1 − 1 + 1 = 1

s4 = 1 − 1 + 1 − 1 = 0

and so forth. Thus, the sequence of partial sums is

1, 0, 1, 0, 1, 0, . . .

Since this is a divergent sequence, the given series diverges and consequently has no

sum. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GEOMETRIC SERIES
In many important geometric series, each term is obtained by multiplying the preceding

term by some fixed constant. Thus, if the initial term of the series is a and each term is

obtained by multiplying the preceding term by r , then the series has the form

�
∑

k=0

ark = a + ar + ar2 + ar3 + · · · + ark + · · · (a �= 0)

Such series are called geometric series, and the number r is called the ratio for the series.

Here are some examples:

1 + 2 + 4 + 8 + · · · + 2k + · · · a = 1, r = 2

3

10
+

3

102
+

3

103
+ · · · +

3

10k
+ · · · a = 3

10
, r = 1

10

1

2
−

1

4
+

1

8
−

1

16
+ · · · + (−1)k+1 1

2k
+ · · · a = 1

2
, r = − 1

2

1 + 1 + 1 + · · · + 1 + · · · a = 1, r = 1

1 − 1 + 1 − 1 + · · · + (−1)k+1 + · · · a = 1, r = −1

1 + x + x2 + x3 + · · · + xk + · · · a = 1, r = x

The following theorem is the fundamental result on convergence of geometric series.

10.4.3 THEOREM. A geometric series
�

∑

k=0

ark = a + ar + ar2 + · · · + ark + · · · (a �= 0)

converges if |r| < 1 and diverges if |r| ≥ 1. If the series converges, then the sum is

�
∑

k=0

ark =
a

1 − r

Proof. Let us treat the case |r| = 1 first. If r = 1, then the series is

a + a + a + a + · · ·

so the nth partial sum is sn = (n + 1)a and limn→+�
sn = limn→+�

(n + 1)a = ±� (the
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sign depending on whether a is positive or negative). This proves divergence. If r = −1,

the series is

a − a + a − a + · · ·
so the sequence of partial sums is

a, 0, a, 0, a, 0, . . .

which diverges.

Now let us consider the case where |r| �= 1. The nth partial sum of the series is

sn = a + ar + ar2 + · · · + arn (5)

Multiplying both sides of (5) by r yields

rsn = ar + ar2 + · · · + arn + arn+1 (6)

and subtracting (6) from (5) gives

sn − rsn = a − arn+1

or

(1 − r)sn = a − arn+1 (7)

Since r �= 1 in the case we are considering, this can be rewritten as

sn =
a − arn+1

1 − r
=

a

1 − r
−

arn+1

1 − r
(8)

If |r| < 1, then limn→+�
rn+1 = 0 (can you see why?), so {sn} converges. From (8)

lim
n→+�

sn =
a

1 − r

If |r| > 1, then either r > 1 or r < −1. In the case r > 1, limn→+�
rn+1 = +�, and in the

case r < −1, rn+1 oscillates between positive and negative values that grow in magnitude,

so {sn} diverges in both cases.

Example 2 The series

�
∑

k=0

5

4k
= 5 +

5

4
+

5

42
+ · · · +

5

4k
+ · · ·

is a geometric series with a = 5 and r = 1
4
. Since |r| = 1

4
< 1, the series converges and

the sum is

a

1 − r
=

5

1 − 1
4

=
20

3
◭

Example 3 Find the rational number represented by the repeating decimal

0.784784784 . . .

Solution. We can write

0.784784784 . . . = 0.784 + 0.000784 + 0.000000784 + · · ·
so the given decimal is the sum of a geometric series with a = 0.784 and r = 0.001. Thus,

0.784784784 . . . =
a

1 − r
=

0.784

1 − 0.001
=

0.784

0.999
=

784

999
◭

Example 4 In each part, determine whether the series converges, and if so find its sum.

(a)
�

∑

k=1

32k51−k (b)
�

∑

k=0

xk
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Solution (a). This is a geometric series in a concealed form, since we can rewrite it as

�
∑

k=1

32k51−k =
�

∑

k=1

9k

5k−1
=

�
∑

k=1

9

(

9

5

)k−1

Since r = 9
5
> 1, the series diverges.

Solution (b). The expanded form of the series is

�
∑

k=0

xk = 1 + x + x2 + · · · + xk + · · ·

The series is a geometric series with a = 1 and r = x, so it converges if |x| < 1 and

diverges otherwise. When the series converges its sum is

�
∑

k=0

xk =
1

1 − x
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TELESCOPING SUMS
Example 5 Determine whether the series

�
∑

k=1

1

k(k + 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · ·

converges or diverges. If it converges, find the sum.

Solution. The nth partial sum of the series is

sn =
n

∑

k=1

1

k(k + 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · · +

1

n(n + 1)

To calculate limn→+�
sn we will rewrite sn in closed form. This can be accomplished by

using the method of partial fractions to obtain (verify)

1

k(k + 1)
=

1

k
−

1

k + 1

from which we obtain the telescoping sum

sn =
n

∑

k=1

(

1

k
−

1

k + 1

)

=
(

1 −
1

2

)

+
(

1

2
−

1

3

)

+
(

1

3
−

1

4

)

+ · · · +
(

1

n
−

1

n + 1

)

= 1 +
(

−
1

2
+

1

2

)

+
(

−
1

3
+

1

3

)

+ · · · +
(

−
1

n
+

1

n

)

−
1

n + 1

= 1 −
1

n + 1

so

�
∑

k=1

1

k(k + 1)
= lim

n→+�

sn = lim
n→+�

(

1 −
1

n + 1

)

= 1 ◭

•
•
•
•
•
•
•
•

FOR THE READER. If you have a CAS, read the documentation to determine how to find

sums of infinite series; then use the CAS to check the results in Example 5.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

HARMONIC SERIES
One of the most important of all diverging series is the harmonic series,

�
∑

k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·

which arises in connection with the overtones produced by a vibrating musical string. It

is not immediately evident that this series diverges. However, the divergence will become

apparent when we examine the partial sums in detail. Because the terms in the series are all

positive, the partial sums

s1 = 1, s2 = 1 + 1
2
, s3 = 1 + 1

2
+ 1

3
, s4 = 1 + 1

2
+ 1

3
+ 1

4
, . . .

form a strictly increasing sequence

s1 < s2 < s3 < · · · < sn < · · ·

Thus, by Theorem 10.3.3 we can prove divergence by demonstrating that there is no constant

M that is greater than or equal to every partial sum. To this end, we will consider some

selected partial sums, namely s2, s4, s8, s16, s32, . . . . Note that the subscripts are successive

powers of 2, so that these are the partial sums of the form s2n . These partial sums satisfy the

inequalities

s2 = 1 + 1
2
> 1

2
+ 1

2
= 2

2

s4 = s2 + 1
3

+ 1
4
> s2 +

(

1
4

+ 1
4

)

= s2 + 1
2
> 3

2

s8 = s4 + 1
5

+ 1
6

+ 1
7

+ 1
8
> s4 +

(

1
8

+ 1
8

+ 1
8

+ 1
8

)

= s4 + 1
2
> 4

2

s16 = s8 + 1
9

+ 1
10

+ 1
11

+ 1
12

+ 1
13

+ 1
14

+ 1
15

+ 1
16

> s8 +
(

1
16

+ 1
16

+ 1
16

+ 1
16

+ 1
16

+ 1
16

+ 1
16

+ 1
16

)

= s8 + 1
2
> 5

2
...

s2n >
n + 1

2

If M is any constant, we can find a positive integer n such that (n+1)/2 > M . But for this n

s2n >
n + 1

2
> M

so that no constant M is greater than or equal to every partial sum of the harmonic series.

This proves divergence.

This divergence proof, which predates the discovery of calculus, is due to a French bishop

and teacher, Nicole Oresme (1323–1382). This series eventually attracted the interest of

Johann and Jakob Bernoulli (p. 94 and led them to begin thinking about the general concept

of convergence, which was a new idea at that time.

This is a proof of the divergence of 

the harmonic series, as it appeared in 

an appendix of Jakob Bernoulli’s 

posthumous publication, Ars 

Conjectandi, which appeared in 1713.

EXERCISE SET 10.4 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find exact values for the first four partial sums,

find a closed form for the nth partial sum, and determine

whether the series converges by calculating the limit of the

nth partial sum. If the series converges, then state its sum.

(a) 2 +
2

5
+

2

52
+ · · · +

2

5k−1
+ · · ·

(b)
1

4
+

2

4
+

22

4
+ · · · +

2k−1

4
+ · · ·

(c)
1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · · +

1

(k + 1)(k + 2)
+ · · ·

2. In each part, find exact values for the first four partial sums,

find a closed form for the nth partial sum, and determine

whether the series converges by calculating the limit of the

nth partial sum. If the series converges, then state its sum.

(a)
�

∑

k=1

(

1

4

)k

(b)
�

∑

k=1

4k−1 (c)
�

∑

k=1

(

1

k + 3
−

1

k + 4

)

In Exercises 3–14, determine whether the series converges,

and if so, find its sum.
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3.
�

∑

k=1

(

−
3

4

)k−1

4.
�

∑

k=1

(

2

3

)k+2

5.
�

∑

k=1

(−1)k−1 7

6k−1
6.

�
∑

k=1

(

−
3

2

)k+1

7.
�

∑

k=1

1

(k + 2)(k + 3)
8.

�
∑

k=1

(

1

2k
−

1

2k+1

)

9.
�

∑

k=1

1

9k2 + 3k − 2
10.

�
∑

k=2

1

k2 − 1

11.
�

∑

k=3

1

k − 2
12.

�
∑

k=5

( e

π

)k−1

13.
�

∑

k=1

4k+2

7k−1
14.

�
∑

k=1

53k71−k

In Exercises 15–20, express the given repeating decimal as a

fraction.

15. 0.4444 . . . 16. 0.9999 . . .

17. 5.373737 . . . 18. 0.159159159 . . .

19. 0.782178217821 . . . 20. 0.451141414 . . .

21. A ball is dropped from a height of 10 m. Each time it strikes

the ground it bounces vertically to a height that is 3
4

of the

preceding height. Find the total distance the ball will travel

if it is assumed to bounce infinitely often.

22. The accompanying figure shows an “infinite staircase” con-

structed from cubes. Find the total volume of the staircase,

given that the largest cube has a side of length 1 and each

successive cube has a side whose length is half that of the

preceding cube.

. . . Figure Ex-22

23. In each part, find a closed form for the nth partial sum of

the series, and determine whether the series converges. If

so, find its sum.

(a) ln
1

2
+ ln

2

3
+ ln

3

4
+ · · · + ln

n

n + 1
+ · · ·

(b) ln

(

1 −
1

4

)

+ ln

(

1 −
1

9

)

+ ln

(

1 −
1

16

)

+ · · ·

+ ln

(

1 −
1

(k + 1)2

)

+ · · ·

24. Use geometric series to show that

(a)
�

∑

k=0

(−1)kxk =
1

1 + x
if −1 < x < 1

(b)
�

∑

k=0

(x − 3)k =
1

4 − x
if 2 < x < 4

(c)
�

∑

k=0

(−1)kx2k =
1

1 + x2
if −1 < x < 1.

25. In each part, find all values of x for which the series con-

verges, and find the sum of the series for those values of x.

(a) x − x3 + x5 − x7 + x9 − · · ·

(b)
1

x2
+

2

x3
+

4

x4
+

8

x5
+

16

x6
+ · · ·

(c) e−x + e−2x + e−3x + e−4x + e−5x + · · ·

26. Show:
�

∑

k=1

√
k + 1 −

√
k

√
k2 + k

= 1.

27. Show:
�

∑

k=1

(

1

k
−

1

k + 2

)

=
3

2
.

28. Show:
1

1 · 3
+

1

2 · 4
+

1

3 · 5
+ · · · =

3

4
.

29. Show:
1

1 · 3
+

1

3 · 5
+

1

5 · 7
+ · · · =

1

2
.

30. Show that for all real values of x

sin x −
1

2
sin2 x +

1

4
sin3 x −

1

8
sin4 x + · · · =

2 sin x

2 + sin x

31. Let a1 be any real number, and let {an} be the sequence

defined recursively by

an+1 = 1
2
(an + 1)

Make a conjecture about the limit of the sequence, and

confirm your conjecture by expressing an in terms of a1 and

taking the limit.

32. Recall that a terminating decimal is a decimal whose digits

are all 0 from some point on (0.5 = 0.50000 . . . , for exam-

ple). Show that a decimal of the form 0.a1a2 . . . an9999 . . . ,

where an �= 9, can be expressed as a terminating decimal.

33. The great Swiss mathematician Leonhard Euler (biogra-

phy on p. 11) sometimes reached incorrect conclusions in

his pioneering work on infinite series. For example, Euler

deduced that

1
2

= 1 − 1 + 1 − 1 + · · ·

and

−1 = 1 + 2 + 4 + 8 + · · ·
by substituting x = −1 and x = 2 in the formula

1

1 − x
= 1 + x + x2 + x3 + · · ·

What was the problem with his reasoning?

34. As shown in the accompanying figure, suppose that lines

L1 and L2 form an angle θ , 0 < θ < π/2, at their point

of intersection P . A point P0 is chosen that is on L1 and a

units from P . Starting from P0 a zig-zag path is constructed

by successively going back and forth between L1 and L2
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along a perpendicular from one line to the other. Find the

following sums in terms of θ .

(a) P0P1 + P1P2 + P2P3 + · · ·
(b) P0P1 + P2P3 + P4P5 + · · ·
(c) P1P2 + P3P4 + P5P6 + · · ·

u P

P0 P2 P4 P6

P1
L2

L1

P3 P5

a

Figure Ex-34

35. As shown in the accompanying figure, suppose that an

angle θ is bisected using a straightedge and compass to

produce ray R1, then the angle between R1 and the initial

side is bisected to produce ray R2. Thereafter, rays R3, R4,

R5, . . . are constructed in succession by bisecting the angle

between the preceding two rays. Show that the sequence of

angles that these rays make with the initial side has a limit

of θ/3. [This problem is based on Trisection of an Angle

in an Infinite Number of Steps by Eric Kincannon, which

appeared in The College Mathematics Journal, Vol. 21,

No. 5, November 1990.]

R1

R2

R3

R4

u

Initial side

Figure Ex-35

36. In his Treatise on the Configurations of Qualities and Mo-

tions (written in the 1350s), the French Bishop of Lisieux,

Nicole Oresme, used a geometric method to find the sum

of the series

�
∑

k=1

k

2k
=

1

2
+

2

4
+

3

8
+

4

16
+ · · ·

In part (a) of the accompanying figure, each term in the se-

ries is represented by the area of a rectangle, and in part (b)

the configuration in part (a) has been divided into rectangles

with areas A1,A2,A3, . . . . Find the sum A1+A2+A3+· · ·.

1

1

1

1

1

1

2

1

4

1

8

1

16

1

(a)

1

1

1

1

1

1

(b)

A2

A3

A1

Not to scale

Figure Ex-36

C 37. (a) See if your CAS can find the sum of the series

�
∑

k=1

6k

(3k+1 − 2k+1)(3k − 2k)

(b) Find A and B such that

6k

(3k+1 − 2k+1)(3k − 2k)
=

2kA

3k − 2k
+

2kB

3k+1 − 2k+1

(c) Use the result in part (b) to find a closed form for the

nth partial sum, and then find the sum of the series.

[This exercise is adapted from a problem that appeared in the

Forty-Fifth Annual William Lowell Putnam Competition.]

C 38. In each part, use a CAS to find the sum of the series if it

converges, and then confirm the result by hand calculation.

(a)
�

∑

k=1

(−1)k+12k32−k (b)
�

∑

k=1

33k

5k−1
(c)

�
∑

k=1

1

4k2 − 1

10.5 CONVERGENCE TESTS

In the last section we showed how to find the sum of a series by finding a closed

form for the nth partial sum and taking its limit. However, it is relatively rare that

one can find a closed form for the nth partial sum of a series, so alternative methods

are needed for finding the sum of a series. One possibility is to prove that the series

converges, and then to approximate the sum by a partial sum with sufficiently many

terms to achieve the desired degree of accuracy. In this section we will develop various

tests that can be used to determine whether a given series converges or diverges.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE DIVERGENCE TEST
In stating general results about convergence or divergence of series, it is convenient to use

the notation
∑

uk as a generic template for a series, thus avoiding the issue of whether the

sum begins with k = 0 or k = 1 or some other value. Indeed, we will see shortly that the

starting index value is irrelevant to the issue of convergence. The kth term in an infinite

series
∑

uk is called the general term of the series. The following theorem establishes a

relationship between the limit of the general term and the convergence properties of a series.

10.5.1 THEOREM (The Divergence Test).

(a) If lim
k→+�

uk �= 0, then the series
∑

uk diverges.

(b) If lim
k→+�

uk = 0, then the series
∑

uk may either converge or diverge.

Proof (a). To prove this result, it suffices to show that if the series converges, then

limk→+�
uk = 0 (why?). We will prove this alternative form of (a).

Let us assume that the series converges. The general term uk can be written as

uk = sk − sk−1 (1)

where sk is the sum of the terms through uk and sk−1 is the sum of the terms through uk−1. If

S denotes the sum of the series, then limk→+�
sk = S, and since (k − 1)→+� as k→+�,

we also have limk→+�
sk−1 = S. Thus, from (1)

lim
k→+�

uk = lim
k→+�

(sk − sk−1) = S − S = 0

Proof (b). To prove this result, it suffices to produce both a convergent series and a divergent

series for which limk→+�
uk = 0. The following series both have this property:

1

2
+

1

22
+ · · · +

1

2k
+ · · · and 1 +

1

2
+

1

3
+ · · · +

1

k
+ · · ·

The first is a convergent geometric series and the second is the divergent harmonic series.

The alternative form of part (a) given in the preceding proof is sufficiently important that

we state it separately for future reference.

10.5.2 THEOREM. If the series
∑

uk converges, then lim
k→+�

uk = 0.

Example 1 The series

�
∑

k=1

k

k + 1
=

1

2
+

2

3
+

3

4
+ · · · +

k

k + 1
+ · · ·

diverges since

lim
k→+�

k

k + 1
= lim

k→+�

1

1 + 1/k
= 1 �= 0 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. The converse of Theorem 10.5.2 is false. To prove that a series converges it

does not suffice to show that limk→+�
uk = 0, since this property may hold for divergent

as well as convergent series, as we saw in the proof of part (b) of Theorem 10.5.1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ALGEBRAIC PROPERTIES OF
INFINITE SERIES

For brevity, the proof of the following result is omitted.
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10.5.3 THEOREM.

(a) If
∑

uk and
∑

vk are convergent series, then
∑

(uk + vk) and
∑

(uk − vk) are

convergent series and the sums of these series are related by
�

∑

k=1

(uk + vk) =
�

∑

k=1

uk +
�

∑

k=1

vk

�
∑

k=1

(uk − vk) =
�

∑

k=1

uk −
�

∑

k=1

vk

(b) If c is a nonzero constant, then the series
∑

uk and
∑

cuk both converge or both

diverge. In the case of convergence, the sums are related by
�

∑

k=1

cuk = c
�

∑

k=1

uk

(c) Convergence or divergence is unaffected by deleting a finite number of terms from

a series; in particular, for any positive integer K, the series
�

∑

k=1

uk = u1 + u2 + u3 + · · ·

�
∑

k=K

uk = uK + uK+1 + uK+2 + · · ·

both converge or both diverge.

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Do not read too much into part (c) of this theorem. Although the convergence

is not affected when a finite number of terms is deleted from the beginning of a convergent

series, the sum of a convergent series is changed by the removal of these terms.

Example 2 Find the sum of the series

�
∑

k=1

(

3

4k
−

2

5k−1

)

Solution. The series
�

∑

k=1

3

4k
=

3

4
+

3

42
+

3

43
+ · · ·

is a convergent geometric series
(

a = 3
4
, r = 1

4

)

, and the series

�
∑

k=1

2

5k−1
= 2 +

2

5
+

2

52
+

2

53
+ · · ·

is also a convergent geometric series
(

a = 2, r = 1
5

)

. Thus, from Theorems 10.5.3(a) and

10.4.3 the given series converges and

�
∑

k=1

(

3

4k
−

2

5k−1

)

=
�

∑

k=1

3

4k
−

�
∑

k=1

2

5k−1
=

3
4

1 − 1
4

−
2

1 − 1
5

= −
3

2
◭

Example 3 Determine whether the following series converge or diverge.

(a)
�

∑

k=1

5

k
= 5 +

5

2
+

5

3
+ · · · +

5

k
+ · · · (b)

�
∑

k=10

1

k
=

1

10
+

1

11
+

1

12
+ · · ·

Solution. The first series is a constant times the divergent harmonic series, and hence

diverges by part (b) of Theorem 10.5.3. The second series results by deleting the first
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nine terms from the divergent harmonic series, and hence diverges by part (c) of Theorem

10.5.3. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE INTEGRAL TEST
The expressions

�
∑

k=1

1

k2
and

∫ +�

1

1

x2
dx

are related in that the integrand in the improper integral results when the index k in the

general term of the series is replaced by x and the limits of summation in the series are

replaced by the corresponding limits of integration. The following theorem shows that there

is a relationship between the convergence of the series and the integral.

10.5.4 THEOREM (The Integral Test). Let
∑

uk be a series with positive terms, and let

f(x) be the function that results when k is replaced by x in the general term of the series.

If f is decreasing and continuous on the interval [a,+�), then

�
∑

k=1

uk and

∫ +�

a

f(x) dx

both converge or both diverge.

Example 4 Use the integral test to determine whether the following series converge or

diverge.

(a)
�

∑

k=1

1

k
(b)

�
∑

k=1

1

k2

Solution (a). We already know that this is the divergent harmonic series, so the integral

test will simply provide another way of establishing the divergence. If we replace k by

x in the general term 1/k, we obtain the function f(x) = 1/x, which is decreasing and

continuous for x ≥ 1 (as required to apply the integral test with a = 1). Since
∫ +�

1

1

x
dx = lim

ℓ→+�

∫ ℓ

1

1

x
dx = lim

ℓ→+�

[ln ℓ − ln 1] = +�

the integral diverges and consequently so does the series.

Solution (b). If we replace k by x in the general term 1/k2, we obtain the function

f(x) = 1/x2, which is decreasing and continuous for x ≥ 1. Since
∫ +�

1

1

x2
dx = lim

ℓ→+�

∫ ℓ

1

dx

x2
= lim

ℓ→+�

[

−
1

x

]ℓ

1

= lim
ℓ→+�

[

1 −
1

ℓ

]

= 1

the integral converges and consequently the series converges by the integral test with

a = 1. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In part (b) of the last example, do not erroneously conclude that the sum of the

series is 1 because the value of the corresponding integral is 1. It can be proved that the sum

of the series is actually π2/6 and, indeed, the sum of the first two terms alone exceeds 1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

p-SERIES
The series in Example 4 are special cases of a class of series called p-series or hyperhar-

monic series. A p-series is an infinite series of the form

�
∑

k=1

1

kp
= 1 +

1

2p
+

1

3p
+ · · · +

1

kp
+ · · ·
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where p > 0. Examples of p-series are

�
∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · · +

1

k
+ · · · p = 1

�
∑

k=1

1

k2
= 1 +

1

22
+

1

32
+ · · · +

1

k2
+ · · · p = 2

�
∑

k=1

1
√
k

= 1 +
1

√
2

+
1

√
3

+ · · · +
1

√
k

+ · · · p = 1
2

The following theorem tells when a p-series converges.

10.5.5 THEOREM (Convergence of p-Series).
�

∑

k=1

1

kp
= 1 +

1

2p
+

1

3p
+ · · · +

1

kp
+ · · ·

converges if p > 1 and diverges if 0 < p ≤ 1.

Proof. To establish this result when p �= 1, we will use the integral test.

∫ +�

1

1

xp
dx = lim

ℓ→+�

∫ ℓ

1

x−p dx = lim
ℓ→+�

x1−p

1 − p

]ℓ

1

= lim
ℓ→+�

[

ℓ1−p

1 − p
−

1

1 − p

]

If p > 1, then 1 − p < 0, so ℓ1−p →0 as ℓ→+�. Thus, the integral converges [its value

is −1/(1 − p)] and consequently the series also converges. For 0 < p < 1, it follows that

1 − p > 0 and ℓ1−p → +� as ℓ → +�, so the integral and the series diverge. The case

p = 1 is the harmonic series, which was previously shown to diverge.

Example 5

1 +
1

3
√

2
+

1
3
√

3
+ · · · +

1
3
√
k

+ · · ·

diverges since it is a p-series with p = 1
3
< 1. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PROOF OF THE INTEGRAL TEST
Before we can prove the integral test, we need a basic result about convergence of series

with nonnegative terms. If u1 + u2 + u3 + · · · + uk + · · · is such a series, then its sequence

of partial sums is increasing, that is,

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sn ≤ · · ·

Thus, from Theorem 10.3.3 the sequence of partial sums converges to a limit S if and

only if it has some upper bound M , in which case S ≤ M . If no upper bound exists, then

the sequence of partial sums diverges. Since convergence of the sequence of partial sums

corresponds to convergence of the series, we have the following theorem.

10.5.6 THEOREM. If
∑

uk is a series with nonnegative terms, and if there is a

constant M such that

sn = u1 + u2 + · · · + un ≤ M

for every n, then the series converges and the sum S satisfies S ≤ M . If no such M

exists, then the series diverges.

In words, this theorem implies that a series with nonnegative terms converges if and only

if its sequence of partial sums is bounded above.
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Proof of Theorem 10.5.4. We need only show that the series converges when the integral

converges and that the series diverges when the integral diverges. For simplicity, we will

limit the proof to the case where a = 1. Assume that f(x) satisfies the hypotheses of the

theorem for x ≥ 1. Since

f(1) = u1, f(2) = u2, . . . , f(n) = un, . . .

the values of u1, u2, . . . , un, . . . can be interpreted as the areas of the rectangles shown in

Figure 10.5.1.

1 2 3 4 5 n + 1

x

y

1 2 3 4 5 n

x

y

. . . . . .

y = f (x) y = f (x)

u1 u2 u3 u4 u5
un

u2 u3 u4 u5
un

(b)(a)

Figure 10.5.1

The following inequalities result by comparing the areas under the curve y = f(x) to

the areas of the rectangles in Figure 10.5.1 for n > 1:
∫ n+1

1

f(x) dx < u1 + u2 + · · · + un = sn Figure 10.5.1a

sn − u1 = u2 + u3 + · · · + un <

∫ n

1

f(x) dx Figure 10.5.1b

These inequalities can be combined as
∫ n+1

1

f(x) dx < sn < u1 +
∫ n

1

f(x) dx (2)

If the integral
∫

�

1
f(x) dx converges to a finite value L, then from the right-hand inequality

in (2)

sn < u1 +
∫ n

1

f(x) dx < u1 +
∫

�

1

f(x) dx = u1 + L

Thus, each partial sum is less than the finite constant u1 + L, and the series converges by

Theorem 10.5.6. On the other hand, if the integral
∫

�

1
f(x) dx diverges, then

lim
n→+�

∫ n+1

1

f(x) dx = +�

so that from the left-hand inequality in (2), limn→+�
sn = +�. This implies that the series

also diverges.

EXERCISE SET 10.5 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, use Theorem 10.5.3 to find the sum of the

series.

(a)

(

1

2
+

1

4

)

+
(

1

22
+

1

42

)

+ · · · +
(

1

2k
+

1

4k

)

+ · · ·

(b)
�

∑

k=1

(

1

5k
−

1

k(k + 1)

)

2. In each part, use Theorem 10.5.3 to find the sum of the series.

(a)
�

∑

k=2

[

1

k2 − 1
−

7

10k−1

]

(b)
�

∑

k=1

[

7−k3k+1 −
2k+1

5k

]

In Exercises 3 and 4, various p-series are given. In each case,

find p and determine whether the series converges.
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3. (a)
�

∑

k=1

1

k3
(b)

�
∑

k=1

1
√
k

(c)
�

∑

k=1

k−1 (d)
�

∑

k=1

k−2/3

4. (a)
�

∑

k=1

k−4/3 (b)
�

∑

k=1

1
4
√
k

(c)
�

∑

k=1

1
3
√
k5

(d)
�

∑

k=1

1

kπ

In Exercises 5 and 6, apply the divergence test, and state what

it tells you about the series.

5. (a)
�

∑

k=1

k2 + k + 3

2k2 + 1
(b)

�
∑

k=1

(

1 +
1

k

)k

(c)
�

∑

k=1

cos kπ (d)
�

∑

k=1

1

k!

6. (a)
�

∑

k=1

k

ek
(b)

�
∑

k=1

ln k (c)
�

∑

k=1

1
√
k

(d)
�

∑

k=1

√
k

√
k + 3

In Exercises 7 and 8, confirm that the integral test is applica-

ble, and use it to determine whether the series converges.

7. (a)
�

∑

k=1

1

5k + 2
(b)

�
∑

k=1

1

1 + 9k2

8. (a)
�

∑

k=1

k

1 + k2
(b)

�
∑

k=1

1

(4 + 2k)3/2

In Exercises 9–24, use any method to determine whether the

series converges.

9.
�

∑

k=1

1

k + 6
10.

�
∑

k=1

3

5k
11.

�
∑

k=1

1
√
k + 5

12.
�

∑

k=1

1
k
√
e

13.
�

∑

k=1

1
3
√

2k − 1
14.

�
∑

k=3

ln k

k

15.
�

∑

k=1

k

ln(k + 1)
16.

�
∑

k=1

ke−k2

17.
�

∑

k=1

(

1 +
1

k

)−k

18.
�

∑

k=1

k2 + 1

k2 + 3
19.

�
∑

k=1

tan−1 k

1 + k2
20.

�
∑

k=1

1
√
k2 + 1

21.
�

∑

k=1

k2 sin2

(

1

k

)

22.
�

∑

k=1

k2e−k3

23.
�

∑

k=5

7k−1.01 24.
�

∑

k=1

sech2 k

In Exercises 25 and 26, use the integral test to investigate the

relationship between the value of p and the convergence of

the series.

25.
�

∑

k=2

1

k(ln k)p
26.

�
∑

k=3

1

k(ln k)[ln(ln k)]p

C 27. Use a CAS to confirm that

�
∑

k=1

1

k2
=

π2

6
and

�
∑

k=1

1

k4
=

π4

90

and then use these results in each part to find the sum of the

series.

(a)
�

∑

k=1

3k2 − 1

k4
(b)

�
∑

k=3

1

k2
(c)

�
∑

k=2

1

(k − 1)4

28. Suppose that the series
∑

uk converges and the series
∑

vk
diverges.

(a) Show that the series
∑

(uk + vk) and
∑

(uk − vk) both

diverge. [Hint: Assume that each series converges and

use Theorem 10.5.3 to obtain a contradiction.]

(b) Find examples to show that if
∑

uk and
∑

vk both di-

verge, then the series
∑

(uk + vk) and
∑

(uk − vk) may

either converge or diverge.

29. In each part, use the results in Exercise 28, if needed, to

determine whether the series diverges.

(a)
�

∑

k=1

[

(

2

3

)k−1

+
1

k

]

(b)
�

∑

k=1

[

1

3k + 2
−

1

k3/2

]

(c)
�

∑

k=2

[

1

k(ln k)2
−

1

k2

]

Exercise 30 will show how a partial sum can be used to obtain

upper and lower bounds on the sum of the series when the

hypotheses of the integral test are satisfied. This result will

be needed in Exercises 31–35.

30. (a) Let
∑

�

k=1 uk be a convergent series with positive terms,

let f(x) be the function that results when k is replaced

by x in the general term of the series, and suppose that

f satisfies the hypotheses of the integral test for x ≥ n

(Theorem 10.5.4). Use an area argument and the accom-

panying figure (see page 681) to show that
∫ +�

n+1

f(x) dx <
�

∑

k=n+1

uk <

∫ +�

n

f(x) dx

(b) Show that if S is the sum of the series
∑

�

k=1 uk and sn
is the nth partial sum, then

sn +
∫ +�

n+1

f(x) dx < S < sn +
∫ +�

n

f(x) dx

31. (a) It was stated in Exercise 27 that

�
∑

k=1

1

k2
=

π2

6

Show that if sn is the nth partial sum of this series, then

sn +
1

n + 1
<

π2

6
< sn +

1

n
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1 n n + 1

x

y

. . .

y = f (x)

un+1
un+2

un+3

1 n n + 1

x

y

. . .

. . .

y = f (x)

un+1
un+2

Figure Ex-30

(b) Calculate s3 exactly, and then use the result in part (a)

to show that
29

18
<

π2

6
<

61

36

(c) Use a calculating utility to confirm that the inequalities

in part (b) are correct.
(d) Find upper and lower bounds on the error that results if

the sum of the series is approximated by the 10th partial

sum.

33. In each part, find upper and lower bounds on the error that

results if the sum of the series is approximated by the 10th

partial sum.

(a)
�

∑

k=1

1

(2k + 1)2
(b)

�
∑

k=1

1

k2 + 1
(c)

�
∑

k=1

k

ek

34. Our objective in this problem is to approximate the sum of

the series
∑

�

k=1 1/k3 to two decimal-place accuracy.

(a) Show that if S is the sum of the series and sn is the nth

partial sum, then

sn +
1

2(n + 1)2
< S < sn +

1

2n2

(b) For two decimal-place accuracy, the error must be less

than 0.005 (see Table 2.5.1 on p. 154). We can achieve

this by finding an interval of length 0.01 (or less) that

contains S and approximating S by the midpoint of that

interval. Find the smallest value of n such that the inter-

val containing S in part (a) has a length of 0.01 or less.

(c) Approximate S to two decimal-place accuracy.

35. (a) Use the method of Exercise 33 to approximate the sum

of the series
∑

�

k=1 1/k4 to two decimal-place accuracy.

(b) It was stated in Exercise 27 that the sum of this series

is π4/90. Use a calculating utility to confirm that your

answer in part (a) is accurate to two decimal places.

36. We showed in Section 10.4 that the harmonic series
∑

�

k=1 1/k diverges. Our objective in this problem is to

demonstrate that although the partial sums of this series

approach +�, they increase extremely slowly.

(a) Use inequality (2) to show that for n ≥ 2

ln(n + 1) < sn < 1 + ln n

(b) Use the inequalities in part (a) to find upper and lower

bounds on the sum of the first million terms in the series.

(c) Show that the sum of the first billion terms in the series

is less than 22.

(d) Find a value of n so that the sum of the first n terms is

greater than 100.

37. Investigate the relationship between the value of a and the

convergence of the series
∑

�

k=1 k
− ln a .

38. Use a graphing utility to confirm that the integral test applies

to the series
∑

�

k=1 k
2e−k , and then determine whether the

series converges.

C 39. (a) Show that the integral test applies to the series
∑

�

k=1 1/(k3 + 1).

(b) Use a CAS and the integral test to confirm that the series

converges.

(c) Construct a table of partial sums for n = 10, 20,

30, . . . , 100, showing at least six decimal places.

(d) Based on your table, make a conjecture about the sum

of the series to three decimal-place accuracy.

(e) Use part (b) of Exercise 30 to check your conjecture.

10.6 THE COMPARISON, RATIO, AND ROOT TESTS

In this section we will develop some more basic convergence tests for series with non-

negative terms. Later, we will use some of these tests to study the convergence of

Taylor series.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE COMPARISON TEST
We will begin with a test that is useful in its own right and is also the building block for

other important convergence tests. The underlying idea of this test is to use the known

convergence or divergence of a series to deduce the convergence or divergence of another

series.



February 26, 2001 12:56 g65-ch10 Sheet number 44 Page number 682 cyan magenta yellow black

682 Infinite Series

10.6.1 THEOREM (The Comparison Test). Let
∑

�

k=1 ak and
∑

�

k=1 bk be series with non-

negative terms and suppose that

a1 ≤ b1, a2 ≤ b2, a3 ≤ b3, . . . , ak ≤ bk, . . .

(a) If the “bigger series” &bk converges, then the “smaller series” &ak also converges.

(b) If the “smaller series” &ak diverges, then the “bigger series” &bk also diverges.

We have left the proof of this theorem for the exercises; however, it is easy to visualize

why the theorem is true by interpreting the terms in the series as areas of rectangles (Fig-

ure 10.6.1). The comparison test states that if the total area
∑

bk is finite, then the total area
∑

ak must also be finite; and if the total area
∑

ak is infinite, then the total area
∑

bk must

also be infinite.

1 . . . . . .

. . .. . .

a1

b1

2

a2

b2

3

a3

b3

4

a4

b4

5

a5

b5

k

ak

bk

For each rectangle, bk is the entire 

area and ak is the area of the blue 

portion.

Figure 10.6.1
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. As one would expect, it is not essential in Theorem 10.6.1 that the condition

ak ≤ bk hold for all k, as stated; the conclusions of the theorem remain true if this condition

is eventually true.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

USING THE COMPARISON TEST
There are two steps required for using the comparison test to determine whether a series
∑

uk with positive terms converges:

• Guess at whether the series
∑

uk converges or diverges.

• Find a series that proves the guess to be correct. That is, if the guess is divergence, we

must find a divergent series whose terms are “smaller” than the corresponding terms of
∑

uk , and if the guess is convergence, we must find a convergent series whose terms

are “bigger” than the corresponding terms of
∑

uk .

In most cases, the series
∑

uk being considered will have its general term uk expressed

as a fraction. To help with the guessing process in the first step, we have formulated two

principles that are based on the form of the denominator for uk . These principles sometimes

suggest whether a series is likely to converge or diverge. We have called these “informal

principles” because they are not intended as formal theorems. In fact, we will not guarantee

that they always work. However, they work often enough to be useful.

10.6.2 INFORMAL PRINCIPLE. Constant summands in the denominator of uk can

usually be deleted without affecting the convergence or divergence of the series.

10.6.3 INFORMAL PRINCIPLE. If a polynomial in k appears as a factor in the numer-

ator or denominator of uk, all but the leading term in the polynomial can usually be

discarded without affecting the convergence or divergence of the series.

Example 1 Use the comparison test to determine whether the following series converge

or diverge.

(a)
�

∑

k=1

1
√
k − 1

2

(b)
�

∑

k=1

1

2k2 + k

Solution (a). According to Principle 10.6.2, we should be able to drop the constant in

the denominator without affecting the convergence or divergence. Thus, the given series is

likely to behave like

�
∑

k=1

1
√
k

(1)
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which is a divergent p-series
(

p = 1
2

)

. Thus, we will guess that the given series diverges

and try to prove this by finding a divergent series that is “smaller” than the given series.

However, series (1) does the trick since

1
√
k − 1

2

>
1

√
k

for k = 1, 2, . . .

Thus, we have proved that the given series diverges.

Solution (b). According to Principle 10.6.3, we should be able to discard all but the leading

term in the polynomial without affecting the convergence or divergence. Thus, the given

series is likely to behave like

�
∑

k=1

1

2k2
=

1

2

�
∑

k=1

1

k2
(2)

which converges since it is a constant times a convergent p-series (p = 2). Thus, we will

guess that the given series converges and try to prove this by finding a convergent series

that is “bigger” than the given series. However, series (2) does the trick since

1

2k2 + k
<

1

2k2
for k = 1, 2, . . .

Thus, we have proved that the given series converges. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE LIMIT COMPARISON TEST
In the last example, Principles 10.6.2 and 10.6.3 provided the guess about convergence or

divergence as well as the series needed to apply the comparison test. Unfortunately, it is

not always so straightforward to find the series required for comparison, so we will now

consider an alternative to the comparison test that is usually easier to apply. The proof is

given in Appendix G.

10.6.4 THEOREM (The Limit Comparison Test). Let
∑

ak and
∑

bk be series with positive

terms and suppose that

ρ = lim
k→+�

ak

bk

If ρ is finite and ρ > 0, then the series both converge or both diverge.

The cases where ρ = 0 or ρ = +� are discussed in the exercises (Exercise 54).

Example 2 Use the limit comparison test to determine whether the following series

converge or diverge.

(a)
�

∑

k=2

1
√
k − 1

(b)
�

∑

k=1

1

2k2 + k
(c)

�
∑

k=1

3k3 − 2k2 + 4

k7 − k3 + 2

Solution (a). As in Example 1, Principle 10.6.2 suggests that the series is likely to behave

like the divergent p-series (1). To prove that the given series diverges, we will apply the

limit comparison test with

ak =
1

√
k − 1

and bk =
1

√
k

We obtain

ρ = lim
k→+�

ak

bk

= lim
k→+�

√
k

√
k − 1

= lim
k→+�

1

1 −
1

√
k

= 1

Since ρ is finite and positive, it follows from Theorem 10.6.4 that the given series diverges.
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Solution (b). As in Example 1, Principle 10.6.3 suggests that the series is likely to behave

like the convergent series (2). To prove that the given series converges, we will apply the

limit comparison test with

ak =
1

2k2 + k
and bk =

1

2k2

We obtain

ρ = lim
k→+�

ak

bk

= lim
k→+�

2k2

2k2 + k
= lim

k→+�

2

2 +
1

k

= 1

Since ρ is finite and positive, it follows from Theorem 10.6.4 that the given series converges,

which agrees with the conclusion reached in Example 1 using the comparison test.

Solution (c). From Principle 10.6.3, the series is likely to behave like

�
∑

k=1

3k3

k7
=

�
∑

k=1

3

k4
(3)

which converges since it is a constant times a convergent p-series. Thus, the given series is

likely to converge. To prove this, we will apply the limit comparison test to series (3) and

the given series. We obtain

ρ = lim
k→+�

3k3 − 2k2 + 4

k7 − k3 + 2
3

k4

= lim
k→+�

3k7 − 2k6 + 4k4

3k7 − 3k3 + 6
= 1

Since ρ is finite and nonzero, it follows from Theorem 10.6.4 that the given series converges,

since (3) converges. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE RATIO TEST
The comparison test and the limit comparison test hinge on first making a guess about

convergence and then finding an appropriate series for comparison, both of which can be

difficult tasks in cases where Principles 10.6.2 and 10.6.3 cannot be applied. In such cases

the next test can often be used, since it works exclusively with the terms of the given

series—it requires neither an initial guess about convergence nor the discovery of a series

for comparison. Its proof is given in Appendix G.

10.6.5 THEOREM (The Ratio Test). Let
∑

uk be a series with positive terms and suppose

that

ρ = lim
k→+�

uk+1

uk

(a) If ρ < 1, the series converges.

(b) If ρ > 1 or ρ = +�, the series diverges.

(c) If ρ = 1, the series may converge or diverge, so that another test must be tried.

Example 3 Use the ratio test to determine whether the following series converge or

diverge.

(a)
�

∑

k=1

1

k!
(b)

�
∑

k=1

k

2k
(c)

�
∑

k=1

kk

k!
(d)

�
∑

k=3

(2k)!

4k
(e)

�
∑

k=1

1

2k − 1

Solution (a). The series converges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

1/(k + 1)!

1/k!
= lim

k→+�

k!

(k + 1)!
= lim

k→+�

1

k + 1
= 0 < 1
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Solution (b). The series converges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

k + 1

2k+1
·

2k

k
=

1

2
lim

k→+�

k + 1

k
=

1

2
< 1

Solution (c). The series diverges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

(k + 1)k+1

(k + 1)!
·
k!

kk
= lim

k→+�

(k + 1)k

kk
= lim

k→+�

(

1 +
1

k

)k

= e > 1

See Theorem 7.5.6(b)

Solution (d ). The series diverges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

[2(k + 1)]!

4k+1
·

4k

(2k)!
= lim

k→+�

(

(2k + 2)!

(2k)!
·

1

4

)

=
1

4
lim

k→+�

(2k + 2)(2k + 1) = +�

Solution (e). The ratio test is of no help since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

1

2(k + 1) − 1
·

2k − 1

1
= lim

k→+�

2k − 1

2k + 1
= 1

However, the integral test proves that the series diverges since

∫ +�

1

dx

2x − 1
= lim

ℓ→+�

∫ ℓ

1

dx

2x − 1
= lim

ℓ→+�

1

2
ln(2x − 1)

]ℓ

1

= +�

Both the comparison test and the limit comparison test would also have worked here

(verify). ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE ROOT TEST
In cases where it is difficult or inconvenient to find the limit required for the ratio test, the

next test is sometimes useful. Since its proof is similar to the proof of the ratio test, we will

omit it.

10.6.6 THEOREM (The Root Test). Let
∑

uk be a series with positive terms and suppose

that

ρ = lim
k→+�

k
√
uk = lim

k→+�

(uk)
1/k

(a) If ρ < 1, the series converges.

(b) If ρ > 1 or ρ = +�, the series diverges.

(c) If ρ = 1, the series may converge or diverge, so that another test must be tried.

Example 4 Use the root test to determine whether the following series converge or

diverge.

(a)
�

∑

k=2

(

4k − 5

2k + 1

)k

(b)
�

∑

k=1

1

(ln(k + 1))k

Solution (a). The series diverges, since

ρ = lim
k→+�

(uk)
1/k = lim

k→+�

4k − 5

2k + 1
= 2 > 1

Solution (b). The series converges, since

ρ = lim
k→+�

(uk)
1/k = lim

k→+�

1

ln(k + 1)
= 0 < 1 ◭
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EXERCISE SET 10.6 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, make a guess about the convergence

or divergence of the series, and confirm your guess using the

comparison test.

1. (a)
�

∑

k=1

1

5k2 − k
(b)

�
∑

k=1

3

k − 1
4

2. (a)
�

∑

k=2

k + 1

k2 − k
(b)

�
∑

k=1

2

k4 + k

3. In each part, use the comparison test to show that the series

converges.

(a)
�

∑

k=1

1

3k + 5
(b)

�
∑

k=1

5 sin2 k

k!

4. In each part, use the comparison test to show that the series

diverges.

(a)
�

∑

k=1

ln k

k
(b)

�
∑

k=1

k

k3/2 − 1
2

In Exercises 5–10, use the limit comparison test to determine

whether the series converges.

5.
�

∑

k=1

4k2 − 2k + 6

8k7 + k − 8
6.

�
∑

k=1

1

9k + 6

7.
�

∑

k=1

5

3k + 1
8.

�
∑

k=1

k(k + 3)

(k + 1)(k + 2)(k + 5)

9.
�

∑

k=1

1
3
√

8k2 − 3k
10.

�
∑

k=1

1

(2k + 3)17

In Exercises 11–16, use the ratio test to determine whether

the series converges. If the test is inconclusive, then say so.

11.
�

∑

k=1

3k

k!
12.

�
∑

k=1

4k

k2
13.

�
∑

k=1

1

5k

14.
�

∑

k=1

k

(

1

2

)k

15.
�

∑

k=1

k!

k3
16.

�
∑

k=1

k

k2 + 1

In Exercises 17–20, use the root test to determine whether

the series converges. If the test is inconclusive, then say so.

17.
�

∑

k=1

(

3k + 2

2k − 1

)k

18.
�

∑

k=1

(

k

100

)k

19.
�

∑

k=1

k

5k
20.

�
∑

k=1

(1 − e−k)k

In Exercises 21–44, use any method to determine whether the

series converges.

21.
�

∑

k=0

7k

k!
22.

�
∑

k=1

1

2k + 1
23.

�
∑

k=1

k2

5k

24.
�

∑

k=1

k!10k

3k
25.

�
∑

k=1

k50e−k 26.
�

∑

k=1

k2

k3 + 1

27.
�

∑

k=1

√
k

k3 + 1
28.

�
∑

k=1

4

2 + 3kk

29.
�

∑

k=1

1
√
k(k + 1)

30.
�

∑

k=1

2 + (−1)k

5k

31.
�

∑

k=1

2 +
√
k

(k + 1)3 − 1
32.

�
∑

k=1

4 + | cos k|
k3

33.
�

∑

k=1

1

1 +
√
k

34.
�

∑

k=1

k!

kk
35.

�
∑

k=1

ln k

ek

36.
�

∑

k=1

k!

ek
2

37.
�

∑

k=0

(k + 4)!

4!k!4k
38.

�
∑

k=1

(

k

k + 1

)k2

39.
�

∑

k=1

1

4 + 2−k
40.

�
∑

k=1

√
k ln k

k3 + 1
41.

�
∑

k=1

tan−1 k

k2

42.
�

∑

k=1

5k + k

k! + 3
43.

�
∑

k=0

(k!)2

(2k)!
44.

�
∑

k=1

(k!)22k

(2k + 2)!

In Exercises 45 and 46, find the general term of the series,

and use the ratio test to show that the series converges.

45. 1 +
1 · 2

1 · 3
+

1 · 2 · 3

1 · 3 · 5
+

1 · 2 · 3 · 4

1 · 3 · 5 · 7
+ · · ·

46. 1 +
1 · 3

3!
+

1 · 3 · 5

5!
+

1 · 3 · 5 · 7

7!
+ · · ·

In Exercises 47 and 48, use a CAS to investigate the conver-

gence of the series.

C 47.
�

∑

k=1

ln k

3k
C 48.

�
∑

k=1

[π(k + 1)]k

kk+1

49. (a) Make a conjecture about the convergence of the series
∑

�

k=1 sin(π/k) by considering the local linear approx-

imation of sin x near x = 0.

(b) Try to confirm your conjecture using the limit compar-

ison test.

50. (a) Make a conjecture about the convergence of the series

�
∑

k=1

[

1 − cos

(

1

k

)]

by considering the local quadratic approximation of

cos x near x = 0.

(b) Try to confirm your conjecture using the limit compar-

ison test.

51. Show that ln x <
√
x if x > 0, and use this result to inves-

tigate the convergence of

(a)
�

∑

k=1

ln k

k2
(b)

�
∑

k=2

1

(ln k)2
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52. For which positive values of α does the series
∑

�

k=1(α
k/kα)

converge?

53. Use Theorem 10.5.6 to prove the comparison test (Theorem

10.6.1).

54. Let
∑

ak and
∑

bk be series with positive terms. Prove:

(a) If lim
k→+�

(ak/bk) = 0 and
∑

bk converges, then
∑

ak

converges.

(b) If lim
k→+�

(ak/bk) = +� and
∑

bk diverges, then
∑

ak

diverges.

10.7 ALTERNATING SERIES; CONDITIONAL CONVERGENCE

Up to now we have focused exclusively on series with nonnegative terms. In this sec-

tion we will discuss series that contain both positive and negative terms.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ALTERNATING SERIES
Series whose terms alternate between positive and negative, called alternating series, are

of special importance. Some examples are

�
∑

k=1

(−1)k+1 1

k
= 1 −

1

2
+

1

3
−

1

4
+

1

5
− · · ·

�
∑

k=1

(−1)k
1

k
= −1 +

1

2
−

1

3
+

1

4
−

1

5
+ · · ·

In general, an alternating series has one of the following two forms:

�
∑

k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + · · · (1)

�
∑

k=1

(−1)kak = −a1 + a2 − a3 + a4 − · · · (2)

where the ak’s are assumed to be positive in both cases.

The following theorem is the key result on convergence of alternating series.

10.7.1 THEOREM (Alternating Series Test). An alternating series of either form (1) or

form (2) converges if the following two conditions are satisfied:

(a) a1 ≥ a2 ≥ a3 ≥ · · · ≥ ak ≥ · · ·
(b) lim

k→+�

ak = 0

Proof. We will consider only alternating series of form (1). The idea of the proof is to show

that if conditions (a) and (b) hold, then the sequences of even-numbered and odd-numbered

partial sums converge to a common limit S. It will then follow from Theorem 10.2.4 that

the entire sequence of partial sums converges to S.

0 s2 s4 s5 s3 s1 = a1

a2

a1

a3

a5

a4

Figure 10.7.1

Figure 10.7.1 shows how successive partial sums satisfying conditions (a) and (b) appear

when plotted on a horizontal axis. The even-numbered partial sums

s2, s4, s6, s8, . . . , s2n, . . .

form an increasing sequence bounded above by a1, and the odd-numbered partial sums

s1, s3, s5, . . . , s2n−1, . . .

form a decreasing sequence bounded below by 0. Thus, by Theorems 10.3.3 and 10.3.4,

the even-numbered partial sums converge to some limit SE and the odd-numbered partial

sums converge to some limit SO . To complete the proof we must show that SE = SO . But

the (2n)-th term in the series is −a2n, so that s2n − s2n−1 = −a2n, which can be written as

s2n−1 = s2n + a2n



February 26, 2001 12:56 g65-ch10 Sheet number 50 Page number 688 cyan magenta yellow black

688 Infinite Series

However, 2n→+� and 2n − 1→+� as n→+�, so that

SO = lim
n→+�

s2n−1 = lim
n→+�

(s2n + a2n) = SE + 0 = SE

which completes the proof.

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. As might be expected, it is not essential for condition (a) in the alternating

series test to hold for all terms; an alternating series will converge if condition (b) is true

and condition (a) holds eventually.

Example 1 Use the alternating series test to show that the following series converge.

(a)
�

∑

k=1

(−1)k+1 1

k
(b)

�
∑

k=1

(−1)k+1 k + 3

k(k + 1)

Solution (a). The two conditions in the alternating series test are satisfied since

ak =
1

k
>

1

k + 1
= ak+1 and lim

k→+�

ak = lim
k→+�

1

k
= 0

Solution (b). The two conditions in the alternating series test are satisfied since

ak+1

ak

=
k + 4

(k + 1)(k + 2)
·
k(k + 1)

k + 3
=

k2 + 4k

k2 + 5k + 6
=

k2 + 4k

(k2 + 4k) + (k + 6)
< 1

so

ak > ak+1

and

lim
k→+�

ak = lim
k→+�

k + 3

k(k + 1)
= lim

k→+�

1

k
+

3

k2

1 +
1

k

= 0 ◭

•
•
•
•
•
•
•
•

REMARK. The series in part (a) of the last example is called the alternating harmonic

series. Observe that this series converges, whereas the harmonic series diverges.

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. If an alternating series violates condition (b) of the alternating series test, then

the series must diverge by the divergence test (Theorem 10.5.1). However, if condition (b)

is satisfied, but condition (a) is not, the series can either converge or diverge.
∗

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING SUMS OF
ALTERNATING SERIES

The following theorem is concerned with the error that results when the sum of an alternating

series is approximated by a partial sum.

s2 s4 S s5 s3 s1

a2

a3

a5

a4

Figure 10.7.2

10.7.2 THEOREM. If an alternating series satisfies the hypotheses of the alternating

series test, and if S is the sum of the series, then:

(a) S lies between any two successive partial sums; that is, either

sn < S < sn+1 or sn+1 < S < sn (3)

depending on which partial sum is larger.

(b) If S is approximated by sn, then the absolute error |S − sn| satisfies

|S − sn| < an+1 (4)

Moreover, the sign of the error S − sn is the same as that of the coefficient of an+1.

Proof. We will prove the theorem for series of form (1). Referring to Figure 10.7.2 and

keeping in mind our observation in the proof of Theorem 10.7.1 that the odd-numbered

∗
The interested reader will find some nice examples in an article by R. Lariviere, “On a Convergence Test for

Alternating Series,” Mathematics Magazine, Vol. 29, 1956, p. 88.



February 26, 2001 12:56 g65-ch10 Sheet number 51 Page number 689 cyan magenta yellow black

10.7 Alternating Series; Conditional Convergence 689

partial sums form a decreasing sequence converging to S and the even-numbered partial

sums form an increasing sequence converging to S, we see that successive partial sums

oscillate from one side of S to the other in smaller and smaller steps with the odd-numbered

partial sums being larger than S and the even-numbered partial sums being smaller than S.

Thus, depending on whether n is even or odd, we have

sn < S < sn+1 or sn+1 < S < sn

which proves (3). Moreover, in either case we have

|S − sn| < |sn+1 − sn| (5)

But sn+1 − sn = ±an+1 (the sign depending on whether n is even or odd). Thus, it follows

from (5) that |S − sn| < an+1, which proves (4). Finally, since the odd-numbered partial

sums are larger than S and the even-numbered partial sums are smaller than S, it follows

that S − sn has the same sign as the coefficient of an+1 (verify).

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In words, inequality (4) states that for a series satisfying the hypotheses of the

alternating series test, the magnitude of the error that results from approximating S by sn is

less than that of the first term that is not included in the partial sum.

Example 2 Later in this chapter we will show that the sum of the alternating harmonic

series is

ln 2 = 1 −
1

2
+

1

3
−

1

4
+ · · · + (−1)k+1 1

k
+ · · ·

(a) Accepting this to be so, find an upper bound on the magnitude of the error that results

if ln 2 is approximated by the sum of the first eight terms in the series.

(b) Find a partial sum that approximates ln 2 to one decimal-place accuracy (the nearest

tenth).

Solution (a). It follows from (4) that

| ln 2 − s8| < a9 =
1

9
< 0.12 (6)

As a check, let us compute s8 exactly. We obtain

s8 = 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−

1

8
=

533

840

Thus, with the help of a calculator

| ln 2 − s8| =
∣

∣

∣

∣

ln 2 −
533

840

∣

∣

∣

∣

≈ 0.059

This shows that the error is well under the estimate provided by upper bound (6).

Solution (b). For one decimal-place accuracy, we must choose n so that | ln 2−sn| ≤ 0.05.

However, it follows from (4) that

| ln 2 − sn| < an+1

so it suffices to choose n so that an+1 ≤ 0.05.

One way to find n is to use a calculating utility to obtain numerical values for a1, a2,

a3, . . . until you encounter the first value that is less than or equal to 0.05. If you do this,

you will find that it is a20 = 0.05; this tells us that partial sum s19 will provide the desired

accuracy. Another way to find n is to solve the inequality

1

n + 1
≤ 0.05

algebraically. We can do this by taking reciprocals, reversing the sense of the inequality,

and then simplifying to obtain n ≥ 19. Thus, s19 will provide the required accuracy, which

is consistent with the previous result.
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With the help of a calculating utility, the value of s19 is approximately s19 ≈ 0.7 and the

value of ln 2 obtained directly is approximately ln 2 ≈ 0.69, which agrees with s19 when

rounded to one decimal place. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. As this example illustrates, the alternating harmonic series does not provide

an efficient way to approximate ln 2, since too much computation is required to achieve

reasonable accuracy. Later, we will develop better ways to approximate logarithms.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ABSOLUTE CONVERGENCE
The series

1 −
1

2
−

1

22
+

1

23
+

1

24
−

1

25
−

1

26
+ · · ·

does not fit in any of the categories studied so far—it has mixed signs, but is not alternating.

We will now develop some convergence tests that can be applied to such series.

10.7.3 DEFINITION. A series
�

∑

k=1

uk = u1 + u2 + · · · + uk + · · ·

is said to converge absolutely if the series of absolute values
�

∑

k=1

|uk| = |u1| + |u2| + · · · + |uk| + · · ·

converges and is said to diverge absolutely if the series of absolute values diverges.

Example 3 Determine whether the following series converge absolutely.

(a) 1 −
1

2
−

1

22
+

1

23
+

1

24
−

1

25
− · · · (b) 1 −

1

2
+

1

3
−

1

4
+

1

5
− · · ·

Solution (a). The series of absolute values is the convergent geometric series

1 +
1

2
+

1

22
+

1

23
+

1

24
+

1

25
+ · · ·

so the given series converges absolutely.

Solution (b). The series of absolute values is the divergent harmonic series

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·

so the given series diverges absolutely. ◭

It is important to distinguish between the notions of convergence and absolute conver-

gence. For example, the series in part (b) of Example 3 converges, since it is the alternating

harmonic series, yet we demonstrated that it does not converge absolutely. However, the

following theorem shows that if a series converges absolutely, then it converges.

10.7.4 THEOREM. If the series
�

∑

k=1

|uk| = |u1| + |u2| + · · · + |uk| + · · ·

converges, then so does the series
�

∑

k=1

uk = u1 + u2 + · · · + uk + · · ·
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Proof. Our proof is based on a trick. We will write the series
∑

uk as

�
∑

k=1

uk =
�

∑

k=1

[(uk + |uk|) − |uk|] (7)

We are assuming that
∑

|uk| converges, so that if we can show that
∑

(uk +|uk|) converges,

then it will follow from (7) and Theorem 10.5.3(a) that
∑

uk converges. However, the value

of uk + |uk| is either 0 or 2|uk|, depending on the sign of uk . Thus, in all cases it is true that

0 ≤ uk + |uk| ≤ 2|uk|

But
∑

2|uk| converges, since it is a constant times the convergent series
∑

|uk|; hence
∑

(uk + |uk|) converges by the comparison test.

Theorem 10.7.4 provides a way of inferring convergence of a series with positive and

negative terms from the convergence of a series with nonnegative terms (the series of

absolute values). This is important because most of the convergence tests we have developed

apply only to series with nonnegative terms.

Example 4 Show that the following series converge.

(a) 1 −
1

2
−

1

22
+

1

23
+

1

24
−

1

25
−

1

26
+ · · · (b)

�
∑

k=1

cos k

k2

Solution (a). Observe that this is not an alternating series because the signs alternate in

pairs after the first term. Thus, we have no convergence test that can be applied directly.

However, we showed in Example 3(a) that the series converges absolutely, so Theorem

10.7.4 implies that it converges.

Solution (b). With the help of a calculating utility, you will be able to verify that the signs

of the terms in this series vary irregularly. Thus, we will test for absolute convergence. The

series of absolute values is

�
∑

k=1

∣

∣

∣

∣

cos k

k2

∣

∣

∣

∣

However,
∣

∣

∣

∣

cos k

k2

∣

∣

∣

∣

≤
1

k2

But
∑

1/k2 is a convergent p-series (p = 2), so the series of absolute values converges

by the comparison test. Thus, the given series converges absolutely and hence converges.

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONDITIONAL CONVERGENCE
Although Theorem 10.7.4 is a useful tool for series that converge absolutely, it provides no

information about the convergence or divergence of a series that diverges absolutely. For

example, consider the two series

1 −
1

2
+

1

3
−

1

4
+ · · · + (−1)k+1 1

k
+ · · · (8)

−1 −
1

2
−

1

3
−

1

4
− · · · −

1

k
− · · · (9)

Both of these series divergeabsolutely, since in each case the series of absolute values is the
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divergent harmonic series

1 +
1

2
+

1

3
+ · · · +

1

k
+ · · ·

However, series (8) converges, since it is the alternating harmonic series, and series (9)

diverges, since it is a constant times the divergent harmonic series. As a matter of terminol-

ogy, a series that converges but diverges absolutely is said to converge conditionally (or to

be conditionally convergent). Thus, (8) is a conditionally convergent series.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE RATIO TEST FOR ABSOLUTE
CONVERGENCE

Although one cannot generally infer convergence or divergence of a series from absolute

divergence, the following variation of the ratio test provides a way of deducing divergence

from absolute divergence in certain situations. We omit the proof.

10.7.5 THEOREM (Ratio Test for Absolute Convergence). Let
∑

uk be a series with nonzero

terms and suppose that

ρ = lim
k→+�

|uk+1|
|uk|

(a) If ρ < 1, then the series
∑

uk converges absolutely and therefore converges.

(b) If ρ > 1 or if ρ = +�, then the series
∑

uk diverges.

(c) If ρ = 1, no conclusion about convergence or absolute convergence can be drawn

from this test.

Example 5 Use the ratio test for absolute convergence to determine whether the series

converges.

(a)
�

∑

k=1

(−1)k
2k

k!
(b)

�
∑

k=1

(−1)k
(2k − 1)!

3k

Solution (a). Taking the absolute value of the general term uk we obtain

|uk| =
∣

∣

∣

∣

(−1)k
2k

k!

∣

∣

∣

∣

=
2k

k!

Thus,

ρ = lim
k→+�

|uk+1|
|uk|

= lim
k→+�

2k+1

(k + 1)!
·
k!

2k
= lim

k→+�

2

k + 1
= 0 < 1

which implies that the series converges absolutely and therefore converges.

Solution (b). Taking the absolute value of the general term uk we obtain

|uk| =
∣

∣

∣

∣

(−1)k
(2k − 1)!

3k

∣

∣

∣

∣

=
(2k − 1)!

3k

Thus,

ρ = lim
k→+�

|uk+1|
|uk|

= lim
k→+�

[2(k + 1) − 1]!

3k+1
·

3k

(2k − 1)!

= lim
k→+�

1

3
·
(2k + 1)!

(2k − 1)!
=

1

3
lim

k→+�

(2k)(2k + 1) = +�

which implies that the series diverges. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SUMMARY OF CONVERGENCE
TESTS

We conclude this section with a summary of convergence tests that can be used for reference.
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Summary of Convergence Tests

If   lim   uk ≠  0, then         uk diverges.
k→+∞

If   lim   uk = 0, then         uk may or

may not converge.
k→+∞

This test only applies to series that

have positive terms.

Try this test when f (x) is easy to

integrate.

This test only applies to series with

nonnegative terms.

Try this test as a last resort; other

tests are often easier to apply.

Try this test when uk involves

factorials or kth powers.

Try this test when uk involves kth

powers.

This test applies only to alternating

series.

The series need not have positive

terms and need not be alternating

to use this test.

Let         uk be a series with positive terms, and let f (x) be the

function that results when k is replaced by x in the general

term of the series.  If f  is decreasing and continuous for

x ≥ a, then

both converge or both diverge.

k=1

∞

k=1

∞

a

+∞

k=1

∞

uk     and              f (x) dx

Let            ak and            bk be series with nonnegative

terms such that

Let       uk be a series with positive terms and suppose that

(a)  Series converges if r < 1.

(b)  Series diverges if r > 1 or r = +∞.

(c)  The test is inconclusive if r = 1.

If       bk converges, then       ak converges, and if       ak

diverges, then       bk diverges.

a1 ≤ b1, a2 ≤ b2, . . . , ak ≤ bk, . . . 

If ak > 0 for k = 1, 2, 3, . . . , then the series

converge if the following conditions hold:

(a)  a1 ≥ a2 ≥ a3 ≥ . . .

(b)            ak = 0 

a1 – a2 + a3 – a4 +  . . . 

–a1 + a2 – a3 + a4 –  . . . 

r = lim
k→+∞

uk+1

uk

Let       uk be a series with nonzero terms such that

(a)  The series converges absolutely if r < 1.

(b)  The series diverges if r > 1 or r = +∞.

(c)  The test is inconclusive if r = 1.

r = lim
k→+∞

|uk+1|

|uk|

lim
k→+∞

Let       uk be a series with positive terms such that

(a)  The series converges if r < 1.

(b)  The series diverges if r > 1 or r = +∞.

(c)  The test is inconclusive if r = 1.

r = lim
k→+∞

uk
k

Divergence Test

(10.5.1)

name statement comments

Integral Test

(10.5.4)

Comparison Test

(10.6.1)

Ratio Test

(10.6.5)

Root Test

(10.6.6)

This is easier to apply than the

comparison test, but still requires

some skill in choosing the series

       bk for comparison.

Let       ak and       bk be series with positive terms such that

r = lim
k→+∞

ak

bk

If 0 < r < +∞, then both series converge or both diverge.

Limit Comparison Test

(10.6.4)

Alternating Series Test

(10.7.1)

Ratio Test for

Absolute Convergence

(10.7.5)
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EXERCISE SET 10.7 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2 show that the series converges by con-

firming that it satisfies the hypotheses of the alternating series

test (Theorem 10.7.1).

1.
�

∑

k=1

(−1)k+1

2k + 1
2.

�
∑

k=1

(−1)k+1 k

3k

In Exercises 3–6, determine whether the alternating series

converges, and justify your answer.

3.
�

∑

k=1

(−1)k+1 k + 1

3k + 1
4.

�
∑

k=1

(−1)k+1 k + 1
√
k + 1

5.
�

∑

k=1

(−1)k+1e−k 6.
�

∑

k=3

(−1)k
ln k

k

In Exercises 7–12, use the ratio test for absolute convergence

(Theorem 10.7.5) to determine whether the series converges

or diverges. If the test is inconclusive, then say so.

7.
�

∑

k=1

(

−
3

5

)k

8.
�

∑

k=1

(−1)k+1 2k

k!

9.
�

∑

k=1

(−1)k+1 3k

k2
10.

�
∑

k=1

(−1)k
k

5k

11.
�

∑

k=1

(−1)k
k3

ek
12.

�
∑

k=1

(−1)k+1 k
k

k!

In Exercises 13–30, classify the series as absolutely conver-

gent, conditionally convergent, or divergent.

13.
�

∑

k=1

(−1)k+1

3k
14.

�
∑

k=1

(−1)k+1

k4/3
15.

�
∑

k=1

(−4)k

k2

16.
�

∑

k=1

(−1)k+1

k!
17.

�
∑

k=1

cos kπ

k
18.

�
∑

k=3

(−1)k ln k

k

19.
�

∑

k=1

(−1)k+1 k + 2

k(k + 3)
20.

�
∑

k=1

(−1)k+1k2

k3 + 1

21.
�

∑

k=1

sin
kπ

2
22.

�
∑

k=1

sin k

k3

23.
�

∑

k=2

(−1)k

k ln k
24.

�
∑

k=1

(−1)k
√
k(k + 1)

25.
�

∑

k=2

(

−
1

ln k

)k

26.
�

∑

k=1

(−1)k+1

√
k + 1 +

√
k

27.
�

∑

k=2

(−1)k(k2 + 1)

k3 + 2
28.

�
∑

k=1

k cos kπ

k2 + 1

29.
�

∑

k=1

(−1)k+1k!

(2k − 1)!
30.

�
∑

k=1

(−1)k+1 32k−1

k2 + 1

In Exercises 31–34, the series satisfies the hypotheses of the

alternating series test. For the stated value of n, find an upper

bound on the absolute error that results if the sum of the series

is approximated by the nth partial sum.

31.
�

∑

k=1

(−1)k+1

k
; n = 7 32.

�
∑

k=1

(−1)k+1

k!
; n = 5

33.
�

∑

k=1

(−1)k+1

√
k

; n = 99

34.
�

∑

k=1

(−1)k+1

(k + 1) ln(k + 1)
; n = 3

In Exercises 35–38, the series satisfies the hypotheses of the

alternating series test. Find a value of n for which the nth

partial sum is ensured to approximate the sum of the series

to the stated accuracy.

35.
�

∑

k=1

(−1)k+1

k
; |error| < 0.0001

36.
�

∑

k=1

(−1)k+1

k!
; |error| < 0.00001

37.
�

∑

k=1

(−1)k+1

√
k

; two decimal places

38.
�

∑

k=1

(−1)k+1

(k + 1) ln(k + 1)
; one decimal place

In Exercises 39 and 40, find an upper bound on the absolute

error that results if s10 is used to approximate the sum of the

given geometric series. Compute s10 rounded to four deci-

mal places and compare this value with the exact sum of the

series.

39.
3

4
−

3

8
+

3

16
−

3

32
+ · · · 40. 1 −

2

3
+

4

9
−

8

27
+ · · ·

In Exercises 41–44, the series satisfies the hypotheses of the

alternating series test. Approximate the sum of the series to

two decimal-place accuracy.

41. 1 −
1

3!
+

1

5!
−

1

7!
+ · · · 42. 1−

1

2!
+

1

4!
−

1

6!
+· · ·

43.
1

1 · 2
−

1

2 · 22
+

1

3 · 23
−

1

4 · 24
+ · · ·

44.
1

15 + 4 · 1
−

1

35 + 4 · 3
+

1

55 + 4 · 5
−

1

75 + 4 · 7
+ · · ·

C 45. The purpose of this exercise is to show that the error bound

in part (b) of Theorem 10.7.2 can be overly conservative in

certain cases.
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(a) Use a CAS to confirm that
π

4
= 1 −

1

3
+

1

5
−

1

7
+ · · ·

(b) Use the CAS to show that |(π/4) − s26| < 10−2.
(c) According to the error bound in part (b) of Theorem

10.7.2, what value of n is required to ensure that

|(π/4) − sn| < 10−2?

46. Show that the alternating p-series

1 −
1

2p
+

1

3p
−

1

4p
+ · · · + (−1)k+1 1

kp
+ · · ·

converges absolutely if p > 1, converges conditionally if

0 < p ≤ 1, and diverges if p ≤ 0.

It can be proved that any series that is constructed from an

absolutely convergent series by rearranging the terms is abso-

lutely convergent and has the same sum as the original series.

Use this fact together with parts (a) and (b) of Theorem 10.5.3

in Exercises 47 and 48.

47. It was stated in Exercise 27 of Section 10.5 that

π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · ·

Use this to show that

π2

8
= 1 +

1

32
+

1

52
+

1

72
+ · · ·

48. It was stated in Exercise 27 of Section 10.5 that

π4

90
= 1 +

1

24
+

1

34
+

1

44
+ · · ·

Use this to show that

π4

96
= 1 +

1

34
+

1

54
+

1

74
+ · · ·

49. It can be proved that the terms of any conditionally con-

vergent series can be rearranged to give either a divergent

series or a conditionally convergent series whose sum is any

given number S. For example, we stated in Example 2 that

ln 2 = 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ · · ·

Show that we can rearrange this series so that its sum is
1
2

ln 2 by rewriting it as
(

1 −
1

2
−

1

4

)

+
(

1

3
−

1

6
−

1

8

)

+
(

1

5
−

1

10
−

1

12

)

+ · · ·

[Hint: Add the first two terms in each set of parentheses.]

50. (a) Use a graphing utility to graph

f(x) =
4x − 1

4x2 − 2x
, x ≥ 1

(b) Based on your graph, do think that the series

�
∑

k=1

(−1)k+1 4k − 1

4k2 − 2k

converges? Explain your reasoning.

51. As illustrated in the accompanying figure, a bug, starting

at point A on a 180-cm wire, walks the length of the wire,

stops and walks in the opposite direction for half the length

of the wire, stops again and walks in the opposite direction

for one-third the length of the wire, stops again and walks in

the opposite direction for one-fourth the length of the wire,

and so forth until it stops for the 1000th time.

(a) Give upper and lower bounds on the distance between

the bug and point A when it finally stops. [Hint: As

stated in Example 2, assume that the sum of the alter-

nating harmonic series is ln 2.]

(b) Give upper and lower bounds on the total distance that

the bug has traveled when it finally stops. [Hint: Use

inequality (2) of Section 10.5.]

A
180 cm

Figure Ex-51

52. (a) Prove that if
∑

ak converges absolutely, then
∑

a2
k

converges.

(b) Show that the converse of part (a) is false by giving a

counterexample.

10.8 MACLAURIN AND TAYLOR SERIES; POWER SERIES

In the last four sections we focused exclusively on series whose terms are numbers. In

this section we will introduce Maclaurin and Taylor series, examples of series whose

terms are functions. Our primary objective is to develop mathematical tools for the

investigation of convergence of Maclaurin and Taylor series.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MACLAURIN AND TAYLOR SERIES
In Section 10.1 we defined the nth Maclaurin polynomial for a function f as

n
∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2!
x2 + · · · +

f (n)(0)

n!
xn
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and the nth Taylor polynomial for f about x = x0 as

n
∑

k=0

f (k)(x0)

k!
(x − x0)

k = f(x0) + f ′(x0)(x − x0)

+
f ′′(x0)

2!
(x − x0)

2 + · · · +
f (n)(x0)

n!
(x − x0)

n

Since then we have gone on to consider sums with an infinite number of terms, so it is not a

big step to extend the notions of Maclaurin and Taylor polynomials to series by not stopping

the summation index at n. Thus, we have the following definition.

10.8.1 DEFINITION. If f has derivatives of all orders at x0, then we call the series

�
∑

k=0

f (k)(x0)

k!
(x − x0)

k = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2

+ · · · +
f (k)(x0)

k!
(x − x0)

k + · · · (1)

the Taylor series for f about x = x0. In the special case where x0 = 0, this series becomes

�
∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2!
x2 + · · · +

f (k)(0)

k!
xk + · · · (2)

in which case we call it the Maclaurin series for f .

Note that the nth Maclaurin and Taylor polynomials are the nth partial sums for the corre-

sponding Maclaurin and Taylor series.

Example 1 Find the Maclaurin series for

(a) ex (b) sin x (c) cos x (d)
1

1 − x

Solution (a). In Example 2 of Section 10.1 we found that the nth Maclaurin polynomial

for ex is

pn(x) =
n

∑

k=0

xk

k!
= 1 + x +

x2

2!
+ · · · +

xn

n!

Thus, the Maclaurin series for ex is

�
∑

k=0

xk

k!
= 1 + x +

x2

2!
+ · · · +

xk

k!
+ · · ·

Solution (b). In Example 4(a) of Section 10.1 we found that the Maclaurin polynomials

for sin x are given by

p2k+1(x) = p2k+2(x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · + (−1)k

x2k+1

(2k + 1)!
(k = 0, 1, 2, . . .)

Thus, the Maclaurin series for sin x is

�
∑

k=0

(−1)k
x2k+1

(2k + 1)!
= x −

x3

3!
+

x5

5!
−

x7

7!
+ · · · + (−1)k

x2k+1

(2k + 1)!
+ · · ·

Solution (c). In Example 4(b) of Section 10.1 we found that the Maclaurin polynomials

for cos x are given by

p2k(x) = p2k+1(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · · + (−1)k

x2k

(2k)!
(k = 0, 1, 2, . . .)
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Thus, the Maclaurin series for cos x is

�
∑

k=0

(−1)k
x2k

(2k)!
= 1 −

x2

2!
+

x4

4!
−

x6

6!
+ · · · + (−1)k

x2k

(2k)!
+ · · ·

Solution (d ). In Example 4(c) of Section 10.1 we found that the nth Maclaurin polynomial

for 1/(1 − x) is

pn(x) =
n

∑

k=0

xk = 1 + x + x2 + · · · + xn (n = 0, 1, 2, . . .)

Thus, the Maclaurin series for 1/(1 − x) is

�
∑

k=0

xk = 1 + x + x2 + · · · + xk + · · · ◭

Example 2 Find the Taylor series for 1/x about x = 1.

Solution. In Example 5 of Section 10.1 we found that the nth Taylor polynomial for 1/x

about x = 1 is
n

∑

k=0

(−1)k(x − 1)k = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · · + (−1)n(x − 1)n

Thus, the Taylor series for 1/x about x = 1 is

�
∑

k=0

(−1)k(x − 1)k = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · · + (−1)k(x − 1)k + · · ·

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

POWER SERIES IN x

Maclaurin and Taylor series differ from the series that we have considered in the last four

sections in that their terms are not merely constants, but instead involve a variable. These

are examples of power series, which we now define.

If c0, c1, c2, . . . are constants and x is a variable, then a series of the form

�
∑

k=0

ckx
k = c0 + c1x + c2x

2 + · · · + ckx
k + · · · (3)

is called a power series in x. Some examples are

�
∑

k=0

xk = 1 + x + x2 + x3 + · · ·

�
∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·

�
∑

k=0

(−1)k
x2k

(2k)!
= 1 −

x2

2!
+

x4

4!
−

x6

6!
+ · · ·

From Example 1, these are the Maclaurin series for the functions 1/(1 − x), ex , and cos x,

respectively. Indeed, every Maclaurin series

�
∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2!
x2 + · · · +

f (k)(0)

k!
xk + · · ·

is a power series in x.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RADIUS AND INTERVAL OF
CONVERGENCE

If a numerical value is substituted for x in a power series
∑

ckx
k , then the resulting series

of numbers may either converge or diverge. This leads to the problem of determining the

set of x-values for which a given power series converges; this is called its convergence set.
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Observe that every power series in x converges at x = 0, since substituting this value in

(3) produces the series

c0 + 0 + 0 + 0 + · · · + 0 + · · ·

whose sum is c0. In rare cases x = 0 may be the only number in the convergence set, but

more usually the convergence set is some finite or infinite interval containing x = 0. This

is the content of the following theorem, whose proof will be omitted.

10.8.2 THEOREM. For any power series in x, exactly one of the following is true:

(a) The series converges only for x = 0.

(b) The series converges absolutely (and hence converges) for all real values of x.

(c) The series converges absolutely (and hence converges) for all x in some finite

open interval (−R,R), and diverges if x < −R or x > R. At either of the values

x = R or x = −R, the series may converge absolutely, converge conditionally, or

diverge, depending on the particular series.

This theorem states that the convergence set for a power series in x is always an interval

centered at x = 0 (possibly just the value x = 0 itself or possibly infinite). For this reason,

the convergence set of a power series in x is called the interval of convergence. In the case

where the convergence set is the single value x = 0 we say that the series has radius of

convergence 0, in the case where the convergence set is (−�,+�) we say that the series

has radius of convergence +∞, and in the case where the convergence set extends between

−R and R we say that the series has radius of convergence R (Figure 10.8.1).

Radius of convergence R = +∞ 

Radius of convergence R = 0 

Radius of convergence R

Diverges Diverges

Converges

ConvergesDiverges Diverges

0

0

0

−R R

Figure 10.8.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FINDING THE INTERVAL OF
CONVERGENCE

The usual procedure for finding the interval of convergence of a power series is to apply

the ratio test for absolute convergence (Theorem 10.7.5). The following example illustrates

how this works.

Example 3 Find the interval of convergence and radius of convergence of the following

power series.

(a)
�

∑

k=0

xk (b)
�

∑

k=0

xk

k!
(c)

�
∑

k=0

k!xk (d)
�

∑

k=0

(−1)kxk

3k(k + 1)

Solution (a). We apply the ratio test for absolute convergence. We have

ρ = lim
k→+�

∣

∣

∣

∣

uk+1

uk

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

xk+1

xk

∣

∣

∣

∣

= lim
k→+�

|x| = |x|

so the series converges absolutely if ρ = |x| < 1 and diverges if ρ = |x| > 1. The test

is inconclusive if |x| = 1 (i.e., if x = 1 or x = −1), which means that we will have to
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investigate convergence at these values separately. At these values the series becomes

�
∑

k=0

1k = 1 + 1 + 1 + 1 + · · · x = 1

�
∑

k=0

(−1)k = 1 − 1 + 1 − 1 + · · · x = −1

both of which diverge; thus, the interval of convergence for the given power series is (−1, 1),

and the radius of convergence is R = 1.

Solution (b). Applying the ratio test for absolute convergence, we obtain

ρ = lim
k→+�

∣

∣

∣

∣

uk+1

uk

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

xk+1

(k + 1)!
·
k!

xk

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

x

k + 1

∣

∣

∣

∣

= 0

Since ρ < 1 for all x, the series converges absolutely for all x. Thus, the interval of

convergence is (−�,+�) and the radius of convergence is R = +�.

Solution (c). If x �= 0, then the ratio test for absolute convergence yields

ρ = lim
k→+�

∣

∣

∣

∣

uk+1

uk

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

(k + 1)!xk+1

k!xk

∣

∣

∣

∣

= lim
k→+�

|(k + 1)x| = +�

Therefore, the series diverges for all nonzero values of x. Thus, the interval of convergence

is the single value x = 0 and the radius of convergence is R = 0.

Solution (d ). Since |(−1)k| = |(−1)k+1| = 1, we obtain

ρ = lim
k→+�

∣

∣

∣

∣

uk+1

uk

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

xk+1

3k+1(k + 2)
·

3k(k + 1)

xk

∣

∣

∣

∣

= lim
k→+�

[

|x|
3

·
(

k + 1

k + 2

)]

=
|x|
3

lim
k→+�

(

1 + (1/k)

1 + (2/k)

)

=
|x|
3

The ratio test for absolute convergence implies that the series converges absolutely if |x| < 3

and diverges if |x| > 3. The ratio test fails to provide any information when |x| = 3, so the

cases x = −3 and x = 3 need separate analyses. Substituting x = −3 in the given series

yields

�
∑

k=0

(−1)k(−3)k

3k(k + 1)
=

�
∑

k=0

(−1)k(−1)k3k

3k(k + 1)
=

�
∑

k=0

1

k + 1

which is the divergent harmonic series 1 + 1
2
+ 1

3
+ 1

4
+ · · ·. Substituting x = 3 in the given

series yields

�
∑

k=0

(−1)k3k

3k(k + 1)
=

�
∑

k=0

(−1)k

k + 1
= 1 −

1

2
+

1

3
−

1

4
+ · · ·

which is the conditionally convergent alternating harmonic series. Thus, the interval of

convergence for the given series is (−3, 3] and the radius of convergence is R = 3. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

POWER SERIES IN x – x0

If x0 is a constant, and if x is replaced by x −x0 in (3), then the resulting series has the form

�
∑

k=0

ck(x − x0)
k = c0 + c1(x − x0) + c2(x − x0)

2 + · · · + ck(x − x0)
k + · · ·
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This is called a power series in x – x0. Some examples are

�
∑

k=0

(x − 1)k

k + 1
= 1 +

(x − 1)

2
+

(x − 1)2

3
+

(x − 1)3

4
+ · · · x0 = 1

�
∑

k=0

(−1)k(x + 3)k

k!
= 1 − (x + 3) +

(x + 3)2

2!
−

(x + 3)3

3!
+ · · · x0 = −3

The first of these is a power series in x − 1 and the second is a power series in x + 3. Note

that a power series in x is a power series in x − x0 in which x0 = 0. More generally, the

Taylor series

�
∑

k=0

f (k)(x0)

k!
(x − x0)

k

is a power series in x − x0.

The main result on convergence of a power series in x−x0 can be obtained by substituting

x − x0 for x in Theorem 10.8.2. This leads to the following theorem.

10.8.3 THEOREM. For a power series
∑

ck(x − x0)
k, exactly one of the following

statements is true:

(a) The series converges only for x = x0.

(b) The series converges absolutely (and hence converges) for all real values of x.

(c) The series converges absolutely (and hence converges) for all x in some finite open

interval (x0 −R, x0 +R) and diverges if x < x0 −R or x > x0 +R. At either of the

values x = x0 − R or x = x0 + R, the series may converge absolutely, converge

conditionally, or diverge, depending on the particular series.

It follows from this theorem that the set of values for which a power series in x − x0

converges is always an interval centered at x = x0; we call this the interval of convergence

(Figure 10.8.2). In part (a) of Theorem 10.8.3 the interval of convergence reduces to the

single value x = x0, in which case we say that the series has radius of convergence R = 0; in

part (b) the interval of convergence is infinite (the entire real line), in which case we say that

the series has radius of convergence R = +∞; and in part (c) the interval extends between

x0 − R and x0 + R, in which case we say that the series has radius of convergence R.

Diverges Diverges

Converges

ConvergesDiverges Diverges

x0

x0

x0

x0 – R x0 + R

Radius of convergence R = +∞ 

Radius of convergence R = 0 

Radius of convergence R

Figure 10.8.2

Example 4 Find the interval of convergence and radius of convergence of the series

�
∑

k=1

(x − 5)k

k2
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Solution. We apply the ratio test for absolute convergence.

ρ = lim
k→+�

∣

∣

∣

∣

uk+1

uk

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

(x − 5)k+1

(k + 1)2
·

k2

(x − 5)k

∣

∣

∣

∣

= lim
k→+�

[

|x − 5|
(

k

k + 1

)2
]

= |x − 5| lim
k→+�

(

1

1 + (1/k)

)2

= |x − 5|

Thus, the series converges absolutely if |x − 5| < 1, or −1 < x − 5 < 1, or 4 < x < 6.

The series diverges if x < 4 or x > 6.

To determine the convergence behavior at the endpoints x = 4 and x = 6, we substitute

these values in the given series. If x = 6, the series becomes

�
∑

k=1

1k

k2
=

�
∑

k=1

1

k2
= 1 +

1

22
+

1

32
+

1

42
+ · · ·

which is a convergent p-series (p = 2). If x = 4, the series becomes

�
∑

k=1

(−1)k

k2
= −1 +

1

22
−

1

32
+

1

42
− · · ·

Since this series converges absolutely, the interval of convergence for the given series is

[4, 6]. The radius of convergence is R = 1 (Figure 10.8.3). ◭

Series converges absolutelySeries diverges Series diverges

x0 = 5
R = 1 R = 1

4 6

Figure 10.8.3

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. It will always be a waste of time to test for convergence at the endpoints

of the interval of convergence using the ratio test, since ρ will always be 1 at those points

if ρ = lim
n→+�

|an+1/an| exists. Explain why this must be so.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FUNCTIONS DEFINED BY POWER
SERIES

If a function f is expressed as a power series on some interval, then we say that f is

represented by the power series on that interval. For example, we saw in Example 4 of

Section 10.4 that

1

1 − x
= 1 + x + x2 + · · · + xk + · · ·

so that this power series represents the function 1/(1 − x) on the interval −1 < x < 1.

Sometimes new functions actually originate as power series, and the properties of the

functions are developed by working with their power series representations. For example,

the functions

J0(x) =
�

∑

k=0

(−1)kx2k

22k(k!)2
= 1 −

x2

22(1!)2
+

x4

24(2!)2
−

x6

26(3!)2
+ · · · (4)

and

J1(x) =
�

∑

k=0

(−1)kx2k+1

22k+1(k!)(k + 1)!
=

x

2
−

x3

23(1!)(2!)
+

x5

25(2!)(3!)
− · · · (5)

which are called Bessel functions in honor of the German mathematician and astronomer
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Friedrich Wilhelm Bessel (1784–1846), arise naturally in the study of planetary motion and

in various problems that involve heat flow.

To find the domains of these functions, we must determine where their defining power

series converge. For example, in the case J0(x) we have

ρ = lim
k→+�

∣

∣

∣

∣

uk+1

uk

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

x2(k+1)

22(k+1)[(k + 1)!]2
·

22k(k!)2

x2k

∣

∣

∣

∣

= lim
k→+�

∣

∣

∣

∣

x2

4(k + 1)2

∣

∣

∣

∣

= 0 < 1

so that the series converges for all x; that is, the domain of J0(x) is (−�,+�). We leave it

as an exercise to show that the power series for J1(x) also converges for all x.

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Many CAS programs have the Bessel functions as part of their libraries.

If you have a CAS, read the documentation to determine whether it can graph J0(x) and

J1(x); if so, generate the graphs shown in Figure 10.8.4.

-15 -10 -5 5 10 15

-1

1

x

y

-15 -10 -5 5 10 15

-1

1

x

y

y = J0(x)

y = J1(x)

Figure 10.8.4

EXERCISE SET 10.8 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–10, find the Maclaurin series for the function

in sigma notation.

1. e−x 2. eax 3. cosπx 4. sinπx

5. ln(1 + x) 6.
1

1 + x
7. cosh x

8. sinh x 9. x sin x 10. xex

In Exercises 11–18, use sigma notation to write the Taylor

series about x = x0 for the given function.

11. ex ; x0 = 1 12. e−x ; x0 = ln 2

13.
1

x
; x0 = −1 14.

1

x + 2
; x0 = 3

15. sinπx; x0 =
1

2
16. cos x; x0 =

π

2

17. ln x; x0 = 1 18. ln x; x0 = e

In Exercises 19–22, find the interval of convergence of the

power series, and find a familiar function that is represented

by the power series on that interval.

19. 1 − x + x2 − x3 + · · · + (−1)kxk + · · ·

20. 1 + x2 + x4 + · · · + x2k + · · ·

21. 1 + (x − 2) + (x − 2)2 + · · · + (x − 2)k + · · ·

22. 1−(x+3)+(x+3)2 −(x+3)3 +· · ·+(−1)k(x+3)k +· · ·

23. Suppose that the function f is represented by the power

series

f(x) = 1 −
x

2
+

x2

4
−

x3

8
+ · · · + (−1)k

xk

2k
+ · · ·

(a) Find the domain of f . (b) Find f(0) and f(1).

24. Suppose that the function f is represented by the power

series

f(x) = 1 −
x − 5

3
+

(x − 5)2

32
−

(x − 5)3

33
+ · · ·

(a) Find the domain of f .

(b) Find f(3) and f(6).

In Exercises 25–48, find the radius of convergence and the

interval of convergence.

25.
�

∑

k=0

xk

k + 1
26.

�
∑

k=0

3kxk 27.
�

∑

k=0

(−1)kxk

k!

28.
�

∑

k=0

k!

2k
xk 29.

�
∑

k=1

5k

k2
xk 30.

�
∑

k=2

xk

ln k

31.
�

∑

k=1

xk

k(k + 1)
32.

�
∑

k=0

(−2)kxk+1

k + 1

33.
�

∑

k=1

(−1)k−1 xk

√
k

34.
�

∑

k=0

(−1)kx2k

(2k)!

35.
�

∑

k=0

(−1)k
x2k+1

(2k + 1)!
36.

�
∑

k=1

(−1)k
x3k

k3/2

37.
�

∑

k=0

3k

k!
xk 38.

�
∑

k=2

(−1)k+1 xk

k(ln k)2

39.
�

∑

k=0

xk

1 + k2
40.

�
∑

k=0

(x − 3)k

2k

41.
�

∑

k=1

(−1)k+1 (x + 1)k

k
42.

�
∑

k=0

(−1)k
(x − 4)k

(k + 1)2

43.
�

∑

k=0

(

3

4

)k

(x + 5)k 44.
�

∑

k=1

(2k + 1)!

k3
(x − 2)k
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45.
�

∑

k=1

(−1)k
(x + 1)2k+1

k2 + 4
46.

�
∑

k=1

(ln k)(x − 3)k

k

47.
�

∑

k=0

πk(x − 1)2k

(2k + 1)!
48.

�
∑

k=0

(2x − 3)k

42k

49. Use the root test to find the interval of convergence of
�

∑

k=2

xk

(ln k)k

50. Find the domain of the function

f(x) =
�

∑

k=1

1 · 3 · 5 · · · (2k − 1)

(2k − 2)!
xk

51. If a function f is represented by a power series on an in-

terval, then the graphs of the partial sums can be used as

approximations to the graph of f .

(a) Use a graphing utility to generate the graph of 1/(1−x)

together with the graphs of the first four partial sums of

its Maclaurin series over the interval (−1, 1).

(b) In general terms, where are the graphs of the partial

sums the most accurate?

52. Show that the power series representation of the Bessel func-

tion J1(x) converges for all x [Formula (5)].

53. Show that if p is a positive integer, then the power series
�

∑

k=0

(pk)!

(k!)p
xk

has a radius of convergence of 1/pp.

54. Show that if p and q are positive integers, then the power

series
�

∑

k=0

(k + p)!

k!(k + q)!
xk

has a radius of convergence of +�.

55. (a) Suppose that the power series
∑

ck(x−x0)
k has radius

of convergenceR andp is a nonzero constant. What can

you say about the radius of convergence of the power

series
∑

pck(x − x0)
k? Explain your reasoning. [Hint:

See Theorem 10.5.3.]

(b) Suppose that the power series
∑

ck(x − x0)
k has a

finite radius of convergence R, and the power series
∑

dk(x − x0)
k has a radius of convergence of +�.

What can you say about the radius of convergence of
∑

(ck + dk)(x − x0)
k? Explain your reasoning.

(c) Suppose that the power series
∑

ck(x − x0)
k has a

finite radius of convergence R1 and the power series
∑

dk(x − x0)
k has a finite radius of convergence R2.

What can you say about the radius of convergence of
∑

(ck + dk)(x − x0)
k? Explain your reasoning.

56. Prove: If limk→+�
|ck|1/k = L, where L �= 0, then 1/L is

the radius of convergence of the power series
∑

�

k=0 ckx
k .

57. Prove: If the power series
∑

�

k=0 ckx
k has radius of conver-

gence R, then the series
∑

�

k=0 ckx
2k has radius of conver-

gence
√
R.

58. Prove: If the interval of convergence of the series
∑

�

k=0 ck(x − x0)
k is (x0 − R, x0 + R], then the series con-

verges conditionally at x0 + R.

10.9 CONVERGENCE OF TAYLOR SERIES; COMPUTATIONAL
METHODS

In the last section we introduced power series and intervals of convergence for power

series. In this section we focus in particular on Taylor series, and we demonstrate the

use of the Remainder Estimation Theorem from Section 10.1 as a tool to determine

whether the Taylor series of a function converges to the function on some interval. We

will also show how Taylor series can be used to approximate values of trigonometric,

exponential, and logarithmic functions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE nTH REMAINDER
Recall that the nth Taylor polynomial for a function f about x = x0 has the property that

its value and the values of its first n derivatives match those of f at x0. As n increases, more

and more derivatives match up, so it is reasonable to hope that for values of x near x0 the

values of the Taylor polynomials might converge to the value of f(x); that is,

n
∑

k=0

f (k)(x0)

k!
(x − x0)

k →f(x) as n→+� (1)

However, the nth Taylor polynomial for f is the nth partial sum of the Taylor series for f ,

so (1) is equivalent to stating that the Taylor series for f converges at x, and its sum is f(x).

Thus, we are led to consider the following problem.
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10.9.1 PROBLEM. Given a function f that has derivatives of all orders at x = x0,

determine whether there is an open interval containing x0 such that f(x) is the sum of

its Taylor series about x = x0 at each number in the interval; that is,

f(x) =
�

∑

k=0

f (k)(x0)

k!
(x − x0)

k (2)

for all values of x in the interval.

• FOR THE READER. Show that (2) holds at x = x0, regardless of the function f .

To determine whether (2) holds on some open interval containing x0, recall the nth

remainder for f about x = x0 as given in Formula (13) of Section 10.1,

Rn(x) = f(x) − pn(x) = f(x) −
n

∑

k=0

f (k)(x0)

k!
(x − x0)

k (3)

where pn(x) is the nth Taylor polynomial for f about x = x0.

One can think of Rn(x) as the error that results at the domain value x when f is approx-

imated by pn(x). Thus, for a particular value of x, if pn(x) converges to f(x) as n→+�,

the error Rn(x) must approach 0; conversely, if Rn(x) → 0 as n → +�, then the Taylor

polynomials converge to f at x. More precisely:

10.9.2 THEOREM. The equality

f(x) =
�

∑

k=0

f (k)(x0)

k!
(x − x0)

k

holds at a number x if and only if lim
n→+�

Rn(x) = 0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ESTIMATING THE nTH REMAINDER
It is relatively rare that one can prove directly that Rn(x) → 0 as n → +�. Usually, this

is proved indirectly by finding appropriate bounds on |Rn(x)| and applying the Squeezing

Theorem for Sequences. The Remainder Estimation Theorem (Theorem 10.1.4) provides a

useful bound for this purpose. Recall that this theorem asserts that if M is an upper bound

for |f (n+1)(x)| on an interval I containing x0, then

|Rn(x)| ≤
M

(n + 1)!
|x − x0|n+1 (4)

for all x in I .

The following example illustrates how the Remainder Estimation Theorem is applied.

Example 1 Show that the Maclaurin series for cos x converges to cos x for all x; that is,

cos x =
�

∑

k=0

(−1)k
x2k

(2k)!
= 1 −

x2

2!
+

x4

4!
−

x6

6!
+ · · · (−� < x < +�)

Solution. From Theorem 10.9.2 we must show that Rn(x)→0 for all x as n→+�. For

this purpose let f(x) = cos x, so that for all x we have

f (n+1)(x) = ± cos x or f (n+1)(x) = ± sin x

In all cases we have

|f (n+1)(x)| ≤ 1
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so we can apply (4) with M = 1 and x0 = 0 to conclude that

0 ≤ |Rn(x)| ≤
|x|n+1

(n + 1)!
(5)

However, it follows from Formula (5) of Section 10.3 with n + 1 in place of n and |x| in

place of x that

lim
n→+�

|x|n+1

(n + 1)!
= 0 (6)

Thus, it follows from (5) and the Squeezing Theorem for Sequences (Theorem 10.2.5) that

|Rn(x)|→0 as n→+�; this implies that Rn(x)→0 as n→+� by Theorem 10.2.6. Since

this is true for all x, we have proved that the Maclaurin series for cos x converges to cos x

for all x. This is illustrated in Figure 10.9.1, where we can see how successive partial sums

approximate the cosine curve more and more closely. ◭

1 2 3 4 5 6 7 8 9

-2

-1

1

2

x

y

p
4

p
2

p
6

p
10

p
14

p
18

p
8

p
12

p
16

y = cos x

p
2n

 =        (–1)k

k = 0

n
x2k

(2k)!

Figure 10.9.1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The method used in Example 1 can be easily modified to prove that the Taylor

series for cos x about any value x = x0 converges to cos x for all x, and similarly that the

Taylor series for sin x about any value x = x0 converges to sin x for all x (Exercises 21

and 22). For reference, there is a list of some of the most important Maclaurin series in

Table 10.9.1 at the end of this section.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING TRIGONOMETRIC
FUNCTIONS

In general, to approximate the value of a function f at a number x using a Taylor series,

there are two basic questions that must be answered:

• About what domain value x0 should the Taylor series be expanded?

• How many terms in the series should be used to achieve the desired accuracy?

In response to the first question, x0 needs to be a number at which the derivatives of f can

be evaluated easily, since these values are needed for the coefficients in the Taylor series.

Furthermore, if the function f is being evaluated at x, then x0 should be chosen as close

as possible to x, since Taylor series tend to converge more rapidly near x0. For example,

to approximate sin 3◦ (= π/60 radians), it would be reasonable to take x0 = 0, since π/60

is close to 0 and the derivatives of sin x are easy to evaluate at 0. On the other hand, to

approximate sin 85◦ (= 17π/36 radians), it would be more natural to take x0 = π/2, since

17π/36 is close to π/2 and the derivatives of sin x are easy to evaluate at π/2.

In response to the second question posed above, the number of terms required to achieve a

specific accuracy needs to be determined on a problem-by-problem basis. The next example

gives two methods for doing this.
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Example 2 Use the Maclaurin series for sin x to approximate sin 3◦ to five decimal-place

accuracy.

Solution. In the Maclaurin series

sin x =
�

∑

k=0

(−1)k
x2k+1

(2k + 1)!
= x −

x3

3!
+

x5

5!
−

x7

7!
+ · · · (7)

the angle x is assumed to be in radians (because the differentiation formulas for the trigono-

metric functions were derived with this assumption). Since 3◦ = π/60 radians, it follows

from (7) that

sin 3◦ = sin
π

60
=

( π

60

)

−
(π/60)3

3!
+

(π/60)5

5!
−

(π/60)7

7!
+ · · · (8)

We must now determine how many terms in the series are required to achieve five decimal-

place accuracy. We will consider two possible approaches, one using the Remainder Estima-

tion Theorem (Theorem 10.1.4) and the other using the fact that (8) satisfies the hypotheses

of the alternating series test (Theorem 10.7.1).

Method 1 (The Remainder Estimation Theorem). Since we want to achieve five

decimal-place accuracy, our goal is to choosen so that the absolute value of thenth remainder

at x = π/60 does not exceed 0.000005 = 5 × 10−6; that is,
∣

∣

∣
Rn

( π

60

)
∣

∣

∣
≤ 0.000005 (9)

However, if we let f(x) = sin x, then f (n+1)(x) is either ± sin x or ± cos x, and in either

case |f (n+1)(x)| ≤ 1 for all x. Thus, it follows from the Remainder Estimation Theorem

with M = 1, x0 = 0, and x = π/60 that

∣

∣

∣
Rn

( π

60

)
∣

∣

∣
≤

|π/60|n+1

(n + 1)!

Thus, we can satisfy (9) by choosing n so that

|π/60|n+1

(n + 1)!
≤ 0.000005

With the help of a calculating utility you can verify that the smallest value of n that meets

this criterion is n = 3. Thus, to achieve five decimal-place accuracy we need only keep

terms up to the third power in (8). This yields

sin 3◦ ≈
( π

60

)

−
(π/60)3

3!
≈ 0.05234 (10)

(verify). As a check, a calculator gives sin 3◦ ≈ 0.05233595624, which agrees with (10)

when rounded to five decimal places.

Method 2 (The Alternating Series Test). We leave it for you to check that (8) satisfies

the hypotheses of the alternating series test (Theorem 10.7.1).

Let sn denote the sum of the terms in (8) up to and including the nth power of π/60. Since

the exponents in the series are odd integers, the integer n must be odd, and the exponent of

the first term not included in the sum sn must be n + 2. Thus, it follows from part (b) of

Theorem 10.7.2 that

|sin 3◦ − sn| <
(π/60)n+2

(n + 2)!

This means that for five decimal-place accuracy we must look for the first positive odd

integer n such that

(π/60)n+2

(n + 2)!
≤ 0.000005
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With the help of a calculating utility you can verify that the smallest value of n that meets

this criterion is n = 3. This agrees with the result obtained above using the Remainder

Estimation Theorem and hence leads to approximation (10) as before. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ROUNDOFF AND TRUNCATION
ERROR

There are two types of errors that occur when computing with series. The first, called

truncation error, is the error that results when a series is approximated by a partial sum; and

the second, called roundoff error, is the error that arises from approximations in numerical

computations. For example, in our derivation of (10) we took n = 3 to keep the truncation

error below 0.000005. However, to evaluate the partial sum we had to approximateπ, thereby

introducing roundoff error. Had we not exercised some care in choosing this approximation,

the roundoff error could easily have degraded the final result.

Methods for estimating and controlling roundoff error are studied in a branch of mathe-

matics called numerical analysis. However, as a rule of thumb, to achieve n decimal-place

accuracy in a final result, all intermediate calculations must be accurate to at least n + 1

decimal places. Thus, in (10) at least six decimal-place accuracy in π is required to achieve

the five decimal-place accuracy in the final numerical result. As a practical matter, a good

working procedure is to perform all intermediate computations with the maximum number

of digits that your calculating utility can handle and then round at the end.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING EXPONENTIAL
FUNCTIONS

Example 3 Show that the Maclaurin series for ex converges to ex for all x; that is,

ex =
�

∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ · · · +

xk

k!
+ · · · (−� < x < +�)

Solution. Let f(x) = ex , so that

f (n+1)(x) = ex

We want to show that Rn(x) → 0 as n → +� for all x in the interval −� < x < +�.

However, it will be helpful here to consider the cases x ≤ 0 and x > 0 separately. If x ≤ 0,

then we will take the interval I in the Remainder Estimation Theorem (Theorem 10.1.4)

to be [x, 0], and if x > 0, then we will take it to be [0, x]. Since f (n+1)(x) = ex is an

increasing function, it follows that if c is in the interval [x, 0], then

|f (n+1)(c)| ≤ |f (n+1)(0)| = e0 = 1

and if c is in the interval [0, x], then

|f (n+1)(c)| ≤ |f (n+1)(x)| = ex

Thus, we can apply Theorem 10.1.4 with M = 1 in the case where x ≤ 0 and with M = ex

in the case where x > 0. This yields

0 ≤ |Rn(x)| ≤
|x|n+1

(n + 1)!
if x ≤ 0

0 ≤ |Rn(x)| ≤ ex
|x|n+1

(n + 1)!
if x > 0

Thus, in both cases it follows from (6) and the Squeezing Theorem for Sequences that

|Rn(x)|→0 as n→+�, which in turn implies that Rn(x)→0 as n→+�. Since this is true

for all x, we have proved that the Maclaurin series for ex converges to ex for all x. ◭

Since the Maclaurin series for ex converges to ex for all x, we can use partial sums of the

Maclaurin series to approximate powers of e to arbitrary precision. Recall that in Example

6 of Section 10.1 we were able to use the Remainder Estimation Theorem to determine that

evaluating the ninth Maclaurin polynomial for ex at x = 1 yields an approximation for e

with five decimal-place accuracy:

e ≈ 1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+

1

9!
≈ 2.71828
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING LOGARITHMS
The Maclaurin series

ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ · · · (−1 < x ≤ 1) (11)

is the starting point for the approximation of natural logarithms. Unfortunately, the useful-

ness of this series is limited because of its slow convergence and the restriction −1 < x ≤ 1.

However, if we replace x by −x in this series, we obtain

ln(1 − x) = −x −
x2

2
−

x3

3
−

x4

4
− · · · (−1 ≤ x < 1) (12)

and on subtracting (12) from (11) we obtain

ln

(

1 + x

1 − x

)

= 2

(

x +
x3

3
+

x5

5
+

x7

7
+ · · ·

)

(−1 < x < 1) (13)

Series (13), first obtained by James Gregory
∗

in 1668, can be used to compute the natural

logarithm of any positive number y by letting

y =
1 + x

1 − x

or, equivalently,

x =
y − 1

y + 1
(14)

and noting that −1 < x < 1. For example, to compute ln 2 we let y = 2 in (14), which

yields x = 1
3
. Substituting this value in (13) gives

ln 2 = 2

[

1

3
+

(

1
3

)3

3
+

(

1
3

)5

5
+

(

1
3

)7

7
+ · · ·

]

(15)

In Exercise 19 we will ask you to show that five decimal-place accuracy can be achieved

using the partial sum with terms up to and including the 13th power of 1
3
. Thus, to five

decimal-place accuracy

ln 2 ≈ 2

[

1

3
+

(

1
3

)3

3
+

(

1
3

)5

5
+

(

1
3

)7

7
+ · · · +

(

1
3

)13

13

]

≈ 0.69315

(verify). As a check, a calculator gives ln 2 ≈ 0.69314718056, which agrees with the pre-

ceding approximation when rounded to five decimal places.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In Example 2 of Section 10.7, we stated without proof that

ln 2 = 1 −
1

2
+

1

3
−

1

4
+

1

5
− · · ·

This result can be obtained letting x = 1 in (11). However, this series converges too slowly

to be of practical value.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPROXIMATING π

In the next section we will show that

tan−1 x = x −
x3

3
+

x5

5
−

x7

7
+ · · · (−1 ≤ x ≤ 1) (16)

Letting x = 1, we obtain

π

4
= tan−1 1 = 1 −

1

3
+

1

5
−

1

7
+ · · ·

∗
JAMES GREGORY (1638–1675). Scottish mathematician and astronomer. Gregory, the son of a minister, was

famous in his time as the inventor of the Gregorian reflecting telescope, so named in his honor. Although he is not

generally ranked with the great mathematicians, much of his work relating to calculus was studied by Leibniz and

Newton and undoubtedly influenced some of their discoveries. There is a manuscript, discovered posthumously,

which shows that Gregory had anticipated Taylor series well before Taylor.
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or

π = 4

[

1 −
1

3
+

1

5
−

1

7
+ · · ·

]

This famous series, obtained by Leibniz in 1674, converges too slowly to be of computational

value. A more practical procedure for approximating π uses the identity

π

4
= tan−1 1

2
+ tan−1 1

3
(17)

which was derived in Exercise 79 of Section 7.6. By using this identity and series (16)

to approximate tan−1 1
2

and tan−1 1
3
, the value of π can be approximated efficiently to any

degree of accuracy.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

BINOMIAL SERIES
If m is a real number, then the Maclaurin series for (1 + x)m is called the binomial series;

it is given by (verify)

1 +mx +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3 + · · · +

m(m − 1) · · · (m − k + 1)

k!
xk + · · ·

In the case where m is a nonnegative integer, the function f(x) = (1 + x)m is a polynomial

of degree m, so

f (m+1)(0) = f (m+2)(0) = f (m+3)(0) = · · · = 0

and the binomial series reduces to the familiar binomial expansion

(1 + x)m = 1 + mx +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3 + · · · + xm

which is valid for −� < x < +�.

It can be proved that if m is not a nonnegative integer, then the binomial series converges

to (1 + x)m if |x| < 1. Thus, for such values of x

(1 + x)m = 1 + mx +
m(m − 1)

2!
x2 + · · · +

m(m − 1) · · · (m − k + 1)

k!
xk + · · · (18)

or in sigma notation,

(1 + x)m = 1 +
�

∑

k=1

m(m − 1) · · · (m − k + 1)

k!
xk if |x| < 1 (19)

Example 4 Find binomial series for

(a)
1

(1 + x)2
(b)

1
√

1 + x

Solution (a). Since the general term of the binomial series is complicated, you may find

it helpful to write out some of the beginning terms of the series, as in Formula (18), to see

developing patterns. Substituting m = −2 in this formula yields

1

(1 + x)2
= (1 + x)−2 = 1 + (−2)x +

(−2)(−3)

2!
x2

+
(−2)(−3)(−4)

3!
x3 +

(−2)(−3)(−4)(−5)

4!
x4 + · · ·

= 1 − 2x +
3!

2!
x2 −

4!

3!
x3 +

5!

4!
x4 + · · ·

= 1 − 2x + 3x2 − 4x3 + 5x4 + · · ·

=
�

∑

k=0

(−1)k(k + 1)xk
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Solution (b). Substituting m = − 1
2

in (18) yields

1
√

1 + x
= 1 −

1

2
x +

(

− 1
2

) (

− 1
2

− 1
)

2!
x2 +

(

− 1
2

) (

− 1
2

− 1
) (

− 1
2

− 2
)

3!
x3 − · · ·

= 1 −
1

2
x +

1 · 3

22 · 2!
x2 −

1 · 3 · 5

23 · 3!
x3 + · · ·

= 1 +
�

∑

k=1

(−1)k
1 · 3 · 5 · · · (2k − 1)

2kk!
xk

◭

For reference, Table 10.9.1 lists the Maclaurin series for some of the most important

functions, together with a specification of the intervals over which the Maclaurin series

converge to those functions. Some of these results are derived in the exercises and others

will be derived in the next section using some special techniques that we will develop.

Table 10.9.1

ex =             = 1 + x +       +       +       + . . .

interval of

convergencemaclaurin series

1
1 – x

k=0

 =         xk = 1 + x + x2 + x3 + . . .

xk

k!

 x2

2!

x3

3!

x4

4!

ln (1 + x) =       (–1)k+1
       = x –       +       –       + . . .xk

k 2 3 4

sin x =        (–1)k                 = x –       +       –       + . . .
x2k+1

(2k + 1)!
x3

3!

x5

5!

x7

7!

tan–1 x =        (–1)k              = x –       +       –       + . . .x2k+1

2k + 1

x3

3

x5

5

x7

x3 x5 x7

7

sinh x =                        = x +       +       +       + . . .
x2k+1

(2k + 1)! 3! 5! 7!

cosh x =                  = 1 +       +       +       + . . .
x2k

(2k)!

x2

2!
x4

4!
x6

6!

(1 + x)m = 1 +                                                xkm(m – 1) . . .  (m – k + 1)

k!

cos x =        (–1)k          = 1 –       +       –       + . . .
x2k

(2k)! 2! 6!4!

–1 < x < 1

–∞ < x < +∞

–∞ < x < +∞

–∞ < x < +∞

–1 < x ≤  1

–1 ≤ x ≤  1

–∞ < x < +∞

–∞ < x < +∞

–1 < x < 1*

(m ≠  0, 1, 2, . . .)

*The behavior at the endpoints depends on m:  For m > 0 the series converges absolutely at both 

endpoints; for m ≤  –1 the series diverges at both endpoints; and for –1 < m < 0 the series 

converges conditionally at x = 1 and diverges at x = –1.

 x2 x4 x6

 x2 x3 x4

1

1 + x2 
k=0

 =         (–1)kx2k = 1 – x2 + x4 – x6 + . . . –1 < x < 1

k=0

k=0

k=0

k=0

k=0

k=0

k=1

k=1

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞
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EXERCISE SET 10.9 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Use both of the methods given in Example 2 to approximate

sin 4◦ to five decimal-place accuracy, and check your work

by comparing your answer to that produced directly by your

calculating utility.

2. Use both of the methods given in Example 2 to approximate

cos 3◦ to three decimal-place accuracy, and check your work

by comparing your answer to that produced directly by your

calculating utility.

3. Use the Maclaurin series for cos x to approximate cos 0.1

to five decimal-place accuracy, and check your work by

comparing your answer to that produced directly by your

calculating utility.

4. Use the Maclaurin series for tan−1 x to approximate

tan−1 0.1 to three decimal-place accuracy, and check your

work by comparing your answer to that produced directly

by your calculating utility.

5. Use an appropriate Taylor series to approximate sin 85◦ to

four decimal-place accuracy, and check your work by com-

paring your answer to that produced directly by your calcu-

lating utility.

6. Use a Taylor series to approximate cos(−175◦ ) to four

decimal-place accuracy, and check your work by comparing

your answer to that produced directly by your calculating

utility.

7. Use the Maclaurin series for sinh x to approximate sinh 0.5

to three decimal-place accuracy. Check your work by com-

puting sinh 0.5 with a calculating utility.

8. Use the Maclaurin series for cosh x to approximate cosh 0.1

to three decimal-place accuracy. Check your work by com-

puting cosh 0.1 with a calculating utility.

9. Use the Remainder Estimation Theorem and the method of

Example 1 to prove that the Taylor series for sin x about

x = π/4 converges to sin x for all x.

10. Use the Remainder Estimation Theorem and the method of

Example 3 to prove that the Taylor series for ex about x = 1

converges to ex for all x.

11. (a) Use Formula (13) in the text to find a series that con-

verges to ln 1.25.

(b) Approximate ln 1.25 using the first two terms of the se-

ries. Round your answer to three decimal places, and

compare the result to that produced directly by your

calculating utility.

12. (a) Use Formula (13) to find a series that converges to ln 3.

(b) Approximate ln 3 using the first two terms of the se-

ries. Round your answer to three decimal places, and

compare the result to that produced directly by your

calculating utility.

13. (a) Use the Maclaurin series for tan−1 x to approximate

tan−1 1
2

and tan−1 1
3

to three decimal-place accuracy.

(b) Use the results in part (a) and Formula (17) to approxi-

mate π.

(c) Would you be willing to guarantee that your answer

in part (b) is accurate to three decimal places? Explain

your reasoning.

(d) Compare your answer in part (b) to that produced by

your calculating utility.

14. Use an appropriate Taylor series for 3
√
x to approximate

3
√

28 to three decimal-place accuracy, and check your answer

by comparing it to that produced directly by your calculating

utility.

15. (a) Find an upper bound on the error that can result if cos x

is approximated by 1 − (x2/2!) + (x4/4!) over the in-

terval [−0.2, 0.2].

(b) Check your answer in part (a) by graphing
∣

∣

∣

∣

cos x −
(

1 −
x2

2!
+

x4

4!

)
∣

∣

∣

∣

over the interval.

16. (a) Find an upper bound on the error that can result if

ln(1 + x) is approximated by x over the interval

[−0.01, 0.01].

(b) Check your answer in part (a) by graphing

| ln(1 + x) − x|

over the interval.

17. Use Formula (18) for the binomial series to obtain the

Maclaurin series for

(a)
1

1 + x
(b)

3
√

1 + x (c)
1

(1 + x)3
.

18. If m is any real number, and k is a nonnegative integer, then

we define the binomial coefficient
(

m

k

)

by the formulas

(

m

0

)

= 1 and

(

m

k

)

=
m(m − 1)(m − 2) · · · (m − k + 1)

k!

for k ≥ 1. Express Formula (18) in the text in terms of

binomial coefficients.

19. In this exercise we will use the Remainder Estimation The-

orem to determine the number of terms that are required

in Formula (15) to approximate ln 2 to five decimal-place

accuracy. For this purpose let

f(x) = ln
1 + x

1 − x
= ln(1 + x) − ln(1 − x) (−1 < x < 1)

(a) Show that

f (n+1)(x) = n!

[

(−1)n

(1 + x)n+1
+

1

(1 − x)n+1

]
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(b) Use the triangle inequality [Theorem 1.2.2(d )] to show

that

|f (n+1)(x)| ≤ n!

[

1

(1 + x)n+1
+

1

(1 − x)n+1

]

(c) Since we want to achieve five decimal-place accuracy,

our goal is to choose n so that the absolute value of

the nth remainder at x = 1
3

does not exceed the value

0.000005 = 0.5 × 10−5; that is,
∣

∣Rn

(

1
3

)∣

∣ ≤ 0.000005.

Use the Remainder Estimation Theorem to show that

this condition will be satisfied if n is chosen so that

M

(n + 1)!

(

1

3

)n+1

≤ 0.000005

where |f (n+1)(x)| ≤ M on the interval
[

0, 1
3

]

.

(d) Use the result in part (b) to show that M can be taken

as

M = n!

[

1 +
1

(

2
3

)n+1

]

(e) Use the results in parts (c) and (d) to show that five

decimal-place accuracy will be achieved if n satisfies

1

n + 1

[

(

1

3

)n+1

+
(

1

2

)n+1
]

≤ 0.000005

and then show that the smallest value of n that satisfies

this condition is n = 13.

20. Use Formula (13) and the method of Exercise 19 to approxi-

mate ln
(

5
3

)

to five decimal-place accuracy. Then check your

work by comparing your answer to that produced directly

by your calculating utility.

21. Prove: The Taylor series for cos x about any value x = x0

converges to cos x for all x.

22. Prove: The Taylor series for sin x about any value x = x0

converges to sin x for all x.

C 23. (a) In 1706 the British astronomer and mathematician

John Machin discovered the following formula for π/4,

called Machin’s formula:

π

4
= 4 tan−1 1

5
− tan−1 1

239

Use a CAS to approximate π/4 using Machin’s formula

to 25 decimal places.

(b) In 1914 the brilliant Indian mathematician Srinivasa

Ramanujan (1887–1920) showed that

1

π
=

√
8

9801

�
∑

k=0

(4k)!(1103 + 26,390k)

(k!)43964k

Use a CAS to compute the first four partial sums in

Ramanujan’s formula.

24. The purpose of this exercise is to show that the Taylor series

of a function f may possibly converge to a value different

from f(x) for certain x. Let

f(x) =

{

e−1/x2

, x �= 0

0, x = 0

(a) Use the definition of a derivative to show thatf ′(0) = 0.

(b) With some difficulty it can be shown that f (n)(0) = 0

for n ≥ 2. Accepting this fact, show that the Maclaurin

series of f converges for all x, but converges to f(x)

only at x = 0.

10.10 DIFFERENTIATING AND INTEGRATING POWER SERIES;
MODELING WITH TAYLOR SERIES

In this section we will discuss methods for finding power series for derivatives and

integrals of functions, and we will discuss some practical methods for finding Taylor

series that can be used in situations where it is difficult or impossible to find the series

directly.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIFFERENTIATING POWER SERIES
We begin by considering the following problem:

10.10.1 PROBLEM. Suppose that a function f is represented by a power series on

an open interval. How can we use the power series to find the derivative of f on that

interval?

The solution to this problem can be motivated by considering the Maclaurin series for

sin x:

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · (−� < x < +�)

Of course, we already know that the derivative of sin x is cos x; however, we are concerned

here with using the Maclaurin series to deduce this. The solution is easy—all we need to
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do is differentiate the Maclaurin series term by term and observe that the resulting series is

the Maclaurin series for cos x:

d

dx

[

x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

]

= 1 − 3
x2

3!
+ 5

x4

5!
− 7

x6

7!
+ · · ·

= 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · · = cos x

Here is another example.

d

dx
[ex] =

d

dx

[

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

]

= 1 + 2
x

2!
+ 3

x2

3!
+ 4

x3

4!
+ · · · = 1 + x +

x2

2!
+

x3

3!
+ · · · = ex

• FOR THE READER. See whether you can use this method to find the derivative of cos x.

The preceding computations suggest that if a function f is represented by a power series

on an open interval, then a power series representation of f ′ on that interval can be obtained

by differentiating the power series for f term by term. This is stated more precisely in the

following theorem, which we give without proof.

10.10.2 THEOREM (Differentiation of Power Series). Suppose that a function f is repre-

sented by a power series in x − x0 that has a nonzero radius of convergence R; that

is,

f(x) =
�

∑

k=0

ck(x − x0)
k (x0 − R < x < x0 + R)

Then:

(a) The function f is differentiable on the interval (x0 − R, x0 + R).

(b) If the power series representation for f is differentiated term by term, then the

resulting series has radius of convergence R and converges to f ′ on the interval

(x0 − R, x0 + R); that is,

f ′(x) =
�

∑

k=0

d

dx
[ck(x − x0)

k] (x0 − R < x < x0 + R)

This theorem has an important implication about the differentiability of functions that

are represented by power series. According to the theorem, the power series for f ′ has the

same radius of convergence as the power series for f , and this means that the theorem

can be applied to f ′ as well as f . However, if we do this, then we conclude that f ′ is

differentiable on the interval (x0 − R, x0 + R), and the power series for f ′′ has the same

radius of convergence as the power series for f and f ′. We can now repeat this process ad

infinitum, applying the theorem successively to f ′′, f ′′′, . . . , f (n), . . . to conclude that f

has derivatives of all orders on the interval (x0 −R, x0 +R). Thus, we have established the

following result.

10.10.3 THEOREM. If a function f can be represented by a power series in x − x0

with a nonzero radius of convergence R, then f has derivatives of all orders on the

interval (x0 − R, x0 + R).

In short, it is only the most “well-behaved” functions that can be represented by power

series; that is, if a function f does not possess derivatives of all orders on an interval

(x0 −R, x0 +R), then it cannot be represented by a power series in x − x0 on that interval.
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Example 1 In Section 10.8, we showed that the Bessel function J0(x) is represented by

the power series

J0(x) =
�

∑

k=0

(−1)kx2k

22k(k!)2
(1)

with radius of convergence +� [see Formula (4) of that section and the related discussion].

Thus, J0(x) has derivatives of all orders on the interval (−�,+�), and these can be obtained

by differentiating the series term by term. For example, if we write (1) as

J0(x) = 1 +
�

∑

k=1

(−1)kx2k

22k(k!)2

and differentiate term by term, we obtain

J ′
0(x) =

�
∑

k=1

(−1)k(2k)x2k−1

22k(k!)2
=

�
∑

k=1

(−1)kx2k−1

22k−1k!(k − 1)!
◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The computations in this example use some techniques that are worth noting.

First, when a power series is expressed in sigma notation, the formula for the general term

of the series will often not be of a form that can be used for differentiating the constant

term. Thus, if the series has a nonzero constant term, as here, it is usually a good idea to

split it off from the summation before differentiating. Second, observe how we simplified

the final formula by canceling the factor k from one of the factorials in the denominator.

This is a standard simplification technique.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATING POWER SERIES
Since the derivative of a function that is represented by a power series can be obtained by

differentiating the series term by term, it should not be surprising that an antiderivative of

a function represented by a power series can be obtained by integrating the series term by

term. For example, we know that sin x is an antiderivative of cos x. Here is how this result

can be obtained by integrating the Maclaurin series for cos x term by term:
∫

cos x dx =
∫ [

1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·

]

dx

=
[

x −
x3

3(2!)
+

x5

5(4!)
−

x7

7(6!)
+ · · ·

]

+ C

=
[

x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

]

+ C = sin x + C

The same idea applies to definite integrals. For example, by direct integration we have
∫ 1

0

dx

1 + x2
= tan−1 x

]1

0

= tan−1 1 − tan 0 =
π

4
− 0 =

π

4

and we will show later in this section that
π

4
= 1 −

1

3
+

1

5
−

1

7
+ · · · (2)

Thus,
∫ 1

0

dx

1 + x2
= 1 −

1

3
+

1

5
−

1

7
+ · · ·

Here is how this result can be obtained by integrating the Maclaurin series for 1/(1 + x2)

term by term (see Table 10.9.1):
∫ 1

0

dx

1 + x2
=

∫ 1

0

[1 − x2 + x4 − x6 + · · ·] dx

= x −
x3

3
+

x5

5
−

x7

7
+ · · ·

]1

0

= 1 −
1

3
+

1

5
−

1

7
+ · · ·

The preceding computations are justified by the following theorem, which we give with-

out proof.
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10.10.4 THEOREM (Integration of Power Series). Suppose that a function f is represented

by a power series in x − x0 that has a nonzero radius of convergence R; that is,

f(x) =
�

∑

k=0

ck(x − x0)
k (x0 − R < x < x0 + R)

(a) If the power series representation of f is integrated term by term, then the resulting

series has radius of convergence R and converges to an antiderivative for f(x) on

the interval (x0 − R, x0 + R); that is,
∫

f(x) dx =
�

∑

k=0

[

ck

k + 1
(x − x0)

k+1

]

+ C (x0 − R < x < x0 + R)

(b) If α and β are points in the interval (x0 − R, x0 + R), and if the power series

representation of f is integrated term by term from α to β, then the resulting series

converges absolutely on the interval (x0 − R, x0 + R) and

∫ β

α

f(x) dx =
�

∑

k=0

[∫ β

α

ck(x − x0)
k dx

]

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

POWER SERIES REPRESENTATIONS
MUST BE TAYLOR SERIES

For many functions it is difficult or impossible to find the derivatives that are required to

obtain a Taylor series. For example, to find the Maclaurin series for 1/(1 + x2) directly

would require some tedious derivative computations (try it). A more practical approach is

to substitute −x2 for x in the geometric series

1

1 − x
= 1 + x + x2 + x3 + x4 + · · · (−1 < x < 1)

to obtain

1

1 + x2
= 1 − x2 + x4 − x6 + x8 − · · ·

However, there are two questions of concern with this procedure:

• Where does the power series that we obtained for 1/(1 + x2) actually converge to

1/(1 + x2)?

• How do we know that the power series we have obtained is actually the Maclaurin series

for 1/(1 + x2)?

The first question is easy to resolve. Since the geometric series converges to 1/(1 − x) if

|x| < 1, the second series will converge to 1/(1 + x2) if |−x2| < 1 or |x2| < 1. However,

this is true if and only if |x| < 1, so the power series we obtained for the function 1/(1 + x2)

converges to this function if −1 < x < 1.

The second question is more difficult to answer and leads us to the following general

problem.

10.10.5 PROBLEM. Suppose that a function f is represented by a power series in

x − x0 that has a nonzero radius of convergence. What relationship exists between the

given power series and the Taylor series for f about x = x0?

The answer is that they are the same; and here is the theorem that proves it.

10.10.6 THEOREM. If a function f is represented by a power series in x − x0 on

some open interval containing x0, then that power series is the Taylor series for f about

x = x0.
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Proof. Suppose that

f(x) = c0 + c1(x − x0) + c2(x − x0)
2 + · · · + ck(x − x0)

k + · · ·

for all x in some open interval containing x0. To prove that this is the Taylor series for f

about x = x0, we must show that

ck =
f (k)(x0)

k!
for k = 0, 1, 2, 3, . . .

However, the assumption that the series converges to f(x) on an open interval containing

x0 ensures that it has a nonzero radius of convergence R; hence we can differentiate term

by term in accordance with Theorem 10.10.2. Thus,

f(x) = c0 + c1(x − x0) + c2(x − x0)
2 + c3(x − x0)

3 + c4(x − x0)
4 + · · ·

f ′(x) = c1 + 2c2(x − x0) + 3c3(x − x0)
2 + 4c4(x − x0)

3 + · · ·

f ′′(x) = 2!c2 + (3 · 2)c3(x − x0) + (4 · 3)c4(x − x0)
2 + · · ·

f ′′′(x) = 3!c3 + (4 · 3 · 2)c4(x − x0) + · · ·
...

On substituting x = x0, all the powers of x − x0 drop out, leaving

f(x0) = c0, f ′(x0) = c1, f ′′(x0) = 2!c2, f ′′′(x0) = 3!c3, . . .

from which we obtain

c0 = f(x0), c1 = f ′(x0), c2 =
f ′′(x0)

2!
, c3 =

f ′′′(x0)

3!
, . . .

which shows that the coefficients c0, c1, c2, c3, . . . are precisely the coefficients in the Taylor

series about x0 for f(x).

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. This theorem tells us that no matter how we arrive at a power series representa-

tion of a function f , be it by substitution, by differentiation, by integration, or by some sort

of algebraic manipulation, that series will be the Taylor series for f about x = x0, provided

that it converges to f on some open interval containing x0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOME PRACTICAL WAYS TO FIND
TAYLOR SERIES

Example 2 Find the Maclaurin series for tan−1 x.

Solution. It would be tedious to find the Maclaurin series directly. A better approach is

to start with the formula
∫

1

1 + x2
dx = tan−1 x + C

and integrate the Maclaurin series

1

1 + x2
= 1 − x2 + x4 − x6 + x8 − · · · (−1 < x < 1)

term by term. This yields

tan−1 x + C =
∫

1

1 + x2
dx =

∫

[1 − x2 + x4 − x6 + x8 − · · ·] dx

or

tan−1 x =
[

x −
x3

3
+

x5

5
−

x7

7
+

x9

9
− · · ·

]

− C

The constant of integration can be evaluated by substituting x = 0 and using the condition

tan−1 0 = 0. This gives C = 0, so that

tan−1 x = x −
x3

3
+

x5

5
−

x7

7
+

x9

9
− · · · (−1 < x < 1) (3)

◭
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that neither Theorem 10.10.2 nor Theorem 10.10.3 addresses what

happens at the endpoints of the interval of convergence. However, it can be proved that if the

Taylor series for f about x = x0 converges to f(x) for all x in the interval (x0 −R, x0 +R),

and if the Taylor series converges at the right endpoint x0+R, then the value that it converges

to at that point is the limit of f(x) as x → x0 + R from the left; and if the Taylor series

converges at the left endpoint x0 − R, then the value that it converges to at that point is the

limit of f(x) as x→x0 − R from the right.

For example, the Maclaurin series for tan−1 x given in (3) converges at both x = −1 and

x = 1, since the hypotheses of the alternating series test (Theorem 10.7.1) are satisfied at

those points. Thus, the continuity of tan−1 x on the interval [−1, 1] implies that at x = 1

the Maclaurin series converges to

lim
x→1−

tan−1 x = tan−1 1 =
π

4

and at x = −1 it converges to

lim
x→−1+

tan−1 x = tan−1(−1) = −
π

4

This shows that the Maclaurin series for tan−1 x actually converges to tan−1 x on the interval

−1 ≤ x ≤ 1. Moreover, the convergence at x = 1 establishes Formula (2).

Taylor series provide an alternative to Simpson’s rule and other numerical methods for

approximating definite integrals.

Example 3 Approximate the integral
∫ 1

0

e−x2

dx

to three decimal-place accuracy by expanding the integrand in a Maclaurin series and inte-

grating term by term.

Solution. The simplest way to obtain the Maclaurin series for e−x2

is to replace x by −x2

in the Maclaurin series

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

to obtain

e−x2 = 1 − x2 +
x4

2!
−

x6

3!
+

x8

4!
− · · ·

Therefore,

∫ 1

0

e−x2

dx =
∫ 1

0

[

1 − x2 +
x4

2!
−

x6

3!
+

x8

4!
− · · ·

]

dx

=
[

x −
x3

3
+

x5

5(2!)
−

x7

7(3!)
+

x9

9(4!)
− · · ·

]1

0

= 1 −
1

3
+

1

5 · 2!
−

1

7 · 3!
+

1

9 · 4!
− · · ·

=
�

∑

k=0

(−1)k

(2k + 1)k!

Since this series clearly satisfies the hypotheses of the alternating series test (Theorem

10.7.1), it follows from Theorem 10.7.2 that if we approximate the integral by sn (the nth
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partial sum of the series), then
∣

∣

∣

∣

∫ 1

0

e−x2

dx − sn

∣

∣

∣

∣

<
1

[2(n + 1) + 1](n + 1)!
=

1

(2n + 3)(n + 1)!

Thus, for three decimal-place accuracy we must choose n such that

1

(2n + 3)(n + 1)!
≤ 0.0005 = 5 × 10−4

With the help of a calculating utility you can show that the smallest value of n that satisfies

this condition is n = 5. Thus, the value of the integral to three decimal-place accuracy is
∫ 1

0

e−x2

dx ≈ 1 −
1

3
+

1

5 · 2!
−

1

7 · 3!
+

1

9 · 4!
−

1

11 · 5!
≈ 0.747

As a check, a calculator with a built-in numerical integration capability produced the approx-

imation 0.746824, which agrees with our result when rounded to three decimal places. ◭

•
•
•
•
•
•
•
•

FOR THE READER. What advantages does the method in this example have over Simpson’s

rule? What are its disadvantages?

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FINDING MACLAURIN SERIES BY
MULTIPLICATION AND DIVISION

The following examples illustrate some algebraic techniques that are sometimes useful for

finding Taylor series.

Example 4 Find the first three nonzero terms in the Maclaurin series for the function

f(x)= e−x2

tan−1 x.x4

2
1 – x2 +       – . . .

x5

5

x3

3
x –      +       – . . .

x5

2
x – x3 +       – . . .

3

4

30

31x –    x3 +     x5 – . . .

x5

3

x7

6

x3

3
   –      +       –       + . . .

x5

5

x7

5
      –       + . . .

×

2x5

15

2x5

15

x3

3
x +      +        + . . .

x5

120

x3

6
x –      +        – . . .

x5

24

x3

2
x –      +       – . . .

x5

30

x3

3
      –       + . . .

x5

6

x3

3
      –       + . . .

+ . . .

x4

24

x2

2
1 –      +       – . . .

Solution. Using the series for e−x2

and tan−1 x obtained in Examples 2 and 3 gives

e−x2

tan−1 x =
(

1 − x2 +
x4

2
− · · ·

) (

x −
x3

3
+

x5

5
− · · ·

)

Multiplying, as shown in the margin, we obtain

e−x2

tan−1 x = x −
4

3
x3 +

31

30
x5 − · · ·

More terms in the series can be obtained by including more terms in the factors. Moreover,

one can prove that a series obtained by this method converges at each point in the intersection

of the intervals of convergence of the factors (and possibly on a larger interval). Thus, we

can be certain that the series we have obtained converges for all x in the interval −1 ≤ x ≤ 1

(why?). ◭

•
•
•
•
•
•
•
•

FOR THE READER. If you have a CAS, read the documentation about multiplying poly-

nomials, and then use the CAS to duplicate the result in the last example.

Example 5 Find the first three nonzero terms in the Maclaurin series for tan x.

Solution. Using the first three terms in the Maclaurin series for sin x and cos x, we can

express tan x as

tan x =
sin x

cos x
=

x −
x3

3!
+

x5

5!
− · · ·

1 −
x2

2!
+

x4

4!
− · · ·

Dividing, as shown in the margin, we obtain

tan x = x +
x3

3
+

2x5

15
+ · · · ◭



February 26, 2001 12:56 g65-ch10 Sheet number 81 Page number 719 cyan magenta yellow black

10.10 Differentiating and Integrating Power Series; Modeling with Taylor Series 719

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MODELING PHYSICAL LAWS WITH
TAYLOR SERIES

Taylor series provide an important way of modeling physical laws. To illustrate the idea we

will consider the problem of modeling the period of a simple pendulum (Figure 10.10.1).

As explained in Exercise 38 of the supplementary exercises to Chapter 8, the period T of

such a pendulum is given by

T = 4

√

L

g

∫ π/2

0

1
√

1 − k2 sin2 φ
dφ (4)

where

L = length of the supporting rod

g = acceleration due to gravity

k = sin(θ0/2), where θ0 is the initial angle of displacement from the vertical

The integral, which is called a complete elliptic integral of the first kind, cannot be ex-

pressed in terms of elementary functions and is often approximated by numerical methods.

Unfortunately, numerical values are so specific that they often give little insight into general

physical principles. However, if we expand the integrand of (4) in a Maclaurin series and

integrate term by term, then we can generate an infinite series that can be used to con-

struct various mathematical models for the period T that give a deeper understanding of the

behavior of the pendulum.

L
u0

Figure 10.10.1

To obtain the Maclaurin series for the integrand, we will substitute −k2 sin2 φ for x in

the binomial series for 1/
√

1 + x that we derived in Example 4 of Section 10.9. If we do

this, then we can rewrite (4) as

T = 4

√

L

g

∫ π/2

0

[

1 +
1

2
k2 sin2 φ +

1 · 3

222!
k4 sin4 φ +

1 · 3 · 5

233!
k6 sin6 φ + · · ·

]

dφ (5)

If we integrate term by term, then we can produce a Maclaurin series that converges to the

period T . However, one of the most important cases of pendulum motion occurs when the

initial displacement is small, in which case all subsequent displacements are small, and we

can assume that k = sin(θ0/2) ≈ 0. In this case we expect the convergence of the Maclaurin

series for T to be rapid, and we can approximate the sum of the series by dropping all but

the constant term in (5). This yields

T = 2π

√

L

g
(6)

which is called the first-order model of T or the model for small vibrations. This model

can be improved on by using more terms in the series. For example, if we use the first two

terms in the Maclaurin series, we obtain the second-order model

T = 2π

√

L

g

(

1 +
k2

4

)

(7)

(verify).

EXERCISE SET 10.10 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, obtain the Maclaurin series for the function by

making an appropriate substitution in the Maclaurin series

for 1/(1 − x). Include the general term in your answer, and

state the radius of convergence of the series.

(a)
1

1 + x
(b)

1

1 − x2
(c)

1

1 − 2x
(d)

1

2 − x

2. In each part, obtain the Maclaurin series for the function by

making an appropriate substitution in the Maclaurin series

for ln(1 + x). Include the general term in your answer, and

state the radius of convergence of the series.

(a) ln(1 − x) (b) ln(1 + x2)

(c) ln(1 + 2x) (d) ln(2 + x)
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3. In each part, obtain the first four nonzero terms of the

Maclaurin series for the function by making an appropriate

substitution in one of the binomial series obtained in Ex-

ample 4 of Section 10.9.

(a) (2 + x)−1/2 (b) (1 − x2)−2

4. (a) Use the Maclaurin series for 1/(1 − x) to find the

Maclaurin series for 1/(a − x), where a
�= 0, and state

the radius of convergence of the series.

(b) Use the binomial series for 1/(1 + x)2 obtained in Ex-

ample 4 of Section 10.9 to find the first four nonzero

terms in the Maclaurin series for 1/(a + x)2, where

a
�= 0, and state the radius of convergence of the series.

In Exercises 5–8, obtain the first four nonzero terms of the

Maclaurin series for the function by making an appropriate

substitution in a known Maclaurin series and performing any

algebraic operations that are required. State the radius of con-

vergence of the series.

5. (a) sin 2x (b) e−2x (c) ex
2

(d) x2 cosπx

6. (a) cos 2x (b) x2ex (c) xe−x (d) sin(x2)

7. (a)
x2

1 + 3x
(b) x sinh 2x (c) x(1 − x2)3/2

8. (a)
x

x − 1
(b) 3 cosh(x2) (c)

x

(1 + 2x)3

In Exercises 9 and 10, find the first four nonzero terms of

the Maclaurin series for the function by using an appropri-

ate trigonometric identity or property of logarithms and then

substituting in a known Maclaurin series.

9. (a) sin2 x (b) ln[(1 + x3)12]

10. (a) cos2 x (b) ln

(

1 − x

1 + x

)

11. (a) Use a known Maclaurin series to find the Taylor series

of 1/x about x = 1 by expressing this function as

1

x
=

1

1 − (1 − x)

(b) Find the interval of convergence of the Taylor series.

12. Use the method of Exercise 11 to find the Taylor series of

1/x about x = x0, and state the interval of convergence of

the Taylor series.

In Exercises 13 and 14, find the first four nonzero terms of the

Maclaurin series for the function by multiplying the Maclau-

rin series of the factors.

13. (a) ex sin x (b)
√

1 + x ln(1 + x)

14. (a) e−x2

cos x (b) (1 + x2)4/3(1 + x)1/3

In Exercises 15 and 16, find the first four nonzero terms of

the Maclaurin series for the function by dividing appropriate

Maclaurin series.

15. (a) sec x

(

=
1

cos x

)

(b)
sin x

ex

16. (a)
tan−1 x

1 + x
(b)

ln(1 + x)

1 − x

17. Use the Maclaurin series for ex and e−x to derive the Maclau-

rin series for sinh x and cosh x. Include the general terms

in your answers and state the radius of convergence of each

series.

18. Use the Maclaurin series for sinh x and cosh x to obtain the

first four nonzero terms in the Maclaurin series for tanh x.

In Exercises 19 and 20, find the first five nonzero terms of the

Maclaurin series for the function by using partial fractions

and a known Maclaurin series.

19.
4x − 2

x2 − 1
20.

x3 + x2 + 2x − 2

x2 − 1

In Exercises 21 and 22, confirm the derivative formula by dif-

ferentiating the appropriate Maclaurin series term by term.

21. (a)
d

dx
[cos x] = − sin x (b)

d

dx
[ln(1 + x)] =

1

1 + x

22. (a)
d

dx
[sinh x] = cosh x (b)

d

dx
[tan−1 x] =

1

1 + x2

In Exercises 23 and 24, confirm the integration formula by

integrating the appropriate Maclaurin series term by term.

23. (a)

∫

ex dx = ex + C (b)

∫

sinh x dx = cosh x + C

24. (a)

∫

sin x dx = − cos x + C

(b)

∫

1

1 + x
dx = ln(1 + x) + C

25. (a) Use the Maclaurin series for 1/(1 − x) to find the

Maclaurin series for

f(x) =
x

1 − x2

(b) Use the Maclaurin series obtained in part (a) to find

f (5)(0) and f (6)(0).

(c) What can you say about the value of f (n)(0)?

26. Let f(x) = x2 cos 2x. Use the method of Exercise 25 to

find f (99)(0).

The limit of an indeterminate form as x→x0 can sometimes

be found without using L’Hôpital’s rule by expanding the

functions involved in Taylor series about x = x0 and taking

the limit of the series term by term. Use this method to find

the limits in Exercises 27 and 28.

27. (a) lim
x→0

sin x

x
(b) lim

x→0

tan−1 x − x

x3
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28. (a) lim
x→0

1 − cos x

sin x
(b) lim

x→0

ln
√

1 + x − sin 2x

x

In Exercises 29–32, use Maclaurin series to approximate the

integral to three decimal-place accuracy.

29.

∫ 1

0

sin(x2) dx 30.

∫ 1/2

0

tan−1(2x2) dx

31.

∫ 0.2

0

3
√

1 + x4 dx 32.

∫ 1/2

0

dx
4
√
x2 + 1

33. (a) Differentiate the Maclaurin series for 1/(1 − x), and

use the result to show that
�

∑

k=1

kxk =
x

(1 − x)2
for −1 < x < 1

(b) Integrate the Maclaurin series for 1/(1 − x), and use

the result to show that
�

∑

k=1

xk

k
= − ln(1 − x) for −1 < x < 1

(c) Use the result in part (b) to show that
�

∑

k=1

(−1)k+1 x
k

k
= ln(1 + x) for −1 < x < 1

(d) Show that the series in part (c) converges if x = 1.

(e) Use the remark following Example 2 to show that
�

∑

k=1

(−1)k+1 x
k

k
= ln(1 + x) for −1 < x ≤ 1

34. In each part, use the results in Exercise 33 to find the sum

of the series.

(a)
�

∑

k=1

k

3k
=

1

3
+

2

32
+

3

33
+

4

34
+ · · ·

(b)
�

∑

k=1

1

k(4k)
=

1

4
+

1

2(42)
+

1

3(43)
+

1

4(44)
+ · · ·

(c)
�

∑

k=1

(−1)k+1 1

k
= 1 −

1

2
+

1

3
−

1

4
+ · · ·

35. (a) Use the relationship
∫

1
√

1 + x2
dx = sinh−1 x + C

to find the first four nonzero terms in the Maclaurin

series for sinh−1 x.

(b) Express the series in sigma notation.

(c) What is the radius of convergence?

36. (a) Use the relationship
∫

1
√

1 − x2
dx = sin−1 x + C

to find the first four nonzero terms in the Maclaurin

series for sin−1 x.

(b) Express the series in sigma notation.

(c) What is the radius of convergence?

37. We showed by Formula (12) of Section 9.3 that if there are

y0 units of radioactive carbon-14 present at time t = 0, then

the number of units present t years later is

y(t) = y0e
−0.000121t

(a) Express y(t) as a Maclaurin series.

(b) Use the first two terms in the series to show that the

number of units present after 1 year is approximately

(0.999879)y0.

(c) Compare this to the value produced by the formula for

y(t).

38. In Section 9.1 we studied the motion of a falling object that

has mass m and is retarded by air resistance. We showed that

if the initial velocity is v0 and the drag force FR is propor-

tional to the velocity, that is, FR = −cv, then the velocity

of the object at time t is

v(t) = e−ct/m
(

v0 +
mg

c

)

−
mg

c

where g is the acceleration due to gravity [see Formula (23)

of Section 9.1].

(a) Use a Maclaurin series to show that if ct/m ≈ 0, then

the velocity can be approximated as

v(t) ≈ v0 −
(cv0

m
+ g

)

t

(b) Improve on the approximation in part (a).

C 39. Suppose that a simple pendulum with a length of L = 1

meter is given an initial displacement of θ0 = 5◦ from the

vertical.

(a) Approximate the period of the pendulum using Formula

(6) for the first-order model. [Take g = 9.8 m/s
2
.]

(b) Approximate the period of the pendulum using Formula

(7) for the second-order model.

(c) Use the numerical integration capability of a CAS to

approximate the period of the pendulum from Formula

(4), and compare it to the values obtained in parts (a)

and (b).

40. Use the first three nonzero terms in Formula (5) and the

Wallis sine formula in the Endpaper Integral Table (Formula

122) to obtain a model for the period of a simple pendulum.

41. Recall that the gravitational force exerted by the Earth on

an object is called the object’s weight (or more precisely, its

Earth weight). We noted in statement 9.4.3 that if an object

has mass m, then the magnitude of its weight is mg. How-

ever, this result presumes that the object is on the surface of

the Earth (mean sea level). A more general formula for the

magnitude of the gravitational force that the Earth exerts on

an object of mass m is

F =
mgR2

(R + h)2

where R is the radius of the Earth and h is the height of the

object above the Earth’s surface.

(a) Use the binomial series for 1/(1 + x)2 obtained in Ex-

ample 4 of Section 10.9 to express F as a Maclaurin

series in powers of h/R.
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(b) Show that if h = 0, then F = mg.
(c) Show that if h/R ≈ 0, then F ≈ mg − (2mgh/R).

[Note: The quantity 2mgh/R can be thought of as a

“correction term” for the weight that takes the object’s

height above the Earth’s surface into account.]
(d) If we assume that the Earth is a sphere of radius

R = 4000 mi at mean sea level, by approximately what

percentage does a person’s weight change in going from

mean sea level to the top of Mt. Everest (29,028 ft)?

42. (a) Show that the Bessel function J0(x) given by Formula

(4) of Section 10.8 satisfies the differential equation

xy ′′ + y ′ + xy = 0. (This is called the Bessel equation

of order zero.)

(b) Show that the Bessel function J1(x) given by Formula

(5) of Section 10.8 satisfies the differential equation

x2y ′′ + xy ′ + (x2 − 1)y = 0. (This is called the Bessel

equation of order one.)

(c) Show that J ′
0(x) = −J1(x).

43. Prove: If the power series
∑

�

k=0 akx
k and

∑

�

k=0 bkx
k have

the same sum on an interval (−r, r), then ak = bk for all

values of k.

SUPPLEMENTARY EXERCISES

C CAS

1. What is the difference between an infinite sequence and an

infinite series?

2. What is meant by the sum of an infinite series?

3. (a) What is a geometric series? Give some examples of

convergent and divergent geometric series.

(b) What is a p-series? Give some examples of convergent

and divergent p-series.

4. (a) Write down the formula for the Maclaurin series for f

in sigma notation.

(b) Write down the formula for the Taylor series forf about

x = x0 in sigma notation.

5. State conditions under which an alternating series is guar-

anteed to converge.

6. (a) What does it mean to say that an infinite series con-

verges absolutely?

(b) What relationship exists between convergence and ab-

solute convergence of an infinite series?

7. If a power series in x−x0 has radius of convergence R, what

can you say about the set of x-values at which it converges?

8. State the Remainder Estimation Theorem, and describe

some of its uses.

9. Are the following statements true or false? If true, state

a theorem to justify your conclusion; if false, then give a

counterexample.

(a) If
∑

uk converges, then uk →0 as k→+�.

(b) If uk →0 as k→+�, then
∑

uk converges.

(c) If f(n) = an for n = 1, 2, 3, . . . , and if an → L as

n→+�, then f(x)→L as x→+�.

(d) If f(n) = an for n = 1, 2, 3, . . . , and if f(x)→L as

x→+�, then an →L as n→+�.

(e) If 0 < an < 1, then {an} converges.

(f ) If 0 < uk < 1, then
∑

uk converges.

(g) If
∑

uk and
∑

vk converge, then
∑

(uk + vk) diverges.

(h) If
∑

uk and
∑

vk diverge, then
∑

(uk − vk) converges.

(i) If 0 ≤ uk ≤ vk and
∑

vk converges, then
∑

uk

converges.

(j) If 0 ≤ uk ≤ vk and
∑

uk diverges, then
∑

vk
diverges.

(k) If an infinite series converges, then it converges

absolutely.

(l) If an infinite series diverges absolutely, then it diverges.

10. State whether each of the following is true or false. Justify

your answers.

(a) The function f(x) = x1/3 has a Maclaurin series.

(b) 1 + 1
2

− 1
2

+ 1
3

− 1
3

+ 1
4

− 1
4

+ · · · = 1

(c) 1 + 1
2

− 1
2

+ 1
2

− 1
2

+ 1
2

− 1
2

+ · · · = 1

In Exercises 11–14, use any method to determine whether the

series converge.

11. (a)
�

∑

k=1

1

5k
(b)

�
∑

k=1

1

5k + 1
(c)

�
∑

k=1

9
√
k + 1

12. (a)
�

∑

k=1

(−1)k+1 k + 4

k2 + k
(b)

�
∑

k=1

(−1)k+1

(

k + 2

3k − 1

)k

(c)
�

∑

k=1

k−1/2

2 + sin2 k

13. (a)
�

∑

k=1

1

k3 + 2k + 1
(b)

�
∑

k=1

1

(3 + k)2/5

(c)
�

∑

k=1

cos(1/k)

k2

14. (a)
�

∑

k=1

ln k

k
√
k

(b)
�

∑

k=1

k4/3

8k2 + 5k + 1
(c)

�
∑

k=1

(−1)k+1

k2 + 1

15. Find a formula for the exact error that results when the sum

of the geometric series
∑

�

k=0(1/5)k is approximated by the

sum of the first 100 terms in the series.

16. Does the series 1 − 2
3

+ 3
5

− 4
7

+ 5
9

+ · · · converge? Justify

your answer.

17. (a) Find the first five Maclaurin polynomials of the function

p(x) = 1 − 7x + 5x2 + 4x3.
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(b) Make a general statement about the Maclaurin polyno-

mials of a polynomial of degree n.

18. Use a Maclaurin series and properties of alternating series

to show that | ln(1 + x) − x| ≤ x2/2 if 0 < x < 1.

19. Show that the approximation

sin x ≈ x −
x3

3!
+

x5

5!

is accurate to four decimal places if 0 ≤ x ≤ π/4.

20. Use Maclaurin series to approximate the integral
∫ 1

0

1 − cos x

x
dx

to three decimal-place accuracy.

21. It can be proved that

lim
n→+�

n
√
n! = +� and lim

n→+�

n
√
n!

n
=

1

e

In each part, use these limits and the root test to determine

whether the series converges.

(a)
�

∑

k=0

2k

k!
(b)

�
∑

k=0

kk

k!

22. (a) Show that kk ≥ k!.

(b) Use the comparison test to show that
�

∑

k=1

k−k converges.

(c) Use the root test to show that the series converges.

23. Suppose that

n
∑

k=1

uk = 2 −
1

n
. Find

(a) u100 (b) lim
k→+�

uk (c)
�

∑

k=1

uk.

24. In each part, determine whether the series converges; if so,

find its sum.

(a)
�

∑

k=1

(

3

2k
−

2

3k

)

(b)
�

∑

k=1

[ln(k + 1) − ln k]

(c)
�

∑

k=1

1

k(k + 2)
(d)

�
∑

k=1

[tan−1(k+1)−tan−1 k]

25. In each part, find the sum of the series by associating it with

some Maclaurin series.

(a) 2 +
4

2!
+

8

3!
+

16

4!
+ · · ·

(b) π −
π3

3!
+

π5

5!
−

π7

7!
+ · · ·

(c) 1 −
e2

2!
+

e4

4!
−

e6

6!
+ · · ·

(d) 1 − ln 3 +
(ln 3)2

2!
−

(ln 3)3

3!
+ · · ·

26. Suppose that the sequence {ak} is defined recursively by

a0 = c, ak+1 =
√
ak

Assuming that the sequence converges, find its limit if

(a) c = 1
2

(b) c = 3
2
.

27. Research has shown that the proportion p of the popula-

tion with IQs (intelligence quotients) between α and β is

approximately

p =
1

16
√

2π

∫ β

α

e− 1
2 (

x−100
16 )

2

dx

Use the first three terms of an appropriate Maclaurin series

to estimate the proportion of the population that has IQs

between 100 and 110.

28. Differentiate the Maclaurin series for xex and use the result

to show that
�

∑

k=0

k + 1

k!
= 2e

29. Given:
π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · · .

Show:
π2

12
= 1 −

1

22
+

1

32
−

1

42
+ · · · .

30. Let a, b, and p be positive constants. For which values of p

does the series
�

∑

k=1

1

(a + bk)p
converge?

31. In each part, write out the first four terms of the series, and

then find the radius of convergence.

(a)
�

∑

k=1

1 · 2 · 3 · · · k
1 · 4 · 7 · · · (3k − 2)

xk

(b)
�

∑

k=1

(−1)k
1 · 2 · 3 · · · k

1 · 3 · 5 · · · (2k − 1)
x2k+1

32. Find the interval of convergence of
�

∑

k=0

(x − x0)
k

bk
(b > 0)

33. Show that the series

1 −
x

2!
+

x2

4!
−

x3

6!
+ · · ·

converges to the function

f(x) =

{

cos
√
x, x ≥ 0

cosh
√

−x, x < 0

[Hint: Use the Maclaurin series for cos x and cosh x to ob-

tain series for cos
√
x, where x ≥ 0, and cosh

√
−x, where

x ≤ 0.]

34. Prove:

(a) If f is an even function, then all odd powers of x in its

Maclaurin series have coefficient 0.

(b) If f is an odd function, then all even powers of x in its

Maclaurin series have coefficient 0.

35. In Section 6.6 we defined the kinetic energy K of a particle

with mass m and velocity v to be K = 1
2
mv2 [see Formula

(6) of that section]. In this formula the mass m is assumed to

be constant, and K is called the Newtonian kinetic energy.

However, in Albert Einstein’s relativity theory the mass m

increases with the velocity and the kinetic energy K is given
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by the formula

K = m0c
2

[

1
√

1 − (v/c)2
− 1

]

in which m0 is the mass of the particle when its velocity is

zero, and c is the speed of light. This is called the relativistic

kinetic energy. Use an appropriate binomial series to show

that if the velocity is small compared to the speed of light

(i.e., v/c ≈ 0), then the Newtonian and relativistic kinetic

energies are in close agreement.

C 36. If the constant p in the general p-series is replaced by a

variable x for x > 1, then the resulting function is called

the Riemann zeta function and is denoted by

ζ(x) =
�

∑

k=1

1

kx

(a) Let sn be the nth partial sum of the series for ζ(3.7).

Find n such that sn approximates ζ(3.7) to two decimal-

place accuracy, and calculate sn using this value of n.

[Hint: Use the right inequality in Exercise 30(b) of Sec-

tion 10.5 with f(x) = 1/x3.7.]

(b) Determine whether your CAS can evaluate the Riemann

zeta function directly. If so, compare the value produced

by the CAS to the value of sn obtained in part (a).


