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VECTOR-VALUED

FUNCTIONS

n this chapter we will consider functions whose

values are vectors. Such functions provide a unified way

of studying parametric curves in 2-space and 3-space and

are a basic tool for analyzing the motion of particles along

curved paths. We will begin by developing the calculus of

vector-valued functions—we will show how to differen-

tiate and integrate such functions, and we will develop

some of the basic properties of these operations. We will

then apply these calculus tools to define three fundamen-

tal vectors that can be used to describe such basic char-

acteristics of curves as curvature and twisting tendencies.

Once this is done, we will develop the concepts of veloc-

ity and acceleration for such motion, and we will apply

these concepts to explain various physical phenomena. Fi-

nally, we will use the calculus of vector-valued functions

to develop basic principles of gravitational attraction and

to derive Kepler’s laws of planetary motion.
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13.1 INTRODUCTION TO VECTOR-VALUED FUNCTIONS

In Section 12.5 we discussed parametric equations of lines in 3-space. In this section

we will discuss more general parametric curves in 3-space, and we will show how

vector notation can be used to express parametric equations in 2-space and 3-space in

a more compact form. This will lead us to consider a new kind of function—namely,

functions that associate vectors with real numbers. Such functions have many impor-

tant applications in physics and engineering.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PARAMETRIC CURVES IN 3-SPACE
Recall from Section 1.8 that iff andg are well-behaved functions, then the pair of parametric

equations

x = f(t), y = g(t) (1)

generates a curve in 2-space that is traced in a specific direction as the parameter t increases.

We defined this direction to be the orientation of the curve or the direction of increasing

parameter, and we called the curve together with its orientation the graph of the equations

or the parametric curve represented by the equations. Analogously, if f, g, and h are three

well-behaved functions, then the parametric equations

x = f(t), y = g(t), z = h(t) (2)

generate a curve in 3-space that is traced in a specific direction as t increases. As in 2-space,

this direction is called the orientation or direction of increasing parameter, and the curve

together with its orientation is called the graph of the equations or the parametric curve

represented by the equations. If no restrictions are stated explicitly or are implied by the

equations, then it will be understood that t varies over the interval (−�,+�).

Example 1 The parametric equations

x = 1 − t, y = 3t, z = 2t

represent a line in 3-space that passes through the point (1, 0, 0) and is parallel to the vector

〈−1, 3, 2〉. Since x, y, and z increase as t increases, the line has the orientation shown in

Figure 13.1.1. ◭

z

y

x

(1, 0, 0)

(t = 0)

(0, 3, 2)

(t = 1)

Figure 13.1.1

Example 2 Describe the parametric curve represented by the equations

x = a cos t, y = a sin t, z = ct

where a and c are positive constants.

Solution. As the parameter t increases, the value of z = ct also increases, so the point

(x, y, z) moves upward. However, as t increases, the point (x, y, z) also moves in a path

directly over the circle

x = a cos t, y = a sin t

in the xy-plane. The combination of these upward and circular motions produces a cork-

screw-shaped curve that wraps around a right circular cylinder of radius a centered on the

z-axis (Figure 13.1.2). This curve is called a circular helix. ◭

(t = c)
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x = a cos t,  y = a sin t,  z = ct
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Figure 13.1.2

Computer representation of the twin 

helix DNA molecule (deoxyribonucleic 

acid). This structure contains all the 

inherited instructions necessary for the 

development of a living organism.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PARAMETRIC CURVES GENERATED
WITH TECHNOLOGY

Except in the simplest cases, parametric curves in 3-space can be difficult to visualize and

draw without the help of a graphing utility. For example, Figure 13.1.3a shows the graph of

the parametric curve called a torus knot that was produced by a CAS. However, even this

computer rendering is difficult to visualize because it is unclear whether the points of overlap

are intersections or whether one portion of the curve is in front of the other. To resolve this

visualization problem, some graphing utilities provide the capability of enclosing the curve

within a thin tube, as in Figure 13.1.3b. Such graphs are called tube plots.



March 13, 2001 13:00 g65-ch13 Sheet number 3 Page number 863 cyan magenta yellow black

13.1 Introduction to Vector-Valued Functions 863

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. If you have a CAS, read the documentation on graphing parametric

curves in 3-space, and then use it to generate the line in Example 1 and the helix

x = 4 cos t, y = 4 sin t, z = t (0 ≤ t ≤ 3π)

shown in Figure 13.1.4.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PARAMETRIC EQUATIONS FOR
INTERSECTIONS OF SURFACES

Curves in 3-space often arise as intersections of surfaces. For example, Figure 13.1.5a

shows a portion of the intersection of the cylinders z = x3 and y = x2. One method for

finding parametric equations for the curve of intersection is to choose one of the variables

as the parameter and use the two equations to express the remaining two variables in terms

of that parameter. In particular, if we choose x = t as the parameter and substitute this into

the equations z = x3 and y = x2, we obtain the parametric equations

x = t, y = t2, z = t3 (3)

This curve is called a twisted cubic. The portion of the twisted cubic shown in Figure 13.1.5a

corresponds to t ≥ 0; a computer-generated graph of the twisted cubic for positive and

negative values of t is shown in Figure 13.1.5b. Some other examples and techniques for

finding intersections of surfaces are discussed in the exercises.
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Figure 13.1.5

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTOR-VALUED FUNCTIONS
The twisted cubic defined by the equations in (3) is the set of points of the form (t, t2, t3)

for real values of t . If we view each of these points as a terminal point for a vector r whose

initial point is at the origin,

r = 〈x, y, z〉 = 〈t, t2, t3〉 = t i + t2j + t3k

then we obtain r as a function of the parameter t , that is, r = r(t). Since this function

produces a vector, we say that r = r(t) defines r as a vector-valued function of a real

variable, or more simply, a vector-valued function. The vectors that we will consider in
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this text are either in 2-space or 3-space, so we will say that a vector-valued function is in

2-space or in 3-space according to the kind of vectors that it produces.

If r(t) is a vector-valued function in 2-space, then for each allowable value of t , the

vector r = r(t) can be represented in terms of components as

r = r(t) = 〈x(t), y(t)〉 = x(t)i + y(t)j

As suggested by this notation, the vector-valued function r(t) defines a pair of real-valued

functions, x = x(t) and y = y(t), which we call the component functions or the compo-

nents of r(t). Similarly, a vector-valued function r(t) in 3-space defines three component

functions, x(t), y(t), and z(t), via

r(t) = 〈x(t), y(t), z(t)〉 = x(t)i + y(t)j + z(t)k

For example, the component functions of

r(t) = 〈t, t2, t3〉 = t i + t2j + t3k

are

x(t) = t, y(t) = t2, z(t) = t3

The domain of a vector-valued function r(t) is the set of allowable values of t . If r(t) is

defined in terms of component functions and the domain is not specified explicitly, then it

will be understood that the domain is the set of all values of t for which every component

is defined and yields a real value; we call this the natural domain of r(t). That is, the

natural domain of a vector-valued function is the intersection of the natural domains for its

component functions. For example, the natural domain for

r(t) = 〈ln |t − 1|, et ,
√
t〉 = (ln |t − 1|)i + et j +

√
tk

is the set of values of t such that 0 ≤ t < 1 or 1 < t , since

((−�, 1) ∪ (1,+�)) ∩ (−�,+�) ∩ [0,+�) = [0, 1) ∪ (1,+�)

is the intersection of the natural domains of the component functions

x(t) = ln |t − 1|, y(t) = et , and z(t) =
√
t

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHS OF VECTOR-VALUED
FUNCTIONS

If r(t) is a vector-valued function in 2-space or 3-space, then we define the graph of r(t)

to be the parametric curve described by the component functions for r(t). For example, if

r(t) = 〈1 − t, 3t, 2t〉 = (1 − t)i + 3tj + 2tk (4)

then the graph of r = r(t) is the graph of the parametric equations

x = 1 − t, y = 3t, z = 2t

Thus, the graph of (4) is the line in Figure 13.1.1.

Example 3 Describe the graph of the vector-valued function

r(t) = 〈cos t, sin t, t〉 = cos t i + sin tj + tk

Solution. The corresponding parametric equations are

x = cos t, y = sin t, z = t

Thus, as we saw in Example 2, the graph is a circular helix wrapped around a cylinder of

radius 1. ◭

As t varies, the tip of the 

radius vector r traces out 

the curve C.
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(x, y, z)

C

x

Figure 13.1.6

Up to now we have considered parametric curves to be paths traced by moving points.

However, if a parametric curve is viewed as the graph of a vector-valued function, then we

can also imagine the graph to be traced by the tip of a moving vector. For example, if the

curve C in 3-space is the graph of

r(t) = x(t)i + y(t)j + z(t)k

and if we position the vector r = 〈x, y, z〉 with its initial point at the origin, then its terminal

point will fall at the point (x, y, z) on the curve C (as shown in Figure 13.1.6). Thus, the
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terminal point of r(t) will trace out the curve C as the parameter t varies. We call r the

radius vector or the position vector for C.

Example 4 Sketch the graph and a radius vector of

(a) r(t) = cos t i + sin t j, 0 ≤ t ≤ 2π

(b) r(t) = cos t i + sin t j + 2k, 0 ≤ t ≤ 2π

Solution (a). The corresponding parametric equations are

x = cos t, y = sin t (0 ≤ t ≤ 2π)

so the graph is a circle of radius 1, centered at the origin, and oriented counterclockwise.

The graph and a radius vector are shown in Figure 13.1.7.

Solution (b). The corresponding parametric equations are

x = cos t, y = sin t, z = 2 (0 ≤ t ≤ 2π)

From the third equation, the tip of the radius vector traces a curve in the plane z = 2, and

from the first two equations, the curve is a circle of radius 1 centered on the z-axis and

traced counterclockwise looking down the z-axis. The graph and a radius vector are shown

in Figure 13.1.8. ◭
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Figure 13.1.8

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTOR FORM OF A LINE
SEGMENT

Recall from Formula (9) of Section 12.5 that if r0 is a vector in 2-space or 3-space with its

initial point at the origin, then the line that passes through the terminal point of r0 and is

parallel to the vector v can be expressed in vector form as

r = r0 + tv

In particular, if r0 and r1 are vectors in 2-space or 3-space with their initial points at the

origin, then the line that passes through the terminal points of these vectors can be expressed

in vector form as

r = r0 + t (r1 − r0) or r = (1 − t)r0 + tr1 (5–6)

as indicated in Figure 13.1.9.

O
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r
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r = (1 – t)r0 + tr1

t(r
1  – r

0)

Figure 13.1.9
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REMARK. It is common to call either (5) or (6) the two-point vector form of a line and to

say, for simplicity, that the line passes through the points r0 and r1 (as opposed to saying

that it passes through the terminal points of r0 and r1).

It is understood in (5) and (6) that t varies from −� to +�. However, if we restrict t to

vary over the interval 0 ≤ t ≤ 1, then r will vary from r0 to r1. Thus, for example, the

equation

r = (1 − t)r0 + tr1 (0 ≤ t ≤ 1) (7)

represents the line segment in 2-space or 3-space that is traced from r0 to r1.
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EXERCISE SET 13.1 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, find the domain of r(t) and the value of

r(t0).

1. r(t) = cos t i − 3tj; t0 = π

2. r(t) = 〈
√

3t + 1, t2〉; t0 = 1

3. r(t) = cosπt i − ln t j +
√
t − 2 k; t0 = 3

4. r(t) = 〈2e−t , sin−1 t, ln(1 − t)〉; t0 = 0

In Exercises 5–8, express the parametric equations as a

single vector equation of the form r = x(t)i + y(t) j or

r = x(t)i + y(t) j + z(t)k.

5. x = 3 cos t, y = t + sin t 6. x = t2 + 1, y = e−2t

7. x = 2t, y = 2 sin 3t, z = 5 cos 3t

8. x = t sin t, y = ln t, z = cos2 t

In Exercises 9–12, find the parametric equations that corre-

spond to the given vector equation.

9. r = 3t2i − 2 j 10. r = sin2 t i+(1−cos 2t) j

11. r = (2t − 1)i − 3
√
t j + sin 3tk

12. r = te−t i − 5t2k

In Exercises 13–18, describe the graph of the equation.

13. r = (2 − 3t)i − 4tj 14. r = 3 sin 2t i + 3 cos 2t j

15. r = 2t i − 3 j + (1 + 3t)k 16. r = 3i+2 cos t j+2 sin tk

17. r = 3 cos t i + 2 sin t j − k 18. r = −2i + tj + (t2 − 1)k

19. (a) Find the slope of the line in 2-space that is represented

by the vector equation r = (1 − 2t)i − (2 − 3t) j.

(b) Find the coordinates of the point where the line

r = (2 + t)i + (1 − 2t) j + 3tk

intersects the xz-plane.

20. (a) Find the y-intercept of the line in 2-space that is repre-

sented by the vector equation r = (3 + 2t)i + 5tj.

(b) Find the coordinates of the point where the line

r = t i + (1 + 2t) j − 3tk

intersects the plane 3x − y − z = 2.

In Exercises 21 and 22, sketch the line segment represented

by the vector equation.

21. (a) r = (1 − t)i + tj; 0 ≤ t ≤ 1

(b) r = (1 − t)(i + j) + t (i − j); 0 ≤ t ≤ 1

22. (a) r = (1 − t)(i + j) + tk; 0 ≤ t ≤ 1

(b) r = (1 − t)(i + j + k) + t (i + j); 0 ≤ t ≤ 1

In Exercises 23 and 24, write a vector equation for the line

segment from P to Q.

23.

x

y

Q

P

3

4

24.

y

x

z

4

2

3

Q

P

In Exercises 25–34, sketch the graph of r(t) and show the

direction of increasing t.

25. r(t) = 2i + tj 26. r(t) = 〈3t −4, 6t +2〉

27. r(t) = (1 + cos t)i + (3 − sin t) j; 0 ≤ t ≤ 2π

28. r(t) = 〈2 cos t, 5 sin t〉; 0 ≤ t ≤ 2π

29. r(t) = cosh t i + sinh t j 30. r(t) =
√
t i+(2t+4) j

31. r(t) = 2 cos t i + 2 sin t j + tk

32. r(t) = 9 cos t i + 4 sin t j + tk

33. r(t) = t i + t2 j + 2k

34. r(t) = t i + tj + sin tk; 0 ≤ t ≤ 2π

In Exercises 35 and 36, sketch the curve of intersection of the

surfaces, and find parametric equations for the intersection in

terms of parameter x = t. Check your work with a graphing

utility by generating the parametric curve over the interval

−1 ≤ t ≤ 1.

35. z = x2 + y2, x − y = 0

36. y + x = 0, z =
√

2 − x2 − y2

In Exercises 37 and 38, sketch the curve of intersection of the

surfaces, and find a vector equation for the curve in terms of

the parameter x = t.

37. 9x2 + y2 + 9z2 = 81, y = x2 (z > 0)

38. y = x, x + y + z = 1

39. Show that the graph of

r = t sin t i + t cos t j + t2k

lies on the paraboloid z = x2 + y2.

40. Show that the graph of

r = t i +
1 + t

t
j +

1 − t2

t
k, t > 0

lies in the plane x − y + z + 1 = 0.

41. Show that the graph of

r = sin t i + 2 cos t j +
√

3 sin tk

is a circle, and find its center and radius. [Hint: Show that

the curve lies on both a sphere and a plane.]
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42. Show that the graph of

r = 3 cos t i + 3 sin t j + 3 sin tk

is an ellipse, and find the lengths of the major and minor

axes. [Hint: Show that the graph lies on both a circular

cylinder and a plane and use the result in Exercise 60 of

Section 11.4.]

43. For the helix r = a cos t i + a sin t j + ctk, find c (c > 0) so

that the helix will make one complete turn in a distance of

3 units measured along the z-axis.

44. How many revolutions will the circular helix

r = a cos t i + a sin t j + 0.2tk

make in a distance of 10 units measured along the z-axis?

45. Show that the curve r = t cos t i + t sin t j + tk, t ≥ 0, lies

on the cone z =
√

x2 + y2. Describe the curve.

46. Describe the curve r = a cos t i + b sin t j + ctk, where a,

b, and c are positive constants such that a �= b.

47. In each part, match the vector equation with one of the ac-

companying graphs, and explain your reasoning.

(a) r = t i − tj +
√

2 − t2 k

(b) r = sinπt i − tj + tk

(c) r = sin t i + cos t j + sin 2tk
(d) r = 1

2
t i + cos 3t j + sin 3tk

y

z

yx

z

z

y

x

z

I II

III IV

y
x

x

48. Check your conclusions in Exercise 47 by generating the

curves with a graphing utility. [Note: Your graphing util-

ity may look at the curve from a different viewpoint. Read

the documentation for your graphing utility to determine

how to control the viewpoint, and see if you can generate

a reasonable facsimile of the graphs shown in the figure by

adjusting the viewpoint and choosing the interval of t-values

appropriately.]

49. (a) Find parametric equations for the curve of intersection

of the circular cylinder x2 + y2 = 9 and the parabolic

cylinder z = x2 in terms of a parameter t for which

x = 3 cos t .

(b) Use a graphing utility to generate the curve of intersec-

tion in part (a).

50. Use a graphing utility to generate the intersection of the

cone z =
√

x2 + y2 and the plane z = y + 2. Identify the

curve and explain your reasoning.

51. (a) Sketch the graph of

r(t) =
〈

2t,
2

1 + t2

〉

(b) Prove that the curve in part (a) is also the graph of the

function

y =
8

4 + x2

[The graphs of y = a3/(a2 + x2), where a denotes a

constant, were first studied by the French mathemati-

cian Pierre de Fermat, and later by the Italian mathe-

maticians Guido Grandi and Maria Agnesi. Any such

curve is now known as a “witch of Agnesi.” There are

a number of theories for the origin of this name. Some

suggest there was a mistranslation by either Grandi or

Agnesi of some less colorful Latin name into Italian.

Others lay the blame on a translation into English of

Agnesi’s 1748 treatise, Analytical Institutions.]



March 13, 2001 13:00 g65-ch13 Sheet number 8 Page number 868 cyan magenta yellow black

868 Vector-Valued Functions

13.2 CALCULUS OF VECTOR-VALUED FUNCTIONS

In this section we will define limits, derivatives, and integrals of vector-valued func-

tions and discuss their properties.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LIMITS AND CONTINUITY
Our first goal in this section is to develop a notion of what it means for a vector-valued

function r(t) to approach a limiting vector L as t approaches a number a. That is, we want

to define

lim
t→a

r(t) = L (1)

In the introduction to Chapter 12 we mentioned that vectors are useful in many physical

contexts because they encapsulate both magnitude (or length) and direction. Equation (1)

can be interpreted intuitively through this geometric perspective: as t approaches a, the

limit of the length of r(t) must match the length of L, and the limit of the direction of r(t)

must match the direction of L.

13.2.1 GEOMETRIC INTERPRETATION OF LIMITS. If r(t) is a vector-valued function

in 2-space or 3-space, then

lim
t→a

r(t) = L

if and only if the radius vector r = r(t) approaches L in both length and direction as

t→a (Figure 13.2.1).

L

r(t)

r(t) approaches L in length 

and direction if lim r(t) = L.
t→ a

x

y

Figure 13.2.1

Although saying that r(t) approaches L in both length and direction may be helpful for

visualizing a limit, it is difficult to use the statement in 13.2.1 to establish a limit. Instead,

let us go back to Chapter 2 and use the definition of the limit of a real-valued function as a

guide. Recall from Section 2.1 that the limit

lim
x→a

f(x) = L

was defined informally as the assertion that values of f(x) can be made as close as we like

to L by taking values of x sufficiently close to a (but not equal to a). This was formalized

in Section 2.4 to the assertion that for any given ǫ > 0, we can find a number δ > 0 such

that |f(x) − L| < ǫ if 0 < |x − a| < δ.

To adapt the notion of limits of a real-valued function y = f(x) to limits of a vector-

valued function r = r(t), we need to replace the notion of “closeness” of the real numbers

f(x) and L by a corresponding notion for the vectors r(t) and L. But how do we measure

how close (or how far apart) two vectors r(t) and L are? We can look at the difference

between the vectors, r(t) − L (Figure 13.2.2), but this is a vector. What we need is the

length of this vector, ‖r(t) − L‖, which gives the distance between the terminal points of

r(t) and L when they are positioned with the same initial point.

r(t)

L

r(t) – L

x

y

||r(t) – L|| is the distance between 

terminal points for vectors r(t) and 

L when positioned with the same 

initial points.

Figure 13.2.2

To say that a vector r(t) is close to the vector L is to say that ‖r(t) − L‖ is small, say

less than some positive number ǫ. In 2-space, the set of all vectors r satisfying ‖r − L‖ < ǫ

can be described geometrically as those vectors that, when positioned with the same initial

point as L, have terminal points lying within a disk of radius ǫ centered at the terminal point

for L. In 3-space, this set is those vectors with terminal points lying within a ball of radius

ǫ centered at the terminal point for L (Figure 13.2.3).

We can now transform Definition 2.4.1 into a definition for (1).

13.2.2 DEFINITION. Let r(t) be a vector-valued function defined for all t in some

open interval containing the number a, except that r(t) need not be defined at a. We will

write

lim
t→a

r(t) = L

if given any number ǫ > 0 we can find a number δ > 0 such that

‖r(t) − L‖ < ǫ if 0 < |t − a| < δ
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Figure 13.2.3

r
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||r – L|| < ǫ

r

L

y

z

x

ǫ

ǫ

Similarly, we mirror Definition 2.5.1 to define continuity of a vector-valued function.

13.2.3 DEFINITION. A vector-valued function r(t) is continuous at t = c provided the

following conditions are satisfied:

1. r(c) is defined.

2. lim
t→c

r(t) exists.

3. lim
t→c

r(t) = r(c).

As before, we say that r(t) is continuous on an interval I if it is continuous at each value

of t in I (with only the appropriate one-sided limit results required at any endpoints of I

that are included in I ).

In practice, limits of vector-valued functions are frequently computed using components.

For example, if

r(t) = 〈x(t), y(t), z(t)〉 = x(t)i + y(t)j + z(t)k

then

lim
t→a

r(t) =
〈

lim
t→a

x(t), lim
t→a

y(t), lim
t→a

z(t)
〉

=
(

lim
t→a

x(t)
)

i +
(

lim
t→a

y(t)
)

j +
(

lim
t→a

z(t)
)

k (2)

provided each of the component limits exists. Furthermore, it follows immediately that r(t)

is continuous at t = c if and only if its component functions x(t), y(t), and z(t) are each

continuous at t = c.

• FOR THE READER. Write the corresponding statement to (2) when r(t) is in 2-space.

Example 1 Let r(t) = t2i + et j − (2 cosπt)k. Then

lim
t→0

r(t) =
(

lim
t→0

t2
)

i +
(

lim
t→0

et
)

j −
(

lim
t→0

2 cosπt
)

k = j − 2k

Alternatively, using the angle bracket notation for vectors,

lim
t→0

r(t) = lim
t→0

〈t2, et ,−2 cosπt〉 =
〈

lim
t→0

t2, lim
t→0

et , lim
t→0

(−2 cosπt)
〉

= 〈0, 1,−2〉 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES
Following the lead of the discussion above, we consider substituting a vector-valued function

for the real-valued function in the definition of the derivative (Definition 3.2.3). Note that

the numerator in the resulting difference quotient is now a difference of vectors, which

results in a vector, whereas the denominator is a difference of scalars. Thus, the difference

quotient is a scalar multiple of a vector, so it is also a vector.
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13.2.4 DEFINITION. If r(t) is a vector-valued function, we define the derivative of r

with respect to t to be the vector-valued function r′ given by

r′(t) = lim
w→ t

r(w) − r(t)

w − t
(3)

The domain of r′ consists of all values of t in the domain of r(t) for which the limit

exists.

The function r(t) is differentiable at t if the limit in (3) exists. All of the standard notations

for derivatives continue to apply. For example, the derivative of r(t) can be expressed as

d

dt
[r(t)],

dr

dt
, r′(t), or r′

It is important to remember that for a given value of t the derivative r′(t) is a vector, not

a number. Since r′(t) is a vector, it has both magnitude and [if r′(t) is nonzero] direction.

Our next goal is to relate the direction of r′(t) to the graph of r(t). [We will study the

significance of the magnitude of r′(t) in the next section.] To do this, consider parts (a) and

(b) of Figure 13.2.4. These illustrations show the graph C of r(t) (with its orientation) and

the vectors r(w), r(t), and r(w) − r(t) for w > t and for w < t . In both cases, the vector

r(w) − r(t) runs along the secant line joining the terminal points of r(t) and r(w), but

with opposite directions in the two cases. In the case where w > t , the vector r(w) − r(t)

points in the direction of increasing parameter; and in the case where w < t , the vector

r(w) − r(t) points in the opposite direction. However, if w < t , the direction is reversed

when we multiply by the negative value 1/(w − t), so that in both cases the vector

1

w − t
[r(w) − r(t)] =

r(w) − r(t)

w − t

points in the direction of increasing parameter and runs along the secant line. As w→ t the

secant line approaches the tangent line at the terminal point of r(t), so we can conclude that

the limit

r′(t) = lim
w→ t

r(w) − r(t)

w − t

(if it exists and is nonzero) is a vector that is tangent to the curve C at the tip of r(t) and

points in the direction of increasing parameter (Figure 13.2.4c).

r(t)

r(w) r(t)

r(w) – r(t)

C

w > t 

(a)

x

y

r(w)

r(w) – r(t)

C

w < t 

(b)

x

y

r(t)

C

(c)

x

y
r′(t)

Figure 13.2.4

13.2.5 GEOMETRIC INTERPRETATION OF THE DERIVATIVE. Suppose that C is the

graph of a vector-valued function r(t) in 2-space or 3-space and that r′(t) exists and is

nonzero for a given value of t . If the vector r′(t) is positioned with its initial point at

the terminal point of the radius vector r(t), then r′(t) is tangent to C and points in the

direction of increasing parameter.
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Since limits of vector-valued functions can be computed componentwise, it seems rea-

sonable that we should be able to compute derivatives in terms of component functions as

well. This is the result of the next theorem.

13.2.6 THEOREM. If r(t) is a vector-valued function, then

r′(t) = lim
w→ t

r(w) − r(t)

w − t

exists if and only if each of the component functions for r(t) is differentiable at t, in which

case the component functions for r′(t) are the derivatives of the component functions for

r(t).

Proof. For simplicity, we give the proof in 2-space; the proof in 3-space is identical, except

for the additional component. Assume that r(t) = x(t)i + y(t)j, so

r′(t) = lim
w→ t

r(w) − r(t)

w − t
= lim

w→ t

[x(w)i + y(w)j] − [x(t)i + y(t)j]

w − t

= lim
w→ t

[x(w) − x(t)]i + [y(w) − y(t)]j

w − t

= lim
w→ t

[(

x(w) − x(t)

w − t

)

i +
(

y(w) − y(t)

w − t

)

j

]

=
(

lim
w→ t

x(w) − x(t)

w − t

)

i +
(

lim
w→ t

y(w) − y(t)

w − t

)

j

= x ′(t)i + y ′(t)j

Example 2 Let r(t) = t2i + et j − (2 cosπt)k. Then

r′(t) =
d

dt
(t2)i +

d

dt
(et )j −

d

dt
(2 cosπt)k = 2t i + et j + (2π sinπt)k

and

r′(1) = 2i + ej ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVE RULES
Many of the rules for differentiating real-valued functions have analogs in the context of

differentiating vector-valued functions. We state some of these in the following theorem.

13.2.7 THEOREM (Rules of Differentiation). Let r(t), r1(t), and r2(t) be vector-valued

functions that are all in 2-space or all in 3-space, and let f (t) be a real-valued function,

k a scalar, and c a constant vector (that is, a vector whose value does not depend on t).

Then the following rules of differentiation hold:

(a)
d

dt
[c] = 0

(b)
d

dt
[kr(t)] = k

d

dt
[r(t)]

(c)
d

dt
[r1(t) + r2(t)] =

d

dt
[r1(t)] +

d

dt
[r2(t)]

(d )
d

dt
[r1(t) − r2(t)] =

d

dt
[r1(t)] −

d

dt
[r2(t)]

(e)
d

dt
[f (t)r(t)] = f (t)

d

dt
[r(t)] +

d

dt
[f (t)]r(t)

The proofs of most of these rules are immediate consequences of Definition 13.2.4,

although the last rule can be seen more easily by application of the product rule for real-
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valued functions to the component functions. The proof of Theorem 13.2.7 is left as an

exercise.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TANGENT LINES TO GRAPHS OF
VECTOR-VALUED FUNCTIONS

Motivated by the discussion of the geometric interpretation of the derivative of a vector-

valued function, we make the following definition.

13.2.8 DEFINITION. Let P be a point on the graph of a vector-valued function r(t),

and let r(t0) be the radius vector from the origin to P (Figure 13.2.5). If r′(t0) exists and

r′(t0) �= 0, then we call r′(t0) the tangent vector to the graph of r(t) at r(t0), and we call

the line through P that is parallel to the tangent vector the tangent line to the graph of

r(t) at r(t0).

r(t0)

r′(t0)

P

x

y

Tangent

line

Figure 13.2.5

Let r0 = r(t0) and v0 = r ′(t0). It follows from Formula (9) of Section 12.5 that the

tangent line to the graph of r(t) at r0 is given by the vector equation

r = r0 + tv0 (4)

Example 3 Find parametric equations of the tangent line to the circular helix

x = cos t, y = sin t, z = t

where t = t0, and use that result to find parametric equations for the tangent line at the

point where t = π.

Solution. The vector equation of the helix is

r(t) = cos t i + sin t j + tk

so we have

r0 = r(t0) = cos t0i + sin t0 j + t0k

v0 = r ′(t0) = (− sin t0)i + cos t0 j + k

It follows from (4) that the vector equation of the tangent line at t = t0 is

r = cos t0i + sin t0 j + t0k + t[(− sin t0)i + cos t0 j + k]

= (cos t0 − t sin t0)i + (sin t0 + t cos t0)j + (t0 + t)k

Thus, the parametric equations of the tangent line at t = t0 are

x = cos t0 − t sin t0, y = sin t0 + t cos t0, z = t0 + t

In particular, the tangent line at the point where t = π has parametric equations

x = −1, y = −t, z = π+ t

The graph of the helix and this tangent line are shown in Figure 13.2.6. ◭

0

3

6

–1

0

1

–1

0

1

y

x

z

t = p

t = 0

Figure 13.2.6

Example 4 Let

r1(t) = (tan−1 t)i + (sin t)j + t2k

and

r2(t) = (t2 − t)i + (2t − 2)j + (ln t)k

The graphs of r1(t) and r2(t) intersect at the origin. Find the degree measure of the acute

angle between the tangent lines to the graphs of r1(t) and r2(t) at the origin.

Solution. The graph of r1(t) passes through the origin at t = 0, where its tangent vector

is

r′
1(0) =

〈

1

1 + t2
, cos t, 2t

〉
∣

∣

∣

∣

t=0

= 〈1, 1, 0〉
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The graph of r2(t) passes through the origin at t = 1 (verify), where its tangent vector is

r′
2(1) =

〈

2t − 1, 2,
1

t

〉
∣

∣

∣

∣

t=1

= 〈1, 2, 1〉

By Theorem 12.3.3, the angle θ between these two tangent vectors satisfies

cos θ =
〈1, 1, 0〉 · 〈1, 2, 1〉

‖〈1, 1, 0〉‖ ‖〈1, 2, 1〉‖
=

3
√

12
=

√
3

2

It follows that θ = π/6 radians, or 30◦ . ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DERIVATIVES OF DOT AND CROSS
PRODUCTS

The following rules, which are derived in the exercises, provide a method for differentiating

dot products in 2-space and 3-space and cross products in 3-space.

d

dt
[r1(t) · r2(t)] = r1(t) ·

dr2

dt
+

dr1

dt
· r2(t) (5)

d

dt
[r1(t) × r2(t)] = r1(t) ×

dr2

dt
+

dr1

dt
× r2(t) (6)

•
•
•
•
•
•
•
•

REMARK. In (5) the order of the factors in each term on the right does not matter, but in

(6) it does.

In plane geometry one learns that a tangent line to a circle is perpendicular to the radius

at the point of tangency. Consequently, if a point moves along a circle in 2-space that is

centered at the origin, then one would expect the radius vector and the tangent vector at any

point on the circle to be orthogonal. This is the motivation for the following useful theorem,

which is applicable in both 2-space and 3-space.

13.2.9 THEOREM. If r(t) is a vector-valued function in 2-space or 3-space and ‖r(t)‖
is constant for all t, then

r(t) · r ′(t) = 0 (7)

that is, r(t) and r ′(t) are orthogonal vectors for all t .

Proof. It follows from (5) with r1(t) = r2(t) = r(t) that

d

dt
[r(t) · r(t)] = r(t) ·

dr

dt
+

dr

dt
· r(t)

or, equivalently,

d

dt
[‖r(t)‖2] = 2r(t) ·

dr

dt
(8)

But ‖r(t)‖2 is constant, so its derivative is zero. Thus

2r(t) ·

dr

dt
= 0

from which (7) follows.

y

x

z

r(t)

r'(t)

Figure 13.2.7

Example 5 Just as a tangent line to a circle in 2-space is perpendicular to the radius at

the point of tangency, so a tangent vector to a curve on the surface of a sphere in 3-space

that is centered at the origin is orthogonal to the radius vector at the point of tangency

(Figure 13.2.7). To see that this is so, suppose that the graph of r(t) lies on the surface of a

sphere of positive radius k centered at the origin. For each value of t we have ‖r(t)‖ = k,

so by Theorem 13.2.9

r(t) · r ′(t) = 0

and hence the radius vector r(t) and the tangent vector r ′(t) are orthogonal. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRALS OF VECTOR-VALUED
FUNCTIONS

If r(t) = 〈x(t), y(t)〉 = x(t)i + y(t)j is a vector-valued function in 2-space, we can define

the definite integral of r(t) from t = a to t = b via a Riemann sum, as was done for real-

valued functions in Definition 5.5.1. It follows immediately that a definite integral of r(t)

can be expressed as a vector whose components are the definite integrals of the component

functions for r(t).
∫ b

a

r(t) dt = lim
max�tk →0

n
∑

k=1

r(t∗k )�tk

= lim
max�tk →0

[(

n
∑

k=1

x(t∗k )�tk

)

i +

(

n
∑

k=1

y(t∗k )�tk

)

j

]

=

(

lim
max�tk →0

n
∑

k=1

x(t∗k )�tk

)

i +

(

lim
max�tk →0

n
∑

k=1

y(t∗k )�tk

)

j

=
(∫ b

a

x(t) dt

)

i +
(∫ b

a

y(t) dt

)

j

Alternatively,
∫ b

a

〈x(t), y(t)〉 dt =
〈∫ b

a

x(t) dt,

∫ b

a

y(t) dt

〉

For vector-valued functions in 3-space this becomes
∫ b

a

〈x(t), y(t), z(t)〉 dt =
〈∫ b

a

x(t) dt,

∫ b

a

y(t) dt,

∫ b

a

z(t) dt

〉

=
(∫ b

a

x(t) dt

)

i +
(∫ b

a

y(t) dt

)

j +
(∫ b

a

z(t) dt

)

k

Example 6 Let r(t) = t2i + et j − (2 cosπt)k. Then
∫ 1

0

r(t) dt =
(∫ 1

0

t2 dt

)

i +
(∫ 1

0

et dt

)

j −
(∫ 1

0

2 cosπt dt

)

k

=
t3

3

]1

0

i + et
]1

0

j −
2

π
sinπt

]1

0

k =
1

3
i + (e − 1)j ◭

An antiderivative for a vector-valued function r(t) is a vector-valued function R(t) such

that

R′(t) = r(t) (9)

As in Chapter 5, we recast Equation (9) using integral notation as
∫

r(t) dt = R(t) + C (10)

where C is understood to represent an arbitrary constant vector.

Note that since differentiation of vector-valued functions can be done componentwise,

antidifferentiation can also be done componentwise. This is illustrated in the next example.

Example 7
∫

(2t i + 3t2j) dt =
(∫

2t dt

)

i +
(∫

3t2 dt

)

j

= (t2 + C1)i + (t3 + C2)j

= (t2i + t3j) + (C1i + C2 j) = (t2i + t3j) + C

where C = C1i + C2 j is an arbitrary vector constant of integration. ◭
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Most of the familiar integration properties have vector counterparts. For example, vector

differentiation and integration are inverse operations in the sense that

d

dt

[∫

r(t) dt

]

= r(t) (11)

and
∫

r′(t) dt = r(t) + C (12)

If R(t) is an antiderivative of r(t) on an interval containing a and b, then

∫ b

a

r(t) dt = R(t)

]b

a

= R(b) − R(a) (13)

Example 8 Evaluate the definite integral

∫ 2

0

(2t i + 3t2j) dt .

Solution. Integrating the components yields
∫ 2

0

(2t i + 3t2j) dt = t2

]2

0

i + t3

]2

0

j = 4i + 8j

Alternative Solution. The function R(t) = t2i + t3j is an antiderivative of the integrand

since R′(t) = 2t i + 3t2j. Thus, it follows from (13) that
∫ 2

0

(2t i + 3t2j) dt = R(t)

]2

0

= t2i + t3j

]2

0

= (4i + 8j) − (0i + 0j) = 4i + 8j ◭

Example 9 Find r(t) given that r′(t) = 〈3, 2t〉 and r(1) = 〈2, 5〉.

Solution. Integrating r′(t) to obtain r(t) yields

r(t) =
∫

r′(t) dt =
∫

〈3, 2t〉 dt = 〈3t, t2〉 + C

where C is a vector constant of integration. To find the value of C we substitute t = 1 and

use the given value of r(1) to obtain

r(1) = 〈3, 1〉 + C = 〈2, 5〉
so that C = 〈−1, 4〉. Thus,

r(t) = 〈3t, t2〉 + 〈−1, 4〉 = 〈3t − 1, t2 + 4〉 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRAL RULES
As with differentiation, many of the rules for integrating real-valued functions have analogs

in the context of integrating vector-valued functions.

13.2.10 THEOREM (Rules of Integration). Let k be a scalar and let r(t), r1(t), r2(t),

R(t), R1(t), and R2(t) be vector-valued functions, all in 2-space or all in 3-space, such

that R, R1, and R2 are antiderivatives of r, r1, and r2, respectively; that is, R′(t) = r(t),

R′
1(t) = r1(t), and R′

2(t) = r2(t). Then

(a)

∫

kr(t) dt = kR(t) + C

(b)

∫

[r1(t) + r2(t)] dt = R1(t) + R2(t) + C

(c)

∫

[r1(t) − r2(t)] dt = R1(t) − R2(t) + C

The proofs of these rules are left as an exercise.
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EXERCISE SET 13.2 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–6, find the limit.

1. lim
t→3

(t2i + 2tj) 2. lim
t→π/4

〈cos t, sin t〉

3. lim
t→+�

〈

t2 + 1

3t2 + 2
,

1

t

〉

4. lim
t→0+

(√
t i +

sin t

t
j

)

5. lim
t→2

(t i − 3j + t2k) 6. lim
t→1

〈

3

t2
,

ln t

t2 − 1
, sin 2t

〉

In Exercises 7 and 8, determine whether r(t) is continuous at

t = 0. Explain your reasoning.

7. (a) r(t) = 3 sin t i − 2tj (b) r(t) = t2i +
1

t
j + tk

8. (a) r(t) = et i + j + csc tk

(b) r(t) = 5i −
√

3t + 1 j + e2tk

9. Sketch the circle r(t) = cos t i + sin tj, and in each part

draw the vector with its correct length.

(a) r ′(π/4) (b) r ′′(π) (c) r(2π) − r(3π/2)

10. Sketch the circle r(t) = cos t i − sin tj, and in each part

draw the vector with its correct length.

(a) r ′(π/4) (b) r ′′(π) (c) r(2π) − r(3π/2)

In Exercises 11–14, find r ′(t).

11. r(t) = (4 + 5t)i + (t − t2) j

12. r(t) = 4i − cos tj

13. r(t) =
1

t
i + tan tj + e2tk

14. r(t) = (tan−1 t)i + t cos t j −
√
t k

In Exercises 15–18, find the vector r ′(t0); then sketch the

graph of r(t) in 2-space and draw the tangent vector r ′(t0).

15. r(t) = 〈t, t2〉; t0 = 2 16. r(t) = t3i + t2 j; t0 = 1

17. r(t) = sec t i + tan tj; t0 = 0

18. r(t) = 2 sin t i + 3 cos tj; t0 = π/6

In Exercises 19 and 20, find the vector r ′(t0); then sketch the

graph of r(t) in 3-space and draw the tangent vector r ′(t0).

19. r(t) = 2 sin t i + j + 2 cos tk; t0 = π/2

20. r(t) = cos t i + sin t j + tk; t0 = π/4

In Exercises 21 and 22, use a graphing utility to generate the

graph of r(t) and the graph of the tangent line at t0 on the

same screen.

21. r(t) = sinπt i + t2 j; t0 = 1
2

22. r(t) = 3 sin t i + 4 cos tj; t0 = π/4

In Exercises 23–26, find parametric equations of the line tan-

gent to the graph of r(t) at the point where t = t0.

23. r(t) = t2i + (2 − ln t) j; t0 = 1

24. r(t) = e2t i − 2 cos 3t j; t0 = 0

25. r(t) = 2 cosπt i + 2 sinπtj + 3tk; t0 = 1
3

26. r(t) = ln t i + e−t j + t3k; t0 = 2

In Exercises 27–30, find a vector equation of the line tangent

to the graph of r(t) at the point P0 on the curve.

27. r(t) = (2t − 1)i +
√

3t + 4 j; P0(−1, 2)

28. r(t) = 4 cos t i − 3tj; P0(2,−π)

29. r(t) = t2i −
1

t + 1
j + (4 − t2)k; P0(4, 1, 0)

30. r(t) = sin t i + cosh tj + (tan−1 t)k; P0(0, 1, 0)

31. Let r(t) = cos t i + sin tj + k. Find

(a) lim
t→0

(r(t) − r ′(t)) (b) lim
t→0

(r(t) × r ′(t))

(c) lim
t→0

(r(t) · r ′(t)).

32. Let r(t) = t i + t2 j + t3k. Find

lim
t→1

r(t) · (r′(t) × r ′′(t))

In Exercises 33 and 34, calculate

d

dt
[r1(t) · r2(t)] and

d

dt
[r1(t) × r2(t)]

first by differentiating the product directly and then by ap-

plying Formulas (5) and (6).

33. r1(t) = 2t i + 3t2 j + t3k, r2(t) = t4k

34. r1(t) = cos t i + sin tj + tk, r2(t) = i + tk

In Exercises 35–40, evaluate the indefinite integral.

35.

∫

(3i + 4tj) dt 36.

∫

(cos t i + sin tj) dt

37.

∫

(t sin i + j) dt 38.

∫

〈tet , ln t〉 dt

39.

∫ (

t2i − 2tj +
1

t
k

)

dt 40.

∫

〈e−t , et , 3t2〉 dt

In Exercises 41– 46, evaluate the definite integral.

41.

∫ π/3

0

〈cos 3t,− sin 3t〉 dt 42.

∫ 1

0

(t2i + t3 j) dt

43.

∫ 2

0

‖t i + t2 j‖ dt

44.

∫ 3

−3

〈(3 − t)3/2, (3 + t)3/2, 1〉 dt
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45.

∫ 9

1

(t1/2i + t−1/2 j) dt 46.

∫ 1

0

(e2t i + e−t j + tk) dt

In Exercises 47–50, solve the vector initial-value problem for

y(t) by integrating and using the initial conditions to find the

constants of integration.

47. y′(t) = t2i + 2tj, y(0) = i + j

48. y′(t) = cos t i + sin tj, y(0) = i − j

49. y′′(t) = i + et j, y(0) = 2i, y′(0) = j

50. y′′(t) = 12t2i − 2tj, y(0) = 2i − 4j, y′(0) = 0

In Exercises 51 and 52, let θ(t) be the angle between r(t) and

r ′(t). Use a graphing calculator to generate the graph of θ

versus t, and make rough estimates of the t-values at which

t-intercepts or relative extrema occur. What do these values

tell you about the vectors r(t) and r ′(t)?

51. r(t) = 4 cos t i + 3 sin tj; 0 ≤ t ≤ 2π

52. r(t) = t2i + t3 j; 0 ≤ t ≤ 1

53. (a) Find the points where the curve

r = t i + t2 j − 3tk

intersects the plane 2x − y + z = −2.

(b) For the curve and plane in part (a), find, to the nearest

degree, the acute angle that the tangent line to the curve

makes with a line normal to the plane at each point of

intersection.

54. Find where the tangent line to the curve

r = e−2t i + cos tj + 3 sin tk

at the point (1, 1, 0) intersects the yz-plane.

In Exercises 55 and 56, show that the graphs of r1(t) and

r2(t) intersect at the point P. Find, to the nearest degree, the

acute angle between the tangent lines to the graphs of r1(t)

and r2(t) at the point P.

55. r1(t) = t2i + tj + 3t3k

r2(t) = (t − 1)i + 1
4
t2 j + (5 − t)k; P(1, 1, 3)

56. r1(t) = 2e−t i + cos tj + (t2 + 3)k

r2(t) = (1 − t)i + t2 j + (t3 + 4)k; P(2, 1, 3)

57. Use Formula (6) to derive the differentiation formula

d

dt
[r(t) × r ′(t)] = r(t) × r ′′(t)

58. Let u = u(t), v = v(t), and w = w(t) be differentiable

vector-valued functions. Use Formulas (5) and (6) to show

that

d

dt
[u · (v × w)]

=
du

dt
· [v × w] + u ·

[

dv

dt
× w

]

+ u ·

[

v ×
dw

dt

]

59. Let u1, u2, u3, v1, v2, v3, w1, w2, and w3 be differentiable

functions of t . Use Exercise 58 to show that

d

dt

∣

∣

∣

∣

∣

∣

u1

v1

w1

u2

v2

w2

u3

v3

w3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

u′
1

v1

w1

u′
2

v2

w2

u′
3

v3

w3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

u1

v′
1

w1

u2

v′
2

w2

u3

v′
3

w3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

u1

v1

w′
1

u2

v2

w′
2

u3

v3

w′
3

∣

∣

∣

∣

∣

∣

60. Prove Theorem 13.2.7 for 2-space.

61. Derive Formulas (5) and (6) for 3-space.

62. Prove Theorem 13.2.10 for 2-space.

13.3 CHANGE OF PARAMETER; ARC LENGTH

We observed in earlier sections that a curve in 2-space or 3-space can be represented

parametrically in more than one way. For example, in Section 1.8 we gave two para-

metric representations of a circle—one in which the circle was traced clockwise and

the other in which it was traced counterclockwise. Sometimes it will be desirable to

change the parameter for a parametric curve to a different parameter that is better

suited for the problem at hand. In this section we will investigate issues associated

with changes of parameter, and we will show that arc length plays a special role in

parametric representations of curves.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SMOOTH PARAMETRIZATIONS
Graphs of vector-valued functions range from continuous and smooth to discontinuous

and wildly erratic. In this text we will not be concerned with graphs of the latter type, so

we will need to impose restrictions to eliminate the unwanted behavior. We will say that

r(t) is smoothly parametrized or that r(t) is a smooth function of t if r ′(t) is continuous

and r ′(t) �= 0 for any allowable value of t. Algebraically, smoothness implies that the

components of r(t) have continuous derivatives that are not all zero for the same value
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of t, and geometrically, it implies that the tangent vector r ′(t) varies continuously along

the curve. For this reason a smoothly parametrized function is said to have a continuously

turning tangent vector.

Example 1 Determine whether the following vector-valued functions have continuously

turning tangent vectors.

(a) r(t) = a cos t i + a sin tj + ctk (a > 0, c > 0)

(b) r(t) = t2i + t3 j

Solution (a). We have

r ′(t) = −a sin t i + a cos tj + ck

The components are continuous functions, and there is no value of t for which all three of

them are zero (verify), so r(t) has a continuously turning tangent vector. The graph of r(t)

is the circular helix in Figure 13.1.2.

Solution (b). We have

r ′(t) = 2t i + 3t2 j

Although the components are continuous functions, they are both equal to zero if t = 0, so

r(t) does not have a continuously turning tangent vector. The graph of r(t), which is shown

in Figure 13.3.1, is a semicubical parabola traced in the upward direction (see Example 3

of Section 11.2). Observe that for values of t slightly less than zero the angle between r ′(t)

and i is near π, and for values of t slightly larger than zero the angle is near 0; hence there is

a sudden reversal in the direction of the tangent vector as t increases through t = 0. ◭

r(t) =  t2i + t3j

y

x

Figure 13.3.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ARC LENGTH FROM THE VECTOR
VIEWPOINT

Recall from Theorem 6.4.3 that the arc length L of a parametric curve

x = x(t), y = y(t) (a ≤ t ≤ b) (1)

is given by the formula

L =
∫ b

a

√

(

dx

dt

)2

+
(

dy

dt

)2

dt (2)

Analogously, the arc length L of a parametric curve

x = x(t), y = y(t), z = z(t) (a ≤ t ≤ b) (3)

in 3-space is given by the formula

L =
∫ b

a

√

(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt (4)

Formulas (2) and (4) have vector forms that we can obtain by letting

r(t) = x(t)i + y(t) j

2-space

or r(t) = x(t)i + y(t) j + z(t)k

3-space

It follows that

dr

dt
=

dx

dt
i +

dy

dt
j

2-space

or
dr

dt
=

dx

dt
i +

dy

dt
j +

dz

dt
k

3-space
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and hence
∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

=

√

(

dx

dt

)2

+
(

dy

dt

)2

2-space

or

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

=

√

(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

3-space

Substituting these expressions in (2) and (4) leads us to the following theorem.

13.3.1 THEOREM. If C is the graph in 2-space or 3-space of a smooth vector-valued

function r(t), then its arc length L from t = a to t = b is

L =
∫ b

a

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

dt (5)

Example 2 Find the arc length of that portion of the circular helix

x = cos t, y = sin t, z = t

from t = 0 to t = π.

Solution. Set r(t) = (cos t)i + (sin t)j + tk = 〈cos t, sin t, t〉. Then

r′(t) = 〈− sin t, cos t, 1〉 and ‖r′(t)‖ =
√

(− sin t)2 + (cos t)2 + 1 =
√

2

From Theorem 13.3.1 the arc length of the helix is

L =
∫ π

0

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

dt =
∫ π

0

√
2 dt =

√
2π ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ARC LENGTH AS A PARAMETER
For many purposes the best parameter to use for representing a curve in 2-space or 3-space

parametrically is the length of arc measured along the curve from some fixed reference

point. This can be done as follows:

Step 1. Select an arbitrary point on the curve C to serve as a reference point.

Step 2. Starting from the reference point, choose one direction along the

curve to be the positive direction and the other to be the negative

direction.

Step 3. If P is a point on the curve, let s be the “signed” arc length along

C from the reference point to P , where s is positive if P is in the

positive direction from the reference point, and s is negative if P is

in the negative direction. Figure 13.3.2 illustrates this idea.Reference point

s = –3

s = –2

s = –1

s = 1

s = 2

s = 3

+
di

re
ct

io
n

–
d
ir
ec

ti
on

C

Figure 13.3.2

By this procedure, a unique point P on the curve is determined when a value for s is

given. For example, s = 2 determines the point that is 2 units along the curve in the positive

direction from the reference point, and s = − 3
2

determines the point that is 3
2

units along

the curve in the negative direction from the reference point.

Let us now treat s as a variable. As the value of s changes, the corresponding point

P moves along C and the coordinates of P become functions of s. Thus, in 2-space the

coordinates of P are (x(s), y(s)), and in 3-space they are (x(s), y(s), z(s)). Therefore, in

2-space or 3-space the curve C is given by the parametric equations

x = x(s), y = y(s) or x = x(s), y = y(s), z = z(s)

A parametric representation of a curve with arc length as the parameter is called an arc

length parametrization of the curve. Note that a given curve will generally have infinitely
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many different arc length parametrizations, since the reference point and orientation can be

chosen arbitrarily.

Example 3 Find the arc length parametrization of the circle x2 + y2 = a2 with counter-

clockwise orientation and (a, 0) as the reference point.

Solution. The circle with counterclockwise orientation can be represented by the para-

metric equations

x = a cos t, y = a sin t (0 ≤ t ≤ 2π) (6)

in which t can be interpreted as the angle in radian measure from the positive x-axis to the

radius from the origin to the point P(x, y) (Figure 13.3.3). If we take the positive direction

for measuring the arc length to be counterclockwise, and we take (a, 0) to be the reference

point, then s and t are related by

s = at or t = s/a

Making this change of variable in (6) and noting that s increases from 0 to 2πa as t increases

from 0 to 2π yields the following arc length parametrization of the circle:

x = a cos(s/a), y = a sin(s/a) (0 ≤ s ≤ 2πa) ◭

P(x, y)

s

(a, 0)

t x

y

Figure 13.3.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CHANGE OF PARAMETER
In many situations the solution of a problem can be simplified by choosing the parameter

in a vector-valued function or a parametric curve in the right way. The two most common

parameters for curves in 2-space or 3-space are time and arc length. However, there are

other useful possibilities as well. For example, in analyzing the motion of a particle in 2-

space, it is often desirable to parametrize its trajectory in terms of the angle φ between the

tangent vector and the positive x-axis (Figure 13.3.4). Thus, our next objective is to develop

methods for changing the parameter in a vector-valued function or parametric curve. This

will allow us to move freely between different possible parametrizations.

x

y

r(t)

Time as parameter

x

y

r(s)

Arc length as parameter

x

y

r(f)

f as parameter

s f

Figure 13.3.4

A change of parameter in a vector-valued function r(t) is a substitution t = g(τ) that

produces a new vector-valued function r(g(τ )) having the same graph as r(t), but possibly

traced differently as the parameter τ increases.

Example 4 Find a change of parameter t = g(τ) for the circle

r(t) = cos t i + sin tj (0 ≤ t ≤ 2π)

such that

(a) the circle is traced counterclockwise as τ increases over the interval [0, 1];

(b) the circle is traced clockwise as τ increases over the interval [0, 1].

Solution (a). The given circle is traced counterclockwise as t increases. Thus, if we

choose g to be an increasing function, then it will follow from the relationship t = g(τ) that
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t increases when τ increases, thereby ensuring that the circle will be traced counterclockwise

as τ increases. We also want to choose g so that t increases from 0 to 2π as τ increases from

0 to 1. A simple choice of g that satisfies all of the required criteria is the linear function

graphed in Figure 13.3.5a. The equation of this line is

t = g(τ) = 2πτ (7)

which is the desired change of parameter. The resulting representation of the circle in terms

of the parameter τ is

r(g(τ )) = cos 2πτ i + sin 2πτ j (0 ≤ τ ≤ 1)

1

t = 2pt

(a)

t

t

2p

t = 2p(1 – t)

(b)

t

t

1

2p

Figure 13.3.5

Solution (b). To ensure that the circle is traced clockwise, we will choose g to be a

decreasing function such that t decreases from 2π to 0 as τ increases from 0 to 1. A simple

choice of g that achieves this is the linear function

t = g(τ) = 2π(1 − τ) (8)

graphed in Figure 13.3.5b. The resulting representation of the circle in terms of the parameter

τ is

r(g(τ )) = cos(2π(1 − τ))i + sin(2π(1 − τ)) j (0 ≤ τ ≤ 1)

which simplifies to (verify)

r(g(τ )) = cos 2πτ i − sin 2πτ j (0 ≤ τ ≤ 1) ◭

When making a change of parameter t = g(τ) in a vector-valued function r(t), it will be

important to ensure that the new vector-valued function r(g(τ )) is smooth if r(t) is smooth.

To establish conditions under which this happens, we will need the following version of the

chain rule for vector-valued functions. The proof is left as an exercise.

13.3.2 THEOREM (Chain Rule). Let r(t) be a vector-valued function in 2-space or

3-space that is differentiable with respect to t . If t = g(τ) is a change of parameter in

which g is differentiable with respect to τ, then r(g(τ )) is differentiable with respect to

τ and

dr

dτ
=

dr

dt

dt

dτ
(9)

A change of parameter t = g(τ) in which r(g(τ )) is smooth if r(t) is smooth is called a

smooth change of parameter. It follows from (9) that t = g(τ) will be a smooth change of

parameter if dt/dτ is continuous and dt/dτ �= 0 for all values of τ, since these conditions

imply that dr/dτ is continuous and nonzero if dr/dt is continuous and nonzero. Smooth

changes of parameter fall into two categories—those for which dt/dτ > 0 for all τ (called

positive changes of parameter) and those for which dt/dτ < 0 for all τ (called negative

changes of parameter). A positive change of parameter preserves the orientation of a

parametric curve, and a negative change of parameter reverses it.

Example 5 In Example 4 the change of parameter in (7) is positive since dt/dτ = 2π > 0,

and the change of parameter given by (8) is negative since dt/dτ = −2π < 0. The positive

change of parameter preserved the orientation of the circle, and the negative change of

parameter reversed it. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FINDING ARC LENGTH
PARAMETRIZATIONS

Next we will consider the problem of finding an arc length parametrization of a vector-

valued function that is expressed initially in terms of some other parameter t . The following

theorem will provide a general method for doing this.
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13.3.3 THEOREM. Let C be the graph of a smooth vector-valued function r(t) in

2-space or 3-space, and let r(t0) be any point on C. Then the following formula defines

a positive change of parameter from t to s, where s is an arc length parameter having

r(t0) as its reference point (Figure 13.3.6):

s =
∫ t

t0

∥

∥

∥

∥

dr

du

∥

∥

∥

∥

du (10)

s

C

x

y

r(t0)

r(t)

Figure 13.3.6

Proof. From (5) with u as the variable of integration instead of t , the integral represents

the arc length of that portion of C between r(t0) and r(t) if t > t0 and the negative of that

arc length if t < t0. Thus, s is the arc length parameter with r(t0) as its reference point and

its positive direction in the direction of increasing t .

When needed, Formula (10) can be expressed in component form as

s =
∫ t

t0

√

(

dx

du

)2

+
(

dy

du

)2

du 2-space (11)

s =
∫ t

t0

√

(

dx

du

)2

+
(

dy

du

)2

+
(

dz

du

)2

du 3-space (12)

Example 6 Find the arc length parametrization of the circular helix

r = cos t i + sin tj + tk (13)

that has reference point r(0) = (1, 0, 0) and the same orientation as the given helix.

Solution. Replacing t by u in r for integration purposes and taking t0 = 0 in Formula

(10), we obtain

r = cos ui + sin uj + uk

dr

du
= (− sin u)i + cos uj + k

∥

∥

∥

∥

dr

du

∥

∥

∥

∥

=
√

(− sin u)2 + cos2 u + 1 =
√

2

s =
∫ t

0

∥

∥

∥

∥

dr

du

∥

∥

∥

∥

du =
∫ t

0

√
2 du =

√
2u

]t

0

=
√

2t

Thus, t = s/
√

2, so (13) can be reparametrized in terms of s as

r = cos

(

s
√

2

)

i + sin

(

s
√

2

)

j +
s

√
2

k

We are guaranteed that this reparametrization preserves the orientation of the helix since

Formula (10) produces a positive change of parameter. ◭

Example 7 A bug, starting at the reference point (1, 0, 0) of the helix in Example 6,

walks up the helix for a distance of 10 units. What are the bug’s final coordinates?

Solution. From Example 6, the arc length parametrization of the helix relative to the

reference point (1, 0, 0) is

r = cos

(

s
√

2

)

i + sin

(

s
√

2

)

j +
s

√
2

k
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or, expressed parametrically,

x = cos

(

s
√

2

)

, y = sin

(

s
√

2

)

, z =
s

√
2

Thus, at s = 10 the coordinates are
(

cos

(

10
√

2

)

, sin

(

10
√

2

)

,
10
√

2

)

≈ (0.705, 0.709, 7.07) ◭

Example 8 Recall from Formula (9) of Section 12.5 that the equation

r = r0 + tv (14)

is the vector form of the line that passes through the terminal point of r0 and is parallel to

the vector v. Find the arc length parametrization of the line that has reference point r0 and

the same orientation as the given line.

Solution. Replacing t by u in r for integration purposes and taking t0 = 0 in Formula

(10), we obtain

r = r0 + uv

dr

du
= v Since r0 is constant

∥

∥

∥

∥

dr

du

∥

∥

∥

∥

= ‖v‖

s =
∫ t

0

∥

∥

∥

∥

dr

du

∥

∥

∥

∥

du =
∫ t

0

‖v‖ du = ‖v‖u
]t

0

= t‖v‖

Thus, t = s/‖v‖, so (14) can be reparametrized in terms of s as

r = r0 + s

(

v

‖v‖

)

(15)

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Comparing Formulas (14) and (15) shows that the vector equation of the line

through the terminal point of r0 that is parallel to v can be reparametrized in terms of arc

length with reference point r0 by normalizing v and then replacing t by s.

Example 9 Find the arc length parametrization of the line

x = 2t + 1, y = 3t − 2

that has the same orientation as the given line and uses (1,−2) as the reference point.

Solution. The line passes through the point (1,−2) and is parallel to the vector v = 2i+3j.

To find the arc length parametrization of the line, we need only rewrite the given equations

using v/‖v‖ rather than v to determine the direction and replace t by s. Since

v

‖v‖
=

2i + 3j
√

13
=

2
√

13
i +

3
√

13
j

it follows that the parametric equations for the line in terms of s are

x =
2

√
13

s + 1, y =
3

√
13

s − 2 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PROPERTIES OF ARC LENGTH
PARAMETRIZATIONS

Because arc length parameters for a curve C are intimately related to the geometric char-

acteristics of C, arc length parametrizations have properties that are not enjoyed by other

parametrizations. For example, the following theorem shows that if a smooth curve is rep-

resented parametrically using an arc length parameter, then the tangent vectors all have

length 1.
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13.3.4 THEOREM.

(a) If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space,

where t is a general parameter, and if s is the arc length parameter for C defined

by Formula (10), then for every value of t the tangent vector has length

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

=
ds

dt
(16)

(b) If C is the graph of a smooth vector-valued function r(s) in 2-space or 3-space,

where s is an arc length parameter, then for every value of s the tangent vector to

C has length

∥

∥

∥

∥

dr

ds

∥

∥

∥

∥

= 1 (17)

(c) If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space,

and if
∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

= 1

for every value of t, then for any value of t0 in the domain of r, the parameter

s = t − t0 is an arc length parameter that has its reference point at the point on C

where t = t0.

Proof (a). This result follows by applying the Fundamental Theorem of Calculus (Theorem

5.6.3) to Formula (10).

Proof (b). Let t = s in part (a).

Proof (c). It follows from Theorem 13.3.3 that the formula

s =
∫ t

t0

∥

∥

∥

∥

dr

du

∥

∥

∥

∥

du

defines an arc length parameter for C with reference point r(0). However, ‖dr/du‖ = 1 by

hypothesis, so we can rewrite the formula for s as

s =
∫ t

t0

du = u

]t

t0

= t − t0

The component forms of Formulas (16) and (17) will be of sufficient interest in later sec-

tions that we provide them here for reference:

ds

dt
=

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

=

√

(

dx

dt

)2

+
(

dy

dt

)2

2-space (18)

ds

dt
=

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

=

√

(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

3-space (19)

∥

∥

∥

∥

dr

ds

∥

∥

∥

∥

=

√

(

dx

ds

)2

+
(

dy

ds

)2

= 1 2-space (20)
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∥

∥

∥

∥

dr

ds

∥

∥

∥

∥

=

√

(

dx

ds

)2

+
(

dy

ds

)2

+
(

dz

ds

)2

= 1 3-space (21)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Note that Formulas (18) and (19) do not involve t0, and hence do not depend

on where the reference point for s is chosen. This is to be expected, since changing the

reference point shifts s by a constant (the arc length between the two reference points), and

this constant drops out on differentiating.

EXERCISE SET 13.3
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. The accompanying figure shows the graph of the four-

cusped hypocycloid r(t) = cos3 t i + sin3 tj (0 ≤ t ≤ 2π).

(a) Give an informal explanation of why r(t) is not smooth.

(b) Confirm that r(t) is not smooth by examining r ′(t).

2. The accompanying figure shows the graph of the vector-

valued function r(t) = sin t i + sin2 tj (0 ≤ t ≤ 2π). Show

that this parametric curve is not smooth, even though it has

no corners. Give an informal explanation of what causes the

lack of smoothness.

x

y

Figure Ex-1

x

y

Figure Ex-2

In Exercises 3–6, determine whether r(t) is a smooth function

of the parameter t.

3. r(t) = t3i + (3t2 − 2t) j + t2k

4. r(t) = cos t2i + sin t2 j + e−tk

5. r(t) = te−t i + (t2 − 2t) j + cosπtk

6. r(t) = sinπt i + (2t − ln t) j + (t2 − t)k

In Exercises 7–10, find the arc length of the parametric curve.

7. x = cos3 t, y = sin3 t, z = 2; 0 ≤ t ≤ π/2

8. x = 3 cos t, y = 3 sin t, z = 4t; 0 ≤ t ≤ π

9. x = et , y = e−t , z =
√

2t; 0 ≤ t ≤ 1

10. x = 1
2
t, y = 1

3
(1 − t)3/2, z = 1

3
(1 + t)3/2; −1 ≤ t ≤ 1

In Exercises 11–14, find the arc length of the graph of r(t).

11. r(t) = t3i + tj + 1
2

√
6t2k; 1 ≤ t ≤ 3

12. r(t) = (4 + 3t)i + (2 − 2t) j + (5 + t)k; 3 ≤ t ≤ 4

13. r(t) = 3 cos t i + 3 sin tj + tk; 0 ≤ t ≤ 2π

14. r(t) = t2i+(cos t+ t sin t) j+(sin t− t cos t)k; 0 ≤ t ≤ π

In Exercises 15–18, calculate dr/dτ by the chain rule, and

then check your result by expressing r in terms of τ and

differentiating.

15. r = t i + t2 j; t = 4τ + 1

16. r = 〈3 cos t, 3 sin t〉; t = πτ

17. r = et i + 4e−t j; t = τ 2

18. r = i + 3t3/2 j + tk; t = 1/τ

19. (a) Find the arc length parametrization of the line

x = t, y = t

that has the same orientation as the given line and has

reference point (0, 0).

(b) Find the arc length parametrization of the line

x = t, y = t, z = t

that has the same orientation as the given line and has

reference point (0, 0, 0).

20. Find arc length parametrizations of the lines in Exercise 19

that have the stated reference points but are oriented oppo-

site to the given lines.

21. (a) Find the arc length parametrization of the line

x = 1 + t, y = 3 − 2t, z = 4 + 2t

that has the same direction as the given line and has

reference point (1, 3, 4).

(b) Use the parametric equations obtained in part (a) to find

the point on the line that is 25 units from the reference

point in the direction of increasing parameter.

22. (a) Find the arc length parametrization of the line

x = −5 + 3t, y = 2t, z = 5 + t

that has the same direction as the given line and has

reference point (−5, 0, 5).

(b) Use the parametric equations obtained in part (a) to find

the point on the line that is 10 units from the reference

point in the direction of increasing parameter.
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In Exercises 23–28, find an arc length parametrization of the

curve that has the same orientation as the given curve and has

t = 0 as the reference point.

23. r(t) = (3 + cos t)i + (2 + sin t) j; 0 ≤ t ≤ 2π

24. r(t) = cos3 t i + sin3 t j; 0 ≤ t ≤ π/2

25. r(t) = 1
3
t3i + 1

2
t2 j; t ≥ 0

26. r(t) = (1 + t)2i + (1 + t)3 j; 0 ≤ t ≤ 1

27. r(t) = et cos t i + et sin t j; 0 ≤ t ≤ π/2

28. r(t) = sin et i + cos et j +
√

3etk; t ≥ 0

29. Show that the arc length of the circular helix x = a cos t,

y = a sin t, z = ct for 0 ≤ t ≤ t0 is t0
√
a2 + c2.

30. Use the result in Exercise 29 to show the circular helix

r = a cos t i + a sin t j + ctk

can be expressed as

r =
(

a cos
s

w

)

i +
(

a sin
s

w

)

j +
cs

w
k

where w =
√
a2 + c2 and s is an arc length parameter with

reference point at (a, 0, 0).

31. Find an arc length parametrization of the cycloid

x = at − a sin t

y = a − a cos t
(0 ≤ t ≤ 2π)

with (0, 0) as the reference point.

32. Show that in cylindrical coordinates a curve given by the

parametric equations r = r(t), θ = θ(t), z = z(t) for

a ≤ t ≤ b has arc length

L =
∫ b

a

√

(

dr

dt

)2

+ r2

(

dθ

dt

)2

+
(

dz

dt

)2

dt

[Hint: Use the relationships x = r cos θ, y = r sin θ.]

33. In each part, use the formula in Exercise 32 to find the arc

length of the curve.

(a) r = e2t , θ = t, z = e2t ; 0 ≤ t ≤ ln 2

(b) r = t2, θ = ln t, z = 1
3
t3; 1 ≤ t ≤ 2

34. Show that in spherical coordinates a curve given by the

parametric equations ρ = ρ(t), θ = θ(t), φ = φ(t) for

a ≤ t ≤ b has arc length

L =
∫ b

a

√

(

dρ

dt

)2

+ ρ2 sin2 φ

(

dθ

dt

)2

+ ρ2

(

dφ

dt

)2

dt

[Hint: x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.]

35. In each part, use the formula in Exercise 34 to find the arc

length of the curve.

(a) ρ = e−t , θ = 2t, φ = π/4; 0 ≤ t ≤ 2

(b) ρ = 2t, θ = ln t, φ = π/6; 1 ≤ t ≤ 5

36. (a) Show that r(t) = t i + t2 j (−1 ≤ t ≤ 1) is a smooth

vector-valued function, but the change of parameter

t = τ 3 produces a vector-valued function that is not

smooth, yet has the same graph as r(t).

(b) Examine how the two vector-valued functions are traced

and see if you can explain what causes the problem.

37. Find a change of parameter t = g(τ) for the semicircle

r(t) = cos t i + sin tj (0 ≤ t ≤ π)

such that

(a) the semicircle is traced counterclockwise as τ varies

over the interval [0, 1]

(b) the semicircle is traced clockwise as τ varies over the

interval [0, 1].

38. What change of parameter t = g(τ) would you make if

you wanted to trace the graph of r(t) (0 ≤ t ≤ 1) in the

opposite direction with τ varying from 0 to 1?

39. As illustrated in the accompanying figure, copper cable with

a diameter of 1
2

inch is to be wrapped in a circular helix

around a cylinder that has a 12-inch diameter. What length

of cable (measured along its centerline) will make one com-

plete turn around the cylinder in a distance of 20 inches

(between centerlines) measured parallel to the axis of the

cylinder?

20 in

12 in

in

Enlarged

cross

section

1

2

Figure Ex-39

40. Let x = cos t, y = sin t, z = t3/2. Find

(a) ‖r ′(t)‖ (b)
ds

dt
(c)

∫ 2

0

‖r ′(t)‖ dt.

41. Let r(t) = ln t i + 2tj + t2k. Find

(a) ‖r ′(t)‖ (b)
ds

dt
(c)

∫ 3

1

‖r ′(t)‖ dt.

42. Prove: If r(t) is a smoothly parametrized function, then the

angles between r ′(t) and the vectors i, j, and k are contin-

uous functions of t.

43. Prove the vector form of the chain rule for 2-space (Theorem

13.3.2) by expressing r(t) in terms of components.
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13.4 UNIT TANGENT, NORMAL, AND BINORMAL VECTORS

In this section we will discuss some of the fundamental geometric properties of vector-

valued functions. Our work here will have important applications to the study of

motion along a curved path in 2-space or 3-space and to the study of the geometric

properties of curves and surfaces.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

UNIT TANGENT VECTORS
Recall that if C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space,

then the vector r ′(t) is nonzero, tangent to C, and points in the direction of increasing

parameter. Thus, by normalizing r ′(t) we obtain a unit vector

T(t) =
r ′(t)

‖r ′(t)‖
(1)

that is tangent to C and points in the direction of increasing parameter. We call T(t) the

unit tangent vector to C at t.

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Unless stated otherwise, we will assume that T(t) is positioned with its initial

point at the terminal point of r(t) as in Figure 13.4.1. This will ensure that T(t) is actually

tangent to the graph of r(t) and not simply parallel to the tangent line.
r(t)

T(t)
C

x

y

Figure 13.4.1

Example 1 Find the unit tangent vector to the graph of r(t) = t2i + t3 j at the point

where t = 2.

Solution. Since

r ′(t) = 2t i + 3t2 j

we obtain

T(2) =
r ′(2)

‖r ′(2)‖
=

4i + 12 j
√

160
=

4i + 12 j

4
√

10
=

1
√

10
i +

3
√

10
j

The graph of r(t) and the vector T(2) are shown in Figure 13.4.2. ◭

8

10

x

y

(4, 8)

r(t) = t2i + t3j

T(2) =        i +        j
1

√10

3

√10

Figure 13.4.2

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

UNIT NORMAL VECTORS
Recall from Theorem 13.2.9 that if a vector-valued function r(t) has constant norm, then

r(t) and r ′(t) are orthogonal vectors. In particular, T(t) has constant norm 1, so T(t) and

T′(t) are orthogonal vectors. This implies that T′(t) is perpendicular to the tangent line to

C at t, so we say that T′(t) is normal to C at t. It follows that if T′(t) �= 0, and if we

normalize T′(t), then we obtain a unit vector

N(t) =
T′(t)

‖T′(t)‖
(2)

that is normal to C and points in the same direction as T′(t). We call N(t) the principal

unit normal vector to C at t or more simply the unit normal vector. Observe that the unit

normal vector is only defined at points where T′(t) �= 0. Unless stated otherwise, we will

assume that this condition is satisfied. In particular, this excludes straight lines.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In 2-space there are two unit vectors that are orthogonal to T(t), and in 3-space

there are infinitely many such vectors (Figure 13.4.3). In both cases the principal unit normal

is that particular normal that points in the direction of T′(t). After the next example we will

show that for a nonlinear parametric curve in 2-space the principal unit normal is the one

that points “inward” toward the concave side of the curve.

Example 2 Find T(t) and N(t) for the circular helix

x = a cos t, y = a sin t, z = ct

where a > 0.
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x

y C

C

T(t)

T(t)

y

z

x
There are two unit vectors 

orthogonal to T(t).

There are infinitely many unit 

vectors orthogonal to T(t).

Figure 13.4.3

Solution. The radius vector for the helix is

r(t) = a cos t i + a sin t j + ctk

Thus,

r ′(t) = (−a sin t)i + a cos t j + ck

‖r ′(t)‖ =
√

(−a sin t)2 + (a cos t)2 + c2 =
√
a2 + c2

T(t) =
r ′(t)

‖r ′(t)‖
= −

a sin t
√

a2 + c2
i +

a cos t
√

a2 + c2
j +

c
√

a2 + c2
k

T′(t) = −
a cos t

√

a2 + c2
i −

a sin t
√

a2 + c2
j

‖T′(t)‖ =

√

(

−
a cos t

√

a2 + c2

)2

+
(

−
a sin t

√

a2 + c2

)2

=

√

a2

a2 + c2
=

a
√

a2 + c2

N(t) =
T′(t)

‖T′(t)‖
= (− cos t)i − (sin t) j ◭

(a, 0, 0)

y

z

x

t = 3c

t = 0

Figure 13.4.4

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Because the k component of N(t) is zero, this vector lies in a horizontal

plane for every value of t . Show that N(t) actually points directly toward the z-axis for all

t (Figure 13.4.4).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INWARD UNIT NORMAL VECTORS
IN 2-SPACE

Our next objective is to show that for a nonlinear parametric curve C in 2-space the unit

normal vector always points toward the concave side of C. For this purpose, let φ(t) be

the angle from the positive x-axis to T(t), and let n(t) be the unit vector that results when

T(t) is rotated counterclockwise through an angle of π/2 (Figure 13.4.5). Since T(t) and

n(t) are unit vectors, it follows from Formula (12) of Section 12.2 that these vectors can be

expressed as

T(t) = cosφ(t)i + sinφ(t) j (3)

and

n(t) = cos[φ(t) + π/2]i + sin[φ(t) + π/2] j = − sinφ(t)i + cosφ(t) j (4)

Observe that on intervals where φ(t) is increasing the vector n(t) points toward the concave

side of C, and on intervals where φ(t) is decreasing it points away from the concave side

(Figure 13.4.6).

T(t)
n(t)

C

f

Figure 13.4.5

Now let us differentiate T(t) by using Formula (3) and applying the chain rule. This

yields

dT

dt
=

dT

dφ

dφ

dt
= [(− sinφ)i + (cosφ) j]

dφ

dt

and thus from (4)

dT

dt
= n(t)

dφ

dt
(5)
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x

y

C

f(t)

f(t) increases as t increases.

T(t)
n(t)

x

y

C
f(t)

f(t) decreases as t increases.

T(t)n(t)

Figure 13.4.6

But dφ/dt > 0 on intervals where φ(t) is increasing and dφ/dt < 0 on intervals where

φ(t) is decreasing. Thus, it follows from (5) that dT/dt has the same direction as n(t)

on intervals where φ(t) is increasing and the opposite direction on intervals where φ(t) is

decreasing. Therefore, T′(t) = dT/dt points “inward” toward the concave side of the curve

in all cases, and hence so does N(t). For this reason, N(t) is also called the inward unit

normal when applied to curves in 2-space.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

COMPUTING T AND N FOR CURVES
PARAMETRIZED BY ARC LENGTH

In the case where r(s) is parametrized by arc length, the procedures for computing the

unit tangent vector T(s) and the unit normal vector N(s) are simpler than in the general

case. For example, we showed in Theorem 13.3.4 that if s is an arc length parameter, then

‖r ′(s)‖ = 1. Thus, Formula (1) for the unit tangent vector simplifies to

T(s) = r ′(s) (6)

and consequently Formula (2) for the unit normal vector simplifies to

N(s) =
r ′′(s)

‖r ′′(s)‖
(7)

(x, y)

s = at

(a, 0)

t x

y

Figure 13.4.7

s

T(s)

N(s) x

y

Figure 13.4.8

Example 3 The circle of radius a with counterclockwise orientation and centered at the

origin can be represented by the vector-valued function

r = a cos t i + a sin tj (0 ≤ t ≤ 2π) (8)

In this representation we can interpret t as the angle in radian measure from the positive

x-axis to the radius vector (Figure 13.4.7). This angle subtends an arc of length s = at on

the circle, so we can reparametrize the circle in terms of s by substituting s/a for t in (8).

This yields

r(s) = a cos(s/a)i + a sin(s/a) j (0 ≤ s ≤ 2πa)

To find T(s) and N(s) from Formulas (6) and (7), we must compute r ′(s), r ′′(s), and

‖r ′′(s)‖. Doing so, we obtain

r ′(s) = − sin(s/a)i + cos(s/a) j

r ′′(s) = −(1/a) cos(s/a)i − (1/a) sin(s/a) j

‖r ′′(s)‖ =
√

(−1/a)2 cos2(s/a) + (−1/a)2 sin2(s/a) = 1/a

Thus,

T(s) = r ′(s) = − sin(s/a)i + cos(s/a) j

N(s) = r ′′(s)/‖r ′′(s)‖ = − cos(s/a)i − sin(s/a) j

so N(s) points toward the center of the circle for all s (Figure 13.4.8). This makes sense

geometrically and is also consistent with our earlier observation that in 2-space the unit

normal vector is the inward normal. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

BINORMAL VECTORS IN 3-SPACE
If C is the graph of a vector-valued function r(t) in 3-space, then we define the binormal

vector to C at t to be

B(t) = T(t) × N(t) (9)

It follows from properties of the cross product that B(t) is orthogonal to both T(t) and

N(t) and is oriented relative to T(t) and N(t) by the right-hand rule. Moreover, T(t) × N(t)

is a unit vector since

‖T(t) × N(t)‖ = ‖T(t)‖‖N(t)‖ sin(π/2) = 1

Thus, {T(t),N(t),B(t)} is a set of three mutually orthogonal unit vectors.

T

N

B

r(t)

Osculating plane

Rectifying

plane

Normal

plane

Figure 13.4.9

Just as the vectors i, j, and k determine a right-handed coordinate system in 3-space, so do

the vectors T(t), N(t), and B(t). At each point on a smooth parametric curve C in 3-space,

these vectors determine three mutually perpendicular planes that pass through the point—

the TB-plane (called the rectifying plane), the TN-plane (called the osculating plane), and

the NB-plane (called the normal plane) (Figure 13.4.9). Moreover, one can show that a

coordinate system determined by T(t),N(t), and B(t) is right-handed in the sense that each

of these vectors is related to the other two by the right-hand rule (Figure 13.4.10):

B(t) = T(t) × N(t), N(t) = B(t) × T(t), T(t) = N(t) × B(t) (10)

B N

T

Each vector is the cross 

product of the other two 

taken in clockwise order.

Figure 13.4.10

The coordinate system determined by T(t), N(t), and B(t) is called the TNB-frame or some-

times the Frenet frame in honor of the French mathematician Jean Frédéric Frenet (1816–

1900) who pioneered its application to the study of space curves. Typically, the xyz-

coordinate system determined by the unit vectors i, j, and k remains fixed, whereas the

TNB-frame changes as its origin moves along the curve C (Figure 13.4.11).

B

B
B

B

N

N
N

N

T

T

T

T

r(t)

Figure 13.4.11

Formula (9) expresses B(t) in terms of T(t) and N(t). Alternatively, the binormal B(t)

can be expressed directly in terms of r(t) as

B(t) =
r ′(t) × r ′′(t)

‖r ′(t) × r ′′(t)‖
(11)

and in the case where the parameter is arc length it can be expressed in terms of r(s) as

B(s) =
r ′(s) × r ′′(s)

‖r ′′(s)‖
(12)

We omit the proof.
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EXERCISE SET 13.4
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, sketch the unit tangent and normal vectors at

the points P, Q, and R, taking into account the orientation

of the curve C.

x

y

P R

C

Q x

y

P

R

C

Q

(a) (b)

Figure Ex-1

2. Make a rough sketch that shows the ellipse

r(t) = 3 cos t i + 2 sin tj

for 0 ≤ t ≤ 2π and the unit tangent and normal vectors at

the points t = 0, t = π/4, t = π/2, and t = π.

In Exercises 3–10, find T(t) and N(t) at the given point.

3. r(t) = (t2 − 1)i + tj; t = 1

4. r(t) = 1
2
t2i + 1

3
t3 j; t = 1

5. r(t) = 5 cos t i + 5 sin t j; t = π/3

6. r(t) = ln t i + tj; t = e

7. r(t) = 4 cos t i + 4 sin tj + tk; t = π/2

8. r(t) = t i + 1
2
t2 j + 1

3
t3k; t = 0

9. x = et cos t, y = et sin t, z = et ; t = 0

10. x = cosh t, y = sinh t, z = t; t = ln 2

11. In the remark following Example 8 of Section 13.3, we ob-

served that a line r = r0 + tv can be parametrized in terms

of an arc length parameter s with reference point r0 by nor-

malizing v. Use this result to show that the tangent line to

the graph of r(t) at the point t0 can be expressed as

r = r(t0) + sT(t0)

where s is an arc length parameter with reference point r(t0).

12. Use the result in Exercise 11 to show that the tangent line

to the parabola

x = t, y = t2

at the point (1, 1) can be expressed parametrically as

x = 1 +
s

√
5
, y = 1 +

2s
√

5

In Exercises 13 and 14, use the result in Exercise 11 to find

parametric equations for the tangent line to the graph of r(t)

at t0 in terms of an arc length parameter s.

13. r(t) = sin t i + cos tj + 1
2
t2k; t0 = 0

14. r(t) = t i + tj +
√

9 − t2k; t0 = 1

In Exercises 15–18, use the formula B(t) = T(t) × N(t) to

find B(t), and then check your answer by using Formula (11)

to find B(t) directly from r(t).

15. r(t) = 3 sin t i + 3 cos t j + 4tk

16. r(t) = et sin t i + et cos t j + 3k

17. r(t) = (sin t − t cos t)i + (cos t + t sin t) j + k

18. r(t) = a cos t i + a sin t j + ctk (a �= 0, c �= 0)

In Exercises 19 and 20, find T(t),N(t), and B(t) for the given

value of t . Then find equations for the osculating, normal, and

rectifying planes at the point that corresponds to that value

of t.

19. r(t) = cos t i + sin tj + k; t = π/4

20. r(t) = et i + et cos t j + et sin t k; t = 0

21. (a) Use the formula N(t) = B(t) × T(t) and Formulas (1)

and (11) to show that N(t) can be expressed in terms of

r(t) as

N(t) =
r ′(t) × r ′′(t)

‖r ′(t) × r ′′(t)‖
×

r ′(t)

‖r ′(t)‖
(b) Use properties of cross products to show that the for-

mula in part (a) can be expressed as

N(t) =
(r ′(t) × r ′′(t)) × r ′(t)

‖(r ′(t) × r ′′(t)) × r ′(t)‖
(c) Use the result in part (b) and Exercise 39 of Section 12.4

to show that N(t) can be expressed directly in terms of

r(t) as

N(t) =
u(t)

‖u(t)‖
where

u(t) = ‖r ′(t)‖2r ′′(t) − (r ′(t) · r ′′(t))r ′(t)

22. Use the result in part (b) of Exercise 21 to find the unit nor-

mal vector requested in

(a) Exercise 3 (b) Exercise 7.

In Exercises 23 and 24, use the result in part (c) of Exercise

21 to find N(t).

23. r(t) = sin t i + cos tj + tk 24. r(t) = t i + t2 j + t3k
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13.5 CURVATURE

In this section we will consider the problem of obtaining a numerical measure of how

sharply a curve in 2-space or 3-space bends. Our results will have applications in

geometry and in the study of motion along a curved path.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF CURVATURE
Suppose that C is the graph of a smooth vector-valued function in 2-space or 3-space that

is parametrized in terms of arc length. Figure 13.5.1 suggests that for a curve in 2-space

the “sharpness” of the bend in C is closely related to dT/ds, which is the rate of change

of the unit tangent vector T with respect to s. (Keep in mind that T has constant length,

so only its direction changes.) If C is a straight line (no bend), then the direction of T

remains constant (Figure 13.5.1a); if C bends slightly, then T undergoes a gradual change

of direction (Figure 13.5.1b); and if C bends sharply, then T undergoes a rapid change of

direction (Figure 13.5.1c).

C

T

T TC

T

T

TC

T

T

T

(a) (b) (c)

Figure 13.5.1

The situation in 3-space is more complicated because bends in a curve are not limited to

a single plane—they can occur in all directions, as illustrated by the complicated tube plot in

Figure 13.1.3. To describe the bending characteristics of a curve in 3-space completely, one

must take into account dT/ds, dN/ds, and dB/ds. A complete study of this topic would

take us too far afield, so we will limit our discussion to dT/ds, which is the most important

of these derivatives in applications.

13.5.1 DEFINITION. If C is a smooth curve in 2-space or 3-space that is parametrized

by arc length, then the curvature of C, denoted by κ = κ(s) (κ = Greek “kappa”), is

defined by

κ(s) =
∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

= ‖r ′′(s)‖ (1)

Observe that κ(s) is a real-valued function of s, since it is the length of dT/ds that

measures the curvature. In general, the curvature will vary from point to point along a

curve; however, the following example shows that the curvature is constant for circles in

2-space, as you might expect.

Example 1 In Example 3 of Section 13.4 we showed that the circle of radius a, centered

at the origin, can be parametrized in terms of arc length as

r(s) = a cos
( s

a

)

i + a sin
( s

a

)

j (0 ≤ s ≤ 2πa)
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Thus,

r ′′(s) = −
1

a
cos

( s

a

)

i −
1

a
sin

( s

a

)

j

and hence from (1)

κ(s) = ‖r ′′(s)‖ =

√

[

−
1

a
cos

( s

a

)

]2

+
[

−
1

a
sin

( s

a

)

]2

=
1

a

so the circle has constant curvature 1/a. ◭

The next example shows that lines have zero curvature, which is consistent with the fact

that they do not bend.

Example 2 Recall from the remark following Example 8 of Section 13.3 that a line in

2-space or 3-space can be parametrized in terms of arc length as

r = r0 + su

where the terminal point of r0 is a point on the line and u is a unit vector parallel to the line.

Thus,

r ′(s) =
dr

ds
=

d

ds
[r0 + su] = 0 + u = u

r0 is constant

and hence

r ′′(s) =
dr ′

ds
=

d

ds
[u] = 0

u is constant

Thus,

κ(s) =
∥

∥r ′′(s)
∥

∥ = 0 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FORMULAS FOR CURVATURE
Formula (1) is only applicable if the curve is parametrized in terms of arc length. The

following theorem provides two formulas for curvature in terms of a general parameter t.

13.5.2 THEOREM. If r(t) is a smooth vector-valued function in 2-space or 3-space,

then for each value of t at which T′(t) and r ′′(t) exist, the curvature κ can be expressed

as

(a) κ(t) =
‖T′(t)‖
‖r ′(t)‖

(2)

(b) κ(t) =
‖r ′(t) × r ′′(t)‖

‖r ′(t)‖3
(3)

Proof (a). It follows from Formula (1) and Formulas (16) and (17) of Section 13.3 that

κ(t) =
∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=
∥

∥

∥

∥

dT/dt

ds/dt

∥

∥

∥

∥

=
∥

∥

∥

∥

dT/dt

‖dr/dt‖

∥

∥

∥

∥

=
‖T′(t)‖
‖r ′(t)‖

Proof (b). It follows from Formula (1) of Section 13.4 that

r ′(t) = ‖r ′(t)‖T(t) (4)

so

r ′′(t) = ‖r ′(t)‖′T(t) + ‖r ′(t)‖T′(t) (5)
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But from Formula (2) of Section 13.4 and part (a) of this theorem we have

T′(t) = ‖T′(t)‖N(t) and ‖T′(t)‖ = κ(t)‖r ′(t)‖

so

T′(t) = κ(t)‖r ′(t)‖N(t)

Substituting this into (5) yields

r ′′(t) = ‖r ′(t)‖′T(t) + κ(t)‖r ′(t)‖2N(t) (6)

Thus, from (4) and (6)

r ′(t) × r ′′(t) = ‖r ′(t)‖‖r ′(t)‖′(T(t) × T(t)) + κ(t)‖r ′(t)‖3(T(t) × N(t))

But the cross product of a vector with itself is zero, so this equation simplifies to

r ′(t) × r ′′(t) = κ(t)‖r ′(t)‖3(T(t) × N(t)) = κ(t)‖r ′(t)‖3B(t)

It follows from this equation and the fact that B(t) is a unit vector that

‖r ′(t) × r ′′(t)‖ = κ(t)‖r ′(t)‖3

Formula (3) now follows.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARKS. Formula (2) is useful if T(t) is known or is easy to obtain; however, Formula

(3) will usually be easier to apply, since it involves only r(t) and its derivatives. We also

note that cross products were defined only for vectors in 3-space, so to use Formula (3) in

2-space we must first write the 2-space function r(t) = x(t)i+y(t) j as the 3-space function

r(t) = x(t)i + y(t) j + 0k with a zero k component.

Example 3 Find κ(t) for the circular helix

x = a cos t, y = a sin t, z = ct

where a > 0.

Solution. The radius vector for the helix is

r(t) = a cos t i + a sin t j + ctk

Thus,

r ′(t) = (−a sin t)i + a cos t j + ck

r ′′(t) = (−a cos t)i + (−a sin t) j

so

r ′(t) × r ′′(t) =

∣

∣

∣

∣

∣

∣

∣

i j k

−a sin t a cos t c

−a cos t −a sin t 0

∣

∣

∣

∣

∣

∣

∣

= (ac sin t)i − (ac cos t) j + a2k

Therefore,

‖r ′(t)‖ =
√

(−a sin t)2 + (a cos t)2 + c2 =
√

a2 + c2

and

‖r ′(t) × r ′′(t)‖ =
√

(ac sin t)2 + (−ac cos t)2 + a4

=
√
a2c2 + a4 = a

√
a2 + c2

so

κ(t) =
‖r ′(t) × r ′′(t)‖

‖r ′(t)‖3
=

a
√

a2 + c2

(
√

a2 + c2)3
=

a

a2 + c2

Note that κ does not depend on t , which tells us that the helix has constant curvature. ◭
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Example 4 The graph of the vector equation

r = 2 cos t i + 3 sin t j (0 ≤ t ≤ 2π)

is the ellipse in Figure 13.5.2. Find the curvature of the ellipse at the endpoints of the major

and minor axes, and use a graphing utility to generate the graph of κ(t).

-2 2

-3

3

x

y

r = 2 cos ti + 3 sin tj

Figure 13.5.2

Solution. To apply Formula (3), we must treat the ellipse as a curve in the xy-plane of an

xyz-coordinate system by adding a zero k component and writing its equation as

r = 2 cos t i + 3 sin t j + 0k

It is not essential to write the zero k component explicitly as long as you assume it to be

there when you calculate a cross product. Thus,

r ′(t) = (−2 sin t)i + 3 cos t j

r ′′(t) = (−2 cos t)i + (−3 sin t) j

r ′(t) × r ′′(t) =

∣

∣

∣

∣

∣

∣

∣

i j k

−2 sin t 3 cos t 0

−2 cos t −3 sin t 0

∣

∣

∣

∣

∣

∣

∣

= [(6 sin2 t) + (6 cos2 t)]k = 6k

Therefore,

‖r ′(t)‖ =
√

(−2 sin t)2 + (3 cos t)2 =
√

4 sin2 t + 9 cos2 t

‖r ′(t) × r ′′(t)‖ = 6

so

κ(t) =
‖r ′(t) × r ′′(t)‖

‖r ′(t)‖3
=

6

[4 sin2 t + 9 cos2 t]3/2
(7)

The endpoints of the minor axis are (2, 0) and (−2, 0), which correspond to t = 0 and t = π,

respectively. Substituting these values in (7) yields the same curvature at both points, namely

κ = κ(0) = κ(π) =
6

93/2
=

6

27
=

2

9

The endpoints of the major axis are (0, 3) and (0,−3), which correspond to t = π/2 and

t = 3π/2, respectively; from (7) the curvature at these points is

κ = κ
(π

2

)

= κ

(

3π

2

)

=
6

43/2
=

3

4

Observe that the curvature is greater at the ends of the major axis than at the ends of the

minor axis, as you might expect. Figure 13.5.3 shows the graph κ versus t. This graph

illustrates clearly that the curvature is minimum at t = 0 (the right end of the minor axis),

increases to a maximum at t = π/2 (the top of the major axis), decreases to a minimum

again at t = π (the left end of the minor axis), and continues cyclically in this manner.

Figure 13.5.4 provides another way of picturing the curvature. ◭

6 c i o

0.2

0.4

0.6

0.8

1

t

k

k(t) = 
6

[4 sin2 t + 9 cos2 t]3/2

Figure 13.5.3

k

0.2

0.3

0.4

0.5

0.6

0.7

x

y

Figure 13.5.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RADIUS OF CURVATURE
In the last example we found the curvature at the ends of the minor axis to be 2

9
and the

curvature at the ends of the major axis to be 3
4
. To obtain a better understanding of the

meaning of these numbers, recall from Example 1 that a circle of radius a has a constant

curvature of 1/a; thus, the curvature of the ellipse at the ends of the minor axis is the same

as that of a circle of radius 9
2
, and the curvature at the ends of the major axis is the same as

that of a circle of radius 4
3

(Figure 13.5.5).

In general, if a curve C in 2-space has nonzero curvature κ at a point P , then the circle

of radius ρ = 1/κ sharing a common tangent with C at P , and centered on the concave side

of the curve at P , is called the circle of curvature or osculating circle at P (Figure 13.5.6).

The osculating circle and the curve C not only touch at P but they have equal curvatures at

that point. In this sense, the osculating circle is the circle that best approximates the curve
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x

y

Radius
4

3

Radius
9

2

Figure 13.5.5

Center of

curvature

Osculating circle

P

C

r =
1
k

Figure 13.5.6

C near P . The radius ρ of the osculating circle at P is called the radius of curvature at P ,

and the center of the circle is called the center of curvature at P (Figure 13.5.6).

T

C

f

Figure 13.5.7

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

AN INTERPRETATION OF
CURVATURE IN 2-SPACE

A useful geometric interpretation of curvature in 2-space can be obtained by considering

the angle φ measured counterclockwise from the direction of the positive x-axis to the unit

tangent vector T (Figure 13.5.7). By Formula (12) of Section 12.2, we can express T in

terms of φ as

T(φ) = cosφi + sinφ j

Thus,

dT

dφ
= (− sinφ)i + cosφ j

dT

ds
=

dT

dφ

dφ

ds

from which we obtain

κ(s) =
∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=
∣

∣

∣

∣

dφ

ds

∣

∣

∣

∣

∥

∥

∥

∥

dT

dφ

∥

∥

∥

∥

=
∣

∣

∣

∣

dφ

ds

∣

∣

∣

∣

√

(− sinφ)2 + cos2 φ =
∣

∣

∣

∣

dφ

ds

∣

∣

∣

∣

In summary, we have shown that

κ(s) =
∣

∣

∣

∣

dφ

ds

∣

∣

∣

∣

(8)

which tells us that curvature in 2-space can be interpreted as the magnitude of the rate of

change of φ with respect to s—the greater the curvature, the more rapidly φ changes with

s (Figure 13.5.8). In the case of a straight line, the angle φ is constant (Figure 13.5.9) and

consequently κ(s) = |dφ/ds| = 0, which is consistent with the fact that a straight line has

zero curvature at every point.

f

f

f

In 2-space, k(s) is the magnitude 

of the rate of change of f with 

respect to s.

Figure 13.5.8

f

f

f

T

T

T

f is constant, so the line 

has zero curvature.

Figure 13.5.9
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FORMULA SUMMARY
We conclude this section with a summary of formulas for T, N, and B. These formulas

have either been derived in the text or are easily derivable from formulas we have already

established.

T(s) = r ′(s) (9)

N(s) =
1

κ(s)

dT

ds
=

r ′′(s)

‖r ′′(s)‖
=

r ′′(s)

κ(s)
(10)

B(s) =
r ′(s) × r ′′(s)

‖r ′′(s)‖
=

r ′(s) × r ′′(s)

κ(s)
(11)

T(t) =
r ′(t)

‖r ′(t)‖
(12)

B(t) =
r ′(t) × r ′′(t)

‖r ′(t) × r ′′(t)‖
(13)

N(t) = B(t) × T(t) (14)

EXERCISE SET 13.5 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, use the osculating circle shown in the

figure to estimate the curvature at the indicated point.

1.

-1 1

0.5

1

x

y 2.

-3 3

-3

3

x

y

In Exercises 3–10, use Formula (3) to find κ(t).

3. r(t) = t2i + t3 j 4. r(t) = 4 cos t i + sin t j

5. r(t) = e3t i + e−t j 6. x = 1− t3, y = t− t2

7. r(t) = 4 cos t i + 4 sin tj + tk

8. r(t) = t i + 1
2
t2 j + 1

3
t3k

9. x = cosh t, y = sinh t, z = t

10. r(t) = i + tj + t2k

In Exercises 11–14, find the curvature and the radius of cur-

vature at the stated point.

11. r(t) = 3 cos t i + 4 sin tj + tk; t = π/2

12. r(t) = et i + e−t j + tk; t = 0

13. x = et cos t, y = et sin t, z = et ; t = 0

14. x = sin t, y = cos t, z = 1
2
t2; t = 0

In Exercises 15 and 16, confirm that s is an arc length para-

meter by showing that ‖dr/ds‖ = 1, and then apply Formula

(1) to find κ(s).

15. r = sin
(

1 +
s

2

)

i + cos
(

1 +
s

2

)

j +
√

3
(

1 +
s

2

)

k

16. r =
(

1 − 2
3
s
)3/2

i +
(

2
3
s
)3/2

j
(

0 ≤ s ≤ 3
2

)

17. (a) Use Formula (3) to show that in 2-space the curvature

of a smooth parametric curve

x = x(t), y = y(t)

is

κ(t) =
|x ′y ′′ − y ′x ′′|
(x ′2 + y ′2)3/2

where primes denote differentiation with respect to t.

(b) Use the result in part (a) to show that in 2-space the

curvature of the plane curve given by y = f(x) is

κ(x) =
|d2y/dx2|

[1 + (dy/dx)2]3/2

[Hint: Express y = f(x) parametrically with x = t as

the parameter.]
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18. Use part (b) of Exercise 17 to show that the curvature of

y = f(x) can be expressed in terms of the angle of inclina-

tion of the tangent line as

κ(φ) =
∣

∣

∣

∣

d2y

dx2
cos3 φ

∣

∣

∣

∣

[Hint: tanφ = dy/dx.]

In Exercises 19–24, use the result in Exercise 17(b) to find

the curvature at the stated point.

19. y = sin x; x = π/2 20. y = x3/3; x = 0

21. y = 1/x; x = 1 22. y = e−x; x = 1

23. y = tan x; x = π/4 24. y2 − 4x2 = 9; (2, 5)

In Exercises 25–30, use the result in Exercise 17(a) to find

the curvature at the stated point.

25. x = t2, y = t3; t = 1
2

26. x = 4 cos t, y = sin t; t = π/2

27. x = e3t , y = e−t ; t = 0

28. x = 1 − t3, y = t − t2; t = 1

29. x = t, y = 1/t; t = 1

30. x = 2 sin 2t, y = 3 sin t; t = π/2

31. In each part, use the formulas in Exercise 17 to help find

the radius of curvature at the stated points. Then sketch the

graph together with the osculating circles at those points.

(a) y = cos x at x = 0 and x = π

(b) x = 2 cos t , y = sin t (0 ≤ t ≤ 2π) at t = 0 and

t = π/2

32. Use the formula in Exercise 17(a) to find κ(t) for the curve

x = e−t cos t, y = e−t sin t . Then sketch the graph of κ(t).

In each part of Exercises 33 and 34, the graphs of f(x) and

the associated curvature function κ(x) are shown. Determine

which is which, and explain your reasoning.

33.

x

y

II

I

x

y

II

I

(b)(a)

34.

x

y

I

II
x

y

II

I

(b)(a)

In Exercises 35 and 36, use a graphing utility to generate the

graph of y = f(x), and then make a conjecture about the

shape of the graph of y = κ(x). Check your conjecture by

generating the graph of y = κ(x).

35. f(x) = xe−x for 0 ≤ x ≤ 5

36. f(x) = x3 − x for −1 ≤ x ≤ 1

C 37. (a) If you have a CAS, read the documentation on calculat-

ing higher-order derivatives. Then use the CAS and part

(b) of Exercise 17 to find κ(x) for f(x) = x4 − 2x2.

(b) Use the CAS to generate the graphs of f(x) = x4 −2x2

and κ(x) on the same screen for −2 ≤ x ≤ 2.

(c) Find the radius of curvature at each relative extremum.

(d) Make a reasonably accurate hand-drawn sketch that

shows the graph of f(x) = x4 − 2x2 and the osculat-

ing circles in their correct proportions at the relative

extrema.

C 38. (a) Use a CAS to graph the parametric curve x = t cos t,

y = t sin t for t ≥ 0.

(b) Make a conjecture about the behavior of κ(t) as

t→+�.

(c) Use the CAS and part (a) of Exercise 17 to find κ(t).

(d) Check your conjecture by finding the limit of κ(t) as

t→+�.

39. Use the formula in Exercise 17(a) to show that for a curve

in polar coordinates described by r = f(θ) the curvature is

κ(θ) =

∣

∣

∣

∣

∣

r2 + 2

(

dr

dθ

)2

− r
d2r

dθ2

∣

∣

∣

∣

∣

[

r2 +
(

dr

dθ

)2
]3/2

[Hint: Let θ be the parameter and use the relationships

x = r cos θ, y = r sin θ.]

40. Use the result in Exercise 39 to show that a circle has con-

stant curvature.

In Exercises 41–44, use the formula of Exercise 39 to find

the curvature at the indicated point.

41. r = 1 + cos θ; θ = π/2 42. r = e2θ ; θ = 1

43. r = sin 3θ; θ = 0 44. r = θ; θ = 1

45. The accompanying figure is the graph of the radius of cur-

vature versus θ in rectangular coordinates for the cardioid

r = 1 + cos θ. In words, explain what the graph tells you

about the cardioid.

6 c i o

0.5

1

1.5

u

y

y = 1/k(u)
Figure Ex-45
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46. Use the formula in Exercise 39 and a graphing utility to

generate the graph in Exercise 45.

47. Find the radius of curvature of the parabola y2 = 4px at

(0, 0).

48. At what point(s) does y = ex have maximum curvature?

49. At what point(s) does 4x2+9y2 = 36 have minimum radius

of curvature?

50. Find the value of x, x > 0, where y = x3 has maximum

curvature.

51. Find the maximum and minimum values of the radius of

curvature for the curve x = cos t, y = sin t, z = cos t.

52. Find the minimum value of the radius of curvature for the

curve x = et , y = e−t , z =
√

2t.

53. Use the formula in Exercise 39 to show that the curvature

of the polar curve r = eaθ is inversely proportional to r.

C 54. Use the formula in Exercise 39 and a CAS to show that

the curvature of the lemniscate r =
√
a cos 2θ is directly

proportional to r.

55. (a) Use the result in Exercise 18 to show that for the para-

bola y = x2 the curvature κ(φ) at points where the

tangent line has an angle of inclination of φ is

κ(φ) = |2 cos3 φ|

(b) Use the result in part (a) to find the radius of curvature

of the parabola at the point on the parabola where the

tangent line has slope 1.

(c) Make a sketch with reasonably accurate proportions that

shows the osculating circle at the point on the parabola

where the tangent line has slope 1.

56. The evolute of a smooth parametric curve C in 2-space

is the curve formed from the centers of curvature of C.

The accompanying figure shows the ellipse x = 3 cos t,

y = 2 sin t (0 ≤ t ≤ 2π) and its evolute graphed together.

(a) Which points on the evolute correspond to t = 0 and

t = π/2?

(b) In what direction is the evolute traced as t increases

from 0 to 2π?

(c) What does the evolute of a circle look like? Explain

your reasoning.

-3 3

-3

3

x

y

Figure Ex-56

In Exercises 57–60, we will be concerned with the problem

of creating a single smooth curve by piecing together two

separate smooth curves. If two smooth curves C1 and C2 are

joined at a point P to form a curve C, then we will say that

C1 and C2 make a smooth transition at P if the curvature of

C is continuous at P .

57. Show that the transition at x = 0 from the horizontal line

y = 0 for x ≤ 0 to the parabola y = x2 for x > 0 is

not smooth, whereas the transition to y = x3 for x > 0 is

smooth.

58. (a) Sketch the graph of the curve defined piecewise by

y = x2 for x < 0, y = x4 for x ≥ 0.

(b) Show that for the curve in part (a) the transition at x = 0

is not smooth.

59. The accompanying figure shows the arc of a circle of radius

r with center at (0, r). Find the value of a so that there is a

smooth transition from the circle to the parabola y = ax2

at the point where x = 0.

x

y

y = ax2
Arc of

circle (0, r)

Figure Ex-59

60. Find a, b, and c so that there is a smooth transition at

x = 0 from the curve y = ex for x ≤ 0 to the parabola

y = ax2 + bx + c for x > 0. [Hint: The curvature is con-

tinuous at those points where y ′′ is continuous.]

In Exercises 61–64, we assume that s is an arc length para-

meter for a smooth vector-valued function r(s) in 3-space

and that dT/ds and dN/ds exist at each point on the curve.

This implies that dB/ds exists as well, since B = T × N.

61. Show that

dT

ds
= κ(s)N(s)

and use this result to obtain the formulas in (10).

62. (a) Show that dB/ds is perpendicular to B(s).

(b) Show that dB/ds is perpendicular to T(s). [Hint: Use

the fact that B(s) is perpendicular to both T(s) and N(s),

and differentiate B · T with respect to s.]

(c) Use the results in parts (a) and (b) to show that dB/ds is

a scalar multiple of N(s). The negative of this scalar is

called the torsion of r(s) and is denoted by τ(s). Thus,

dB

ds
= −τ(s)N(s)

(d) Show that τ(s) = 0 for all s if the graph of r(s) lies in a

plane. [Note: For reasons that we cannot discuss here,

the torsion is related to the “twisting” properties of the

curve, and τ(s) is regarded as a numerical measure of

the tendency for the curve to twist out of the osculating

plane.]
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63. Let κ be the curvature of C and τ the torsion (defined in

Exercise 62). By differentiating N = B × T with respect to

s, show that dN/ds = −κT + τB.

64. The following derivatives, known as the Frenet–Serret for-

mulas, are fundamental in the theory of curves in 3-space:

dT/ds = κN [Exercise 61]

dN/ds = −κT + τB [Exercise 63]

dB/ds = −τN [Exercise 62(c)]

Use the first two Frenet–Serret formulas and the fact that

r ′(s) = T if r = r(s) to show that

τ =
[r ′(s) × r ′′(s)] · r ′′′(s)

‖r ′′(s)‖2
and B =

r ′(s) × r ′′(s)

‖r ′′(s)‖

65. Use the results in Exercise 64 and the results in Exercise 30

of Section 13.3 to show that for the circular helix

r = a cos t i + a sin t j + ctk

with a > 0 the torsion and the binormal vector are

τ =
c

w2

and

B =
( c

w
sin

s

w

)

i −
( c

w
cos

s

w

)

j +
( a

w

)

k

where w =
√
a2 + c2 and s has reference point (a, 0, 0).

66. (a) Use the chain rule and the first two Frenet–Serret for-

mulas in Exercise 64 to show that

T′ = κs ′N and N′ = −κs ′T + τs ′B

where primes denote differentiation with respect to t.

(b) Show that Formulas (4) and (6) can be written in the

form

r ′(t) = s ′T and r ′′(t) = s ′′T + κ(s ′)2N

(c) Use the results in parts (a) and (b) to show that

r ′′′(t) = [s ′′′ − κ2(s ′)3]T

+ [3κs ′s ′′ + κ ′(s ′)2]N + κτ(s ′)3B

(d) Use the results in parts (b) and (c) to show that

τ(t) =
[r ′(t) × r ′′(t)] · r ′′′(t)

‖r ′(t) × r ′′(t)‖2

In Exercises 67–70, use the formula in Exercise 66(d) to find

the torsion τ = τ(t).

67. The twisted cubic r(t) = 2t i + t2 j + 1
3
t3k

68. The circular helix r(t) = a cos t i + a sin t j + ctk

69. r(t) = et i + e−t j +
√

2tk

70. r(t) = (t − sin t)i + (1 − cos t) j + tk

13.6 MOTION ALONG A CURVE

In earlier sections we considered the motion of a particle along a line. In that sit-

uation there are only two directions in which the particle can move—the positive

direction or the negative direction. Motion in 2-space or 3-space is more complicated

because there are infinitely many directions in which a particle can move. In this sec-

tion we will show how vectors can be used to analyze motion along curves in 2-space

or 3-space.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VELOCITY, ACCELERATION, AND
SPEED

Let us assume that the motion of a particle in 2-space or 3-space is described by a smooth

vector-valued function r(t) in which the parameter t denotes time; we will call this the

position function or trajectory of the particle. As the particle moves along its trajectory,

its direction of motion and its speed can vary from instant to instant. Thus, before we

can undertake any analysis of such motion, we must have clear answers to the following

questions:

• What is the direction of motion of the particle at an instant of time?

• What is the speed of the particle at an instant of time?

We will define the direction of motion at time t to be the direction of the unit tangent vector

T(t), and we will define the speed to be ds/dt—the instantaneous rate of change of the arc

length traveled by the particle from an arbitrary reference point. Taking this a step further,

we will combine the speed and the direction of motion to form the vector

v(t) =
ds

dt
T(t) (1)
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which we call the velocity of the particle at time t. Thus, at each instant of time the velocity

vector v(t) points in the direction of motion and has a magnitude that is equal to the speed

of the particle (Figure 13.6.1).

r(t)

The length of the velocity 

vector is the speed of the 

particle, and the direction 

of the velocity vector is the 

direction of motion.

v(t) =      T(t)
ds

dt

T(t)

Figure 13.6.1

Recall that for motion along a coordinate line the velocity function is the derivative of

the position function. The same is true for motion along a curve, since

dr

dt
=

dr

ds

ds

dt
=

ds

dt
T(t) = v(t)

For motion along a coordinate line, the acceleration function was defined to be the derivative

of the velocity function. The definition is the same for motion along a curve.

13.6.1 DEFINITION. If r(t) is the position function of a particle moving along a curve

in 2-space or 3-space, then the instantaneous velocity, instantaneous acceleration, and

instantaneous speed of the particle at time t are defined by

velocity = v(t) =
dr

dt
(2)

acceleration = a(t) =
dv

dt
=

d2r

dt2
(3)

speed = ‖v(t)‖ =
ds

dt
(4)

As shown in Table 13.6.1, the position, velocity, acceleration, and speed can also be ex-

pressed in component form:

Table 13.6.1

2-space 3-space

r(t) = x(t)i + y(t)j r(t) = x(t)i + y(t)j + z(t)k

v(t) =      i +      j
dx

dt

dy

dt
v(t) =      i +      j +      k

dx

dt

dy

dt

dz

dt

a(t) =        i +        j
d2x

dt2

d2y

dt2
a(t) =        i +        j +        k

d2x

dt2

d2y

dt2

d2z

dt2

dy

dt

dy

dt

dz

dt
||v(t)|| = √(  )

2

 + (  )
2dx

dt
||v(t)|| = √(  )

2

 + (  )
2

 + (  )
2dx

dt

position

velocity

acceleration

speed

Example 1 A particle moves along a circular path in such a way that its x- and y-coor-

dinates at time t are

x = 2 cos t, y = 2 sin t

(a) Find the instantaneous velocity and speed of the particle at time t .

(b) Sketch the path of the particle, and show the position and velocity vectors at time

t = π/4 with the velocity vector drawn so that its initial point is at the tip of the

position vector.

(c) Show that at each instant the acceleration vector is perpendicular to the velocity vector.

Solution (a). At time t , the position vector is

r(t) = 2 cos t i + 2 sin tj
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so the instantaneous velocity and speed are

v(t) =
dr

dt
= −2 sin t i + 2 cos tj

‖v(t)‖ =
√

(−2 sin t)2 + (2 cos t)2 = 2

Solution (b). The graph of the parametric equations is a circle of radius 2 centered at the

origin. At time t = π/4 the position and velocity vectors of the particles are

r(π/4) = 2 cos(π/4)i + 2 sin(π/4) j =
√

2i +
√

2 j

v(π/4) = −2 sin(π/4)i + 2 cos(π/4) j = −
√

2 i +
√

2 j

These vectors and the circle are shown in Figure 13.6.2.x

y

–2 2

v = –√2 i + √2 j

r = √2 i + √2 j

p/4

Figure 13.6.2

Solution (c). At time t , the acceleration vector is

a(t) =
dv

dt
= −2 cos t i − 2 sin tj

One way of showing that v(t) and a(t) are perpendicular is to show that their dot product is

zero (try it). However, it is easier to observe that a(t) is the negative of r(t), which implies

that v(t) and a(t) are perpendicular, since at each point on a circle the radius and tangent

line are perpendicular. ◭

Since v(t) can be obtained by differentiating r(t), and since a(t) can be obtained by

differentiating v(t), it follows that r(t) can be obtained by integrating v(t), and v(t) can be

obtained by integrating a(t). However, such integrations do not produce unique functions

because constants of integration occur. Typically, initial conditions are required to determine

these constants.

Example 2 A particle moves through 3-space in such a way that its velocity is

v(t) = i + tj + t2k

Find the coordinates of the particle at time t = 1 given that the particle is at the point

(−1, 2, 4) at time t = 0.

Solution. Integrating the velocity function to obtain the position function yields

r(t) =
∫

v(t) dt =
∫

(i + tj + t2k) dt = t i +
t2

2
j +

t3

3
k + C (5)

where C is a vector constant of integration. Since the coordinates of the particle at time

t = 0 are (−1, 2, 4), the position vector at time t = 0 is

r(0) = −i + 2j + 4k (6)

It follows on substituting t = 0 in (5) and equating the result with (6) that

C = −i + 2 j + 4k

Substituting this value of C in (5) and simplifying yields

r(t) = (t − 1)i +
(

t2

2
+ 2

)

j +
(

t3

3
+ 4

)

k

Thus, at time t = 1 the position vector of the particle is

r(1) = 0i +
5

2
j +

13

3
k

so its coordinates at that instant are
(

0, 5
2
, 13

3

)

. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DISPLACEMENT AND DISTANCE
TRAVELED

If a particle travels along a curve C in 2-space or 3-space, the displacement of the particle

over the time interval t1 ≤ t ≤ t2 is commonly denoted by �r and is defined as

�r = r(t2) − r(t1) (7)

(Figure 13.6.3). The displacement vector, which describes the change in position of the

particle during the time interval, can be obtained by integrating the velocity function from

t1 to t2:

�r =
∫ t2

t1

v(t) dt =
∫ t2

t1

dr

dt
dt = r(t)

]t2

t1

= r(t2) − r(t1) Displacement (8)

It follows from Theorem 13.3.1 that we can find the distance s traveled by a particle over

a time interval t1 ≤ t ≤ t2 by integrating the speed over that interval, since

s =
∫ t2

t1

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

dt =
∫ t2

t1

‖v(t)‖ dt Distance traveled (9)

C

L

r(t1)

r(t2)
∆r

Displacement = ∆r = r(t2) – r(t1)

x

y

Figure 13.6.3

Example 3 Suppose that a particle moves along a circular helix in 3-space so that its posi-

tion vector at time t is

r(t) = (4 cosπt)i + (4 sinπt) j + tk

Find the distance traveled and the displacement of the particle during the time interval

1 ≤ t ≤ 5.

Solution. We have

v(t) =
dr

dt
= (−4π sinπt)i + (4π cosπt) j + k

‖v(t)‖ =
√

(−4π sinπt)2 + (4π cosπt)2 + 1 =
√

16π2 + 1

Thus, it follows from (9) that the distance traveled by the particle from time t = 1 to t = 5

is

s =
∫ 5

1

√

16π2 + 1 dt = 4
√

16π2 + 1

Moreover, it follows from (8) that the displacement over the time interval is

�r = r(5) − r(1)

= (4 cos 5πi + 4 sin 5πj + 5k) − (4 cosπi + 4 sinπj + k)

= (−4i + 5k) − (−4i + k) = 4k

which tells us that the change in the position of the particle over the time interval was 4

units straight up. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

NORMAL AND TANGENTIAL
COMPONENTS OF ACCELERATION

You know from your experience as an automobile passenger that if a car speeds up rapidly,

then your body is thrown back against the backrest of the seat. You also know that if the car

rounds a turn in the road, then your body is thrown toward the outside of the curve—the

greater the curvature in the road, the greater the force with which you are thrown. The

explanation of these effects can be understood by resolving the velocity and acceleration

components of the motion into vector components that are parallel to the unit tangent and

unit normal vectors. The following theorem explains how this can be done.

13.6.2 THEOREM. If a particle moves along a smooth curve C in 2-space or 3-space,

then at each point on the curve velocity and acceleration vectors can be written as

v =
ds

dt
T (10)

a =
d2s

dt2
T + κ

(

ds

dt

)2

N (11)

where s is an arc length parameter for the curve, and T,N, and κ denote the unit tangent

vector, unit normal vector, and curvature at the point (Figure 13.6.4).

C

N

a

T

v =      T
ds

dt

k(    )
2

N
ds

dt

T
d2s

dt2

Figure 13.6.4

Proof. Formula (10) is just a restatement of (1). To obtain (11), we differentiate both sides

of (10) with respect to t ; this yields

a =
d

dt

(

ds

dt
T

)

=
d2s

dt2
T +

ds

dt

dT

dt

=
d2s

dt2
T +

ds

dt

dT

ds

ds

dt

=
d2s

dt2
T +

(

ds

dt

)2
dT

ds

=
d2s

dt2
T +

(

ds

dt

)2

κN Formula (10) of

Section 13.5

from which (11) follows.

The coefficients of T and N in (11) are commonly denoted by

aT =
d2s

dt2
aN = κ

(

ds

dt

)2

(12–13)

in which case Formula (11) is expressed as

a = aT T + aNN (14)

In this formula the scalars aT and aN are called the tangential scalar component of acceler-

ation and the normal scalar component of acceleration, and the vectors aT T and aNN are

called the tangential vector component of acceleration and the normal vector component

of acceleration.

The scalar components of acceleration explain the effect that you experience when a

car speeds up rapidly or rounds a turn. The rapid increase in speed produces a large value

for d2s/dt2, which results in a large tangential scalar component of acceleration; and by

Newton’s second law this corresponds to a large tangential force on the car in the direction
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of motion. To understand the effect of rounding a turn, observe that the normal scalar

component of acceleration has the curvature κ and the square of speed ds/dt as factors.

Thus, sharp turns or turns taken at high speed both produce large normal forces on the car.

y

z a

aTT
aNN

a = aTT + aNN
xx

Figure 13.6.5

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Formula (14) applies to motion in both 2-space and 3-space. What is interesting

is that the 3-space formula does not involve the binormal vector B, so the acceleration vector

always lies in the plane of T and N (the osculating plane), even for the most twisting paths

of motion (Figure 13.6.5).

Although Formulas (12) and (13) provide useful insight into the behavior of particles

moving along curved paths, they are not always the best formulas for computations. The

following theorem provides some more useful formulas that relate aT , aN , and κ to the

velocity v and acceleration a.

13.6.3 THEOREM. If a particle moves along a smooth curve C in 2-space or 3-space,

then at each point on the curve the velocity v and the acceleration a are related to aT ,

aN , and κ by the formulas

aT =
v · a

‖v‖
aN =

‖v × a‖
‖v‖

κ =
‖v × a‖

‖v‖3
(15–17)

aTT

aT

aNN

aN

aT = ||a|| cos u

aN = ||a|| sin u

||a||

u

Figure 13.6.6

Proof. As illustrated in Figure 13.6.6, let θ be the angle between the vector a and the

vector aT T. Thus,

aT = ‖a‖ cos θ and aN = ‖a‖ sin θ

from which we obtain

aT = ‖a‖ cos θ =
‖v‖‖a‖ cos θ

‖v‖
=

v · a

‖v‖

aN = ‖a‖ sin θ =
‖v‖‖a‖ sin θ

‖v‖
=

‖v × a‖
‖v‖

κ =
aN

(ds/dt)2
=

aN

‖v‖2
=

1

‖v‖2

‖v × a‖
‖v‖

=
‖v × a‖

‖v‖3

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Theorem 13.6.3 applies to motion in 2-space and 3-space, but for motion in

2-space you will have to add a zero k component to v and a to calculate the cross product.

Also, recall that for nonlinear smooth curves in 2-space the unit normal vector N is the

inward normal; that is, it points toward the concave side of the curve. Thus, the same is true

for aNN, since aN is a nonnegative scalar.

Example 4 Suppose that a particle moves through 3-space so that its position vector at

time t is

r(t) = t i + t2 j + t3k

(The path is the twisted cubic shown in Figure 13.1.5.)

(a) Find the scalar tangential and normal components of acceleration at time t.

(b) Find the scalar tangential and normal components of acceleration at time t = 1.

(c) Find the vector tangential and normal components of acceleration at time t = 1.

(d) Find the curvature of the path at the point where the particle is located at time t = 1.
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Solution (a). We have

v(t) = r ′(t) = i + 2tj + 3t2k

a(t) = v′(t) = 2 j + 6tk

‖v(t)‖ =
√

1 + 4t2 + 9t4

v(t) · a(t) = 4t + 18t3

v(t) × a(t) =

∣

∣

∣

∣

∣

∣

∣

i j k

1 2t 3t2

0 2 6t

∣

∣

∣

∣

∣

∣

∣

= 6t2i − 6tj + 2k

Thus, from (15) and (16)

aT =
v · a

‖v‖
=

4t + 18t3

√

1 + 4t2 + 9t4

aN =
‖v × a‖

‖v‖
=

√

36t4 + 36t2 + 4
√

1 + 4t2 + 9t4
= 2

√

9t4 + 9t2 + 1

9t4 + 4t2 + 1

Solution (b). At time t = 1, the components aT and aN in part (a) are

aT =
22

√
14

≈ 5.88 and aN = 2

√

19

14
≈ 2.33

Solution (c). Since T and v have the same direction, T can be obtained by normalizing v,

that is,

T(t) =
v(t)

‖v(t)‖
At time t = 1 we have

T(1) =
v(1)

‖v(1)‖
=

i + 2 j + 3k

‖i + 2 j + 3k‖
=

1
√

14
(i + 2 j + 3k)

From this and part (b) we obtain the vector tangential component of acceleration:

aT (1)T(1) =
22

√
14

T(1) =
11

7
(i + 2 j + 3k) =

11

7
i +

22

7
j +

33

7
k

To find the normal vector component of acceleration, we rewrite a = aT T + aNN as

aNN = a − aT T

Thus, at time t = 1 the normal vector component of acceleration is

aN (1)N(1) = a(1) − aT (1)T(1)

= (2 j + 6k) −
(

11

7
i +

22

7
j +

33

7
k

)

= −
11

7
i −

8

7
j +

9

7
k

Solution (d ). We will apply Formula (17) with t = 1. From part (a)

‖v(1)‖ =
√

14 and v(1) × a(1) = 6i − 6 j + 2k

Thus, at time t = 1

κ =
‖v × a‖

‖v‖3
=

√
76

(
√

14)3
=

1

14

√

38

7
≈ 0.17 ◭
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. It follows from Figure 13.6.6 and the Theorem of Pythagoras that aN
can be expressed in terms of ‖v‖ and aT as

aN =
√

‖a‖2 − a2
T (18)

Confirm that this is so in Example 4.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A MODEL OF PROJECTILE MOTION
Earlier in this text we examined various problems concerned with objects moving vertically

in the Earth’s gravitational field (see Free-Fall Model 4.4.4, Example 4 of Section 5.7,

and the subsection of Section 9.1 entitled A Model of Free-Fall Motion Retarded by Air

Resistance). Now we will consider the motion of a projectile launched along a curved path in

the Earth’s gravitational field. For this purpose we will need the vector version of Newton’s

Second Law of Motion (9.1.1)

F = ma (19)

and we will need to make three modeling assumptions:

• The mass m of the object is constant.

• The only force acting on the object after it is launched is the force of the Earth’s gravity.

(Thus, air resistance and the gravitational effect of other planets and celestial objects

are ignored.)

• The object remains sufficiently close to the Earth that we can assume the force of gravity

to be constant.

x

y

Earth

s0

v0

Figure 13.6.7

Let us assume that at time t = 0 an object of massm is launched from a height of s0 above

the Earth with an initial velocity vector of v0. Furthermore, let us introduce an xy-coordinate

system as shown in Figure 13.6.7. In this coordinate system the positive y-direction is up,

the origin is at the surface of the Earth, and the initial coordinate of the object is (0, s0). Our

objective is to use basic principles of physics to derive the velocity function v(t) and the

position function r(t) from the acceleration function a(t) of the object. Our starting point

is the physical observation that the downward force F of the Earth’s gravity on an object of

mass m is

F = −mgj

where g is the acceleration due to gravity (see 9.4.3). It follows from this fact and Newton’s

second law (19) that

ma = −mgj

or on canceling m from both sides

a = −gj (20)

Observe that this acceleration function does not involve t and hence is constant. We can

now obtain the velocity function v(t) by integrating this acceleration function and using the

initial condition v(0) = v0 to find the constant of integration. Integrating (20) with respect

to t and keeping in mind that −gj is constant yields

v(t) =
∫

−gj dt = −gtj + c1

where c1 is a vector constant of integration. Substituting t = 0 in this equation and using

the initial condition v(0) = v0 yields

v0 = c1
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Thus, the velocity function of the object is

v(t) = −gtj + v0 (21)

To obtain the position function r(t) of the object, we will integrate the velocity function

and use the known initial position of the object to find the constant of integration. For this

purpose observe that the object has coordinates (0, s0) at time t = 0, so the position vector

at that time is

r(0) = 0i + s0 j = s0 j (22)

This is the initial condition that we will need to find the constant of integration. Integrating

(21) with respect to t yields

r(t) =
∫

(−gtj + v0) dt = − 1
2
gt2 j + tv0 + c2 (23)

where c2 is another vector constant of integration. Substituting t = 0 in (23) and using

initial condition (22) yields

s0 j = c2

so that (23) can be written as

r(t) =
(

− 1
2
gt2 + s0

)

j + tv0 (24)

This formula expresses the position function of the object in terms of its known initial

position and velocity.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that the mass of the object does not enter into the final formulas for

velocity and position. Physically, this means that the mass has no influence on the trajectory

or the velocity of the object—these are completely determined by the initial position and

velocity. This explains the famous observation of Galileo that two objects of different mass,

released from the same height, will reach the ground at the same time if air resistance is

neglected.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PARAMETRIC EQUATIONS OF
PROJECTILE MOTION

Formulas (21) and (24) can be used to obtain parametric equations for the position and

velocity in terms of the initial speed of the object and the angle that the initial velocity

vector makes with the positive x-axis. For this purpose, let v0 = ‖v0‖ be the initial speed,

let α be the angle that the initial velocity vector v0 makes with the positive x-axis, let vx
and vy be the horizontal and vertical scalar components of v(t) at time t, and let x and y be

the horizontal and vertical components of r(t) at time t . As illustrated in Figure 13.6.8, the

initial velocity vector can be expressed as

v0 = (v0 cosα)i + (v0 sinα) j (25)

x
(v0 cos a)i 

(v0 sin a)j 

y

a

v0

v0

Figure 13.6.8

Substituting this expression in (24) and combining like components yields (verify)

r(t) = (v0 cosα)t i +
(

s0 + (v0 sinα)t − 1
2
gt2

)

j (26)

which is equivalent to the parametric equations

x = (v0 cosα)t, y = s0 + (v0 sinα)t − 1
2
gt2 (27)

Similarly, substituting (25) in (21) and combining like components yields

v(t) = (v0 cosα)i + (v0 sinα − gt) j

which is equivalent to the parametric equations

vx = v0 cosα, vy = v0 sinα − gt (28)
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The parameter t can be eliminated in (27) by solving the first equation for t and substi-

tuting in the second equation. We leave it for you to show that this yields

y = s0 + (tanα)x −
(

g

2v2
0 cos2 α

)

x2 (29)

which is the equation of a parabola, since the right side is a quadratic polynomial in x. Thus,

we have shown that the trajectory of the projectile is a parabolic arc.

Example 5 A shell, fired from a cannon, has a muzzle speed (the speed as it leaves the

barrel) of 800 ft/s. The barrel makes an angle of 45◦ with the horizontal and, for simplicity,

the barrel opening is assumed to be at ground level.

(a) Find parametric equations for the shell’s trajectory relative to the coordinate system

in Figure 13.6.9.

(b) How high does the shell rise?

(c) How far does the shell travel horizontally?

(d) What is the speed of the shell at its point of impact with the ground?

x

y

45°

Figure 13.6.9

Solution (a). From (27) with v0 = 800 ft/s, α = 45◦ , s0 = 0 ft (since the shell starts at

ground level), and g = 32 ft/s2, we obtain the parametric equations

x = (800 cos 45◦ )t, y = (800 sin 45◦ )t − 16t2 (t ≥ 0)

which simplify to

x = 400
√

2t, y = 400
√

2t − 16t2 (t ≥ 0) (30)

Solution (b). The maximum height of the shell is the maximum value of y in (30), which

occurs when dy/dt = 0, that is, when

400
√

2 − 32t = 0 or t =
25

√
2

2

Substituting this value of t in (30) yields

y = 5000 ft

as the maximum height of the shell.

Solution (c). The shell will hit the ground when y = 0. From (30), this occurs when

400
√

2t − 16t2 = 0 or t (400
√

2 − 16t) = 0

The solution t = 0 corresponds to the initial position of the shell and the solution

t = 25
√

2 to the time of impact. Substituting the latter value in the equation for x in (30)

yields

x = 20,000 ft

as the horizontal distance traveled by the shell.

Solution (d ). From (30), the position function of the shell is

r(t) = 400
√

2t i + (400
√

2t − 16t2) j

so that the velocity function is

v(t) = r ′(t) = 400
√

2i + (400
√

2 − 32t) j

From part (c), impact occurs when t = 25
√

2, so the velocity vector at this point is

v(25
√

2) = 400
√

2i + [400
√

2 − 32(25
√

2)] j = 400
√

2 i − 400
√

2 j

Thus, the speed at impact is

‖v(25
√

2)‖ =
√

(400
√

2)2 + (−400
√

2)2 = 800 ft/s ◭
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EXERCISE SET 13.6 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, r(t) is the position vector of a particle mov-

ing in the plane. Find the velocity, acceleration, and speed

at an arbitrary time t . Then sketch the path of the particle

together with the velocity and acceleration vectors at the in-

dicated time t.

1. r(t) = 3 cos t i + 3 sin tj; t = π/3

2. r(t) = t i + t2 j; t = 2

3. r(t) = et i + e−t j; t = 0

4. r(t) = (2 + 4t)i + (1 − t) j; t = 1

In Exercises 5–8, find the velocity, speed, and acceleration at

the given time t of a particle moving along the given curve.

5. r(t) = t i + 1
2
t2 j + 1

3
t3k; t = 1

6. x = 1 + 3t, y = 2 − 4t, z = 7 + t; t = 2

7. x = 2 cos t, y = 2 sin t, z = t; t = π/4

8. r(t) = et sin t i + et cos tj + tk; t = π/2

9. As illustrated in the accompanying figure, suppose that the

equations of motion of a particle moving along an elliptic

path are x = a cosωt, y = b sinωt.

(a) Show that the acceleration is directed toward the origin.

(b) Show that the magnitude of the acceleration is propor-

tional to the distance from the particle to the origin.

x

y

b

a

Figure Ex-9

10. Suppose that a particle vibrates in such a way that its position

function is r(t) = 16 sinπt i + 4 cos 2πt j, where distance

is in millimeters and t is in seconds.

(a) Find the velocity and acceleration at time t = 1 s.

(b) Show that the particle moves along a parabolic curve.

(c) Show that the particle moves back and forth along the

curve.

11. Suppose that the position vector of a particle moving in the

plane is r = 12
√
t i + t3/2 j, t > 0. Find the minimum

speed of the particle and its location when it has this speed.

12. Suppose that the motion of a particle is described by the po-

sition vector r = (t − t2)i − t2 j. Find the minimum speed

of the particle and its location when it has this speed.

13. Suppose that the position function of a particle moving in

2-space is r = sin 3t i − 2 cos 3tj.

(a) Use a graphing utility to graph the speed of the particle

versus time from t = 0 to t = 2π/3.

(b) What are the maximum and minimum speeds of the

particle?

(c) Use the graph to estimate the time at which the maxi-

mum speed first occurs.

(d) Find the exact time at which the maximum speed first

occurs.

14. Suppose that the position function of a particle moving in

3-space is r = 3 cos 2t i + sin 2tj + 4tk.

(a) Use a graphing utility to graph the speed of the particle

versus time from t = 0 to t = π.

(b) Use the graph to estimate the maximum and minimum

speeds of the particle.

(c) Use the graph to estimate the time at which the maxi-

mum speed first occurs.

(d) Find the exact values of the maximum and minimum

speeds and the exact time at which the maximum speed

first occurs.

In Exercises 15–18, use the given information to find the po-

sition and velocity vectors of the particle.

15. a(t) = − cos t i − sin tj; v(0) = i; r(0) = j

16. a(t) = i + e−t j; v(0) = 2i + j; r(0) = i − j

17. a(t) = sin t i + cos tj + etk; v(0) = k; r(0) = −i + k

18. a(t) = (t + 1)−2 j − e−2tk; v(0) = 3i − j; r(0) = 2k

19. What can you say about the trajectory of a particle that

moves in 2-space or 3-space with zero acceleration? Justify

your answer.

20. Recall from Theorem 13.2.9 that if r(t) is a vector-valued

function in 2-space or 3-space, and if ‖r(t)‖ is constant for

all t, then r(t) · r ′(t) = 0.

(a) Translate this theorem into a statement about the motion

of a particle in 2-space or 3-space.

(b) Replace r(t) by r ′(t) in the theorem, and translate the

result into a statement about the motion of a particle in

2-space or 3-space.

21. Find, to the nearest degree, the angle between v and a for

r = t3i + t2 j when t = 1.

22. Show that the angle between v and a is constant for the posi-

tion vector r = et cos t i + et sin tj. Find the angle.

23. (a) Suppose that at time t = t0 an electron has a position

vector of r = 3.5i − 1.7 j + k, and at a later time t = t1
it has a position vector of r = 4.2i + j − 2.4k. What is

the displacement of the electron during the time interval

from t0 to t1?

(b) Suppose that during a certain time interval a proton has

a displacement of �r = 0.7i+2.9 j−1.2k and its final

position vector is known to be r = 3.6k. What was the

initial position vector of the proton?

24. Suppose that the position function of a particle moving along

a circle in the xy-plane is r = 5 cos 2πt i + 5 sin 2πtj.
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(a) Sketch some typical displacement vectors over the time

interval from t = 0 to t = 1.

(b) What is the distance traveled by the particle during the

time interval?

In Exercises 25–28, find the displacement and the distance

traveled over the indicated time interval.

25. r = t2i + 1
3
t3 j; 1 ≤ t ≤ 3

26. r = (1 − 3 sin t)i + 3 cos tj; 0 ≤ t ≤ 3π/2

27. r = et i + e−t j +
√

2tk; 0 ≤ t ≤ ln 3

28. r = cos 2t i + (1 − cos 2t) j +
(

3 + 1
2

cos 2t
)

k; 0 ≤ t ≤ π

In Exercises 29 and 30, the position vectors of two particles

are given. Show that the particles move along the same path

but the speed of the first is constant and the speed of the

second is not.

29. r1 = 2 cos 3t i + 2 sin 3tj

r2 = 2 cos(t2)i + 2 sin(t2) j (t ≥ 0)

30. r1 = (3 + 2t)i + tj + (1 − t)k

r2 = (5 − 2t3)i + (1 − t3) j + t3k

In Exercises 31–38, the position function of a particle is given.

Use Theorem 13.6.3 to find

(a) the scalar tangential and normal components of acceler-

ation at the stated time t;
(b) the vector tangential and normal components of acceler-

ation at the stated time t;
(c) the curvature of the path at the point where the particle

is located at the stated time t.

31. r = e−t i + et j; t = 0

32. r = cos(t2)i + sin(t2) j; t =
√
π/2

33. r = (t3 − 2t)i + (t2 − 4) j; t = 1

34. r = et cos t i + et sin tj; t = π/4

35. r = (1/t)i + t2 j + t3k; t = 1

36. r = et i + e−2t j + tk; t = 0

37. r = 3 sin t i + 2 cos tj − sin 2tk; t = π/2

38. r = 2i + t3 j − 16 ln tk; t = 1

In Exercises 39–42, v and a are given at a certain instant of

time. Find aT , aN , T, and N at this instant.

39. v = −4 j, a = 2i + 3 j 40. v = i + 2 j, a = 3i

41. v = 2i + 2 j + k, a = i + 2k

42. v = 3i − 4k, a = i − j + 2k

In Exercises 43–46, the speed ‖v‖ of a particle at an arbi-

trary time t is given. Find the scalar tangential component of

acceleration at the indicated time.

43. ‖v‖ =
√

3t2 + 4; t = 2

44. ‖v‖ =
√

t2 + e−3t ; t = 0

45. ‖v‖ =
√

(4t − 1)2 + cos2 πt; t = 1
4

46. ‖v‖ =
√
t4 + 5t2 + 3; t = 1

47. The nuclear accelerator at the Enrico Fermi Laboratory is

circular with a radius of 1 km. Find the scalar normal com-

ponent of acceleration of a proton moving around the accel-

erator with a constant speed of 2.9 × 105 km/s.

48. Suppose that a particle moves with nonzero acceleration

along the curve y = f(x). Use part (b) of Exercise 17 in

Section 13.5 to show that the acceleration vector is tangent

to the curve at each point where f ′′(x) = 0.

In Exercises 49 and 50, use the given information and Exer-

cise 17 of Section 13.5 to find the normal scalar component

of acceleration as a function of x.

49. A particle moves along the parabola y = x2 with a constant

speed of 3 units per second.

50. A particle moves along the curve x = ln y with a constant

speed of 2 units per second.

In Exercises 51 and 52, use the given information to find the

normal scalar component of acceleration at time t = 1.

51. a(1) = i + 2 j − 2k; aT (1) = 3

52. ‖a(1)‖ = 9; aT (1)T(1) = 2i − 2 j + k

53. An automobile travels at a constant speed around a curve

whose radius of curvature is 1000 m. What is the maximum

allowable speed if the maximum acceptable value for the

normal scalar component of acceleration is 1.5 m/s2?

54. If an automobile of mass m rounds a curve, then its inward

vector component of acceleration aNN is caused by the fric-

tional force F of the road. Thus, it follows from the vector

form of Newton’s second law [Equation (19)] that the fric-

tional force and the normal scalar component of acceleration

are related by the equation F = maNN. Thus,

‖F‖ = mκ

(

ds

dt

)2

Use this result to find the magnitude of the frictional force

in newtons exerted by the road on a 500-kg go-cart driven

at a speed of 10 km/h around a circular track of radius 15

m. [Note: 1 N = 1 kg·m/s2]

55. A shell is fired from ground level with a muzzle speed of

320 ft/s and elevation angle of 60◦ . Find

(a) parametric equations for the shell’s trajectory

(b) the maximum height reached by the shell

(c) the horizontal distance traveled by the shell

(d) the speed of the shell at impact.

56. Solve Exercise 55 assuming that the muzzle speed is 980

m/s and the elevation angle is 45◦ .

57. A rock is thrown downward from the top of a building, 168

ft high, at an angle of 60◦ with the horizontal. How far from

the base of the building will the rock land if its initial speed

is 80 ft/s?
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58. Solve Exercise 57 assuming that the rock is thrown hori-

zontally at a speed of 80 ft/s.

59. A shell is to be fired from ground level at an elevation angle

of 30◦ . What should the muzzle speed be in order for the

maximum height of the shell to be 2500 ft?

60. A shell, fired from ground level at an elevation angle of 45◦ ,

hits the ground 24,500 m away. Calculate the muzzle speed

of the shell.

61. Find two elevation angles that will enable a shell, fired from

ground level with a muzzle speed of 800 ft/s, to hit a ground-

level target 10,000 ft away.

62. A ball rolls off a table 4 ft high while moving at a constant

speed of 5 ft/s.

(a) How long does it take for the ball to hit the floor after

it leaves the table?

(b) At what speed does the ball hit the floor?

(c) If a ball were dropped from rest at table height just as

the rolling ball leaves the table, which ball would hit

the ground first? Justify your answer.

63. As illustrated in the accompanying figure, a fire hose sprays

water with an initial velocity of 40 ft/s at an angle of 60◦

with the horizontal.

(a) Confirm that the water will clear corner point A.

(b) Confirm that the water will hit the roof.

(c) How far from corner pointAwill the water hit the roof?

64. What is the minimum initial velocity that will allow the

water in Exercise 63 to hit the roof?

65. As shown in the accompanying figure, water is sprayed from

a hose with an initial velocity of 35 m/s at an angle of 45◦

with the horizontal.

(a) What is the radius of curvature of the stream at the point

where it leaves the hose?

(b) What is the maximum height of the stream above the

nozzle of the hose?

A

60°
20 ft

15 ft 25 ft

4 ft

Figure Ex-63

45°

35 m/s

Figure Ex-65

66. As illustrated in the accompanying figure, a train is traveling

on a curved track. At a point where the train is traveling at a

speed of 132 ft/s and the radius of curvature of the track is

3000 ft, the engineer hits the brakes to make the train slow

down at a constant rate of 7.5 ft/s2.

(a) Find the magnitude of the acceleration vector at the in-

stant the engineer hits the brakes.

(b) Approximate the angle between the acceleration vector

and the unit tangent vector T at the instant the engineer

hits the brakes.

3000 ft

132 ft/s

Figure Ex-66

67. A shell is fired from ground level at an elevation angle of α

and a muzzle speed of v0.

(a) Show that the maximum height reached by the shell is

maximum height =
(v0 sinα)2

2g

(b) The horizontal range R of the shell is the horizontal

distance traveled when the shell returns to ground level.

Show that R = (v2
0 sin 2α)/g. For what elevation angle

will the range be maximum? What is the maximum

range?

68. A shell is fired from ground level with an elevation angle α

and a muzzle speed of v0.Find two angles that can be used to

hit a target at ground level that is a distance of three-fourths

the maximum range of the shell. Express your answer to the

nearest tenth of a degree. [Hint: See Exercise 67(b).]

69. At time t = 0 a baseball that is 5 ft above the ground is hit

with a bat. The ball leaves the bat with a speed of 80 ft/s at

an angle of 30◦ above the horizontal.

(a) How long will it take for the baseball to hit the ground?

Express your answer to the nearest hundredth of a

second.

(b) Use the result in part (a) to find the horizontal distance

traveled by the ball. Express your answer to the nearest

tenth of a foot.

70. At time t = 0 a projectile is fired from a height h above level

ground at an elevation angle of α with a speed v. Let R be

the horizontal distance to the point where the projectile hits

the ground.

(a) Show that α and R must satisfy the equation

g(sec2 α)R2 − 2v2(tanα)R − 2v2h = 0

(b) If g, h, and v are constant, then the equation in part

(a) defines R implicitly as a function of α. Let R0 be

the maximum value of R and α0 the value of α when

R = R0.Use implicit differentiation to find dR/dα and

show that

tanα0 =
v2

gR0

[Hint: Assume that dR/dα = 0 when R is maximum.]

(c) Use the results in parts (a) and (b) to show that

R0 =
v

g

√

v2 + 2gh

and

α0 = tan−1 v
√

v2 + 2gh
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C 71. At time t = 0 a skier leaves the end of a ski jump with a

speed of v0 ft/s at an angle α with the horizontal (see the ac-

companying figure). The skier lands 259 ft down the incline

2.9 s later.

(a) Approximate v0 to the nearest ft/s and α to the nearest

degree.
(b) Use a CAS or a calculating utility with a numerical inte-

gration capability to approximate the distance traveled

by the skier.

(Use g = 32 ft/s2 as the acceleration due to gravity.)

23°

259 ft

v
0

a x

y

Figure Ex-71

13.7 KEPLER’S LAWS OF PLANETARY MOTION

One of the great advances in the history of astronomy occurred in the early 1600s

when Johannes Kepler∗ deduced from empirical data that all planets in our solar

system move in elliptical orbits with the Sun at a focus. Subsequently, Isaac Newton

showed mathematically that such planetary motion is the consequence of an inverse-

square law of gravitational attraction. In this section we will use the concepts devel-

oped in the preceding sections of this chapter to derive three basic laws of planetary

motion, known as Kepler’s laws.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

KEPLER’S LAWS
In Section 11.6 we stated the following laws of planetary motion that were published by

Johannes Kepler in 1609 in his book known as Astronomia Nova.

13.7.1 KEPLER’S LAWS.

• First law (Law of Orbits). Each planet moves in an elliptical orbit with the Sun at a

focus.

• Second law (Law of Areas). Equal areas are swept out in equal times by the line

from the Sun to a planet.

• Third law (Law of Periods). The square of a planet’s period (the time it takes the planet

to complete one orbit about the Sun) is proportional to the cube of the semimajor

axis of its orbit.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CENTRAL FORCES
If a particle moves under the influence of a single force that is always directed toward a

fixed point O, then the particle is said to be moving in a central force field. The force is

called a central force, and the point O is called the center of force. For example, in the

simplest model of planetary motion, it is assumed that the only force acting on a planet

is the force of the Sun’s gravity, directed toward the center of the Sun. This model, which

produces Kepler’s laws, ignores the forces that other celestial objects exert on the planet as

well as the minor effect that the planet’s gravity has on the Sun. Central force models are

also used to study the motion of comets, asteroids, planetary moons, and artificial satellites.

They also have important applications in electromagnetics. Our objective in this section

is to develop some basic principles about central force fields and then use those results to

derive Kepler’s laws.

Suppose that a particle P of mass m moves in a central force field due to a force F that

is directed toward a fixed point O, and let r = r(t) be the position vector from O to P

∗
See biography on p. 779.
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(Figure 13.7.1). Let v = v(t) and a = a(t) be the velocity and acceleration functions of the

particle, and assume that F and a are related by Newton’s second law (F = ma).

Our first objective is to show that the particle P moves in a plane containing the point

O. For this purpose observe that a has the same direction as F by Newton’s second law, and

this implies that a and r are oppositely directed vectors. Thus, it follows from part (c) of

Theorem 12.4.5 that

r × a = 0

Since the velocity and acceleration of the particle are given by v = dr/dt and a = dv/dt,

respectively, we have

d

dt
(r × v) = r ×

dv

dt
+

dr

dt
× v = (r × a) + (v × v) = 0 + 0 = 0 (1)

Integrating the left and right sides of this equation with respect to t yields

r × v = b (2)

where b is a constant (independent of t). However, b is orthogonal to both r and v, so we

can conclude that r = r(t) and v = v(t) lie in a fixed plane containing the point O.

r

P

O

F

P

O

Figure 13.7.1

•
•
•
•
•
•
•
•

REMARK. The preceding discussion shows that each planet moves in a plane through the

center of the Sun. Astronomers call this plane the ecliptic of the planet.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

NEWTON’S LAW OF UNIVERSAL
GRAVITATION

Our next objective is to derive the position function of a particle moving under a central

force in a polar coordinate system. For this purpose we will need the following result, known

as Newton’s Law of Universal Gravitation.

13.7.2 NEWTON’S LAW OF UNIVERSAL GRAVITATION. Every particle of matter in

the Universe attracts every other particle of matter in the Universe with a force that is

proportional to the product of their masses and inversely proportional to the square of

the distance between them. Specifically, if a particle of mass M and a particle of mass m

are at a distance r from one another, then they attract each other with equal and opposite

forces, F and −F, of magnitude

‖F‖ =
GMm

r2
(3)

where G is a constant called the universal gravitational constant.

M exerts force F on m, and 

m exerts force –F on M.

M

m

–F

F

r

Figure 13.7.2

To obtain a formula for the vector force F that mass M exerts on mass m, we will let r

be the radius vector from mass M to mass m (Figure 13.7.2). Thus, the distance r between

the masses is ‖r‖, and the force F can be expressed in terms of r as

F = ‖F‖
(

−
r

‖r‖

)

= ‖F‖
(

−
r

r

)

which from (3) can be expressed as

F = −
GMm

r3
r (4)

We start by finding a formula for the acceleration function. To do this we use Formula

(4) and Newton’s second law to obtain

ma = −
GMm

r3
r

from which we obtain

a = −
GM

r3
r (5)
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•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that the acceleration a depends on the mass M but not on the mass m.

Thus, for example, the acceleration of a planet is affected by the mass of the Sun but not by

its own mass.

To obtain a formula for the position function of the mass m, we will need to introduce a

coordinate system and make some assumptions about the initial conditions. Let us assume:

• The distance r from m to M is minimum at time t = 0.

• The mass m has nonzero position and velocity vectors r0 and v0 at time t = 0.

• A polar coordinate system is introduced with its pole at mass M and oriented so θ = 0

at time t = 0.

• The vector v0 is perpendicular to the polar axis at time t = 0.

Moreover, to ensure that the polar angle θ increases with t, let us agree to observe this polar

coordinate system looking toward the pole from the terminal point of the vector b = r0 × v0.

We will also find it useful to superimpose an xyz-coordinate system on the polar coordinate

system with the positive z-axis in the direction of b (Figure 13.7.3).

x

y

z

b

r0

v0

u
u = 0

Figure 13.7.3
For computational purposes, it will be helpful to denote ‖r0‖ by r0 and ‖v0‖ by v0, in

which case we can express the vectors r0 and v0 in xyz-coordinates as

r0 = r0i and v0 = v0 j

and the vector b as

b = r0 × v0 = r0i × v0 j = r0v0k (6)

(Figure 13.7.4). It will also be useful to introduce the unit vector

u = cos θ i + sin θ j (7)

which will allow us to express the polar form of the position vector r as

r = r cos θ i + r sin θ j = r(cos θ i + sin θ j) = ru (8)

and to express the acceleration vector a in terms of u by rewriting (5) as

a = −
GM

r2
u (9)

v0 j

r0i

x

y

Figure 13.7.4

We are now ready to derive the position function of the mass m in polar coordinates. For

this purpose, recall from (2) that the vector b = r × v is constant, so it follows from (6)

that the relationship

b = r × v = r0v0k (10)

holds for all values of t. Now let us examine b from another point of view. It follows from

(8) that

v =
dr

dt
=

d

dt
(ru) = r

du

dt
+

dr

dt
u

and hence

b = r × v = (ru) ×

(

r
du

dt
+

dr

dt
u

)

= r2u ×

du

dt
+ r

dr

dt
u × u = r2u ×

du

dt
(11)

But (7) implies that

du

dt
=

du

dθ

dθ

dt
= (− sin θ i + cos θ j)

dθ

dt
so

u ×

du

dt
=

dθ

dt
k (12)

Substituting (12) in (11) yields

b = r2 dθ

dt
k (13)
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Thus, it follows from (7), (9), and (13) that

a × b = −
GM

r2
(cos θ i + sin θ j) ×

(

r2 dθ

dt
k

)

= GM(− sin θ i + cos θ j)
dθ

dt
= GM

du

dt
(14)

From this formula and the fact that db/dt = 0 (since b is constant), we obtain

d

dt
(v × b) = v ×

db

dt
+

dv

dt
× b = a × b = GM

du

dt

Integrating both sides of this equation with respect to t yields

v × b = GMu + C (15)

where C is a vector constant of integration. This constant can be obtained by evaluating

both sides of the equation at t = 0. We leave it as an exercise to show that

C = (r0v
2
0 − GM)i (16)

from which it follows that

v × b = GMu + (r0v
2
0 − GM)i (17)

We can now obtain the position function by computing the scalar triple product r · (v × b)

in two ways. First we use (10) and property (11) of Section 12.4 to obtain

r · (v × b) = (r × v) · b = b · b = r2
0v

2
0 (18)

and next we use (17) to obtain

r · (v × b) = r · (GMu) + r · (r0v
2
0 − GM)i

= r ·

(

GM
r

r

)

+ ru · (r0v
2
0 − GM)i

= GMr + r(r0v
2
0 − GM) cos θ

If we now equate this to (18), we obtain

r2
0v

2
0 = GMr + r(r0v

2
0 − GM) cos θ

which when solved for r gives

r =
r2

0v
2
0

GM + (r0v
2
0 − GM) cos θ

=

r2
0v

2
0

GM

1 +
(

r0v
2
0

GM
− 1

)

cos θ

(19)

or more simply

r =
k

1 + e cos θ
(20)

where

k =
r2

0v
2
0

GM
and e =

r0v
2
0

GM
− 1 (21–22)

We will leave it as an exercise to show that e ≥ 0. Accepting this to be so, it follows

by comparing (20) to Formula (3) of Section 11.6 that the trajectory is a conic section

with eccentricity e, the focus at the pole, and d = k/e. Thus, depending on whether

e < 1, e = 1, or e > 1, the trajectory will be, respectively, an ellipse, a parabola, or a

hyperbola (Figure 13.7.5).

Hyperbola

e > 1Parabola

e = 1

Circle

e = 0

Ellipse

0 < e < 1

Figure 13.7.5

Note from Formula (22) that e depends on r0 and v0, so the exact form of the trajectory

is determined by the mass M and the initial conditions. If the initial conditions are such

that e < 1, then the mass m becomes trapped in an elliptical orbit; otherwise the mass

m “escapes” and never returns to its initial position. Accordingly, the initial velocity that
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produces an eccentricity of e = 1 is called the escape speed and is denoted by vesc. Thus,

it follows from (22) that

vesc =

√

2GM

r0

(23)

(verify).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

KEPLER’S FIRST AND SECOND
LAWS

It follows from our general discussion of central force fields that the planets have elliptical

orbits with the Sun at the focus, which is Kepler’s first law. To derive Kepler’s second law,

we begin by equating (10) and (13) to obtain

r2 dθ

dt
= r0v0 (24)

To prove that the radial line from the center of the Sun to the center of a planet sweeps

out equal areas in equal times, let r = f(θ) denote the polar equation of the planet, and

let A denote the area swept out by the radial line as it varies from any fixed angle θ0 to an

angle θ. It follows from Theorem 11.3.2 that A can be expressed as

A =
∫ θ

θ0

1

2
[f(φ)]2 dφ

where the dummy variable φ is introduced for the integration to reserve θ for the upper

limit. It now follows from Part 2 of the Fundamental Theorem of Calculus and the chain

rule that

dA

dt
=

dA

dθ

dθ

dt
=

1

2
[f(θ)]2 dθ

dt
=

1

2
r2 dθ

dt

Thus, it follows from (24) that

dA

dt
=

1

2
r0v0 (25)

which shows that A changes at a constant rate. This implies that equal areas are swept out

in equal times.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

KEPLER’S THIRD LAW
To derive Kepler’s third law, we let a and b be the semimajor and semiminor axes of the

elliptical orbit, and we recall that the area of this ellipse is πab. It follows by integrating

(25) that in t units of time the radial line will sweep out an area of A = 1
2
r0v0t. Thus, if T

denotes the time required for the planet to make one revolution around the Sun (the period),

then the radial line will sweep out the area of the entire ellipse during that time and hence

πab = 1
2
r0v0T

from which we obtain

T 2 =
4π2a2b2

r2
0v

2
0

(26)

However, it follows from Formula (1) of Section 11.6 and the relationship c2 = a2 − b2 for

an ellipse that

e =
c

a
=

√

a2 − b2

a

Thus, b2 = a2(1 − e2) and hence (26) can be written as

T 2 =
4π2a4(1 − e2)

r2
0v

2
0

(27)

But comparing Equation (20) to Equation (17) of Section 11.6 shows that

k = a(1 − e2)
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Finally, substituting this expression and (21) in (27) yields

T 2 =
4π2a3

r2
0v

2
0

k =
4π2a3

r2
0v

2
0

r2
0v

2
0

GM
=

4π2

GM
a3 (28)

Thus, we have proved that T 2 is proportional to a3, which is Kepler’s third law. When

convenient, Formula (28) can also be expressed as

T =
2π

√
GM

a3/2 (29)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ARTIFICIAL SATELLITES
Kepler’s second and third laws and Formula (23) also apply to satellites that orbit a celestial

body; we need only interpret M to be the mass of the body exerting the force and m to be

the mass of the satellite. Values of GM that are required in many of the formulas in this

section have been determined experimentally for various attracting bodies (Table 13.7.1).

Table 13.7.1

attracting body international system british engineering system

Earth
GM = 3.99 × 1014 m3/s2

GM = 3.99 × 105 km3/s2

GM = 1.41 × 1016 ft3/s2

GM = 1.24 × 1012 mi3/h2

Sun
GM = 1.33 × 1020 m3/s2

GM = 1.33 × 1011 km3/s2

GM = 4.69 × 1021 ft3/s2

GM = 4.13 × 1017 mi3/h2

Moon
GM = 4.90 × 1012 m3/s2

GM = 4.90 × 103 km3/s2

GM = 1.73 × 1014 ft3/s2

GM = 1.53 × 1010 mi3/h2

Recall that for orbits of planets around the Sun, the point at which the distance between

the center of the planet and the center of the Sun is maximum is called the aphelion and

the point at which it is minimum the perihelion. For satellites around the Earth the point

at which the maximum distance occurs is called the apogee and the point at which the

minimum distance occurs is called the perigee (Figure 13.7.6). The actual distances between

the centers at apogee and perigee are called the apogee distance and the perigee distance.

Apogee Perigee

ur

Figure 13.7.6 Example 1 A geosynchronous orbit for a satellite is a circular orbit about the equator

of the Earth in which the satellite stays fixed over a point on the equator. Use the fact that

the Earth makes one revolution about its axis every 24 hours to find the altitude in miles

of a communications satellite in geosynchronous orbit. Assume the Earth to be a sphere of

radius 4000 mi.

Solution. To remain fixed over a point on the equator, the satellite must have a period of

T = 24 h. It follows from (28) or (29) and the Earth value of GM = 1.24 × 1012 mi3/h2

from Table 13.7.1 that

a = 3

√

GMT 2

4π2
= 3

√

(1.24 × 1012)(24)2

4π2
≈ 26,250 mi

and hence the altitude h of the satellite is

h = 26,250 − 4000 = 22,250 mi ◭
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EXERCISE SET 13.7
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises that require numerical values, use Table 13.7.1

and the following values, where needed:

radius of Earth = 4000 mi = 6440 km

radius of Moon = 1080 mi = 1740 km

1 year (Earth year) = 365 days

1. Suppose that a particle is in an elliptical orbit in a central

force field in which the center of force is at a focus, and

let rmin and rmax denote the minimum and maximum dis-

tances from the particle to the center of force. Review the

discussion of ellipses in polar coordinates in Section 11.6,

and show that if the ellipse has eccentricity e and semimajor

axis a, then rmin = a(1 − e) and rmax = a(1 + e).

2. (a) Use the results in Exercise 1 to show that

e =
rmax − rmin

rmax + rmin

(b) Show that

rmax = rmin

1 + e

1 − e

3. (a) Obtain the value of C given in Formula (16) by setting

t = 0 in (15).

(b) Use Formulas (7), (17), and (22) to show that

v × b = GM[(e + cos θ)i + sin θ j]

(c) Show that ‖v × b‖ = ‖v‖‖b‖.
(d) Use the results in parts (b) and (c) to show that the speed

of a particle in an elliptical orbit is

v =
v0

1 + e

√

e2 + 2e cos θ + 1

4. Use the result in Exercise 3(d) to show that when a particle

in an elliptical orbit with eccentricity e reaches an end of

the minor axis, its speed is

v = v0

√

1 − e

1 + e

5. Use the result in Exercise 3(d) to show that for a particle

in an elliptical orbit with eccentricity e, the maximum and

minimum speeds are related by

vmax = vmin

1 + e

1 − e

6. Use Formula (22) and the result in part (d) of Exercise 3

to show that the speed v of a particle in a circular orbit of

radius r0 is constant and is given by

v =

√

GM

r0

7. Use the result in Exercise 6 to find the speed in km/s of a

satellite in a circular orbit that is 200 km above the surface

of the Earth.

8. Use the result in Exercise 6 to find the speed in mi/h of

a communications satellite that is in geosynchronous orbit

around the Earth. [See Example 1.]

9. Find the escape speed in km/s for a space probe in a circular

orbit that is 300 km above the surface of the Earth.

10. The universal gravitational constant is approximately

G = 6.67 × 10−11 m3/kg·s2

and the semimajor axis of the Earth’s orbit is approximately

a = 149.6 × 106 km

Estimate the mass of the Sun in kg.

11. (a) The eccentricity of the Moon’s orbit around the Earth

is 0.055, and its semimajor axis is a = 238,900 mi.

Find the maximum and minimum distances between

the surface of the Earth and the surface of the Moon.

(b) Find the period of the Moon’s orbit in days.

12. (a) Vanguard 1 was launched in March 1958 with perigee

and apogee altitudes above the Earth of 649 km and

4340 km, respectively. Find the length of the semima-

jor axis of its orbit.

(b) Use the result in part (a) of Exercise 2 to find the ec-

centricity of its orbit.

(c) Find the period of Vanguard I in minutes.

13. (a) Suppose that a space probe is in a circular orbit at an

altitude of 180 mi above the surface of the Earth. Use

the result in Exercise 6 to find its speed.

(b) During a very short period of time, a thruster rocket on

the space probe is fired to increase the speed of the probe

by 600 mi/h in its direction of motion. Find the eccen-

tricity of the resulting elliptical orbit, and use the result

in part (b) of Exercise 2 to find the apogee altitude.

14. Show that the quantity e defined by Formula (22) is nonneg-

ative. [Hint: The polar axis was chosen so that r is minimum

when θ = 0.]
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SUPPLEMENTARY EXERCISES

1. In words, what is meant by the graph of a vector-valued

function r(t)?

2. Describe the graph of the vector-valued function.

(a) r = r0 + t (r1 − r0)

(b) r = r0 + t (r1 − r0) (0 ≤ t ≤ 1)

(c) r = r0 + tr ′(t0)

3. In words, describe what happens geometrically to r(t) if

lim
t→a

r(t) = L.

4. Suppose that r(t) is the position function of a particle mov-

ing in 2-space or 3-space. In each part, explain what the

given quantity represents physically.

(a)

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

(b)

∫ t1

t0

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

dt (c) ‖r(t)‖

5. Suppose that r(t) is a smooth vector-valued function. State

the definitions of T(t), N(t), and B(t).

6. State the definition of “curvature” and explain what it means

geometrically.

7. In Supplementary Exercise 34 of Chapter 11, we defined

the Cornu spiral parametrically as

x =
∫ t

0

cos

(

πu2

2

)

du, y =
∫ t

0

sin

(

πu2

2

)

du

This curve, which is graphed in the accompanying figure, is

used in highway design to create a gradual transition from a

straight road (zero curvature) to an exit ramp with positive

curvature.

(a) Express the Cornu spiral as a vector-valued function

r(t), and then use Theorem 13.3.4 to show that s = t

is the arc length parameter with reference point (0, 0).

(b) Replace t by s and use Formula (1) of Section 13.5 to

show that κ(s) = π|s|. [Note: If s ≥ 0, then the curva-

ture κ(s) = πs increases from 0 at a constant rate with

respect to s. This makes the spiral ideal for joining a

curved road to a straight road.]

(c) What happens to the curvature of the Cornu spiral as

s→+�? In words, explain why this is consistent with

the graph.

x

y

Figure Ex-7

8. (a) What does Theorem 13.2.9 tell you about the velocity

vector of a particle that moves over a sphere?

(b) What does Theorem 13.2.9 tell you about the accelera-

tion vector of a particle that moves with constant speed?

(c) Show that the particle with position function

r(t) =
√

1 − 1

4
cos2 t cos t i +

√

1 − 1

4
cos2 t sin tj + 1

2
cos tk

moves over a sphere.

9. As illustrated in the accompanying figure, suppose that a

particle moves counterclockwise around a circle of radius

R centered at the origin at a constant rate of ω radians per

second. This is called uniform circular motion. If we as-

sume that the particle is at the point (R, 0) at time t = 0,

then its position function will be

r(t) = R cosωt i + R sinωtj

(a) Show that the velocity vector v(t) is always tangent to

the circle and that the particle has constant speed v given

by

v = Rω

(b) Show that the acceleration vector a(t) is always directed

toward the center of the circle and has constant magni-

tude a given by

a = Rω2

(c) Show that the time T required for the particle to make

one complete revolution is

T =
2π

ω
=

2πR

v

x

y

vt

v(t) a(t)

(R, 0)

Figure Ex-9

10. If a particle of mass m has uniform circular motion (see Ex-

ercise 9), then the acceleration vector a(t) is called the cen-

tripetal acceleration. According to Newton’s second law,

this acceleration must be produced by some force F(t),

called the centripetal force, that is related to a(t) by the

equation F(t) = ma(t). If this force is not present, then the

particle cannot undergo uniform circular motion.

(a) Show that the direction of the centripetal force varies

with time but that it has constant magnitude F given by

F =
mv2

R
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(b) An astronaut with a mass of m = 70 kg orbits the Earth

at an altitude of h = 3200 km with a constant speed

of v = 6.43 km/s. Find her centripetal acceleration

assuming that the radius of the Earth is 6440 km.

(c) What centripetal gravitational force in newtons does the

Earth exert on the astronaut?

11. (a) Show that the graph of the vector-valued function

r(t) = t sinπt i + tj + t cosπtk lies on the surface of

a cone, and sketch the cone.

(b) Find parametric equations for the intersection of the

surfaces

y = x2 and 2x2 + y2 + 6z2 = 24

and sketch the intersection.

12. Sketch the graph of the vector-valued function that is defined

piecewise by

r(t) =















3t i, 0 ≤ t ≤ 1
3

(2 − 3t)i + (3t − 1) j, 1
3

≤ t ≤ 2
3

3(1 − t) j, 2
3

≤ t ≤ 1

13. Suppose that the position function of a point moving in the

xy-plane is

r = x(t)i + y(t) j

This equation can be expressed in polar coordinates by mak-

ing the substitution

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t)

This yields

r = r(t) cos θ(t)i + r(t) sin θ(t) j

which can be expressed as

r = r(t)er(t)

where er(t) = cos θ(t)i + sin θ(t) j.

(a) Show that er(t) is a unit vector that has the same di-

rection as the radius vector r if r(t) > 0 and that

eθ (t) = − sin θ(t)i + cos θ(t) j is the unit vector that

results when er(t) is rotated counterclockwise through

an angle of π/2. The vector er(t) is called the radial

unit vector, and the vector eθ (t) is called the transverse

unit vector (see the accompanying figure).

(b) Show that the velocity function v = v(t) can be ex-

pressed in terms of radial and transverse components

as

v =
dr

dt
er + r

dθ

dt
eθ

(c) Show that the acceleration function a = a(t) can be

expressed in terms of radial and transverse components

as

a =

[

d2r

dt2
− r

(

dθ

dt

)2
]

er +
[

r
d2θ

dt2
+ 2

dr

dt

dθ

dt

]

eθ

x

y

Trajectory

er

eu

r

u

Figure Ex-13

14. As illustrated in the accompanying figure, the polar coordi-

nates of a rocket are tracked by radar from a point that is b

units from the launching pad. Show that the speed v of the

rocket can be expressed in terms b, θ, and dθ/dt as

v = b sec2 θ
dθ

dt

b

u

Figure Ex-14

15. Find the arc length parametrization of the line through

P(−1, 4, 3) and Q(0, 2, 5) that has reference point P and

orients the line in the direction from P to Q.

16. A player throws a ball with an initial speed of 60 ft/s at an

unknown angle α with the horizontal from a point that is

4 ft above the floor of a gymnasium. Given that the ceiling

of the gymnasium is 25 ft high, determine the maximum

height h at which the ball can hit a wall that is 60 ft away

(see the accompanying figure).

60 ft

25 ft
h

4 ft

60 ft/s

a

Figure Ex-16

17. Find all points on the graph of r(t) = t3i + 10tj + 5t2k at

which the tangent line is perpendicular to the tangent line

at t = 1.

18. Solve the vector initial-value problem

dr

dt
= r, r(0) = r0

for the unknown vector-valued function r(t).
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19. At time t = 0 a particle at the origin of an xyz-coordinate

system has a velocity vector of v0 = i + 2 j − k. The accel-

eration function of the particle is a(t) = 2t2i + j + cos 2tk.

(a) Find the position function of the particle.
(b) Find the speed of the particle at time t = 1.

20. Let v = v(t) and a = a(t) be the velocity and accel-

eration vectors for a particle moving in 2-space or 3-space.

Show that the rate of change of its speed can be expressed as

d

dt
(‖v‖) =

1

‖v‖
(v · a)


