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MULTIPLE

INTEGRALS

n this chapter we will extend the concept of a

definite integral to functions of two and three variables.

Whereas functions of one variable are usually integrated

over intervals, functions of two variables are usually in-

tegrated over regions in 2-space and functions of three

variables over regions in 3-space. Calculating such in-

tegrals will require some new techniques that will be a

central focus in this chapter. Once we have developed the

basic methods for integrating functions of two and three

variables, we will show how such integrals can be used to

calculate surface areas and volumes of solids; and we will

also show how they can be used to find masses and cen-

ters of gravity of flat plates and three-dimensional solids.

In addition to our study of integration, we will generalize

the concept of a parametic curve in 2-space to a paramet-

ric surface in 3-space. This will allow us to work with

a wider variety of surfaces than previously possible and

will provide a powerful tool for generating surfaces using

computers and other graphing utilities.
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1016 Multiple Integrals

15.1 DOUBLE INTEGRALS

The notion of a definite integral can be extended to functions of two or more variables.

In this section we will discuss the double integral, which is the extension to functions

of two variables.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VOLUME
Recall that the definite integral of a function of one variable

∫ b

a

f(x) dx = lim
max	xk →0

n
∑

k=1

f(x∗
k )	xk = lim

n→+�

n
∑

k=1

f(x∗
k )	xk (1)

arose from the problem of finding areas under curves. [In the rightmost expression in (1),

we use the “limit as n→+�” to encapsulate the process by which we increase the number

of subintervals of [a, b] in such a way that the lengths of the subintervals approach zero.]

Integrals of functions of two variables arise from the problem of finding volumes under

surfaces:

15.1.1 THE VOLUME PROBLEM. Given a function f of two variables that is continu-

ous and nonnegative on a region R in the xy-plane, find the volume of the solid enclosed

between the surface z = f(x, y) and the region R (Figure 15.1.1).
y

x

z
z = f (x, y)

R

Figure 15.1.1

Later, we will place more restrictions on the region R, but for now we will just assume that

the entire region can be enclosed within some suitably large rectangle with sides parallel to

the coordinate axes. This ensures that R does not extend indefinitely in any direction.

The procedure for finding the volume V of the solid in Figure 15.1.1 will be similar to

the limiting process used for finding areas, except that now the approximating elements will

be rectangular parallelepipeds rather than rectangles. We proceed as follows:

• Using lines parallel to the coordinate axes, divide the rectangle enclosing the region R

into subrectangles, and exclude from consideration all those subrectangles that contain

any points outside ofR. This leaves only rectangles that are subsets ofR (Figure 15.1.2).

Assume that there are n such rectangles, and denote the area of the kth such rectangle

by 	Ak .

• Choose any arbitrary point in each subrectangle, and denote the point in the kth subrect-

angle by (x∗
k , y

∗
k ). As shown in Figure 15.1.3, the product f(x∗

k , y
∗
k )	Ak is the volume

of a rectangular parallelepiped with base area 	Ak and height f(x∗
k , y

∗
k ), so the sum

n
∑

k=1

f(x∗
k , y

∗
k )	Ak

can be viewed as an approximation to the volume V of the entire solid.

y

x
(xk, yk )* *Area ∆Ak

Figure 15.1.2

y

x

z
z = f (x, y)

Height

f (xk, yk )* *

(xk, yk )* *Area ∆Ak

Figure 15.1.3
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• There are two sources of error in the approximation: first, the parallelepipeds have flat

tops, whereas the surface z = f(x, y) may be curved; second, the rectangles that form

the bases of the parallelepipeds may not completely cover the region R. However, if we

repeat the above process with more and more subdivisions in such a way that both the

lengths and the widths of the subrectangles approach zero, then it is plausible that the

errors of both types approach zero, and the exact volume of the solid will be

V = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )	Ak

This suggests the following definition.

15.1.2 DEFINITION (Volume Under a Surface). If f is a function of two variables that is

continuous and nonnegative on a region R in the xy-plane, then the volume of the solid

enclosed between the surface z = f(x, y) and the region R is defined by

V = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )	Ak (2)

Here, n→+� indicates the process of increasing the number of subrectangles of the rect-

angle enclosingR in such a way that both the lengths and the widths of the subrectangles

approach zero.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Although this definition is satisfactory for our present purposes, there are

various issues that would have to be resolved before it could be regarded as a rigorous

mathematical definition. For example, we would have to prove that the limit actually exists

and that its value does not depend on how the points (x∗
1 , y

∗
1 ), (x

∗
2 , y

∗
2 ), . . . , (x

∗
n, y

∗
n) are

chosen. It can be proved that this is true if f is continuous on the region R and this region

is not too “complicated.” The details are beyond the scope of this text.

It is assumed in Definition 15.1.2 that f is nonnegative on the regionR. If f is continuous

on R and has both positive and negative values, then the limit

lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )	Ak (3)

no longer represents the volume betweenR and the surface z = f(x, y); rather, it represents

a difference of volumes—the volume between R and the portion of the surface that is above

the xy-plane minus the volume betweenR and the portion of the surface below the xy-plane.

We call this the net signed volume between the region R and the surface z = f(x, y).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF A DOUBLE
INTEGRAL

As in Definition 15.1.2, the notation n→ +� in (3) encapsulates a process in which the

enclosing rectangle for R is repeatedly subdivided in such a way that both the lengths and

the widths of the subrectangles approach zero. Note that subdividing so that the subrectangle

lengths approach zero forces the mesh of the partition of the length of the enclosing rectangle

forR to approach zero. Similarly, subdividing so that the subrectangle widths approach zero

forces the mesh of the partition of the width of the enclosing rectangle for R to approach

zero. Thus, we have extended the notion conveyed by Formula (1) where the definite integral

of a one-variable function is expressed as a limit of Riemann sums. By extension, the sums

in (3) are also called Riemann sums, and the limit of the Riemann sums is denoted by

∫∫

R

f(x, y) dA = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k )	Ak (4)

which is called the double integral of f(x, y) over R.
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If f is continuous and nonnegative on the region R, then the volume formula in (2) can

be expressed as

V =
∫∫

R

f(x, y) dA (5)

If f has both positive and negative values onR, then a positive value for the double integral

of f over R means that there is more volume above R than below, a negative value for

the double integral means that there is more volume below than above, and a value of zero

means that the volume above is the same as the volume below.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PROPERTIES OF DOUBLE
INTEGRALS

To distinguish between double integrals of functions of two variables and definite integrals

of functions of one variable, we will refer to the latter as single integrals. Because double

integrals, like single integrals, are defined as limits, they inherit many of the properties of

limits. The following results, which we state without proof, are analogs of those in Theorem

5.5.4.
∫∫

R

cf(x, y) dA = c

∫∫

R

f(x, y) dA (c a constant) (6)

∫∫

R

[f(x, y)+ g(x, y)] dA =
∫∫

R

f(x, y) dA+
∫∫

R

g(x, y) dA (7)

∫∫

R

[f(x, y)− g(x, y)] dA =
∫∫

R

f(x, y) dA−
∫∫

R

g(x, y) dA (8)

It is evident intuitively that if f(x, y) is nonnegative on a region R, then subdividing R

into two regionsR1 andR2 has the effect of subdividing the solid betweenR and z = f(x, y)

into two solids, the sum of whose volumes is the volume of the entire solid (Figure 15.1.4).

This suggests the following result, which holds even if f has negative values:

∫∫

R

f(x, y) dA =
∫∫

R1

f(x, y) dA+
∫∫

R2

f(x, y) dA (9)

The proof of this result will be omitted.

y

x

z
z = f (x, y)

R1 R2

R

The volume of the entire solid 

is the sum of the volumes of the

solids above R1 and R2.

Figure 15.1.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING DOUBLE INTEGRALS
Except in the simplest cases, it is impractical to obtain the value of a double integral from

the limit in (4). However, we will now show how to evaluate double integrals by calculating

two successive single integrals. For the rest of this section, we will limit our discussion to

the case where R is a rectangle; in the next section we will consider double integrals over

more complicated regions.

The partial derivatives of a function f(x, y) are calculated by holding one of the variables

fixed and differentiating with respect to the other variable. Let us consider the reverse of

this process, partial integration. The symbols
∫ b

a

f(x, y) dx and

∫ d

c

f(x, y) dy

denote partial definite integrals; the first integral, called the partial definite integral with

respect to x, is evaluated by holding y fixed and integrating with respect to x, and the second

integral, called the partial definite integral with respect to y, is evaluated by holding x
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fixed and integrating with respect to y. As the following example shows, the partial definite

integral with respect to x is a function of y, and the partial definite integral with respect to

y is a function of x.

Example 1

∫ 1

0

xy2 dx = y2

∫ 1

0

x dx =
y2x2

2

]1

x=0

=
y2

2

∫ 1

0

xy2 dy = x

∫ 1

0

y2 dy =
xy3

3

]1

y=0

=
x

3
◭

A partial definite integral with respect to x is a function of y and hence can be integrated

with respect to y; similarly, a partial definite integral with respect to y can be integrated with

respect to x. This two-stage integration process is called iterated (or repeated) integration.

We introduce the following notation:

∫ d

c

∫ b

a

f(x, y) dx dy =
∫ d

c

[∫ b

a

f(x, y) dx

]

dy (10)

∫ b

a

∫ d

c

f(x, y) dy dx =
∫ b

a

[∫ d

c

f(x, y) dy

]

dx (11)

These integrals are called iterated integrals.

Example 2 Evaluate

(a)

∫ 3

0

∫ 2

1

(1 + 8xy) dy dx (b)

∫ 2

1

∫ 3

0

(1 + 8xy) dx dy

Solution (a).
∫ 3

0

∫ 2

1

(1 + 8xy) dy dx =
∫ 3

0

[∫ 2

1

(1 + 8xy) dy

]

dx

=
∫ 3

0

[

y + 4xy2
]2

y=1
dx

=
∫ 3

0

[(2 + 16x)− (1 + 4x)] dx

=
∫ 3

0

(1 + 12x) dx = (x + 6x2)
]3

0
= 57

Solution (b).
∫ 2

1

∫ 3

0

(1 + 8xy) dx dy =
∫ 2

1

[∫ 3

0

(1 + 8xy) dx

]

dy

=
∫ 2

1

[

x + 4x2y
]3

x=0
dy

=
∫ 2

1

(3 + 36y) dy = (3y + 18y2)
]2

1
= 57 ◭

The following theorem shows that it is no accident that the two iterated integrals in the

last example have the same value.
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15.1.3 THEOREM. Let R be the rectangle defined by the inequalities

a ≤ x ≤ b, c ≤ y ≤ d

If f(x, y) is continuous on this rectangle, then
∫∫

R

f(x, y) dA =
∫ d

c

∫ b

a

f(x, y) dx dy =
∫ b

a

∫ d

c

f(x, y) dy dx

This important theorem allows us to evaluate a double integral over a rectangle by

converting it to an iterated integral. This can be done in two ways, both of which produce

the value of the double integral. We will not formally prove this result; however, we will

give a geometric motivation of the result for the case where f(x, y) is nonnegative on R. In

this case the double integral can be interpreted as the volume of the solid S bounded above

by the surface z = f(x, y) and below by the region R, so it suffices to show that the two

iterated integrals also represent this volume.

For a fixed value of y, the function f(x, y) is a function of x, and hence the integral

A(y) =
∫ b

a

f(x, y) dx

represents the area under the graph of this function of x. This area, shown in yellow in

Figure 15.1.5, is the cross-sectional area at y of the solid S bounded above by z = f(x, y)

and below by the region R. Thus, by the method of slicing discussed in Section 6.2, the

volume V of the solid S is

V =
∫ d

c

A(y) dy =
∫ d

c

[∫ b

a

f(x, y) dx

]

dy =
∫ d

c

∫ b

a

f(x, y) dx dy (12)

Similarly, the integral

A(x) =
∫ d

c

f(x, y) dy

represents the area of the cross section of S at x (Figure 15.1.6), and the method of slicing

again yields

V =
∫ b

a

A(x) dx =
∫ b

a

[∫ d

c

f(x, y) dy

]

dx =
∫ b

a

∫ d

c

f(x, y) dy dx (13)

This establishes the result in Theorem 15.1.3 for the case where f(x, y) is continuous and

nonnegative on R.

y

x

z

z = f (x, y)

R
b

a

c dyA(y)

Figure 15.1.5

y

x

z

z = f (x, y)

b
x

a

dc

A(x)

R

Figure 15.1.6

Example 3 Evaluate the double integral
∫∫

R

y2x dA

over the rectangle R = {(x, y) : −3 ≤ x ≤ 2, 0 ≤ y ≤ 1}.
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Solution. In view of Theorem 15.1.3, the value of the double integral may be obtained

from either of the iterated integrals
∫ 2

−3

∫ 1

0

y2x dy dx or

∫ 1

0

∫ 2

−3

y2x dx dy (14)

Using the first of these, we obtain

∫∫

R

y2x dA =
∫ 2

−3

∫ 1

0

y2x dy dx =
∫ 2

−3

[

1

3
y3x

]1

y=0

dx

=
∫ 2

−3

1

3
x dx =

x2

6

]2

−3

= −
5

6

You can check this result by evaluating the second integral in (14). ◭

•
•
•
•
•
•
•
•

REMARK. We will often express the rectangle {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} as

[a, b] × [c, d] for simplicity.

Example 4 Use a double integral to find the volume of the solid that is bounded above

by the plane z = 4 − x − y and below by the rectangle R = [0, 1] × [0, 2] (Figure 15.1.7).

y

x

z

z = 4 – x – y

1

2

4

(1, 2)

Figure 15.1.7

Solution.

V =
∫∫

R

(4 − x − y) dA =
∫ 2

0

∫ 1

0

(4 − x − y) dx dy

=
∫ 2

0

[

4x −
x2

2
− xy

]1

x=0

dy =
∫ 2

0

(

7

2
− y

)

dy

=
[

7

2
y −

y2

2

]2

0

= 5

The volume can also be obtained by first integrating with respect to y and then with respect

to x. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Most computer algebra systems have a built-in capability for comput-

ing iterated double integrals. If you have a CAS, read the relevant documentation and use

the CAS to check Examples 3 and 4.

EXERCISE SET 15.1 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–12, evaluate the iterated integrals.

1.

∫ 1

0

∫ 2

0

(x + 3) dy dx 2.

∫ 3

1

∫ 1

−1

(2x − 4y) dy dx

3.

∫ 4

2

∫ 1

0

x2y dx dy 4.

∫ 0

−2

∫ 2

−1

(x2 + y2) dx dy

5.

∫ ln 3

0

∫ ln 2

0

ex+y dy dx 6.

∫ 2

0

∫ 1

0

y sin x dy dx

7.

∫ 0

−1

∫ 5

2

dx dy 8.

∫ 6

4

∫ 7

−3

dy dx

9.

∫ 1

0

∫ 1

0

x

(xy + 1)2
dy dx 10.

∫ π

π/2

∫ 2

1

x cos xy dy dx

11.

∫ ln 2

0

∫ 1

0

xyey
2x dy dx 12.

∫ 4

3

∫ 2

1

1

(x + y)2
dy dx

In Exercises 13–16, evaluate the double integral over the rec-

tangular region R.
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13.

∫∫

R

4xy3 dA; R = {(x, y) : −1 ≤ x ≤ 1,−2 ≤ y ≤ 2}

14.

∫∫

R

xy
√

x2 + y2 + 1
dA;

R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

15.

∫∫

R

x
√

1 − x2 dA; R = {(x, y) : 0 ≤ x ≤ 1, 2 ≤ y ≤ 3}

16.

∫∫

R

(x sin y − y sin x) dA;

R = {(x, y) : 0 ≤ x ≤ π/2, 0 ≤ y ≤ π/3}

17. (a) Let f (x, y) = x2 + y, and as shown in the accompa-

nying figure, let the rectangle R = [0, 2] × [0, 2] be

subdivided into 16 subrectangles. Take (x∗
k , y

∗
k ) to be

the center of the kth rectangle, and approximate the

double integral of f over R by the resulting Riemann

sum.

(b) Compare the result in part (a) to the exact value of the

integral.

x

y

1 2

1

2

Figure Ex-17

18. (a) Let f (x, y) = x − 2y, and as shown in Figure Ex-17,

let the rectangle R = [0, 2] × [0, 2] be subdivided into

16 subrectangles. Take (x∗
k , y

∗
k ) to be the center of the

kth rectangle, and approximate the double integral of f

over R by the resulting Riemann sum.

(b) Compare the result in part (a) to the exact value of the

integral.

In Exercises 19–22, use a double integral to find the volume.

19. The volume under the plane z = 2x + y and over the rec-

tangle R = {(x, y) : 3 ≤ x ≤ 5, 1 ≤ y ≤ 2}.
20. The volume under the surface z = 3x3 + 3x2y and over the

rectangle R = {(x, y) : 1 ≤ x ≤ 3, 0 ≤ y ≤ 2}.
21. The volume of the solid enclosed by the surface z = x2 and

the planes x = 0, x = 2, y = 3, y = 0, and z = 0.

22. The volume in the first octant bounded by the coordinate

planes, the plane y = 4, and the plane (x/3)+ (z/5) = 1.

In Exercises 23 and 24, each iterated integral represents the

volume of a solid. Make a sketch of the solid. (You do not

have to find the volume.)

23. (a)

∫ 5

0

∫ 2

1

4 dx dy (b)

∫ 3

0

∫ 4

0

√

25 − x2 − y2 dy dx

24. (a)

∫ 1

0

∫ 1

0

(2−x−y) dy dx (b)

∫ 2

−2

∫ 2

−2

(x2+y2) dx dy

25. Evaluate the integral by choosing a convenient order of

integration:
∫∫

R

x cos(xy) cos2 πx dA;R =
[

0, 1
2

]

× [0, π]

26. (a) Sketch the solid in the first octant that is enclosed by

the planes x = 0, z = 0, x = 5, z − y = 0, and

z = −2y + 6.

(b) Find the volume of the solid by breaking it into two

parts.

The average value or mean value of a continuous function

f (x, y) over a rectangle R = [a, b] × [c, d] is defined as

fave =
1

A(R)

∫∫

R

f (x, y) dA

where A(R) = (b − a)(d − c) is the area of the rectangle R

(compare to Definition 5.7.5). Use this definition in Exercises

27–30.

27. Find the average value of f(x, y) = y sin xy over the rec-

tangle [0, 1] × [0, π/2].

28. Find the average value of f(x, y) = x(x2 + y)1/2 over the

interval [0, 1] × [0, 3].

29. Suppose that the temperature in degrees Celsius at a point

(x, y) on a flat metal plate is T (x, y) = 10 − 8x2 − 2y2,

where x and y are in meters. Find the average temperature

of the rectangular portion of the plate for which 0 ≤ x ≤ 1

and 0 ≤ y ≤ 2.

30. Show that if f (x, y) is constant on the rectangle

R = [a, b] × [c, d], say f (x, y) = k, then fave = k over R.

Most computer algebra systems have commands for approx-

imating double integrals numerically. For Exercises 31 and

32, read the relevant documentation and use a CAS to find a

numerical approximation of the double integral.

C 31.

∫ 2

0

∫ 1

0

sin
√

x3 + y3 dx dy

C 32.

∫ 1

−1

∫ 1

−1

e−(x2+y2) dx dy

33. In this exercise, suppose that f(x, y) = g(x)h(y) and

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. Show that
∫∫

R

f(x, y) dA =
[∫ b

a

g(x) dx

] [∫ d

c

h(y) dy

]

34. Use the result in Exercise 33 to evaluate the integral
∫ ln 2

0

∫ 1

−1

√
ey + 1 tan x dx dy

by inspection. Explain your reasoning.
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C 35. Use a CAS to evaluate the iterated integrals
∫ 1

0

∫ 1

0

y − x

(x + y)3
dx dy and

∫ 1

0

∫ 1

0

y − x

(x + y)3
dy dx

Does this violate Theorem 15.1.3? Explain.

C 36. Use a CAS to show that the volume V under the surface

z = xy3 sin xy over the rectangle shown in the accompany-

ing figure is V = 3/π. x y

z

1p

Figure Ex-36

15.2 DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

In this section we will show how to evaluate double integrals over regions other than

rectangles.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ITERATED INTEGRALS WITH
NONCONSTANT LIMITS OF
INTEGRATION

Later in this section we will see that double integrals over nonrectangular regions can often

be evaluated as iterated integrals of the following types:

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx =
∫ b

a

[∫ g2(x)

g1(x)

f(x, y) dy

]

dx (1)

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy =
∫ d

c

[∫ h2(y)

h1(y)

f(x, y) dx

]

dy (2)

We begin with an example that illustrates how to evaluate such integrals.

Example 1 Evaluate

(a)

∫ 2

0

∫ x

x2

y2x dy dx (b)

∫ π

0

∫ cos y

0

x sin y dx dy

Solution (a).
∫ 2

0

∫ x

x2

y2x dy dx =
∫ 2

0

[∫ x

x2

y2x dy

]

dx =
∫ 2

0

[

y3x

3

]x

y=x2

dx

=
∫ 2

0

(

x4

3
−
x7

3

)

dx =
[

x5

15
−
x8

24

]2

0

=
32

15
−

256

24
= −

128

15

Solution (b).
∫ π

0

∫ cos y

0

x sin y dx dy =
∫ π

0

[∫ cos y

0

x sin y dx

]

dy =
∫ π

0

[

x2

2
sin y

]cos y

x=0

dy

=
∫ π

0

1

2
cos2 y sin y dy =

[

−
1

6
cos3 y

]π

0

=
1

3
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DOUBLE INTEGRALS OVER
NONRECTANGULAR REGIONS

Plane regions can be extremely complex, and the theory of double integrals over very general

regions is a topic for advanced courses in mathematics. We will limit our study of double

integrals to two basic types of regions, which we will call type I and type II; they are defined

as follows:
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15.2.1 DEFINITION.

(a) A type I region is bounded on the left and right by vertical lines x = a and x = b

and is bounded below and above by continuous curves y = g1(x) and y = g2(x),

where g1(x) ≤ g2(x) for a ≤ x ≤ b (Figure 15.2.1a).

(b) A type II region is bounded below and above by horizontal lines y = c and y = d

and is bounded on the left and right by continuous curves x = h1(y) and x = h2(y)

satisfying h1(y) ≤ h2(y) for c ≤ y ≤ d (Figure 15.2.1b).

The following theorem will enable us to evaluate double integrals over type I and type

II regions using iterated integrals.

15.2.2 THEOREM.

(a) If R is a type I region on which f(x, y) is continuous, then
∫∫

R

f(x, y) dA =
∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx (3)

(b) If R is a type II region on which f(x, y) is continuous, then
∫∫

R

f(x, y) dA =
∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy (4)

y = g2(x)

y = g1(x)

ba

x

y

(a)

x = h1(y)

x = h2(y)

d

c x

y

(b)

A type I region

A type II region

Figure 15.2.1

We will not prove this theorem, but for the case where f(x, y) is nonnegative on the

region R, it can be made plausible by a geometric argument that is similar to that given

for Theorem 15.1.3. Since f(x, y) is nonnegative, the double integral can be interpreted as

the volume of the solid S that is bounded above by the surface z = f(x, y) and below by

the region R, so it suffices to show that the iterated integrals also represent this volume.

Consider the iterated integral in (3), for example. For a fixed value of x, the function f(x, y)

is a function of y, and hence the integral

A(x) =
∫ g2(x)

g1(x)

f(x, y) dy

represents the area under the graph of this function of y between y = g1(x) and y = g2(x).

This area, shown in yellow in Figure 15.2.2, is the cross-sectional area at x of the solid S,

and hence by the method of slicing, the volume V of the solid S is

V =
∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

which shows that in (3) the iterated integral is equal to the double integral. Similarly for (4).

Figure 15.2.2

g2(x)

y

x

z

z = f (x, y)

b
x

a

A(x)

Rg1(x)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SETTING UP LIMITS OF
INTEGRATION FOR EVALUATING
DOUBLE INTEGRALS

To apply Theorem 15.2.2, it is helpful to start with a two-dimensional sketch of the region

R. [It is not necessary to graph f(x, y).] For a type I region, the limits of integration in

Formula (3) can be obtained as follows:
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Step 1. Since x is held fixed for the first integration, we draw a vertical line

through the regionR at an arbitrary fixed value x (Figure 15.2.3). This

line crosses the boundary ofR twice. The lower point of intersection is

on the curve y = g1(x) and the higher point is on the curve y = g2(x).

These two intersections determine the lower and upper y-limits of

integration in Formula (3).

Step 2. Imagine moving the line drawn in Step 1 first to the left and then

to the right (Figure 15.2.3). The leftmost position where the line

intersects the region R is x = a and the rightmost position where the

line intersects the region R is x = b. This yields the limits for the

x-integration in Formula (3).

y = g2(x)

y = g1(x)

x ba

x x

y y

Figure 15.2.3

Example 2 Evaluate
∫∫

R

xy dA

over the region R enclosed between y = 1
2
x, y =

√
x, x = 2, and x = 4.

Solution. We view R as a type I region. The region R and a vertical line corresponding

to a fixed x are shown in Figure 15.2.4. This line meets the region R at the lower boundary

y = 1
2
x and the upper boundary y =

√
x. These are the y-limits of integration. Moving

this line first left and then right yields the x-limits of integration, x = 2 and x = 4. Thus,

∫∫

R

xy dA =
∫ 4

2

∫

√
x

x/2

xy dy dx =
∫ 4

2

[

xy2

2

]

√
x

y=x/2

dx =
∫ 4

2

(

x2

2
−
x3

8

)

dx

=
[

x3

6
−
x4

32

]4

2

=
(

64

6
−

256

32

)

−
(

8

6
−

16

32

)

=
11

6
◭

2 x 4

x

y

(4, 2)

x = 2 x = 4

y = √x

y =    x1

2

Figure 15.2.4

If R is a type II region, then the limits of integration in Formula (4) can be obtained as

follows:

x =  h2(y)x =  h1(y)

c

d

x

y

y

x

y

Figure 15.2.5

Step 1. Since y is held fixed for the first integration, we draw a horizontal

line through the region R at a fixed value y (Figure 15.2.5). This line

crosses the boundary of R twice. The leftmost point of intersection

is on the curve x = h1(y) and the rightmost point is on the curve

x = h2(y). These intersections determine the x-limits of integration

in (4).

Step 2. Imagine moving the line drawn in Step 1 first down and then up

(Figure 15.2.5). The lowest position where the line intersects the

region R is y = c, and the highest position where the line intersects

the region R is y = d . This yields the y-limits of integration in (4).
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Example 3 Evaluate
∫∫

R

(2x − y2) dA

over the triangular region R enclosed between the lines y = −x+1, y = x+1, and y = 3.

Solution. We viewR as a type II region. The regionR and a horizontal line corresponding

to a fixed y are shown in Figure 15.2.6. This line meets the regionR at its left-hand boundary

x = 1 − y and its right-hand boundary x = y − 1. These are the x-limits of integration.

Moving this line first down and then up yields the y-limits, y = 1 and y = 3. Thus,
∫∫

R

(2x − y2) dA =
∫ 3

1

∫ y−1

1−y
(2x − y2) dx dy =

∫ 3

1

[

x2 − y2x
]y−1

x=1−y dy

=
∫ 3

1

[(1 − 2y + 2y2 − y3)− (1 − 2y + y3)] dy

=
∫ 3

1

(2y2 − 2y3) dy =
[

2y3

3
−
y4

2

]3

1

= −
68

3
◭

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. To integrate over a type II region, the left- and right-hand boundaries must be

expressed in the form x = h1(y) and x = h2(y). This is why we rewrote the boundary

equations y = −x + 1 and y = x + 1 as x = 1 − y and x = y − 1 in the last example.

In Example 3 we could have treatedR as a type I region, but with an added complication:

Viewed as a type I region, the upper boundary of R is the line y = 3 (Figure 15.2.7) and

the lower boundary consists of two parts, the line y = −x + 1 to the left of the origin and

the line y = x + 1 to the right of the origin. To carry out the integration it is necessary to

decompose the region R into two parts, R1 and R2, as shown in Figure 15.2.7, and write
∫∫

R

(2x − y2) dA =
∫∫

R1

(2x − y2) dA+
∫∫

R2

(2x − y2) dA

=
∫ 0

−2

∫ 3

−x+1

(2x − y2) dy dx +
∫ 2

0

∫ 3

x+1

(2x − y2) dy dx

This will yield the same result that was obtained in Example 3.

x

y

(–2, 3) (2, 3)

1

3

y
y = –x + 1

(x = 1 – y)

y = x + 1

(x = y – 1)

y = 3

Figure 15.2.6

x

y

y = –x + 1 y = x + 1

y = 3y = 3

R1 R2

-2 20

Figure 15.2.7
2

1

4

z = 4 – 4x – 2y

R

2

 y = 2 – 2x

R

0 1

y

x

x

z

y

Figure 15.2.8

Example 4 Use a double integral to find the volume of the tetrahedron bounded by the

coordinate planes and the plane z = 4 − 4x − 2y.

Solution. The tetrahedron in question is bounded above by the plane

z = 4 − 4x − 2y (5)

and below by the triangular region R shown in Figure 15.2.8. Thus, the volume is given by

V =
∫∫

R

(4 − 4x − 2y) dA
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The region R is bounded by the x-axis, the y-axis, and the line y = 2 − 2x [set z = 0 in

(5)], so that treating R as a type I region yields

V =
∫∫

R

(4 − 4x − 2y) dA =
∫ 1

0

∫ 2−2x

0

(4 − 4x − 2y) dy dx

=
∫ 1

0

[

4y − 4xy − y2
]2−2x

y=0
dx =

∫ 1

0

(4 − 8x + 4x2) dx =
4

3
◭

Example 5 Find the volume of the solid bounded by the cylinder x2 + y2 = 4 and the

planes y + z = 4 and z = 0.

y

x

z

z = 4 – y

R

R

x2 + y2 = 4

2-2

y = √4 – x2 

y = –√4 – x2 

x

y

Figure 15.2.9

Solution. The solid shown in Figure 15.2.9 is bounded above by the plane z = 4 − y and

below by the region R within the circle x2 + y2 = 4. The volume is given by

V =
∫∫

R

(4 − y) dA

Treating R as a type I region we obtain

V =
∫ 2

−2

∫

√
4−x2

−
√

4−x2

(4 − y) dy dx =
∫ 2

−2

[

4y −
1

2
y2

]

√
4−x2

y=−
√

4−x2

dx

=
∫ 2

−2

8
√

4 − x2 dx = 8(2π) = 16π See Formula (3) of Section 8.4. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

REVERSING THE ORDER OF
INTEGRATION

Sometimes the evaluation of an iterated integral can be simplified by reversing the order of

integration. The next example illustrates how this is done.

Example 6 Since there is no elementary antiderivative of ex
2

, the integral

∫ 2

0

∫ 1

y/2

ex
2

dx dy

cannot be evaluated by performing the x-integration first. Evaluate this integral by express-

ing it as an equivalent iterated integral with the order of integration reversed.

1

2

y

x0

(1, 2)

x = 1
x = 

y

2
(or y = 2x)

R

x

y

Figure 15.2.10

Solution. For the inside integration, y is fixed and x varies from the line x = y/2 to the

line x = 1 (Figure 15.2.10). For the outside integration, y varies from 0 to 2, so the given

iterated integral is equal to a double integral over the triangular region R in Figure 15.2.10.

To reverse the order of integration, we treat R as a type I region, which enables us to

write the given integral as

∫ 2

0

∫ 1

y/2

ex
2

dx dy =
∫∫

R

ex
2

dA =
∫ 1

0

∫ 2x

0

ex
2

dy dx =
∫ 1

0

[

ex
2

y
]2x

y=0
dx

=
∫ 1

0

2xex
2

dx = ex
2

]1

0

= e − 1 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

AREA CALCULATED AS A DOUBLE
INTEGRAL

Although double integrals arose in the context of calculating volumes, they can also be used

to calculate areas. To see why this is so, recall that a right cylinder is a solid that is generated

when a plane region is translated along a line that is perpendicular to the region. In Formula

(2) of Section 6.2 we stated that the volume V of a right cylinder with cross-sectional area

A and height h is

V = A · h (6)

Now suppose that we are interested in finding the area A of a region R in the xy-plane. If

we translate the region R upward 1 unit, then the resulting solid will be a right cylinder that
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has cross-sectional area A, base R, and the plane z = 1 as its top (Figure 15.2.11). Thus, it

follows from (6) that
∫∫

R

1 dA = (area of R) · 1

which we can rewrite as

area of R =
∫∫

R

1 dA =
∫∫

R

dA (7)

y

x

z

z = 1 

Cylinder with base R and height 1

R

Figure 15.2.11
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Formula (7) is sometimes confusing because it equates an area and a volume;

the formula is intended to equate only the numerical values of the area and volume and not

the units, which must, of course, be different.

Example 7 Use a double integral to find the area of the region R enclosed between the

parabola y = 1
2
x2 and the line y = 2x.

Solution. The region R may be treated equally well as type I (Figure 15.2.12a) or type II

(Figure 15.2.12b). Treating R as type I yields

area of R =
∫∫

R

dA =
∫ 4

0

∫ 2x

x2/2

dy dx =
∫ 4

0

[

y
]2x

y=x2/2
dx

=
∫ 4

0

(

2x −
1

2
x2

)

dx =
[

x2 −
x3

6

]4

0

=
16

3

Treating R as type II yields

area of R =
∫∫

R

dA =
∫ 8

0

∫

√
2y

y/2

dx dy =
∫ 8

0

[

x
]

√
2y

x=y/2
dy

=
∫ 8

0

(

√

2y −
1

2
y

)

dy =

[

2
√

2

3
y3/2 −

y2

4

]8

0

=
16

3
◭

x0 4

8

x

y

y =    x21

2

y = 2x

(4, 8)

(a)

0 4

8

y

x

y

x =    y1

2

(4, 8)

(b)

x = √2y

Figure 15.2.12
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EXERCISE SET 15.2 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–10, evaluate the iterated integral.

1.

∫ 1

0

∫ x

x2

xy2 dy dx 2.

∫ 3/2

1

∫ 3−y

y

y dx dy

3.

∫ 3

0

∫

√
9−y2

0

y dx dy 4.

∫ 1

1/4

∫ x

x2

√

x

y
dy dx

5.

∫

√
2π

√
π

∫ x3

0

sin
y

x
dy dx 6.

∫ 1

−1

∫ x2

−x2

(x2 − y) dy dx

7.

∫ π

π/2

∫ x2

0

1

x
cos

y

x
dy dx 8.

∫ 1

0

∫ x

0

ex
2

dy dx

9.

∫ 1

0

∫ x

0

y
√

x2 − y2 dy dx 10.

∫ 2

1

∫ y2

0

ex
/y2

dx dy

11. In each part, find

∫∫

R

xy dA over the shaded region R.

x

y

x

y(a) (b)

(1, 3)

(2, 1) (4, 1)

(5, 3)

y = x2

2

R

R

12. In each part, find

∫∫

R

(x+ y) dA over the shaded region R.

x

y

x

y(a) (b)

–1

–1

1

1

y = x2

y = √x

R

R

In Exercises 13–16, evaluate the double integral in two ways

using iterated integrals: (a) viewing R as a type I region, and

(b) viewing R as a type II region.

13.

∫∫

R

x2 dA; R is the region bounded by y = 16/x, y = x,

and x = 8.

14.

∫∫

R

xy2 dA; R is the region enclosed by y = 1, y = 2,

x = 0, and y = x.

15.

∫∫

R

(3x − 2y) dA; R is the region enclosed by the circle

x2 + y2 = 1.

16.

∫∫

R

y dA; R is the region in the first quadrant enclosed be-

tween the circle x2 + y2 = 25 and the line x + y = 5.

In Exercises 17–22, evaluate the double integral.

17.

∫∫

R

x(1 + y2)−1/2 dA; R is the region in the first quadrant

enclosed by y = x2, y = 4, and x = 0.

18.

∫∫

R

x cos y dA; R is the triangular region bounded by the

lines y = x, y = 0, and x = π.

19.

∫∫

R

xy dA;R is the region enclosed by y =
√
x, y = 6−x,

and y = 0.

20.

∫∫

R

x dA; R is the region enclosed by y = sin−1 x,

x = 1/
√

2, and y = 0.

21.

∫∫

R

(x−1) dA;R is the region in the first quadrant enclosed

between y = x and y = x3.

22.

∫∫

R

x2 dA; R is the region in the first quadrant enclosed by

xy = 1, y = x, and y = 2x.

23. (a) By hand or with the help of a graphing utility, make

a sketch of the region R enclosed between the curves

y = x + 2 and y = ex .

(b) Estimate the intersections of the curves in part (a).

(c) Viewing R as a type I region, estimate

∫∫

R

x dA.

(d) Viewing R as a type II region, estimate

∫∫

R

x dA.

24. (a) By hand or with the help of a graphing utility, make

a sketch of the region R enclosed between the curves

y = 4x3 − x4 and y = 3 − 4x + 4x2.

(b) Find the intersections of the curves in part (a).

(c) Find

∫∫

R

x dA.

In Exercises 25–28, use double integration to find the area of

the plane region enclosed by the given curves.

25. y = sin x and y = cos x, for 0 ≤ x ≤ π/4.
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26. y2 = −x and 3y − x = 4.

27. y2 = 9 − x and y2 = 9 − 9x.

28. y = cosh x, y = sinh x, x = 0, and x = 1.

In Exercises 29 and 30, use double integration to find the

volume of the solid.

29.

yx

z

4

3

6

3x + 2y + 4z = 12

30.

y
x

z

2

2

2

x2 + y2 = 4

x2 + z2 = 4

In Exercises 31–38, use double integration to find the volume

of each solid.

31. The solid bounded by the cylinder x2 + y2 = 9 and the

planes z = 0 and z = 3 − x.

32. The solid in the first octant bounded above by the paraboloid

z = x2 + 3y2, below by the plane z = 0, and laterally by

y = x2 and y = x.

33. The solid bounded above by the paraboloid z = 9x2 + y2,

below by the plane z = 0, and laterally by the planes x = 0,

y = 0, x = 3, and y = 2.

34. The solid enclosed by y2 = x, z = 0, and x + z = 1.

35. The wedge cut from the cylinder 4x2 +y2 = 9 by the planes

z = 0 and z = y + 3.

36. The solid in the first octant bounded above by z = 9 − x2,

below by z = 0, and laterally by y2 = 3x.

37. The solid that is common to the cylinders x2 +y2 = 25 and

x2 + z2 = 25.

38. The solid bounded above by the paraboloid z = x2 + y2,

bounded laterally by the circular cylinder x2 +(y−1)2 = 1,

and bounded below by the xy-plane.

In Exercises 39 and 40, use a double integral and a CAS to

find the volume of the solid.

C 39. The solid bounded above by the paraboloid z = 1−x2 −y2

and below by the xy-plane.

C 40. The solid in the first octant that is bounded by the paraboloid

z = x2 + y2, the cylinder x2 + y2 = 4 and the coordinate

planes.

In Exercises 41–46, express the integral as an equivalent in-

tegral with the order of integration reversed.

41.

∫ 2

0

∫

√
x

0

f(x, y) dy dx 42.

∫ 4

0

∫ 8

2y

f(x, y) dx dy

43.

∫ 2

0

∫ ey

1

f(x, y) dx dy 44.

∫ e

1

∫ ln x

0

f(x, y) dy dx

45.

∫ 1

0

∫ π/2

sin−1 y

f(x, y) dx dy 46.

∫ 1

0

∫

√
y

y2

f(x, y) dx dy

In Exercises 47–50, evaluate the integral by first reversing

the order of integration.

47.

∫ 1

0

∫ 4

4x

e−y2

dy dx 48.

∫ 2

0

∫ 1

y/2

cos(x2) dx dy

49.

∫ 4

0

∫ 2

√
y

ex
3

dx dy 50.

∫ 3

1

∫ ln x

0

x dy dx

51. Evaluate

∫∫

R

sin(y3) dA, where R is the region bounded by

y =
√
x, y = 2, and x = 0. [Hint: Choose the order of

integration carefully.]

52. Evaluate

∫∫

R

x dA, where R is the region bounded by

x = ln y, x = 0, and y = e.

C 53. Try to evaluate the integral with a CAS using the stated order

of integration, and then by reversing the order of integration.

(a)

∫ 4

0

∫ 2

√
x

sinπy3 dy dx

(b)

∫ 1

0

∫ π/2

sin−1 y

sec2(cos x) dx dy

54. Use the appropriate Wallis formula (see Exercise Set 8.3)

to find the volume of the solid enclosed between the circu-

lar paraboloid z = x2 + y2, the right circular cylinder

x2+ y2 = 4, and the xy-plane (see the accompanying figure

for cut view).

55. Evaluate

∫∫

R

xy2 dA over the regionR shown in the accom-

panying figure.

x y

z

Figure Ex-54

x

y

R

–2 –1 1

1

2

2

Figure Ex-55

56. Give a geometric argument to show that
∫ 1

0

∫

√
1−y2

0

√

1 − x2 − y2 dx dy =
π

6
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The average value or mean value of a continuous function

f(x, y) over a region R in the xy-plane is defined as

fave =
1

A(R)

∫∫

R

f (x, y) dA

where A(R) is the area of the region R (compare to the defi-

nition preceding Exercise 27 of Section 15.1). Use this defi-

nition in Exercises 57 and 58.

57. Find the average value of 1/(1 + x2) over the triangular

region with vertices (0, 0), (1, 1), and (0, 1).

58. Find the average value of f (x, y) = x2 −xy over the region

enclosed by y = x and y = 3x − x2.

59. Suppose that the temperature in degrees Celsius at a point

(x, y) on a flat metal plate is T (x, y) = 5xy + x2, where

x and y are in meters. Find the average temperature of the

diamond-shaped portion of the plate for which |2x+y| ≤ 4

and |2x − y| ≤ 4.

60. A circular lens of radius 2 inches has thickness 1 − (r2/4)

inches at all points r inches from the center of the lens. Find

the average thickness of the lens.

C 61. Use a CAS to approximate the intersections of the curves

y = sin x and y = x/2, and then approximate the volume

of the solid in the first octant that is below the surface

z =
√

1 + x + y and above the region in the xy-plane that

is enclosed by the curves.

15.3 DOUBLE INTEGRALS IN POLAR COORDINATES

In this section we will study double integrals in which the integrand and the region of

integration are expressed in polar coordinates. Such integrals are important for two

reasons: first, they arise naturally in many applications, and second, many double

integrals in rectangular coordinates can be evaluated more easily if they are converted

to polar coordinates.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SIMPLE POLAR REGIONS
Some double integrals are easier to evaluate if the region of integration is expressed in polar

coordinates. This is usually true if the region is bounded by a cardioid, a rose curve, a spiral,

or, more generally, by any curve whose equation is simpler in polar coordinates than in

rectangular coordinates. Moreover, double integrals whose integrands involve x2 + y2 also

tend to be easier to evaluate in polar coordinates because this sum simplifies to r2 when the

conversion formulas x = r cos θ and y = r sin θ are applied.

Figure 15.3.1a shows a region R in a polar coordinate system that is enclosed between

two rays, θ = α and θ = β, and two polar curves, r = r1(θ) and r = r2(θ). If, as shown in

that figure, the functions r1(θ) and r2(θ) are continuous and their graphs do not cross, then

the region R is called a simple polar region. If r1(θ) is identically zero, then the boundary

r = r1(θ) reduces to a point (the origin), and the region has the general shape shown in

Figure 15.3.1b. If, in addition, β = α + 2π, then the rays coincide, and the region has the

general shape shown in Figure 15.3.1c. The following definition expresses these geometric

ideas algebraically.

15.3.1 DEFINITION. A simple polar region in a polar coordinate system is a region

that is enclosed between two rays, θ = α and θ = β, and two continuous polar curves,

r = r1(θ) and r = r2(θ), where the equations of the rays and the polar curves satisfy

the following conditions:

(i) α ≤ β (ii) β − α ≤ 2π (iii) 0 ≤ r1(θ) ≤ r2(θ)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Conditions (i) and (ii) together imply that the ray θ = β can be obtained by

rotating the ray θ = α counterclockwise through an angle that is at most 2π radians. This

is consistent with Figure 15.3.1. Condition (iii) implies that the boundary curves r = r1(θ)

and r = r2(θ) can touch but cannot actually cross over one another (why?). Thus, in keeping

with Figure 15.3.1, it is appropriate to describe r = r1(θ) as the inner boundary of the

region and r = r2(θ) as the outer boundary.
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b a

r = r2(u)

r = r1(u)

u = b

u = a

R

0

r = r2(u)

u = b

u = a
R

0

r = r2(u)

b = a + 2p

R

0

(a) (b) (c)

Simple polar regions

Figure 15.3.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DOUBLE INTEGRALS IN POLAR
COORDINATES

Next, we will consider the polar version of Problem 15.1.1.

15.3.2 THE VOLUME PROBLEM IN POLAR COORDINATES. Given a function f(r, θ)

that is continuous and nonnegative on a simple polar region R, find the volume of the

solid that is enclosed between the regionR and the surface whose equation in cylindrical

coordinates is z = f(r, θ) (Figure 15.3.2).

y

x

z z = f (r, u)

R

u =  a

u = b

r = r2(u)

r = r1(u)

Figure 15.3.2

To motivate a formula for the volume V of the solid in Figure 15.3.2, we will use a limit

process similar to that used to obtain Formula (2) of Section 15.1, except that here we will

use circular arcs and rays to subdivide the region R into blocks, called polar rectangles. As

shown in Figure 15.3.3, we will exclude from consideration all polar rectangles that contain

any points outside of R, leaving only polar rectangles that are subsets of R. Assume that

there are n such polar rectangles, and denote the area of the kth polar rectangle by 	Ak .

Let (r∗
k , θ

∗
k ) be any point in this polar rectangle. As shown in Figure 15.3.4, the product

f(r∗
k , θ

∗
k )	Ak is the volume of a solid with base area 	Ak and height f(r∗

k , θ
∗
k ), so the sum

n
∑

k=1

f(r∗
k , θ

∗
k )	Ak

can be viewed as an approximation to the volume V of the entire solid.

y

x

Area ∆Ak

u = a

u = b

r = r2(u)

r = r1(u)

(rk, uk )* *

Figure 15.3.3

y

x

z
z = f (r, u)

Area ∆Ak

(rk, uk )* *

f (rk, uk )* *

R

u = a

u =  b

Figure 15.3.4

If we now increase the number of subdivisions in such a way that the dimensions of the

polar rectangles approach zero, then it seems plausible that the errors in the approximations

approach zero, and the exact volume of the solid is

V = lim
n→+�

n
∑

k=1

f(r∗
k , θ

∗
k )	Ak (1)
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If f(r, θ) is continuous on R and has both positive and negative values, then the limit

lim
n→+�

n
∑

k=1

f(r∗
k , θ

∗
k )	Ak (2)

represents the net signed volume between the region R and the surface z = f(r, θ) (as with

double integrals in rectangular coordinates). The sums in (2) are called polar Riemann

sums, and the limit of the polar Riemann sums is denoted by

∫∫

R

f(r, θ) dA = lim
n→+�

n
∑

k=1

f(r∗
k , θ

∗
k )	Ak (3)

which is called the polar double integral of f(r, θ) over R. If f(r, θ) is continuous and

nonnegative on R, then the volume formula (1) can be expressed as

V =
∫∫

R

f(r, θ) dA (4)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Polar double integrals are also called double integrals in polar coordinates

to distinguish them from double integrals over regions in the xy-plane, which are called

double integrals in rectangular coordinates. Because double integrals in polar coordinates

are defined as limits, they have the usual integral properties, such as those stated in Formulas

(6), (7), and (8) of Section 15.1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING POLAR DOUBLE
INTEGRALS

In Sections 15.1 and 15.2 we evaluated double integrals in rectangular coordinates by

expressing them as iterated integrals. Polar double integrals are evaluated the same way. To

motivate the formula that expresses a double polar integral as an iterated integral, we will

assume that f(r, θ) is nonnegative so that we can interpret (3) as a volume. However, the

results that we will obtain will also be applicable if f has negative values. To begin, let us

choose the arbitrary point (r∗
k , θ

∗
k ) in (3) to be at the “center” of the kth polar rectangle as

shown in Figure 15.3.5. Suppose also that this polar rectangle has a central angle 	θk and

a “radial thickness” 	rk . Thus, the inner radius of this polar rectangle is r∗
k − 1

2
	rk and the

outer radius is r∗
k + 1

2
	rk . Treating the area 	Ak of this polar rectangle as the difference in

area of two sectors, we obtain

	Ak = 1
2

(

r∗
k + 1

2
	rk

)2
	θk − 1

2

(

r∗
k − 1

2
	rk

)2
	θk

which simplifies to

	Ak = r∗
k	rk	θk (5)

Thus, from (3) and (4)

V =
∫∫

R

f(r, θ) dA = lim
n→+�

n
∑

k=1

f(r∗
k , θ

∗
k )r

∗
k	rk	θk

which suggests that the volume V can be expressed as the iterated integral

V =
∫∫

R

f(r, θ) dA =
∫ β

α

∫ r2(θ)

r1(θ)

f(r, θ)r dr dθ (6)

in which the limits of integration are chosen to cover the region R; that is, with θ fixed

between α and β, the value of r varies from r1(θ) to r2(θ) (Figure 15.3.6).

(r
k
, u

k
)* *

∆r
k

∆u
k

∆r
k

1

2

∆r
k

1

2

r
k
*

Figure 15.3.5

u

r = r2(u)

r = r1(u)

u = b

u = a

0

Figure 15.3.6

Although we assumed f(r, θ) to be nonnegative in deriving Formula (6), it can be proved

that the relationship between the polar double integral and the iterated integral in this formula
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also holds if f has negative values. Accepting this to be so, we obtain the following theorem,

which we state without formal proof.

15.3.3 THEOREM. If R is a simple polar region whose boundaries are the rays θ = α

and θ = β and the curves r = r1(θ) and r = r2(θ) shown in Figure 15.3.6, and if

f(r, θ) is continuous on R, then

∫∫

R

f(r, θ) dA =
∫ β

α

∫ r2(θ)

r1(θ)

f(r, θ)r dr dθ (7)

To apply this theorem, you will need to be able to find the rays and the curves that form

the boundary of the region R, since these determine the limits of integration in the iterated

integral. This can be done as follows:

Step 1. Since θ is held fixed for the first integration, draw a radial line from

the origin through the region R at a fixed angle θ (Figure 15.3.7a).

This line crosses the boundary of R at most twice. The innermost

point of intersection is on the inner boundary curve r = r1(θ) and

the outermost point is on the outer boundary curve r = r2(θ). These

intersections determine the r-limits of integration in (7).

Step 2. Imagine rotating a ray along the polar x-axis one revolution counter-

clockwise about the origin. The smallest angle at which this ray

intersects the region R is θ = α and the largest angle is θ = β

(Figure 15.3.7b). This determines the θ -limits of integration.

Figure 15.3.7

u

r = r2(u)

r = r1(u)

u = b

u = a

0

(a)

u

u = b

u = a

0

(b)

Example 1 Evaluate
∫∫

R

sin θ dA

where R is the region in the first quadrant that is outside the circle r = 2 and inside the

cardioid r = 2(1 + cos θ).

u = 0

u = 6

r = 2

r = 2(1 + cos u)

Figure 15.3.8

Solution. The region R is sketched in Figure 15.3.8. Following the two steps outlined

above we obtain
∫∫

R

sin θ dA =
∫ π/2

0

∫ 2(1+cos θ)

2

(sin θ)r dr dθ

=
∫ π/2

0

1

2
r2 sin θ

]2(1+cos θ)

r=2

dθ
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= 2

∫ π/2

0

[(1 + cos θ)2 sin θ − sin θ ] dθ

= 2

[

−
1

3
(1 + cos θ)3 + cos θ

]π/2

0

= 2

[

−
1

3
−

(

−
5

3

)]

=
8

3
◭

Example 2 The sphere of radius a centered at the origin is expressed in rectangular

coordinates as x2 + y2 + z2 = a2, and hence its equation in cylindrical coordinates is

r2 +z2 = a2.Use this equation and a polar double integral to find the volume of the sphere.

Solution. In cylindrical coordinates the upper hemisphere is given by the equation

z =
√

a2 − r2

so the volume enclosed by the entire sphere is

V = 2

∫∫

R

√

a2 − r2 dA

where R is the circular region shown in Figure 15.3.9. Thus,

V = 2

∫∫

R

√

a2 − r2 dA =
∫ 2π

0

∫ a

0

√

a2 − r2(2r) dr dθ

=
∫ 2π

0

[

−
2

3
(a2 − r2)3/2

]a

r=0

dθ =
∫ 2π

0

2

3
a3 dθ

=
[

2

3
a3θ

]2π

0

=
4

3
πa3 ◭

y

x

z

R

R

x

y

a

a

a

a

r = a

z = √a2 – r2 

Figure 15.3.9

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FINDING AREAS USING POLAR
DOUBLE INTEGRALS

Recall from Formula (7) of Section 15.2 that the area of a region R in the xy-plane can be

expressed as

area of R =
∫∫

R

1 dA =
∫∫

R

dA (8)

The argument used to derive this result can also be used to show that the formula applies to

polar double integrals over regions in polar coordinates.

Example 3 Use a polar double integral to find the area enclosed by the three-petaled

rose r = sin 3θ .

Solution. The rose is sketched in Figure 15.3.10. We will use Formula (8) to calculate

the area of the petal R in the first quadrant and multiply by three.

A = 3

∫∫

R

dA = 3

∫ π/3

0

∫ sin 3θ

0

r dr dθ

=
3

2

∫ π/3

0

sin2 3θ dθ =
3

4

∫ π/3

0

(1 − cos 6θ) dθ

=
3

4

[

θ −
sin 6θ

6

]π/3

0

=
1

4
π ◭

r = sin 3u

u = 0

u = 4

R

Figure 15.3.10
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONVERTING DOUBLE INTEGRALS
FROM RECTANGULAR TO POLAR
COORDINATES

Sometimes a double integral that is difficult to evaluate in rectangular coordinates can

be evaluated more easily in polar coordinates by making the substitution x = r cos θ,

y = r sin θ and expressing the region of integration in polar form; that is, we rewrite the

double integral in rectangular coordinates as
∫∫

R

f(x, y) dA =
∫∫

R

f(r cos θ, r sin θ) dA =
∫∫

appropriate
limits

f(r cos θ, r sin θ)r dr dθ (9)

Example 4 Use polar coordinates to evaluate

∫ 1

−1

∫

√
1−x2

0

(x2 + y2)3/2 dy dx.

Solution. In this problem we are starting with an iterated integral in rectangular coordi-

nates rather than a double integral, so before we can make the conversion to polar coordinates

we will have to identify the region of integration. To do this, we observe that for fixed x the

y-integration runs from y = 0 to y =
√

1 − x2, which tells us that the lower boundary of

the region is the x-axis and the upper boundary is a semicircle of radius 1 centered at the

origin. From the x-integration we see that x varies from −1 to 1, so we conclude that the

region of integration is as shown in Figure 15.3.11. In polar coordinates, this is the region

swept out as r varies between 0 and 1 and θ varies between 0 and π. Thus,

∫ 1

−1

∫

√
1−x2

0

(x2 + y2)3/2 dy dx =
∫∫

R

(x2 + y2)3/2 dA

=
∫ π

0

∫ 1

0

(r3)r dr dθ =
∫ π

0

1

5
dθ =

π

5
◭

1x–1

y = √1 – x2 

x

y

Figure 15.3.11

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The conversion to polar coordinates worked so nicely in this example because

the substitution x = r cos θ, y = r sin θ collapsed the sum x2 + y2 into the single term r2,

thereby simplifying the integrand. Whenever you see an expression involving x2 + y2 in

the integrand, you should consider the possibility of converting to polar coordinates.

EXERCISE SET 15.3 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–6, evaluate the iterated integral.

1.

∫ π/2

0

∫ sin θ

0

r cos θ dr dθ 2.

∫ π

0

∫ 1+cos θ

0

r dr dθ

3.

∫ π/2

0

∫ a sin θ

0

r2 dr dθ 4.

∫ π/6

0

∫ cos 3θ

0

r dr dθ

5.

∫ π

0

∫ 1−sin θ

0

r2 cos θ dr dθ 6.

∫ π/2

0

∫ cos θ

0

r3 dr dθ

In Exercises 7–12, use a double integral in polar coordinates

to find the area of the region described.

7. The region enclosed by the cardioid r = 1 − cos θ .

8. The region enclosed by the rose r = sin 2θ .

9. The region in the first quadrant bounded by r = 1 and

r = sin 2θ , with π/4 ≤ θ ≤ π/2.

10. The region inside the circle x2 + y2 = 4 and to the right of

the line x = 1.

11. The region inside the circle r = 4 sin θ and outside the circle

r = 2.

12. The region inside the circle r = 1 and outside the cardioid

r = 1 + cos θ .

In Exercises 13–18, use a double integral in polar coordinates

to find the volume of the solid that is described.

13. z

x
y

Inside of x2 + y2 + z2 = 9

Outside of x2 + y2 = 1

14. z

x
y

Below z = √x2 + y2

Inside of x2 + y2 = 2y

Above z = 0
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15. z

x
y

Below z = 1 – x2 – y2

Inside of x2 + y2 – x = 0

Above z = 0

16. z

x
y

Below z = (x2 + y2)–1/2

Outside of x2 + y2 = 1

Inside of x2 + y2 = 9

Above z = 0

17. The solid in the first octant bounded above by the surface

z = r sin θ , below by the xy-plane, and laterally by the plane

x = 0 and the surface r = 3 sin θ .

18. The solid inside of the surface r2 + z2 = 4 and outside of

the surface r = 2 cos θ .

In Exercises 19–22, use polar coordinates to evaluate the dou-

ble integral.

19.

∫∫

R

e−(x2+y2) dA, whereR is the region enclosed by the cir-

cle x2 + y2 = 1.

20.

∫∫

R

√

9 − x2 − y2 dA, where R is the region in the first

quadrant within the circle x2 + y2 = 9.

21.

∫∫

R

1

1 + x2 + y2
dA, whereR is the sector in the first quad-

rant bounded by y = 0, y = x, and x2 + y2 = 4.

22.

∫∫

R

2y dA, where R is the region in the first quadrant

bounded above by the circle (x − 1)2 + y2 = 1 and be-

low by the line y = x.

In Exercises 23–30, evaluate the iterated integral by convert-

ing to polar coordinates.

23.

∫ 1

0

∫

√
1−x2

0

(x2 + y2) dy dx

24.

∫ 2

−2

∫

√
4−y2

−
√

4−y2

e−(x2+y2) dx dy

25.

∫ 2

0

∫

√
2x−x2

0

√

x2 + y2 dy dx

26.

∫ 1

0

∫

√
1−y2

0

cos(x2 + y2) dx dy

27.

∫ a

0

∫

√
a2−x2

0

dy dx

(1 + x2 + y2)3/2
(a > 0)

28.

∫ 1

0

∫

√
y

y

√

x2 + y2 dx dy

29.

∫

√
2

0

∫

√
4−y2

y

1
√

1 + x2 + y2
dx dy

30.

∫ 4

0

∫

√
25−x2

3

dy dx

31. Use a double integral in polar coordinates to find the volume

of a cylinder of radius a and height h.

32. (a) Use a double integral in polar coordinates to find the

volume of the oblate spheroid

x2

a2
+
y2

a2
+
z2

c2
= 1 (0 < c < a)

(b) Use the result in part (a) and the World Geodetic System

of 1984 (WGS-84) discussed in Exercise 50 of Section

12.7 to find the volume of the Earth in cubic meters.

33. Use polar coordinates to find the volume of the solid that is

inside of the ellipsoid

x2

a2
+
y2

a2
+
z2

c2
= 1

above the xy-plane, and inside of the cylinder

x2 + y2− ay = 0.

34. Find the area of the region enclosed by the lemniscate

r2 = 2a2 cos 2θ .

35. Find the area in the first quadrant that is inside of the circle

r = 4 sin θ and outside of the lemniscate r2 = 8 cos 2θ .

36. Show that the shaded area in the accompanying figure is

a2φ − 1
2
a2 sin 2φ.

x

y

a

r = 2a sin u

f

Figure Ex-36

37. The integral

∫ +�

0

e−x2

dx, which arises in probability the-

ory, can be evaluated using the following method. Let the

value of the integral be I . Thus,

I =
∫ +�

0

e−x2

dx =
∫ +�

0

e−y2

dy

since the letter used for the variable of integration in a def-

inite integral does not matter.

(a) Give a reasonable argument to show that

I 2 =
∫ +�

0

∫ +�

0

e−(x2+y2) dx dy

(b) Evaluate the iterated integral in part (a) by converting

to polar coordinates.

(c) Use the result in part (b) to show that I =
√
π/2.
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C 38. (a) Use the numerical integration capability of a CAS to

approximate the value of the double integral

∫ 1

−1

∫

√
1−x2

0

e−(x2+y2)2

dy dx

(b) Compare the approximation obtained in part (a) to the

approximation that results if the integral is first con-

verted to polar coordinates.

39. Suppose that a geyser, centered at the origin of a polar co-

ordinate system, sprays water in a circular pattern in such

a way that the depth D of water that reaches a point at a

distance of r feet from the origin in 1 hour is D = ke−r .

Find the total volume of water that the geyser sprays inside

a circle of radius R centered at the origin.

40. Evaluate

∫∫

R

x2 dA over the region R shown in the accom-

panying figure.

x

y
y = 2x

y =    x
R

1

3

y = √4 – x2 

Figure Ex-40

15.4 PARAMETRIC SURFACES; SURFACE AREA

In previous sections we considered parametric curves in 2-space and 3-space. In this

section we will discuss parametric surfaces in 3-space. As we will see, parametric

representations of surfaces are not only important in computer graphics but also allow

us to study more general kinds of surfaces than those encountered so far. In Section

6.5 we showed how to find the surface area of a surface of revolution. Our work on

parametric surfaces will enable us to derive area formulas for more general kinds of

surfaces.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PARAMETRIC REPRESENTATION OF
SURFACES

We have seen that curves in 3-space can be represented by three equations involving one

parameter, say

x = x(t), y = y(t), z = z(t)

Surfaces in 3-space can be represented parametrically by three equations involving two

parameters, say

x = x(u, v), y = y(u, v), z = z(u, v) (1)

To visualize why such equations represent a surface, think of (u, v) as a point that varies

over some region in a uv-plane. If u is held constant, then v is the only varying parameter in

(1), and hence these equations represent a curve in 3-space. We call this a constant u-curve

(Figure 15.4.1). Similarly, if v is held constant, then u is the only varying parameter in

(1), so again these equations represent a curve in 3-space. We call this a constant v-curve.

By varying the constants we generate a family of u-curves and a family of v-curves that

together form a surface.

y

x

u

z

Constant u-curve

v constant Constant 

v-curve

u constant

v

Figure 15.4.1
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Example 1 Consider the paraboloid z = 4−x2 −y2.One way to parametrize this surface

is to take x = u and y = v as the parameters, in which case the surface is represented by

the parametric equations

x = u, y = v, z = 4 − u2 − v2 (2)

Figure 15.4.2a shows a computer-generated graph of this surface. The constant u-curves

correspond to constant x-values and hence appear on the surface as traces parallel to the

yz-plane. Similarly, the constant v-curves correspond to constant y-values and hence appear

on the surface as traces parallel to the xz-plane. ◭

u2 + v2 ≤ 4

(a)

0 ≤  r ≤ 2

0 ≤  u ≤  o

(b)

1 ≤  r ≤  2

0 ≤  u ≤ o

(d)

0 ≤  r ≤  2

3 ≤  u ≤  o

(c)

x y
x

y
x y x y

z z z z

Figure 15.4.2

Example 2 The paraboloid z = 4−x2 −y2 that was considered in Example 1 can also be

parametrized by first expressing the equation in cylindrical coordinates. For this purpose,

we make the substitution x = r cos θ, y = r sin θ, which yields z = 4 − r2. Thus, the

paraboloid can be represented parametrically in terms of r and θ as

x = r cos θ, y = r sin θ, z = 4 − r2 (3)

Figure 15.4.2b shows a computer-generated graph of this surface for 0 ≤ r ≤ 2 and

0 ≤ θ ≤ 2π. The constant r-curves correspond to constant z-values and hence appear on

the surface as traces parallel to the xy-plane. The constant θ -curves appear on the surface

as traces from vertical planes through the origin at varying angles with the x-axis. Parts (c)

and (d) of Figure 15.4.2 show the effect of restrictions on the parameters r and θ . ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. If you have a graphing utility that can generate parametric surfaces,

read the relevant documentation and then try to make reasonable duplicates of the surfaces

in Figure 15.4.2.

Example 3 One way to generate the sphere x2 + y2 + z2 = 1 with a graphing utility is

to graph the upper and lower hemispheres

z =
√

1 − x2 − y2 and z = −
√

1 − x2 − y2

on the same screen. However, this usually produces a fragmented sphere (Figure 15.4.3a)

because roundoff error sporadically produces negative values inside the radical when

1 − x2 − y2 is near zero. A better graph can be generated by first expressing the sphere

in spherical coordinates as ρ = 1 and then using the spherical-to-rectangular conversion

formulas in Table 12.8.1 to obtain the parametric equations

x = sinφ cos θ, y = sinφ sin θ, z = cosφ

with parameters θ and φ. Figure 15.4.3b shows the graph of this parametric surface for
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(a) (b)

x
y

z

x
y

z

Figure 15.4.3

0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. In the language of cartographers, the constant φ-curves are

the lines of latitude and the constant θ -curves are the lines of longitude. ◭

Example 4 Find parametric equations for the portion of the right circular cylinder

x2 + z2 = 9 for which 0 ≤ y ≤ 5 in terms of the parametersu andv shown in Figure 15.4.4a.

The parameter u is the y-coordinate of a point P(x, y, z) on the surface, and v is the angle

shown in the figure.

z

y y
x

(a) (b)

z

x

v

P(x, y, z)u

Figure 15.4.4

Solution. The radius of the cylinder is 3, so it is evident from the figure that y = u,

x = 3 cos v, and z = 3 sin v. Thus, the surface can be represented parametrically as

x = 3 cos v, y = u, z = 3 sin v

To obtain the portion of the surface from y = 0 to y = 5, we let the parameter u vary over

the interval 0 ≤ u ≤ 5, and to ensure that the entire lateral surface is covered, we let the

parameter v vary over the interval 0 ≤ v ≤ 2π. Figure 15.4.4b shows a computer-generated

graph of the surface in which u and v vary over these intervals. Constant u-curves appear

as circular traces parallel to the xz-plane, and constant v-curves appear as lines parallel to

the y-axis. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

REPRESENTING SURFACES OF
REVOLUTION PARAMETRICALLY

The basic idea of Example 4 can be adapted to obtain parametric equations for surfaces of

revolution. For example, suppose that we want to find parametric equations for the surface

generated by revolving the plane curve y = f(x) about the x-axis. Figure 15.4.5 suggests

that the surface can be represented parametrically as

x = u, y = f(u) cos v, z = f(u) sin v (4)

where v is the angle shown. In the exercises we will discuss analogous formulas for surfaces

of revolution about other axes.
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Example 5 Find parametric equations for the surface generated by revolving the curve

y = 1/x about the x-axis.

Solution. From (4) this surface can be represented parametrically as

x = u, y =
1

u
cos v, z =

1

u
sin v

Figure 15.4.6 shows a computer-generated graph of the surface for 0.7 ≤ u ≤ 5 and

0 ≤ v ≤ 2π. This surface is a portion of Gabriel’s horn, which was discussed in Exercise

49 of Section 8.8. ◭

y

x

z

v

v

f (u) sin v

f (u)

f (u)

f (u)

f (u) cos v

u

Figure 15.4.5

x

y

z

Figure 15.4.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTOR-VALUED FUNCTIONS OF
TWO VARIABLES

Recall that the parametric equations

x = x(t), y = y(t), z = z(t)

can be expressed in vector form as

r = x(t)i + y(t) j + z(t)k

where r = xi + yj + zk is the radius vector and r(t) = x(t)i + y(t) j + z(t)k is a vector-

valued function of one variable. Similarly, the parametric equations

x = x(u, v), y = y(u, v), z = z(u, v)

can be expressed in vector form as

r = x(u, v)i + y(u, v) j + z(u, v)k

Here the function r(u, v) = x(u, v)i + y(u, v) j + z(u, v)k is a vector-valued function of

two variables. We define the graph of r(u, v) to be the graph of the corresponding parametric

equations. Geometrically, we can view r as a vector from the origin to a point (x, y, z) that

moves over the surface r = r(u, v) as u and v vary (Figure 15.4.7). As with vector-valued

functions of one variable, we say that r(u, v) is continuous if each component is continuous.y

x

z

(x, y, z)
r(u, v)

Figure 15.4.7

Example 6 The paraboloid in Example 1 was expressed parametrically as

x = u, y = v, z = 4 − u2 − v2

These equations can be expressed in vector form as

r = ui + vj + (4 − u2 − v2)k ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PARTIAL DERIVATIVES OF
VECTOR-VALUED FUNCTIONS

Partial derivatives of vector-valued functions of two variables are obtained by taking partial

derivatives of the components. For example, if

r(u, v) = x(u, v)i + y(u, v) j + z(u, v)k
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then

∂r

∂u
=

∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

∂r

∂v
=

∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

These derivatives can also be written as ru and rv or ru(u, v) and rv(u, v) and can be

expressed as the limits

∂r

∂u
= lim

w→u

r(w, v)− r(u, v)

w − u
= lim�u→0

r(u+�u,v)− r(u, v)�u (5)

∂r

∂v
= lim

w→v

r(u,w)− r(u, v)

w − v
= lim�v→0

r(u, v +�v)− r(u, v)�v (6)

Example 7 Find the partial derivatives of the vector-valued function r in Example 6.

Solution. For the vector-valued function in Example 6, we have

∂r

∂u
=

∂

∂u
[ui + vj + (4 − u2 − v2)k] = i − 2uk

∂r

∂v
=

∂

∂v
[ui + vj + (4 − u2 − v2)k] = j − 2vk ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TANGENT PLANES TO
PARAMETRIC SURFACES

Our next objective is to show how to find tangent planes to parametric surfaces. Let σ denote

a parametric surface in 3-space, with P0 a point on σ . We will say that a plane is tangent

to σ at P0 provided a line through P0 lies in the plane if and only if it is a tangent line at

P0 to a curve on σ . We showed in Section 14.7 that if z = f(x, y), then the graph of f has

a tangent plane at a point if f is differentiable at that point. It is beyond the scope of this

text to obtain precise conditions under which a parametric surface has a tangent plane at

a point, so we will simply assume the existence of tangent planes at points of interest and

focus on finding their equations.

y

x

z

s

∂r/∂v

∂r/∂u

∂r/∂u × ∂r/∂v

(x0, y0, z0)

Figure 15.4.8

Suppose that the parametric surface σ is the graph of the vector-valued function r(u, v)

and that we are interested in the tangent plane at the point (x0, y0, z0) on the surface that

corresponds to the parameter values u = u0 and v = v0; that is,

r(u0, v0) = x0i + y0 j + z0k

If v = v0 is kept fixed andu is allowed to vary, then r(u, v0) is a vector-valued function of one

variable whose graph is called the constant v-curve through the point (u0, v0); similarly, if

u = u0 is kept fixed and v is allowed to vary, then r(u0, v) is a vector-valued function of one

variable whose graph is called the constant u-curve through the point (u0, v0).Moreover, it

follows from 13.2.5 that if ∂r/∂u �= 0 at (u0, v0), then this vector is tangent to the constant

v-curve through (u0, v0); and if ∂r/∂v �= 0 at (u0, v0), then this vector is tangent to the

constant u-curve through (u0, v0) (Figure 15.4.8). Thus, if ∂r/∂u × ∂r/∂v �= 0 at (u0, v0),

then the vector

∂r

∂u
×

∂r

∂v
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i

∂x

∂u

∂x

∂v

j

∂y

∂u

∂y

∂v

k

∂z

∂u

∂z

∂v

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7)

is orthogonal to both tangent vectors at the point (u0, v0) and hence is normal to the tangent

plane and the surface at this point (Figure 15.4.8). Accordingly, we make the following

definition.
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15.4.1 DEFINITION. If a parametric surface σ is the graph of r = r(u, v), and if

∂r/∂u × ∂r/∂v �= 0 at a point on the surface, then the principal unit normal vector to

the surface at that point is denoted by n or n(u, v) and is defined as

n =

∂r

∂u
×

∂r

∂v
∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

(8)

Example 8 Find an equation of the tangent plane to the parametric surface

x = uv, y = u, z = v2

at the point where u = 2 and v = −1. This surface, called Whitney’s umbrella, is an exam-

ple of a self-intersecting parametric surface (Figure 15.4.9).

–4

0

4

–2

0

2

0

4

z

x

y

Figure 15.4.9

Solution. We start by writing the equations in the vector form

r = uvi + uj + v2k

The partial derivatives of r are

∂r

∂u
(u, v) = vi + j

∂r

∂v
(u, v) = ui + 2vk

and at u = 2 and v = −1 these partial derivatives are

∂r

∂u
(2,−1) = −i + j

∂r

∂v
(2,−1) = 2i − 2k

Thus, from (7) and (8) a normal to the surface at this point is

∂r

∂u
(2,−1) ×

∂r

∂v
(2,−1) =

∣

∣

∣

∣

∣

∣

i

−1

2

j

1

0

k

0

−2

∣

∣

∣

∣

∣

∣

= −2i − 2 j − 2k

Since any normal will suffice to find the tangent plane, it makes sense to multiply this vector

by − 1
2

and use the simpler normal i + j + k. It follows from the given parametric equations

that the point on the surface corresponding to u = 2 and v = −1 is (−2, 2, 1), so the

tangent plane at this point can be expressed in point-normal form as

(x + 2)+ (y − 2)+ (z − 1) = 0 or x + y + z = 1 ◭

•
•
•
•
•
•
•
•

FOR THE READER. Convince yourself that the result obtained in this example is consistent

with Figure 15.4.9.

Example 9 The sphere x2 + y2 + z2 = a2 can be expressed in spherical coordinates as

ρ = a, and the spherical-to-rectangular conversion formulas in Table 12.8.1 can then be

used to express the sphere as the graph of the vector-valued function

r(φ, θ) = a sinφ cos θ i + a sinφ sin θ j + a cosφk

where 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π (verify). Use this function to show that at each point on

the sphere the tangent plane is perpendicular to the radius vector.
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Solution. We will show that at each point of the sphere the unit normal vector n is a scalar

multiple of r (and hence is parallel to r). We have

∂r

∂φ
×

∂r

∂θ
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i

∂x

∂φ

∂x

∂θ

j

∂y

∂φ

∂y

∂θ

k

∂z

∂φ

∂z

∂θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

i

a cosφ cos θ

−a sinφ sin θ

j

a cosφ sin θ

a sinφ cos θ

k

−a sinφ

0

∣

∣

∣

∣

∣

∣

= a2 sin2 φ cos θ i + a2 sin2 φ sin θ j + a2 sinφ cosφk

and hence
∥

∥

∥

∥

∂r

∂φ
×

∂r

∂θ

∥

∥

∥

∥

=
�
a4 sin4 φ cos2 θ + a4 sin4 φ sin2 θ + a4 sin2 φ cos2 φ

=
�
a4 sin4 φ + a4 sin2 φ cos2 φ

= a2
√

sin2 φ = a2|sinφ| = a2 sinφ

Thus, it follows from (8) that

n = sinφ cos θ i + sinφ sin θ j + cosφk =
1

a
r ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SURFACE AREA OF PARAMETRIC
SURFACES

In Section 6.5 we obtained formulas for the surface area of a surface of revolution [see

Formulas (4) and (5) and the discussion preceding Exercise 18 in that section]. We will now

obtain a formula for the surface area S of a parametric surface σ and from that formula we

will then derive a formula for the surface area of a surface of the form z = f(x, y).

Let σ be a parametric surface whose vector equation is

r = x(u, v)i + y(u, v) j + z(u, v)k

We will say that σ is a smooth parametric surface on a region R of the uv-plane if ∂r/∂u

and ∂r/∂v are continuous on R and ∂r/∂u × ∂r/∂v �= 0 on R. Geometrically, this means

that σ has a principal unit normal vector (and hence a tangent plane) for all (u, v) in R and

n = n(u, v) is a continuous function on R. Thus, on a smooth parametric surface the unit

normal vector n varies continuously and has no abrupt changes in direction. We will derive

a surface area formula for smooth surfaces that have no self-intersections.

We will begin by subdividing R into rectangular regions by lines parallel to the u- and

v-axes and discarding any nonrectangular portions that contain points of the boundary.

Assume that there are n rectangles, and let Rk denote the kth rectangle. Let (uk, vk) be

the lower left corner of Rk, and assume that Rk has area�Ak =�uk�vk, where�uk and�vk are the dimensions of Rk (Figure 15.4.10a). The image of Rk will be some curvilinear

patch σk on the surface σ that has a corner at r(uk, vk); denote the area of this patch by�Sk
(Figure 15.4.10b).

y

x

z

∆vk

∆uk

sk
r(uk, vk)

r(uk, vk + ∆vk)

r(uk + ∆uk, vk)r(uk, vk)

(a) (b) (c) (d)

∆vk

∆uk
R

u

v

s

∂r

∂v

∂r

∂u

Rk

Figure 15.4.10

As suggested by Figure 15.4.10c, the two edges of the patch that meet at r(uk, vk) can

be approximated by the “secant” vectors

r(uk +�uk, vk)− r(uk, vk)

r(uk, vk +�vk)− r(uk, vk)
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and hence the area of σk can be approximated by the area of the parallelogram determined

by these vectors. However, it follows from Formulas (5) and (6) that if�uk and�vk are

small, then these secant vectors can in turn be approximated by the tangent vectors

∂r

∂u
�uk and

∂r

∂v
�vk

where the partial derivatives are evaluated at (uk, vk). Thus, the area of the patchσk can be ap-

proximated by the area of the parallelogram determined by these vectors (Figure 15.4.10d);

that is,�Sk ≈
∥

∥

∥

∥

∂r

∂u
�uk ×

∂r

∂v
�vk∥∥∥

∥

=
∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

�uk�vk =
∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

�Ak (9)

It follows that the surface area S of the entire surface σ can be approximated as

S ≈
n�

k=1

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

�Ak
Thus, if we assume that the errors in the approximations approach zero as n increases in

such a way that the dimensions of the rectangles approach zero, then it is plausible that the

exact value of S is

S = lim
n→+�

n�
k=1

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

�Ak
or, equivalently,

S =��
R

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

dA (10)

Example 10 It follows from (4) that the parametric equations

x = u, y = u cos v, z = u sin v

represent the cone that results when the line y = x in the xy-plane is revolved about the

x-axis. Use Formula (10) to find the surface area of that portion of the cone for which

0 ≤ u ≤ 2 and 0 ≤ v ≤ 2π (Figure 15.4.11).

x
y

z

Figure 15.4.11

Solution. The surface can be expressed in vector form as

r = ui + u cos vj + u sin vk (0 ≤ u ≤ 2, 0 ≤ v ≤ 2π)

Thus,

∂r

∂u
= i + cos vj + sin vk

∂r

∂v
= −u sin vj + u cos vk

∂r

∂u
×

∂r

∂v
=

∣

∣

∣

∣

∣

∣

i

1

0

j

cos v

−u sin v

k

sin v

u cos v

∣

∣

∣

∣

∣

∣

= ui − u cos vj − u sin vk

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

=�u2 + (−u cos v)2 + (−u sin v)2 = |u|
√

2 = u
√

2

Thus, from (10)

S =��
R

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

dA =�2π
0

�2
0

√
2u du dv = 2

√
2�2π

0

dv = 4π
√

2 ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SURFACE AREA OF SURFACES OF
THE FORM z = f (x, y )

In the case where σ is a surface of the form z = f(x, y), we can take x = u and y = v as

parameters and express the surface parametrically as

x = u, y = v, z = f(u, v)

or in vector form as

r = ui + vj + f(u, v)k

Thus,

∂r

∂u
= i +

∂f

∂u
k = i +

∂z

∂x
k

∂r

∂v
= j +

∂f

∂v
k = j +

∂z

∂y
k

∂r

∂u
×

∂r

∂v
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

1 0
∂z

∂x

0 1
∂z

∂y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
∂z

∂x
i −

∂z

∂y
j + k

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

=

√�
∂z

∂x�2 +

�
∂z

∂y�2 + 1

Thus, it follows from (10) that

S =��
R

√�
∂z

∂x�2 +

�
∂z

∂y�2 + 1 dA (11)y

x

z
z = f (x, y)

R

Figure 15.4.12

y

x

z

1

2

4

R

S

x2 + z2 = 4 

Figure 15.4.13

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In this formula the region R lies in the xy-plane because the parameters are

x and y. Geometrically, this region is the projection on the xy-plane of that portion of the

surface z = f(x, y) whose area is being determined by the formula (Figure 15.4.12).

Example 11 Find the surface area of that portion of the surface z =
√

4 − x2 that lies

above the rectangle R in the xy-plane whose coordinates satisfy 0 ≤ x ≤ 1 and 0 ≤ y ≤ 4.

Solution. As shown in Figure 15.4.13, the surface is a portion of the cylinder x2 +z2 = 4.

It follows from (11) that the surface area is

S =��
R

√�
∂z

∂x�2 +

�
∂z

∂y�2 + 1 dA

=��
R

√�
−

x
√

4 − x2�2 + 0 + 1 dA =�4
0

�1
0

2
√

4 − x2
dx dy

= 2�4
0�sin−1

�
1

2
x��1x=0

dy = 2�4
0

π

6
dy =

4

3
π

Formula (21)

of Section 8.1

◭

Example 12 Find the surface area of the portion of the paraboloid z = x2 + y2 below

the plane z = 1.
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Solution. The surface is shown in Figure 15.4.14. The trace of the paraboloid z = x2 +y2

in the plane z = 1 projects onto the circle x2 + y2 = 1 in the xy-plane, and the portion of

the paraboloid that lies below the plane z = 1 projects onto the region R that is enclosed

by this circle. Thus, it follows from (11) that the surface area is

S =
∫∫

R

√

4x2 + 4y2 + 1 dA

The expression 4x2+4y2+1 = 4(x2+y2)+1 in the integrand suggests that we evaluate the

integral in polar coordinates. In accordance with Formula (9) of Section 15.3, we substitute

x = r cos θ and y = r sin θ in the integrand, replace dA by r dr dθ , and find the limits of

integration by expressing the region R in polar coordinates. This yields

S =
∫ 2π

0

∫ 1

0

√

4r2 + 1 r dr dθ =
∫ 2π

0

[

1

12
(4r2 + 1)3/2

]1

r=0

dθ

=
∫ 2π

0

1

12
(5

√
5 − 1) dθ =

1

6
π(5

√
5 − 1) ◭

y

x

z
z = 1

R

x2 + y2 = 1

z = x2 + y2

Figure 15.4.14

EXERCISE SET 15.4 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, sketch the parametric surface.

1. (a) x = u, y = v, z =
√
u2 + v2

(b) x = u, y =
√
u2 + v2, z = v

(c) x =
√
u2 + v2, y = u, z = v

2. (a) x = u, y = v, z = u2 + v2

(b) x = u, y = u2 + v2, z = v

(c) x = u2 + v2, y = u, z = v

In Exercises 3 and 4, find a parametric representation of the

surface in terms of the parameters u = x and v = y.

3. (a) 2z − 3x + 4y = 5 (b) z = x2

4. (a) z + zx2 − y = 0 (b) y2 − 3z = 5

5. (a) Find parametric equations for the portion of the cylin-

der x2 + y2 = 5 that extends between the planes z = 0

and z = 1.

(b) Find parametric equations for the portion of the cylin-

der x2 + z2 = 4 that extends between the planes y = 1

and y = 3.

6. (a) Find parametric equations for the portion of the plane

x + y = 1 that extends between the planes z = −1 and

z = 1.

(b) Find parametric equations for the portion of the plane

y − 2z = 5 that extends between the planes x = 0 and

x = 3.

7. Find parametric equations for the surface generated by re-

volving the curve y = sin x about the x-axis.

8. Find parametric equations for the surface generated by re-

volving the curve y − ex = 0 about the x-axis.

In Exercises 9–14, find a parametric representation of the sur-

face in terms of the parameters r and θ , where (r, θ, z) are

the cylindrical coordinates of a point on the surface.

9. z =
1

1 + x2 + y2
10. z = e−(x2+y2)

11. z = 2xy 12. z = x2 − y2

13. The portion of the sphere x2 + y2 + z2 = 9 on or above the

plane z = 2.

14. The portion of the cone z =
√

x2 + y2 on or below the plane

z = 3.

15. Find a parametric representation of the cone

z =
√

3x2 + 3y2

in terms of parametersρ and θ , where (ρ, θ, φ) are spherical

coordinates of a point on the surface.

16. Find a parametric representation of the cylinder x2 +y2 = 9

in terms of parameters θ andφ, where (ρ, θ, φ) are spherical

coordinates of a point on the surface.

In Exercises 17–22, eliminate the parameters to obtain an

equation in rectangular coordinates, and describe the surface.

17. x = 2u + v, y = u − v, z = 3v for −� < u < +� and

−� < v < +�.

18. x = u cos v, y = u2, z = u sin v for 0 ≤ u ≤ 2 and

0 ≤ v < 2π.
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19. x = 3 sin u, y = 2 cos u, z = 2v for 0 ≤ u < 2π and

1 ≤ v ≤ 2.

20. x =
√
u cos v, y =

√
u sin v, z = u for 0 ≤ u ≤ 4 and

0 ≤ v < 2π.

21. r(u, v) = 3u cos vi + 4u sin vj + uk for 0 ≤ u ≤ 1 and

0 ≤ v < 2π.

22. r(u, v) = sin u cos vi + 2 sin u sin vj + 3 cos uk for

0 ≤ u ≤ π and 0 ≤ v < 2π.

23. The accompanying figure shows the graphs of two paramet-

ric representations of the cone z =
√

x2 + y2 for 0 ≤ z ≤ 2.

(a) Find parametric equations that produce reasonable fac-

similes of these surfaces.

(b) Use a graphing utility to check your answer to part (a).

z

x

z

x yy

I II

Figure Ex-23

24. The accompanying figure shows the graphs of two para-

metric representations of the paraboloid z = x2 + y2 for

0 ≤ z ≤ 2.

(a) Find parametric equations that produce reasonable fac-

similes of these surfaces.

(b) Use a graphing utility to check your answer to part (a).

zz

xx yx

I II

Figure Ex-24

25. In each part, the figure shows a portion of the parametric

surface x = 3 cos v, y = u, z = 3 sin v. Find restrictions

on u and v that produce the surface, and check your answer

with a graphing utility.

z z

x

x

y

y

3

3
3

4

(a) (b)

26. In each part, the figure shows a portion of the parametric

surface x = 3 cos v, y = 3 sin v, z = u. Find restrictions

on u and v that produce the surface, and check your answer

with a graphing utility.

6 5

z z

x y x y

(a) (b)

27. In each part, the figure shows a hemisphere that is a portion

of the sphere x = sinφ cos θ , y = sinφ sin θ , z = cosφ.

Find restrictions on φ and θ that produce the hemisphere,

and check your answer with a graphing utility.

z z

x
y

x

y

(a) (b)

28. Each figure shows a portion of the sphere x = sinφ cos θ,

y = sinφ sin θ , z = cosφ. Find restrictions on φ and θ that

produce the surface, and check your answer with a graphing

utility.

zz

x
y

x
y

(a) (b)

In Exercises 29–34, find an equation of the tangent plane to

the parametric surface at the stated point.

29. x = u, y = v, z = u2 + v2; (1, 2, 5)

30. x = u2, y = v2, z = u+ v; (1, 4, 3)

31. x = 3v sin u, y = 2v cos u, z = u2; (0, 2, 0)

32. r = uvi + (u− v)j + (u+ v)k; u = 1, v = 2

33. r = u cos vi + u sin vj + vk; u = 1/2, v = π/4

34. r = uvi + uevj + veuk; u = ln 2, v = 0

In Exercises 35–46, find the area of the given surface.
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35. The portion of the cylinder y2 + z2 = 9 that is above the

rectangle R = {(x, y) : 0 ≤ x ≤ 2,−3 ≤ y ≤ 3}.

36. The portion of the plane 2x+ 2y+ z = 8 in the first octant.

37. The portion of the cone z2 = 4x2 + 4y2 that is above the

region in the first quadrant bounded by the line y = x and

the parabola y = x2.

38. The portion of the cone z =
√

x2 + y2 that lies inside the

cylinder x2 + y2 = 2x.

39. The portion of the paraboloid z = 1 − x2 − y2 that is above

the xy-plane.

40. The portion of the surface z = 2x + y2 that is above the

triangular region with vertices (0, 0), (0, 1), and (1, 1).

41. The portion of the paraboloid

r(u, v) = u cos vi + u sin vj + u2k

for which 1 ≤ u ≤ 2, 0 ≤ v ≤ 2π.

42. The portion of the cone

r(u, v) = u cos vi + u sin vj + uk

for which 0 ≤ u ≤ 2v, 0 ≤ v ≤ π/2.

43. The portion of the surface z = xy that is above the sector in

the first quadrant bounded by the lines y = x/
√

3, y = 0,

and the circle x2 + y2 = 9.

44. The portion of the paraboloid 2z = x2 + y2 that is inside

the cylinder x2 + y2 = 8.

45. The portion of the sphere x2 + y2 + z2 = 16 between the

planes z = 1 and z = 2.

46. The portion of the sphere x2 + y2 + z2 = 8 that is inside of

the cone z =
√

x2 + y2.

47. Use parametric equations to derive the formula for the sur-

face area of a sphere of radius a.

48. Use parametric equations to derive the formula for the lat-

eral surface area of a right circular cylinder of radius r and

height h.

49. The portion of the surface

z =
h

a

√

x2 + y2 (a, h > 0)

between the xy-plane and the plane z = h is a right circular

cone of height h and radius a. Use a double integral to show

that the lateral surface area of this cone is S = πa
√
a2 + h2.

50. The accompanying figure shows the torus that is generated

by revolving the circle

(x − a)2 + z2 = b2 (0 < b < a)

in the xz-plane about the z-axis.

(a) Show that this torus can be expressed parametrically as

x = (a + b cos v) cos u

y = (a + b cos v) sin u

z = b sin v

where u and v are the parameters shown in the figure

and 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π.

(b) Use a graphing utility to generate a torus.

u

y

x

z

y

x

z

a
v

b

Figure Ex-50

51. Find the surface area of the torus in Exercise 50(a).

C 52. Use a CAS to graph the helicoid

x = u cos v, y = u sin v, z = v

for 0 ≤ u ≤ 5 and 0 ≤ v ≤ 4π (see the accompanying fig-

ure), and then use the numerical double integration opera-

tion of the CAS to approximate the surface area.

C 53. Use a CAS to graph the pseudosphere

x = cos u sin v

y = sin u sin v

z = cos v + ln
(

tan
v

2

)

for 0 ≤ u ≤ 2π, 0 < v < π (see the accompanying figure),

and then use the numerical double integration operation of

the CAS to approximate the surface area between the planes

z = −1 and z = 1.

x y

z

Figure Ex-52

z

x y

Figure Ex-53
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54. (a) Find parametric equations for the surface of revolution

that is generated by revolving the curve z = f (x) in

the xz-plane about the z-axis.

(b) Use the result obtained in part (a) to find parametric

equations for the surface of revolution that is generated

by revolving the curve z = 1/x2 in the xz-plane about

the z-axis.

(c) Use a graphing utility to check your work by graphing

the parametric surface.

In Exercises 55–57, the parametric equations represent a

quadric surface for positive values of a, b, and c. Identify

the type of surface by eliminating the parameters u and v.

Check your conclusion by choosing specific values for the

constants and generating the surface with a graphing utility.

55. x = a cos u cos v, y = b sin u cos v, z = c sin v

56. x = a cos u cosh v, y = b sin u cosh v, z = c sinh v

57. x = a sinh v, y = b sinh u cosh v, z = c cosh u cosh v

15.5 TRIPLE INTEGRALS

In the preceding sections we defined and discussed properties of double integrals for

functions of two variables. In this section we will define triple integrals for functions of

three variables.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF A TRIPLE INTEGRAL
A single integral of a function f(x) is defined over a finite closed interval on the x-axis,

and a double integral of a function f(x, y) is defined over a finite closed region R in the

xy-plane. Our first goal in this section is to define what is meant by a triple integral of

f(x, y, z) over a closed solid region G in an xyz-coordinate system. To ensure that G does

not extend indefinitely in some direction, we will assume that it can be enclosed in a suitably

large box whose sides are parallel to the coordinate planes (Figure 15.5.1). In this case we

say that G is a finite solid.

To define the triple integral of f(x, y, z) overG, we first divide the box into n “subboxes”

by planes parallel to the coordinate planes. We then discard those subboxes that contain any

points outside of G and choose an arbitrary point in each of the remaining subboxes. As

shown in Figure 15.5.1, we denote the volume of the kth remaining subbox by�Vk and the

point selected in the kth subbox by (x∗
k , y

∗
k , z

∗
k). Next we form the product

f(x∗
k , y

∗
k , z

∗
k

)�Vk
for each subbox, then add the products for all of the subboxes to obtain the Riemann sum

n
∑

k=1

f(x∗
k , y

∗
k , z

∗
k

)�Vk
Finally, we repeat this process with more and more subdivisions in such a way that the

length, width, and height of each subbox approach zero, and n approaches +�. The limit

∫∫∫

G

f(x, y, z) dV = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k , z

∗
k

)�Vk (1)

is called the triple integral of f(x, y, z) over the region G. Conditions under which the

triple integral exists are studied in advanced calculus. However, for our purposes it suffices

to say that existence is ensured when f is continuous on G and the region G is not too

“complicated.”

z

y

x

(xk, yk, zk )* * *

Volume = ∆Vk

Figure 15.5.1
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PROPERTIES OF TRIPLE
INTEGRALS

Triple integrals enjoy many properties of single and double integrals:
∫∫∫

G

cf(x, y, z) dV = c

∫∫∫

G

f(x, y, z) dV (c a constant)

∫∫∫

G

[f(x, y, z)+ g(x, y, z)] dV =
∫∫∫

G

f(x, y, z) dV +
∫∫∫

G

g(x, y, z) dV

∫∫∫

G

[f(x, y, z)− g(x, y, z)] dV =
∫∫∫

G

f(x, y, z) dV −
∫∫∫

G

g(x, y, z) dV

Moreover, if the region G is subdivided into two subregions G1 and G2 (Figure 15.5.2),

then
∫∫∫

G

f(x, y, z) dV =
∫∫∫

G1

f(x, y, z) dV +
∫∫∫

G2

f(x, y, z) dV

We omit the proofs.

G1

G

G2

Figure 15.5.2

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING TRIPLE INTEGRALS
OVER RECTANGULAR BOXES

Just as a double integral can be evaluated by two successive single integrations, so a triple

integral can be evaluated by three successive integrations. The following theorem, which

we state without proof, is the analog of Theorem 15.1.3.

15.5.1 THEOREM. Let G be the rectangular box defined by the inequalities

a ≤ x ≤ b, c ≤ y ≤ d, k ≤ z ≤ ℓ

If f is continuous on the region G, then
∫∫∫

G

f(x, y, z) dV =
∫ b

a

∫ d

c

∫ ℓ

k

f(x, y, z) dz dy dx (2)

Moreover, the iterated integral on the right can be replaced with any of the five other

iterated integrals that result by altering the order of integration.

Example 1 Evaluate the triple integral
∫∫∫

G

12xy2z3 dV

over the rectangular box G defined by the inequalities −1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2.

Solution. Of the six possible iterated integrals we might use, we will choose the one in

(2). Thus, we will first integrate with respect to z, holding x and y fixed, then with respect

to y, holding x fixed, and finally with respect to x.

∫∫∫

G

12xy2z3 dV =
∫ 2

−1

∫ 3

0

∫ 2

0

12xy2z3 dz dy dx

=
∫ 2

−1

∫ 3

0

[

3xy2z4
]2

z=0
dy dx =

∫ 2

−1

∫ 3

0

48xy2 dy dx

=
∫ 2

−1

[

16xy3
]3

y=0
dx =

∫ 2

−1

432x dx

= 216x2
]2

−1
= 648 ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EVALUATING TRIPLE INTEGRALS
OVER MORE GENERAL REGIONS

Next we will consider how triple integrals can be evaluated over solids that are not rec-

tangular boxes. For the moment we will limit our discussion to solids of the type shown in

Figure 15.5.3. Specifically, we will assume that the solid G is bounded above by a surface

z = g2(x, y) and below by a surface z = g1(x, y) and that the projection of the solid on

the xy-plane is a type I or type II region R (see Definition 15.2.1). In addition, we will

assume that g1(x, y) and g2(x, y) are continuous on R and that g1(x, y) ≤ g2(x, y) on R.

Geometrically, this means that the surfaces may touch but cannot cross. We call a solid of

this type a simple xy-solid.

z

y

x

z = g2(x, y)

z = g1(x, y)

R

G   

Figure 15.5.3

The following theorem, which we state without proof, will enable us to evaluate triple

integrals over simple xy-solids.

15.5.2 THEOREM. Let G be a simple xy-solid with upper surface z = g2(x, y) and

lower surface z = g1(x, y), and letR be the projection ofG on the xy-plane. If f(x, y, z)

is continuous on G, then
∫∫∫

G

f(x, y, z) dV =
∫∫

R

[∫ g2(x,y)

g1(x,y)

f(x, y, z) dz

]

dA (3)

In (3), the first integration is with respect to z, after which a function of x and y remains.

This function of x and y is then integrated over the region R in the xy-plane. To apply (3), it

is helpful to begin with a three-dimensional sketch of the solid G. The limits of integration

can be obtained from the sketch as follows:

Step 1. Find an equation z = g2(x, y) for the upper surface and an equation

z = g1(x, y) for the lower surface of G. The functions g1(x, y) and

g2(x, y) determine the lower and upper z-limits of integration.

Step 2. Make a two-dimensional sketch of the projection R of the solid on

the xy-plane. From this sketch determine the limits of integration for

the double integral over R in (3).

Example 2 LetG be the wedge in the first octant cut from the cylindrical solid y2+z2 ≤ 1

by the planes y = x and x = 0. Evaluate
∫∫∫

G

z dV
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Solution. The solidG and its projectionR on the xy-plane are shown in Figure 15.5.4. The

upper surface of the solid is formed by the cylinder and the lower surface by the xy-plane.

Since the portion of the cylinder y2 + z2 = 1 that lies above the xy-plane has the equation

z =
√

1 − y2, and the xy-plane has the equation z = 0, it follows from (3) that

∫∫∫

G

z dV =
∫∫

R

[

∫

√
1−y2

0

z dz

]

dA (4)

For the double integral over R, the x- and y-integrations can be performed in either order,

since R is both a type I and type II region. We will integrate with respect to x first. With

this choice, (4) yields

∫∫∫

G

z dV =
∫ 1

0

∫ y

0

∫

√
1−y2

0

z dz dx dy =
∫ 1

0

∫ y

0

1

2
z2

]

√
1−y2

z=0

dx dy

=
∫ 1

0

∫ y

0

1

2
(1 − y2) dx dy =

1

2

∫ 1

0

(1 − y2)x

]y

x=0

dy

=
1

2

∫ 1

0

(y − y3) dy =
1

2

[

1

2
y2 −

1

4
y4

]1

0

=
1

8
◭

x = 0

R

y = x

y2 + z2 = 1

1

x

y

y = x

z

x

y

R

G

(z = √1 – y2 ) 

(1, 1)

1

Figure 15.5.4

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Most computer algebra systems have a built-in capability for comput-

ing iterated triple integrals. If you have a CAS, read the relevant documentation and use the

CAS to check Examples 1 and 2.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VOLUME CALCULATED AS A
TRIPLE INTEGRAL

Triple integrals have many physical interpretations, some of which we will consider in the

next section. However, in the special case where f(x, y, z) = 1, Formula (1) yields

∫∫∫

G

dV = lim
n→+�

n
∑

k=1

�V
k

which Figure 15.5.1 suggests is the volume of G; that is,

volume of G =
∫∫∫

G

dV (5)

Example 3 Use a triple integral to find the volume of the solid within the cylinder

x2 + y2 = 9 and between the planes z = 1 and x + z = 5.

y

x

z

z = 1

R

G

R

x2 + y2 = 9

x2 + y2 = 9

x + z = 5

3-3

y = √9 – x2 

y = –√9 – x2 

x

y

Figure 15.5.5

Solution. The solid G and its projection R on the xy-plane are shown in Figure 15.5.5.

The lower surface of the solid is the plane z = 1 and the upper surface is the plane x+z = 5

or, equivalently, z = 5 − x. Thus, from (3) and (5)

volume of G =
∫∫∫

G

dV =
∫∫

R

[∫ 5−x

1

dz

]

dA (6)
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For the double integral over R, we will integrate with respect to y first. Thus, (6) yields

volume of G =
∫ 3

−3

∫

√
9−x2

−
√

9−x2

∫ 5−x

1

dz dy dx =
∫ 3

−3

∫

√
9−x2

−
√

9−x2

z

]5−x

z=1

dy dx

=
∫ 3

−3

∫

√
9−x2

−
√

9−x2

(4 − x) dy dx =
∫ 3

−3

(8 − 2x)
√

9 − x2 dx

= 8

∫ 3

−3

√

9 − x2 dx −
∫ 3

−3

2x
√

9 − x2 dx
For the first integral,

see Formula (3) of

Section 8.4.

= 8

(

9

2
π

)

−
∫ 3

−3

2x
√

9 − x2 dx
The second integral is 0 because

the integrand is an odd function.

See Exercise 35 of Section 5.6.

= 8

(

9

2
π

)

− 0 = 36π ◭

Example 4 Find the volume of the solid enclosed between the paraboloids

z = 5x2 + 5y2 and z = 6 − 7x2 − y2

Solution. The solid G and its projection R on the xy-plane are shown in Figure 15.5.6.

The projection R is obtained by solving the given equations simultaneously to determine

where the paraboloids intersect. We obtain

5x2 + 5y2 = 6 − 7x2 − y2

or

2x2 + y2 = 1 (7)

which tells us that the paraboloids intersect in a curve on the elliptic cylinder given by (7).

y

x

z

R

2x2 + y2 = 1

z = 6 – 7x2 – y2

z = 5x2 + 5y2

y = √1 – 2x2 

–1/√2 1/√2

y = –√1 – 2x2 

x

y

R

G

Figure 15.5.6

The projection of this intersection on the xy-plane is an ellipse with this same equation.

Therefore,

volume of G =
∫∫∫

G

dV =
∫∫

R

[

∫ 6−7x2−y2

5x2+5y2

dz

]

dA

=
∫ 1/

√
2

−1/
√

2

∫

√
1−2x2

−
√

1−2x2

∫ 6−7x2−y2

5x2+5y2

dz dy dx

=
∫ 1/

√
2

−1/
√

2

∫

√
1−2x2

−
√

1−2x2

(6 − 12x2 − 6y2) dy dx

=
∫ 1/

√
2

−1/
√

2

[

6(1 − 2x2)y − 2y3

]

√
1−2x2

y=−
√

1−2x2

dx

= 8

∫ 1/
√

2

−1/
√

2

(1 − 2x2)3/2 dx =
8

√
2

∫ π/2

−π/2

cos4 θ dθ =
3π
√

2

Let x =
1

√
2

sin θ . Use the Wallis cosine formula

in Exercise 66 of Section 8.3.

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTEGRATION IN OTHER ORDERS
In Formula (3) for integrating over a simple xy-solid, the z-integration was performed first.

However, there are situations in which it is preferable to integrate in a different order. For

example, Figure 15.5.7a shows a simple xz-solid, and Figure 15.5.7b shows a simple yz-
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y

z

x

y = g2(x, z )

y = g1(x, z )

(a)

R

G

z

y

x

x = g2(y, z )

x = g1(y, z )

(b)

R

G

A simple xz-solid A simple yz-solid

Figure 15.5.7

solid. For a simple xz-solid it is usually best to integrate with respect to y first, and for a

simple yz-solid it is usually best to integrate with respect to x first:

∫∫∫

G
simple xz-solid

f(x, y, z) dV =
∫∫

R

[∫ g2(x,z)

g1(x,z)

f(x, y, z) dy

]

dA (8)

∫∫∫

G
simple yz-solid

f(x, y, z) dV =
∫∫

R

[∫ g2(y,z)

g1(y,z)

f(x, y, z) dx

]

dA (9)

Sometimes a solid G can be viewed as a simple xy-solid, a simple xz-solid, and a simple

yz-solid, in which case the order of integration can be chosen to simplify the computations.

Example 5 In Example 2, we evaluated
∫∫∫

G

z dV

over the wedge in Figure 15.5.4 by integrating first with respect to z. Evaluate this integral

by integrating first with respect to x.

y

z

1

1

R

y2 + z2 = 1

(z = √1 – y2 ) 

Figure 15.5.8

Solution. The solid is bounded in the back by the plane x = 0 and in the front by the

plane x = y, so
∫∫∫

G

z dV =
∫∫

R

[∫ y

0

z dx

]

dA

where R is the projection of G on the yz-plane (Figure 15.5.8). The integration over R can

be performed first with respect to z and then y or vice versa. Performing the z-integration

first yields

∫∫∫

G

z dV =
∫ 1

0

∫

√
1−y2

0

∫ y

0

z dx dz dy =
∫ 1

0

∫

√
1−y2

0

zx

]y

x=0

dz dy

=
∫ 1

0

∫

√
1−y2

0

zy dz dy =
∫ 1

0

1

2
z2y

]

√
1−y2

z=0

dy =
∫ 1

0

1

2
(1 − y2)y dy =

1

8

which agrees with the result in Example 2. ◭



April 2, 2001 12:42 g65-ch15 Sheet number 42 Page number 1056 cyan magenta yellow black

1056 Multiple Integrals

EXERCISE SET 15.5 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–8, evaluate the iterated integral.

1.

∫ 1

−1

∫ 2

0

∫ 1

0

(x2 + y2 + z2) dx dy dz

2.

∫ 1/2

1/3

∫ π

0

∫ 1

0

zx sin xy dz dy dx

3.

∫ 2

0

∫ y2

−1

∫ z

−1

yz dx dz dy

4.

∫ π/4

0

∫ 1

0

∫ x2

0

x cos y dz dx dy

5.

∫ 3

0

∫

√
9−z2

0

∫ x

0

xy dy dx dz

6.

∫ 3

1

∫ x2

x

∫ ln z

0

xey dy dz dx

7.

∫ 2

0

∫

√
4−x2

0

∫ 3−x2−y2

−5+x2+y2

x dz dy dx

8.

∫ 2

1

∫ 2

z

∫

√
3y

0

y

x2 + y2
dx dy dz

In Exercises 9–12, evaluate the triple integral.

9.

∫∫∫

G

xy sin yz dV , where G is the rectangular box defined

by the inequalities 0 ≤ x ≤ π, 0 ≤ y ≤ 1, 0 ≤ z ≤ π/6.

10.

∫∫∫

G

y dV , where G is the solid enclosed by the plane

z = y, the xy-plane, and the parabolic cylinder y = 1 − x2.

11.

∫∫∫

G

xyz dV , where G is the solid in the first octant that

is bounded by the parabolic cylinder z = 2 − x2 and the

planes z = 0, y = x, and y = 0.

12.

∫∫∫

G

cos(z/y) dV , where G is the solid defined by the in-

equalities π/6 ≤ y ≤ π/2, y ≤ x ≤ π/2, 0 ≤ z ≤ xy.

C 13. Use the numerical triple integral operation of a CAS to

approximate

∫∫∫

G

√

x + z2

y
dV

where G is the rectangular box defined by the inequalities

0 ≤ x ≤ 3, 1 ≤ y ≤ 2, −2 ≤ z ≤ 1.

C 14. Use the numerical triple integral operation of a CAS to

approximate
∫∫∫

G

e−x2−y2−z2

dV

where G is the spherical region x2 + y2 + z2 ≤ 1.

In Exercises 15–18, use a triple integral to find the volume of

the solid.

15. The solid in the first octant bounded by the coordinate planes

and the plane 3x + 6y + 4z = 12.

16. The solid bounded by the surface z = √
y and the planes

x + y = 1, x = 0, and z = 0.

17. The solid bounded by the surface y = x2 and the planes

y + z = 4 and z = 0.

18. The wedge in the first octant that is cut from the solid cylin-

der y2 + z2 ≤ 1 by the planes y = x and x = 0.

In Exercises 19–22, set up (but do not evaluate) an iterated

triple integral for the volume of the solid enclosed between

the given surfaces.

19.

x
y

z

z = 4x2 + y2

z = 4 – 3y2

20.

x
y

z

Cut view

z = 3x2 + y2

z = 8 – x2 – y2

21. The elliptic cylinder x2 +9y2 = 9 and the planes z = 0 and

z = x + 3.

22. The cylinders x2 + y2 = 1 and x2 + z2 = 1.

In Exercises 23 and 24, sketch the solid whose volume is

given by the integral.

23. (a)

∫ 1

−1

∫

√
1−x2

−
√

1−x2

∫ y+1

0

dz dy dx

(b)

∫ 9

0

∫ y/3

0

∫

√
y2−9x2

0

dz dx dy

(c)

∫ 1

0

∫

√
1−x2

0

∫ 2

0

dy dz dx
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24. (a)

∫ 3

0

∫ 9

x2

∫ 2

0

dz dy dx

(b)

∫ 2

0

∫ 2−y

0

∫ 2−x−y

0

dz dx dy

(c)

∫ 2

−2

∫ 4−y2

0

∫ 2

0

dx dz dy

The average value or mean value of a continuous function

f (x, y, z) over a solid G is defined as

fave =
1

V (G)

∫∫∫

G

f (x, y, z) dV

where V (G) is the volume of the solid (compare to the defi-

nition preceding Exercise 57 of Section 15.2). Use this defi-

nition in Exercises 25–28.

25. Find the average value of f (x, y, z) = x + y + z over the

tetrahedron shown in the accompanying figure.

y

x

z

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure Ex-25

26. Find the average value of f (x, y, z) = xyz over the spher-

ical region x2 + y2 + z2 ≤ 1.

C 27. Use the numerical triple integral operation of a CAS to ap-

proximate the average distance from the origin to a point in

the solid of Example 4.

C 28. Let d(x, y, z) be the distance from the point (z, z, z) to the

point (x, y, 0). Use the numerical triple integral operation of

a CAS to approximate the average value of d for 0 ≤ x ≤ 1,

0 ≤ y ≤ 1, and 0 ≤ z ≤ 1. Write a short explanation as to

why this value may be considered to be the average distance

between a point on the diagonal from (0, 0, 0) to (1, 1, 1)

and a point on the face in the xy-plane for the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1.

29. Let G be the tetrahedron in the first octant bounded by the

coordinate planes and the plane

x

a
+
y

b
+
z

c
= 1 (a > 0, b > 0, c > 0)

(a) List six different iterated integrals that represent the

volume of G.
(b) Evaluate any one of the six to show that the volume of

G is 1
6
abc.

30. Use a triple integral to derive the formula for the volume of

the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

In Exercises 31 and 32, express each integral as an equiva-

lent integral in which the z-integration is performed first, the

y-integration second, and the x-integration last.

31. (a)

∫ 5

0

∫ 2

0

∫

√
4−y2

0

f(x, y, z) dx dy dz

(b)

∫ 9

0

∫ 3−
√
x

0

∫ z

0

f(x, y, z) dy dz dx

(c)

∫ 4

0

∫ 8−y

y

∫

√
4−y

0

f(x, y, z) dx dz dy

32. (a)

∫ 3

0

∫

√
9−z2

0

∫

√
9−y2−z2

0

f (x, y, z) dx dy dz

(b)

∫ 4

0

∫ 2

0

∫ x/2

0

f (x, y, z) dy dz dx

(c)

∫ 4

0

∫ 4−y

0

∫

√
z

0

f (x, y, z) dx dz dy

C 33. (a) Find the region G over which the triple integral
∫∫∫

G

(1 − x2 − y2 − z2) dV

has its maximum value.

(b) Use the numerical triple integral operation of a CAS to

approximate the maximum value.

(c) Find the exact maximum value.

34. Let G be the rectangular box defined by the inequalities

a ≤ x ≤ b, c ≤ y ≤ d, k ≤ z ≤ ℓ. Show that

∫∫∫

G

f (x)g(y)h(z) dV

=
[∫ b

a

f (x) dx

] [∫ d

c

g(y) dy

] [∫ ℓ

k

h(z) dz

]

35. Use the result of Exercise 34 to evaluate

(a)

∫∫∫

G

xy2 sin z dV , where G is the set of points satis-

fying −1 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ π/2;

(b)

∫∫∫

G

e2x+y−z dV , where G is the set of points satisfy-

ing 0 ≤ x ≤ 1, 0 ≤ y ≤ ln 3, 0 ≤ z ≤ ln 2.
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15.6 CENTROID, CENTER OF GRAVITY, THEOREM OF PAPPUS

Suppose that a rigid physical body is acted on by a gravitational field. Because the

body is composed of many particles, each of which is affected by gravity, the action

of a constant gravitational field on the body consists of a large number of forces dis-

tributed over the entire body. However, these individual forces can be replaced by a

single force acting at a point called the center of gravity of the body. In this section

we will show how double and triple integrals can be used to locate centers of gravity.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DENSITY OF A LAMINA
Let us consider an idealized flat object that is thin enough to be viewed as a two-dimensional

plane region (Figure 15.6.1). Such an object is called a lamina. A lamina is called homoge-

neous if its composition is uniform throughout and inhomogeneous otherwise. The density

of a homogeneous lamina is defined to be its mass per unit area. Thus, the density δ of a

homogeneous lamina of mass M and area A is given by δ = M/A.

The thickness of a

lamina is negligible.

Figure 15.6.1

For an inhomogeneous lamina the composition may vary from point to point, and hence

an appropriate definition of “density” must reflect this. To motivate such a definition, suppose

that the lamina is placed in an xy-plane. The density at a point (x, y) can be specified by a

function δ(x, y), called the density function, which can be interpreted as follows. Construct

a small rectangle centered at (x, y) and let�Mand�Abe the mass and area of the portion

of the lamina enclosed by this rectangle (Figure 15.6.2). If the ratio�M/�Aapproaches a

limiting value as the dimensions (and hence the area) of the rectangle approach zero, then

this limit is considered to be the density of the lamina at (x, y). Symbolically,

δ(x, y) = lim�A→0

�M�A (1)

From this relationship we obtain the approximation�M≈ δ(x, y)�A (2)

which relates the mass and area of a small rectangular portion of the lamina centered at

(x, y). It is assumed that as the dimensions of the rectangle tend to zero, the error in this

approximation also tends to zero.

(x, y)

Area = ∆A

Mass = ∆M

y

x

Figure 15.6.2

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MASS OF A LAMINA
The following result shows how to find the mass of a lamina from its density function.

15.6.1 MASS OF A LAMINA. If a lamina with a continuous density function δ(x, y)

occupies a region R in the xy-plane, then its total mass M is given by

M =
∫∫

R

δ(x, y) dA (3)

y

x

* *(xk, yk )

Area = ∆Ak

Mass = ∆Mk

Figure 15.6.3

This formula can be motivated by a familiar limiting process that can be outlined as follows:

Imagine the lamina to be subdivided into rectangular pieces using lines parallel to the

coordinate axes and excluding from consideration any nonrectangular parts at the boundary

(Figure 15.6.3). Assume that there are n such rectangular pieces, and suppose that the kth

piece has area�Ak . If we let (x∗
k , y

∗
k ) denote the center of the kth piece, then from Formula

(2), the mass�Mk of this piece can be approximated by�Mk ≈ δ(x∗
k , y

∗
k

)�Ak (4)

and hence the mass M of the entire lamina can be approximated by

M ≈
n

∑

k=1

δ(x∗
k , y

∗
k

)�Ak
If we now increase n in such a way that the dimensions of the rectangles tend to zero, then
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it is plausible that the errors in our approximations will approach zero, so

M = lim
n→+�

n
∑

k=1

δ(x∗
k , y

∗
k)�Ak =

∫∫

R

δ(x, y) dA

Example 1 A triangular lamina with vertices (0, 0), (0, 1), and (1, 0) has density function

δ(x, y) = xy. Find its total mass.
 y =  –x  + 1

R

(0, 0) (1, 0)

(0, 1)

x

y

Figure 15.6.4

Solution. Referring to (3) and Figure 15.6.4, the mass M of the lamina is

M =
∫∫

R

δ(x, y) dA =
∫∫

R

xy dA =
∫ 1

0

∫ −x+1

0

xy dy dx

=
∫ 1

0

[

1

2
xy2

]−x+1

y=0

dx =
∫ 1

0

[

1

2
x3 − x2 +

1

2
x

]

dx =
1

24
(unit of mass) ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CENTER OF GRAVITY OF A LAMINA
Assume that the acceleration due to the force of gravity is constant and acts downward, and

suppose that a lamina occupies a region R in a horizontal xy-plane. It can be shown that

there exists a unique point (x̄, ȳ) (which may or may not belong to R) such that the effect

of gravity on the lamina is “equivalent” to that of a single force acting at the point (x̄, ȳ).

This point is called the center of gravity of the lamina, and if it is in R then the lamina will

balance horizontally on the point of a support placed at (x̄, ȳ). For example, the center of

gravity for a disk of uniform density is at the center of the disk and the center of gravity for

a rectangular region of uniform density is at the center of the rectangle. For less symmetric

lamina or for lamina in which the density varies from point to point, locating the center of

gravity requires calculus.

15.6.2 PROBLEM. Suppose that a lamina with a continuous density function δ(x, y)

occupies a region R in a horizontal xy-plane. Find the coordinates (x̄, ȳ) of the center of

gravity.

To motivate the solution, consider what happens if we try to balance the lamina on a

knife-edge parallel to the x-axis. Suppose the lamina in Figure 15.6.5 is placed on a knife-

edge along a line y = c that does not pass through the center of gravity. Because the lamina

behaves as if its entire mass is concentrated at the center of gravity (x̄, ȳ), the lamina will be

rotationally unstable and the force of gravity will cause a rotation about y = c. Similarly,

the lamina will undergo a rotation if placed on a knife-edge along y = d . However, if the

knife-edge runs along the line y = ȳ through the center of gravity, the lamina will be in

perfect balance. Similarly, the lamina will be in perfect balance on a knife-edge along the

line x = x̄ through the center of gravity. This suggests that the center of gravity of a lamina

can be determined as the intersection of two lines of balance, one parallel to the x-axis and

the other parallel to the y-axis. In order to find these lines of balance, we will need some

preliminary results about rotations.

(x, y)

y = c y = d

x = x

y = y

Force of gravity acting on the

center of gravity of the lamina

y

x

Figure 15.6.5

Children on a seesaw learn by experience that a lighter child can balance a heavier one

by sitting farther from the fulcrum or pivot point. This is because the tendency for an object

to produce rotation is proportional not only to its mass but also to the distance between

the object and the fulcrum. To make this more precise, consider an x-axis, which we view

as a weightless beam. If a point-mass m is located on the axis at x, then the tendency for

that mass to produce a rotation of the beam about a point a on the axis is measured by the

following quantity, called the moment of m about x = a:
[

moment of m

about a

]

= m(x − a)

The number x− a is called the lever arm. Depending on whether the mass is to the right or
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left of a, the lever arm is either the distance between x and a or the negative of this distance

(Figure 15.6.6). Positive lever arms result in positive moments and clockwise rotations, and

negative lever arms result in negative moments and counterclockwise rotations.a x

m

x – a

Positive moment

about a

(clockwise rotation)

x a

m

x – a

Negative moment

about a

(counterclockwise rotation)

Figure 15.6.6

Suppose that masses m1,m2, . . . , mn are located at x1, x2, . . . , xn on a coordinate axis

and a fulcrum is positioned at the point a (Figure 15.6.7). Depending on whether the sum

of the moments about a,
n

∑

k=1

mk(xk − a) = m1(x1 − a)+m2(x2 − a)+ · · · +mn(xn − a)

is positive, negative, or zero, a weightless beam along the axis will rotate clockwise about a,

rotate counterclockwise about a, or balance perfectly. In the last case, the system of masses

is said to be in equilibrium.

x1

m1

x2

m2

xn

mn
.        .        .

a

Fulcrum

Figure 15.6.7

The preceding ideas can be extended to masses distributed in two-dimensional space. If

we imagine the xy-plane to be a weightless sheet supporting a point-mass m located at a

point (x, y), then the tendency for the mass to produce a rotation of the sheet about the line

x = a is m(x − a), called the moment of m about x = a, and the tendency for the mass to

produce a rotation about the line y = c is m(y − c), called the moment of m about y = c

(Figure 15.6.8). In summary,
[

moment of m
about the
line x = a

]

= m(x − a) and

[

moment of m
about the
line y = c

]

= m(y − c) (5–6)

If a number of masses are distributed throughout the xy-plane, then the plane (viewed as

a weightless sheet) will balance on a knife-edge along the line x = a if the sum of the

moments about the line is zero. Similarly for the line y = c.

x

x = a

y = c
y – c

x – a

(x, y)

a

c y

m

Figure 15.6.8

We are now ready to solve Problem 15.6.2. We imagine the lamina to be subdivided into

rectangular pieces using lines parallel to the coordinate axes and excluding from consider-

ation any nonrectangular pieces at the boundary (Figure 15.6.3). We assume that there are

n such rectangular pieces and that the kth piece has area�Ak and mass�Mk . We will let

(x∗
k , y

∗
k ) be the center of the kth piece, and we will assume that the entire mass of the kth

piece is concentrated at its center. From (4), the mass of the kth piece can be approximated by�Mk ≈ δ(x∗
k , y

∗
k

)�Ak
Since the lamina balances on the lines x = x̄ and y = ȳ, the sum of the moments of the

rectangular pieces about those lines should be close to zero; that is,

n
∑

k=1

(x∗
k − x̄
)�Mk =

n
∑

k=1

(x∗
k − x̄)δ(x∗

k , y
∗
k

)�Ak ≈ 0

n
∑

k=1

(y∗
k − ȳ
)�Mk =

n
∑

k=1

(y∗
k − ȳ)δ(x∗

k , y
∗
k

)�Ak ≈ 0

If we now increase n in such a way that the dimensions of the rectangles tend to zero,

then it is plausible that the errors in our approximations will approach zero, so that

lim
n→+�

n
∑

k=1

(x∗
k − x̄)δ(x∗

k , y
∗
k

)�Ak = 0

lim
n→+�

n
∑

k=1

(y∗
k − ȳ)δ(x∗

k , y
∗
k

)�Ak = 0
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from which we obtain
∫∫

R

(x − x̄)δ(x, y) dA = 0

∫∫

R

(y − ȳ)δ(x, y) dA = 0

Since x̄ and ȳ are constant, these equations can be rewritten as
∫∫

R

xδ(x, y) dA = x̄

∫∫

R

δ(x, y) dA

∫∫

R

yδ(x, y) dA = ȳ

∫∫

R

δ(x, y) dA

from which we obtain the following formulas for the center of gravity of the lamina:

Center of Gravity (x̄, ȳ) of a Lamina

x̄ =

∫∫

R

xδ(x, y) dA

∫∫

R

δ(x, y) dA

, ȳ =

∫∫

R

yδ(x, y) dA

∫∫

R

δ(x, y) dA

(7–8)

Observe that in both formulas the denominator is the mass M of the lamina [see (3)]. The

numerator in the formula for x̄ is denoted byMy and is called the first moment of the lamina

about the y-axis; the numerator of the formula for ȳ is denoted by Mx and is called the first

moment of the lamina about the x-axis. Thus, Formulas (7) and (8) can be expressed as

x̄ =
My

M
=

1

mass of R

∫∫

R

xδ(x, y) dA (9)

ȳ =
Mx

M
=

1

mass of R

∫∫

R

yδ(x, y) dA (10)

Example 2 Find the center of gravity of the triangular lamina with vertices (0, 0), (0, 1),

and (1, 0) and density function δ(x, y) = xy.

Solution. The lamina is shown in Figure 15.6.4. In Example 1 we found the mass of the

lamina to be

M =
∫∫

R

δ(x, y) dA =
∫∫

R

xy dA =
1

24

The moment of the lamina about the y-axis is

My =
∫∫

R

xδ(x, y) dA =
∫∫

R

x2y dA =
∫ 1

0

∫ −x+1

0

x2y dy dx

=
∫ 1

0

[

1

2
x2y2

]−x+1

y=0

dx =
∫ 1

0

(

1

2
x4 − x3 +

1

2
x2

)

dx =
1

60

and the moment about the x-axis is

Mx =
∫∫

R

yδ(x, y) dA =
∫∫

R

xy2 dA =
∫ 1

0

∫ −x+1

0

xy2 dy dx

=
∫ 1

0

[

1

3
xy3

]−x+1

y=0

dx =
∫ 1

0

(

−
1

3
x4 + x3 − x2 +

1

3
x

)

dx =
1

60
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From (9) and (10),

x̄ =
My

M
=

1/60

1/24
=

2

5
, ȳ =

Mx

M
=

1/60

1/24
=

2

5

so the center of gravity is
(

2
5
, 2

5

)

. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CENTROIDS
In the special case of a homogeneous lamina, the center of gravity is called the centroid of

the lamina or sometimes the centroid of the region R. Because the density function δ is

constant for a homogeneous lamina, the factor δ may be moved through the integral signs

in (7) and (8) and canceled. Thus, the centroid (x̄, ȳ) is a geometric property of the region

R and is given by the following formulas:

Centroid of a Region R

x̄ =

∫∫

R

x dA

∫∫

R

dA

=
1

area of R

∫∫

R

x dA
(11)

ȳ =

∫∫

R

y dA

∫∫

R

dA

=
1

area of R

∫∫

R

y dA (12)

x

y

R

–a a

Figure 15.6.9

Example 3 Find the centroid of the semicircular region in Figure 15.6.9.

Solution. By symmetry, x̄ = 0 since the y-axis is obviously a line of balance. From (12),

ȳ =
1

area of R

∫∫

R

y dA =
1

1
2
πa2

∫∫

R

y dA

=
1

1
2
πa2

∫ π

0

∫ a

0

(r sin θ)r dr dθ
Evaluating in

polar coordinates

=
1

1
2
πa2

∫ π

0

[

1

3
r3 sin θ

]a

r=0

dθ

=
1

1
2
πa2

(

1

3
a3

) ∫ π

0

sin θ dθ =
1

1
2
πa2

(

2

3
a3

)

=
4a

3π

so the centroid is

(

0,
4a

3π

)

. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CENTER OF GRAVITY AND
CENTROID OF A SOLID

For a three-dimensional solid G, the formulas for moments, center of gravity, and centroid

are similar to those for laminas. If G is homogeneous, then its density is defined to be its

mass per unit volume. Thus, ifG is a homogeneous solid of massM and volume V , then its

density δ is given by δ = M/V . If G is inhomogeneous and is in an xyz-coordinate system,

then its density at a general point (x, y, z) is specified by a density function δ(x, y, z)

whose value at a point can be viewed as a limit:

δ(x, y, z) = lim�V→0

�M�V
where
�M

and
�V

represent the mass and volume of a rectangular parallelepiped, centered

at (x, y, z), whose dimensions tend to zero (Figure 15.6.10).



April 2, 2001 12:42 g65-ch15 Sheet number 49 Page number 1063 cyan magenta yellow black

15.6 Centroid, Center of Gravity, Theorem of Pappus 1063

Using the discussion of laminas as a model, you should be able to show that the mass M

of a solid with a continuous density function δ(x, y, z) is

M = mass of G =
∫∫∫

G

δ(x, y, z) dV (13)

The formulas for center of gravity and centroid are

Center of Gravity (x̄, ȳ, z̄) of a Solid G

x̄ =
1

M

∫∫∫

G

xδ(x, y, z) dV

ȳ =
1

M

∫∫∫

G

yδ(x, y, z) dV

z̄ =
1

M

∫∫∫

G

zδ(x, y, z) dV

Centroid (x̄, ȳ, z̄) of a Solid G

x̄ =
1

V

∫∫∫

G

x dV

ȳ =
1

V

∫∫∫

G

y dV

z̄ =
1

V

∫∫∫

G

z dV

(14–15)

z

y

x

(x, y, z)

Volume = ∆V

Mass = ∆M

G

Figure 15.6.10

Example 4 Find the mass and the center of gravity of a cylindrical solid of height h

and radius a (Figure 15.6.11), assuming that the density at each point is proportional to the

distance between the point and the base of the solid.
y

x

z

G

x2 + y2 = a2

z = h

h

a

Figure 15.6.11

Solution. Since the density is proportional to the distance z from the base, the density

function has the form δ(x, y, z) = kz, where k is some (unknown) positive constant of

proportionality. From (13) the mass of the solid is

M =
∫∫∫

G

δ(x, y, z) dV =
∫ a

−a

∫

√
a2−x2

−
√
a2−x2

∫ h

0

kz dz dy dx

= k

∫ a

−a

∫

√
a2−x2

−
√
a2−x2

1

2
h2 dy dx

= kh2

∫ a

−a

√

a2 − x2 dx

= 1
2
kh2πa2 Interpret the integral as

the area of a semicircle.

Without additional information, the constant k cannot be determined. However, as we will

now see, the value of k does not affect the center of gravity.

From (14),

z̄ =
1

M

∫∫∫

G

zδ(x, y, z) dV =
1

1
2
kh2πa2

∫∫∫

G

zδ(x, y, z) dV

=
1

1
2
kh2πa2

∫ a

−a

∫

√
a2−x2

−
√
a2−x2

∫ h

0

z(kz) dz dy dx

=
k

1
2
kh2πa2

∫ a

−a

∫

√
a2−x2

−
√
a2−x2

1

3
h3 dy dx

=
1
3
kh3

1
2
kh2πa2

∫ a

−a
2
√

a2 − x2 dx

=
1
3
kh3πa2

1
2
kh2πa2

=
2

3
h
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Similar calculations using (14) will yield x̄ = ȳ = 0. However, this is evident by

inspection, since it follows from the symmetry of the solid and the form of its density function

that the center of gravity is on the z-axis. Thus, the center of gravity is
(

0, 0, 2
3
h
)

. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THEOREM OF PAPPUS
The following theorem, due to the Greek mathematician Pappus,

∗
gives an important re-

lationship between the centroid of a plane region R and the volume of the solid generated

when the region is revolved about a line.

15.6.3 THEOREM. IfR is a bounded plane region andL is a line that lies in the plane

of R but is entirely on one side of R, then the volume of the solid formed by revolving R

about L is given by

volume = (area of R) ·
(

distance traveled

by the centroid

)

Proof. Introduce an xy-coordinate system so that L is along the y-axis and the region R

is in the first quadrant (Figure 15.6.12). Let R be partitioned into subregions in the usual

way and let Rk be a typical rectangle interior to R. If (x∗
k , y

∗
k ) is the center of Rk, and if the

area of Rk is�Ak =�xk�yk , then from Formula (1) of Section 6.3 the volume generated

by Rk as it revolves about L is

2πx∗
k�xk�yk = 2πx∗

k�Ak
Therefore, the total volume of the solid is approximately

V ≈
n

∑

k=1

2πx∗
k�Ak

from which it follows that the exact volume is

V =
∫∫

R

2πx dA = 2π

∫∫

R

x dA

Thus, it follows from (11) that

V = 2π · x̄ · [area of R]

This completes the proof since 2πx̄ is the distance traveled by the centroid when R is

revolved about the y-axis.

Figure 15.6.12

x

∆xk

∆yk

∆yk

Rk

(xk, yk )*

*

*

*
∆xkL

L

Average

radius = xk

Volume = 2p . average radius . thickness . height

           = 2pxk ∆ xk∆yk

y

∗
PAPPUS OF ALEXANDRIA (4th century A.D.). Greek mathematician. Pappus lived during the early Christian

era when mathematical activity was in a period of decline. His main contributions to mathematics appeared in a

series of eight books called The Collection (written about 340 A.D.). This work, which survives only partially,

contained some original results but was devoted mostly to statements, refinements, and proofs of results by earlier

mathematicians. Pappus’ Theorem, stated without proof in Book VII of The Collection, was probably known and

proved in earlier times. This result is sometimes called Guldin’s Theorem in recognition of the Swiss mathematician,

Paul Guldin (1577–1643), who rediscovered it independently.
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Example 5 Use Pappus’ Theorem to find the volumeV of the torus generated by revolving

a circular region of radius b about a line at a distance a (greater than b) from the center of

the circle (Figure 15.6.13).
a

b

The centroid travels

a distance 2pa.

Figure 15.6.13

Solution. By symmetry, the centroid of a circular region is its center. Thus, the distance

traveled by the centroid is 2πa. Since the area of a circle of radius b is πb2, it follows from

Pappus’ Theorem that the volume of the torus is

V = (2πa)(πb2) = 2π2ab2 ◭

EXERCISE SET 15.6 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Where should the fulcrum be placed so that the beam in the

accompanying figure is in equilibrium?

m2 m3m1

0 5

5 10 20

10

Figure Ex-1

2. Given that the beam in the accompanying figure is in equi-

librium, what is the mass m?

m3m2 mm1

0 3 42

10 43 ?

6

Figure Ex-2

For the regions in Exercises 3 and 4, make a conjecture about

the coordinates of the centroid, and confirm your conjecture

by integrating.

3.

x

y

(1, 1)
4.

x

y

1

1

In Exercises 5–10, find the centroid of the region.

5.

1

y = x

y

x

6.

1

y

x

y = x2

7.

x

y

y = 2 – x2

y = x

8.

x

y

y = √1 – x2

9. The region above the x-axis and between the circles

x2 + y2 = a2 and x2 + y2 = b2 (a < b).

10. The region enclosed between the y-axis and the right half

of the circle x2 + y2 = a2.

In Exercises 11 and 12, make a conjecture about the coordi-

nates of the center of gravity, and confirm your conjecture by

integrating.

11. The lamina of Exercise 3 with density function

δ(x, y) = |x + y − 1|.
12. The lamina of Exercise 4 with density function

δ(x, y) = 1 + x2 + y2.

In Exercises 13–16, find the mass and center of gravity of the

lamina.

13. A lamina with density δ(x, y) = x + y is bounded by the

x-axis, the line x = 1, and the curve y =
√
x.
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14. A lamina with density δ(x, y) = y is bounded by y = sin x,

y = 0, x = 0, and x = π.

15. A lamina with density δ(x, y) = xy is in the first quadrant

and is bounded by the circle x2+y2 = a2 and the coordinate

axes.

16. A lamina with density δ(x, y) = x2 + y2 is bounded by the

x-axis and the upper half of the circle x2 + y2 = 1.

For the solids in Exercises 17 and 18, make a conjecture about

the coordinates of the centroid, and confirm your conjecture

by integrating.

17.

y

x

z

(1, 1, 1)

18.

y

x

z

(0, 0, 2)

(1, 0, 0)

In Exercises 19–24, find the centroid of the solid.

19. The tetrahedron in the first octant enclosed by the coordinate

planes and the plane x + y + z = 1.

20. The solid bounded by the parabolic cylinder z = 1−y2 and

the planes x + z = 1, x = 0, and z = 0.

21. The solid bounded by the surface z = y2 and the planes

x = 0, x = 1, and z = 1.

22. The solid in the first octant bounded by the surface z = xy

and the planes z = 0, x = 2, and y = 2.

23. The solid in the first octant that is bounded by the sphere

x2 + y2 + z2 = a2 and the coordinate planes.

24. The solid enclosed by the xy-plane and the hemisphere

z =
√

a2 − x2 − y2.

In Exercises 25–28, find the mass and center of gravity of the

solid.

25. The cube that has density δ(x, y, z) = a − x and is defined

by the inequalities 0 ≤ x ≤ a, 0 ≤ y ≤ a, and 0 ≤ z ≤ a.

26. The cylindrical solid that has density δ(x, y, z) = h−z and

is enclosed by x2 + y2 = a2, z = 0, y = 0, and z = h.

27. The solid that has density δ(x, y, z) = yz and is enclosed

by z = 1 − y2 (for y ≥ 0), z = 0, x = −1, and x = 1.

28. The solid that has density δ(x, y, z) = xz and is enclosed

by y = 9 − x2 (for x ≥ 0), x = 0, y = 0, z = 0, and z = 1.

29. Find the center of gravity of the square lamina with vertices

(0, 0), (1, 0), (0, 1), and (1, 1) if

(a) the density is proportional to the square of the distance

from the origin

(b) the density is proportional to the distance from the y-

axis.

30. Find the center of gravity of the cube that is determined by

the inequalities 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 if

(a) the density is proportional to the square of the distance

to the origin

(b) the density is proportional to the sum of the distances

to the faces that lie in the coordinate planes.

C 31. Use the numerical triple integral capability of a CAS to ap-

proximate the location of the centroid of the solid that is

bounded above by the surface z = 1/(1 + x2 + y2), below

by the xy-plane, and laterally by the plane y = 0 and the

surface y = sin x for 0 ≤ x ≤ π (see the accompanying

figure).

32. The accompanying figure shows the solid that is bounded

above by the surface z = 1/(x2 + y2 + 1), below by the

xy-plane, and laterally by the surface x2 + y2 = a2.

(a) By symmetry, the centroid of the solid lies on the z-

axis. Make a conjecture about the behavior of the z-

coordinate of the centroid as a→0+ and as a→+�.

(b) Find the z-coordinate of the centroid, and check your

conjecture by calculating the appropriate limits.

(c) Use a graphing utility to plot the z-coordinate of the cen-

troid versus a, and use the graph to estimate the value

of a for which the centroid is (0, 0, 0.25).

z

x y

Figure Ex-31

z

x
y

Figure Ex-32

33. Show that in polar coordinates the formulas for the centroid

(x̄, ȳ) of a region R are

x̄ =
1

area of R

∫∫

R

r2 cos θ dr dθ

ȳ =
1

area of R

∫∫

R

r2 sin θ dr dθ

34. Use the result of Exercise 33 to find the centroid (x̄, ȳ) of

the region enclosed by the cardioid r = a(1 + sin θ).

35. Use the result of Exercise 33 to find the centroid (x̄, ȳ) of

the petal of the rose r = sin 2θ in the first quadrant.

36. Let R be the rectangle bounded by the lines x = 0, x = 3,

y = 0, and y = 2. By inspection, find the centroid of R and

use it to evaluate
∫∫

R

x dA and

∫∫

R

y dA
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37. Use the Theorem of Pappus and the fact that the volume of a

sphere of radius a is V = 4
3
πa3 to show that the centroid of

the lamina that is bounded by the x-axis and the semicircle

y =
√
a2 − x2 is (0, 4a/(3π)). (This problem was solved

directly in Example 3.)

38. Use the Theorem of Pappus and the result of Exercise 37

to find the volume of the solid generated when the region

bounded by the x-axis and the semicircle y =
√
a2 − x2 is

revolved about

(a) the line y = −a (b) the line y = x − a.

39. Use the Theorem of Pappus and the fact that the area of an

ellipse with semiaxes a and b is πab to find the volume of

the elliptical torus generated by revolving the ellipse

(x − k)2

a2
+
y2

b2
= 1

about the y-axis. Assume that k > a.

40. Use the Theorem of Pappus to find the volume of the solid

that is generated when the region enclosed by y = x2 and

y = 8 − x2 is revolved about the x-axis.

41. Use the Theorem of Pappus to find the centroid of the tri-

angular region with vertices (0, 0), (a, 0), and (0, b), where

a > 0 and b > 0. [Hint: Revolve the region about the x-axis

to obtain ȳ and about the y-axis to obtain x̄.]

The tendency of a lamina to resist a change in rotational mo-

tion about an axis is measured by its moment of inertia about

that axis. If the lamina occupies a region R of the xy-plane,

and if its density function δ(x, y) is continuous onR, then the

moments of inertia about the x-axis, the y-axis, and the z-axis

are denoted by Ix, Iy , and Iz, respectively, and are defined by

Ix =
∫∫

R

y2 δ(x, y) dA, Iy =
∫∫

R

x2 δ(x, y) dA,

Iz =
∫∫

R

(x2 + y2) δ(x, y) dA

These definitions will be used in Exercises 42 and 43.

42. Consider the rectangular lamina that occupies the region

described by the inequalities 0 ≤ x ≤ a and 0 ≤ y ≤ b.

Assuming that the lamina has constant density δ, show that

Ix =
δab3

3
, Iy =

δa3b

3
, Iz =

δab(a2 + b2)

3

43. Consider the circular lamina that occupies the region de-

scribed by the inequalities 0 ≤ x2 + y2 ≤ a2. Assuming

that the lamina has constant density δ, show that

Ix = Iy =
δπa4

4
, Iz =

δπa4

2

15.7 TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL
COORDINATES

Earlier we saw that some double integrals are easier to evaluate in polar coordinates

than in rectangular coordinates. Similarly, some triple integrals are easier to evaluate

in cylindrical or spherical coordinates than in rectangular coordinates. In this section

we will study triple integrals in these coordinate systems.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TRIPLE INTEGRALS IN
CYLINDRICAL COORDINATES

Recall that in rectangular coordinates the triple integral of a continuous function f over a

solid region G is defined as
∫∫∫

G

f(x, y, z) dV = lim
n→+�

n
∑

k=1

f(x∗
k , y

∗
k , z

∗
k

)�
Vk

where
�V

k denotes the volume of a rectangular parallelepiped interior toG and (x∗
k , y

∗
k , z

∗
k)

is a point in this parallelepiped (see Figure 15.5.1). Triple integrals in cylindrical and

spherical coordinates are defined similarly, except that the region G is divided not into

rectangular parallelepipeds but into regions more appropriate to these coordinate systems.

In cylindrical coordinates, the simplest equations are of the form

r = constant, θ = constant, z = constant

As indicated in Figure 12.8.2b, the first equation represents a right circular cylinder centered

on the z-axis, the second a vertical half-plane hinged on the z-axis, and the third a horizontal
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plane. These surfaces can be paired up to determine solids called cylindrical wedges or

cylindrical elements of volume. To be precise, a cylindrical wedge is a solid enclosed

between six surfaces of the following form:

two cylinders r = r1, r = r2 (r1 < r2)

two half-planes θ = θ1, θ = θ2 (θ1 < θ2)

two planes z = z1, z = z2 (z1 < z2)

(Figure 15.7.1). The dimensions θ2 − θ1, r2 − r1, and z2 − z1 are called the central angle,

thickness, and height of the wedge.

y

x

z

z2

z1

r1
u1

u2

r2

Figure 15.7.1
To define the triple integral over G of a function f(r, θ, z) in cylindrical coordinates we

proceed as follows:

• Subdivide G into pieces by a three-dimensional grid consisting of concentric circular

cylinders centered on the z-axis, half-planes hinged on the z-axis, and horizontal planes.

Exclude from consideration all pieces that contain any points outside of G, thereby

leaving only cylindrical wedges that are subsets of G.

• Assume that there are n such cylindrical wedges, and denote the volume of the kth

cylindrical wedge by�Vk . As indicated in Figure 15.7.2, let (r∗
k , θ

∗
k , z

∗
k) be any point

in the kth cylindrical wedge.

• Repeat this process with more and more subdivisions so that as n increases, the height,

thickness, and central angle of the cylindrical wedges approach zero. Define

∫∫∫

G

f(r, θ, z) dV = lim
n→+�

n
∑

k=1

f(r∗
k , θ

∗
k , z

∗
k

)�Vk (1)

y

x

z

Volume ∆Vk

(rk, uk , zk )* * *

G

Figure 15.7.2

For computational purposes, it will be helpful to express (1) as an iterated integral.

Toward this end we note that the volume�Vk of the kth cylindrical wedge can be expressed

as�Vk = [area of base] · [height] (2)

If we denote the thickness, central angle, and height of this wedge by�rk ,�θk , and�zk , and if we choose the arbitrary point (r∗
k , θ

∗
k , z

∗
k) to lie above the “center” of the base

(Figures 15.3.5 and 15.7.3), then it follows from (5) of Section 15.3 that the base has area�Ak = r∗
k�rk�θk . Thus, (2) can be written as�Vk = r∗

k�rk�θk�zk = r∗
k�zk�rk�θk

Substituting this expression in (1) yields
∫∫∫

G

f(r, θ, z) dV = lim
n→+�

n
∑

k=1

f(r∗
k , θ

∗
k , z

∗
k)r

∗
k�zk�rk�θk

which suggests that a triple integral in cylindrical coordinates can be evaluated as an iterated

integral of the form

∫∫∫

G

f(r, θ, z) dV =
∫∫∫

appropriate
limits

f(r, θ, z)r dz dr dθ (3)

y

x

z

∆zk

∆rk

∆uk

Area = ∆ Ak = rk ∆ rk∆uk

(rk, uk , zk )*

*

*

* *

rk

Figure 15.7.3

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Note the extra factor of r that appears in the integrand on converting from the

triple integral to the iterated integral. In this formula the integration with respect to z is

done first, then with respect to r , and then with respect to θ , but any order of integration is

allowable.
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The following theorem, which we state without proof, makes the preceding ideas more

precise.

15.7.1 THEOREM. LetG be a solid whose upper surface has the equation z = g2(r, θ)

and whose lower surface has the equation z = g1(r, θ) in cylindrical coordinates. If the

projection of the solid on the xy-plane is a simple polar region R, and if f(r, θ, z) is

continuous on G, then

∫∫∫

G

f(r, θ, z) dV =
∫∫

R

[∫ g2(r,θ)

g1(r,θ)

f(r, θ, z) dz

]

dA (4)

where the double integral over R is evaluated in polar coordinates. In particular, if the

projection R is as shown in Figure 15.7.4, then (4) can be written as

∫∫∫

G

f(r, θ, z) dV =
∫ θ2

θ1

∫ r2(θ)

r1(θ)

∫ g2(r,θ)

g1(r,θ)

f(r, θ, z)r dz dr dθ (5)

y

x

z

u1

u2

r = r1(u)
r = r2(u)

z = g2(r, u)

z = g1(r, u)

G

R

Figure 15.7.4

The type of solid to which Formula (5) applies is illustrated in Figure 15.7.4. To apply

(4) and (5) it is best to begin with a three-dimensional sketch of the solid G, from which

the limits of integration can be obtained as follows:

Step 1. Identify the upper surface z = g2(r, θ) and the lower surface

z = g1(r, θ) of the solid. The functions g1(r, θ) and g2(r, θ) de-

termine the z-limits of integration. (If the upper and lower surfaces

are given in rectangular coordinates, convert them to cylindrical

coordinates.)

Step 2. Make a two-dimensional sketch of the projection R of the solid on

the xy-plane. From this sketch the r- and θ -limits of integration may

be obtained exactly as with double integrals in polar coordinates.

Example 1 Use triple integration in cylindrical coordinates to find the volume and the

centroid of the solidG that is bounded above by the hemisphere z =
√

25 − x2 − y2, below

by the xy-plane, and laterally by the cylinder x2 + y2 = 9.
y

x

z

G

R

x2 + y2 = 9

(r = 3)

z = 0

z = √25 – x2 – y2 

(z = √25 – r2 )

R

x

y

r = 3

Figure 15.7.5

Solution. The solid G and its projection R on the xy-plane are shown in Figure 15.7.5.

In cylindrical coordinates, the upper surface of G is the hemisphere z =
√

25 − r2 and the

lower surface is the plane z = 0. Thus, from (4), the volume of G is

V =
∫∫∫

G

dV =
∫∫

R

[

∫

√
25−r2

0

dz

]

dA

For the double integral over R, we use polar coordinates:

V =
∫ 2π

0

∫ 3

0

∫

√
25−r2

0

r dz dr dθ =
∫ 2π

0

∫ 3

0

[

rz
]

√
25−r2

z=0
dr dθ

=
∫ 2π

0

∫ 3

0

r
√

25 − r2 dr dθ =
∫ 2π

0

[

−
1

3
(25 − r2)3/2

]3

r=0

dθ

u = 25 − r2

du = −2r dr
=

∫ 2π

0

61

3
dθ =

122

3
π
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From this result and (15) of Section 15.6,

z̄ =
1

V

∫∫∫

G

z dV =
3

122π

∫∫∫

G

z dV =
3

122π

∫∫

R

[

∫

√
25−r2

0

z dz

]

dA

=
3

122π

∫ 2π

0

∫ 3

0

∫

√
25−r2

0

zr dz dr dθ =
3

122π

∫ 2π

0

∫ 3

0

[

1

2
rz2

]

√
25−r2

z=0

dr dθ

=
3

244π

∫ 2π

0

∫ 3

0

(25r − r3) dr dθ =
3

244π

∫ 2π

0

369

4
dθ =

1107

488

By symmetry, the centroid (x̄, ȳ, z̄) of G lies on the z-axis, so x̄ = ȳ = 0. Thus, the

centroid is at the point (0, 0, 1107/488). ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONVERTING TRIPLE INTEGRALS
FROM RECTANGULAR TO
CYLINDRICAL COORDINATES

Sometimes a triple integral that is difficult to integrate in rectangular coordinates can be

evaluated more easily by making the substitution x = r cos θ, y = r sin θ, z = z to convert

it to an integral in cylindrical coordinates. Under such a substitution, a rectangular triple

integral can be expressed as an iterated integral in cylindrical coordinates as

∫∫∫

G

f(x, y, z) dV =
∫∫∫

appropriate
limits

f(r cos θ, r sin θ, z)r dz dr dθ (6)

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In (6), the order of integration is first with respect to z, then r , and then θ.

However, the order of integration can be changed, provided the limits of integration are

adjusted accordingly.

Example 2 Use cylindrical coordinates to evaluate

∫ 3

−3

∫

√
9−x2

−
√

9−x2

∫ 9−x2−y2

0

x2 dz dy dx

y

x

z

R

x2 + y2 = 9

z = 9 – x2 – y29

3

G

Figure 15.7.6

Solution. In problems of this type, it is helpful to sketch the region of integration G and

its projection R on the xy-plane. From the z-limits of integration, the upper surface of G is

the paraboloid z = 9 − x2 − y2 and the lower surface is the xy-plane z = 0. From the x-

and y-limits of integration, the projection R is the region in the xy-plane enclosed by the

circle x2 + y2 = 9 (Figure 15.7.6). Thus,

∫ 3

−3

∫

√
9−x2

−
√

9−x2

∫ 9−x2−y2

0

x2 dz dy dx =
∫∫∫

G

x2 dV

=
∫∫

R

[

∫ 9−r2

0

r2 cos2 θ dz

]

dA =
∫ 2π

0

∫ 3

0

∫ 9−r2

0

(r2 cos2 θ) r dz dr dθ

=
∫ 2π

0

∫ 3

0

∫ 9−r2

0

r3 cos2 θ dz dr dθ =
∫ 2π

0

∫ 3

0

[

zr3 cos2 θ
]9−r2

z=0
dr dθ

=
∫ 2π

0

∫ 3

0

(9r3 − r5) cos2 θ dr dθ =
∫ 2π

0

[(

9r4

4
−
r6

6

)

cos2 θ

]3

r=0

dθ

=
243

4

∫ 2π

0

cos2 θ dθ =
243

4

∫ 2π

0

1

2
(1 + cos 2θ) dθ =

243π

4
◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TRIPLE INTEGRALS IN SPHERICAL
COORDINATES

In spherical coordinates, the simplest equations are of the form

ρ = constant, θ = constant, φ = constant

As indicated in Figure 12.8.2c, the first equation represents a sphere centered at the origin

and the second a half-plane hinged on the z-axis. The third a right circular cone with its

vertex at the origin and its line of symmetry along the z-axis for φ �= π/2, and is the xy-plane

if φ �= π/2. By a spherical wedge or spherical element of volume we mean a solid enclosed

between six surfaces of the following form:

two spheres ρ = ρ1, ρ = ρ2 (ρ1 < ρ2)

two half-planes θ = θ1, θ = θ2 (θ1 < θ2)

nappes of two right circular cones φ = φ1, φ = φ2 (φ1 < φ2)

(Figure 15.7.7). We will refer to the numbers ρ2 −ρ1, θ2 −θ1, and φ2 −φ1 as the dimensions

of a spherical wedge.

y

x

z

u1

u2

r2

f2

r1

f1

Figure 15.7.7

If G is a solid region in three-dimensional space, then the triple integral over G of a

continuous function f(ρ, θ, φ) in spherical coordinates is similar in definition to the triple

integral in cylindrical coordinates, except that the solid G is partitioned into spherical

wedges by a three-dimensional grid consisting of spheres centered at the origin, half-planes

hinged on the z-axis, and nappes of right circular cones with vertices at the origin and lines

of symmetry along the z-axis (Figure 15.7.8).
z

y

x

(rk, uk, fk)

Volume ∆Vk

* * *

G

Figure 15.7.8

The defining equation of a triple integral in spherical coordinates is
∫∫∫

G

f(ρ, θ, φ) dV = lim
n→+�

n
∑

k=1

f(ρ∗
k , θ

∗
k , φ

∗
k)�Vk (7)

where
�V

k is the volume of the kth spherical wedge that is interior to G, (ρ∗
k , θ

∗
k , φ

∗
k ) is

an arbitrary point in this wedge, and n increases in such a way that the dimensions of each

interior spherical wedge tend to zero.

For computational purposes, it will be desirable to express (7) as an iterated integral. In

the exercises we will help you to show that if the point (ρ∗
k , θ

∗
k , φ

∗
k ) is suitably chosen, then

the volume
�V

k in (7) can be written as�V
k = ρ∗2

k sinφ∗
k

�ρ
k

�φ
k

�θ
k (8)

where
�ρ

k ,
�φ

k , and
�θ

k are the dimensions of the wedge (Exercise 38). Substituting this

in (7) we obtain
∫∫∫

G

f(ρ, θ, φ) dV = lim
n→+�

n
∑

k=1

f(ρ∗
k , θ

∗
k , φ

∗
k )ρ

∗2
k sinφ∗

k

�ρ
k

�φ
k

�θ
k

which suggests that a triple integral in spherical coordinates can be evaluated as an iterated

integral of the form

∫∫∫

G

f(ρ, θ, φ) dV =
∫∫∫

appropriate
limits

f(ρ, θ, φ)ρ2 sinφ dρ dφ dθ (9)

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Note the extra factor of ρ2 sinφ that appears in the integrand of the iterated

integral. This is analogous to the extra factor of r that appeared when we integrated in

cylindrical coordinates.

The analog of Theorem 15.7.1 for triple integrals in spherical coordinates is tedious to

state, so instead we will give some examples that illustrate techniques for obtaining the

limits of integration. In all of our examples we will use the same order of integration—first

with respect to ρ, then φ, and then θ . Once you have mastered the basic ideas, there should

be no trouble using other orders of integration.
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Suppose that we want to integrate f(ρ, θ, φ) over the spherical solid G enclosed by the

sphere ρ = ρ0. The basic idea is to choose the limits of integration so that every point of the

solid is accounted for in the integration process. Figure 15.7.9 illustrates one way of doing

this. Holding θ and φ fixed for the first integration, we let ρ vary from 0 to ρ0. This covers a

radial line from the origin to the surface of the sphere. Next, keeping θ fixed, we let φ vary

from 0 to π so that the radial line sweeps out a fan-shaped region. Finally, we let θ vary

from 0 to 2π so that the fan-shaped region makes a complete revolution, thereby sweeping

out the entire sphere. Thus, the triple integral of f(ρ, θ, φ) over the spherical solid G may

be evaluated by writing
∫∫∫

G

f(ρ, θ, φ) dV =
∫ 2π

0

∫ π

0

∫ ρ0

0

f(ρ, θ, φ)ρ2 sinφ dρ dφ dθ

Figure 15.7.9

z

y

x

r = r0

z

y

x

z

y

x

r varies from 0 to r0 
with u and f fixed.

f varies from 0 to p 
with u fixed.

u varies from 0 to 2p.

Table 15.7.1 suggests how the limits of integration in spherical coordinates can be ob-

tained for some other common solids.

Example 3 Use spherical coordinates to find the volume and the centroid of the solid G

bounded above by the sphere x2 + y2 + z2 = 16 and below by the cone z =
√

x2 + y2.

Solution. The solid G is sketched in Figure 15.7.10.

y

x

z

G

x2 + y2 + z2 = 16

(r = 4)

z = √x2 + y2 

(f =    )
p

4

Figure 15.7.10

In spherical coordinates, the equation of the sphere x2 + y2 + z2 = 16 is ρ = 4 and the

equation of the cone z =
√

x2 + y2 is

ρ cosφ =
√

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ

which simplifies to

ρ cosφ = ρ sinφ

or, on dividing both sides by ρ cosφ,

tanφ = 1

Thus φ = π/4, and using the second entry in Table 15.7.1, the volume of G is

V =
∫∫∫

G

dV =
∫ 2π

0

∫ π/4

0

∫ 4

0

ρ2 sinφ dρ dφ dθ

=
∫ 2π

0

∫ π/4

0

[

ρ3

3
sinφ

]4

ρ=0

dφ dθ

=
∫ 2π

0

∫ π/4

0

64

3
sinφ dφ dθ

=
64

3

∫ 2π

0

[

− cosφ
]π/4

φ=0
dθ =

64

3

∫ 2π

0

(

1 −
√

2

2

)

dθ

=
64π

3
(2 −

√
2 )
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Table 15.7.1

z

y

x

z

y

x

z

y

x

z

y

x

r = r0

This is the portion of the sphere of radius r0

that lies in the first octant.

This ice-cream-cone-shaped solid is cut from

the sphere of radius r0 by the cone f = f0.

r varies from 0 to 

r0 with u and f 

held fixed.

f varies from 0 to 

p/2 with u held 

fixed.

u varies from 0 to 

p/2.

r varies from 0 to 

r0 with u and f 

held fixed.

f varies from 0 to 

f0 with u held 

fixed.

u varies from 0 to 

2p.

r varies from 0 to 

r0 with u and f 

held fixed.

f varies from f1  

to f2 with u held 

fixed.

u varies from 0 to 

2p.

p/2

0

p/2

0

r0

0
f (r, u, f)r2 sin f dr df du

2p

0

f0

0

r0

0
f (r, u, f)r2 sin f dr df du

This solid is cut from the sphere of radius r0

by two cones, f = f1 and f = f2.

2p

0

f2

f1

r0

0
f (r, u, f)r2 sin f dr df du

z

y

x

f0

z

y

x

z

y

x

z

y

x

r0

z

y

x

z

y

x

f2
f1

z

y

x

z

y

x

r = r0

determination of limits integral
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Table 15.7.1 (continued )

This solid is enclosed laterally by the cone

f = f0 and on top by the horizontal plane z = a.

This solid is enclosed between two

concentric spheres, r = r1 and r = r2.

r varies from 0 to 

a sec f with u 

and f held fixed.

f varies from 0 to 

f0 with u held 

fixed.

u varies from 0 to 

2p.

r varies from r1 

to r2 with u and 

f held fixed.

f varies from 0 to 

p with u held 

fixed.

u varies from 0 to 

2p.

2p

0

f0

0

a sec f

0
f (r, u, f)r2 sin f dr df du

2p

0

p

0

r2

r1

f (r, u, f)r2 sin f dr df du

determination of limits integral

z

y

x

f0

z

y

x

z

y

x

z

y

x

a f

z

y

x

z

y

x

z

y

x

z

y

x

r1 r2

By symmetry, the centroid (x̄, ȳ, z̄) is on the z-axis, so x̄ = ȳ = 0. From (15) of Section

15.6 and the volume calculated above,

z̄ =
1

V

∫∫∫

G

z dV =
1

V

∫ 2π

0

∫ π/4

0

∫ 4

0

(ρ cosφ)ρ2 sinφ dρ dφ dθ

=
1

V

∫ 2π

0

∫ π/4

0

[

ρ4

4
cosφ sinφ

]4

ρ=0

dφ dθ

=
64

V

∫ 2π

0

∫ π/4

0

sinφ cosφ dφ dθ =
64

V

∫ 2π

0

[

1

2
sin2 φ

]π/4

φ=0

dθ

=
16

V

∫ 2π

0

dθ =
32π

V
=

3

2(2 −
√

2 )

With the help of a calculator, z̄ ≈ 2.56 (to two decimal places), so the approximate location

of the centroid in the xyz-coordinate system is (0, 0, 2.56). ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONVERTING TRIPLE INTEGRALS
FROM RECTANGULAR TO
SPHERICAL COORDINATES

Referring to Table 12.8.1, triple integrals can be converted from rectangular coordinates

to spherical coordinates by making the substitution x = ρ sinφ cos θ , y = ρ sinφ sin θ ,
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z = ρ cosφ. The two integrals are related by the equation

∫∫∫

G

f(x, y, z) dV =
∫∫∫

appropriate
limits

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dρ dφ dθ (10)

Example 4 Use spherical coordinates to evaluate

∫ 2

−2

∫

√
4−x2

−
√

4−x2

∫

√
4−x2−y2

0

z2
√

x2 + y2 + z2 dz dy dx

y

x

z

z = √4 – x2 – y2 

x2 + y2 = 4

2

Figure 15.7.11

Solution. In problems like this, it is helpful to begin (when possible) with a sketch of

the region G of integration. From the z-limits of integration, the upper surface of G is the

hemisphere z =
√

4 − x2 − y2 and the lower surface is the xy-plane z = 0. From the x- and

y-limits of integration, the projection of the solidG on the xy-plane is the region enclosed by

the circle x2 + y2 = 4. From this information we obtain the sketch of G in Figure 15.7.11.

Thus,
∫ 2

−2

∫

√
4−x2

−
√

4−x2

∫

√
4−x2−y2

0

z2
√

x2 + y2 + z2 dz dy dx

=
∫∫∫

G

z2
√

x2 + y2 + z2 dV

=
∫ 2π

0

∫ π/2

0

∫ 2

0

ρ5 cos2 φ sinφ dρ dφ dθ

=
∫ 2π

0

∫ π/2

0

32

3
cos2 φ sinφ dφ dθ

=
32

3

∫ 2π

0

[

−
1

3
cos3 φ

]π/2

φ=0

dθ =
32

9

∫ 2π

0

dθ =
64

9
π ◭

EXERCISE SET 15.7 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, evaluate the iterated integral.

1.

∫ 2π

0

∫ 1

0

∫

√
1−r2

0

zr dz dr dθ

2.

∫ π/2

0

∫ cos θ

0

∫ r2

0

r sin θ dz dr dθ

3.

∫ π/2

0

∫ π/2

0

∫ 1

0

ρ3 sinφ cosφ dρ dφ dθ

4.

∫ 2π

0

∫ π/4

0

∫ a secφ

0

ρ2 sinφ dρ dφ dθ (a > 0)

In Exercises 5–8, use cylindrical coordinates to find the vol-

ume of the solid.

5. The solid enclosed by the paraboloid z = x2 + y2 and the

plane z = 9.

6. The solid that is bounded above and below by the sphere

x2 + y2 + z2 = 9 and inside the cylinder x2 + y2 = 4.

7. The solid that is inside the surface r2 + z2 = 20 and below

the surface z = r2.

8. The solid enclosed between the cone z = (hr)/a and the

plane z = h.

In Exercises 9–12, use spherical coordinates to find the vol-

ume of the solid.

9. The solid bounded above by the sphere ρ = 4 and below

by the cone φ = π/3.

10. The solid within the cone φ = π/4 and between the spheres

ρ = 1 and ρ = 2.

11. The solid enclosed by the sphere x2 + y2 + z2 = 4a2 and

the planes z = 0 and z = a.
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12. The solid within the sphere x2 + y2 + z2 = 9, outside the

cone z =
√

x2 + y2, and above the xy-plane.

In Exercises 13–16, use cylindrical or spherical coordinates

to evaluate the integral.

13.

∫ a

0

∫

√
a2−x2

0

∫ a2−x2−y2

0

x2 dz dy dx (a > 0)

14.

∫ 1

−1

∫

√
1−x2

0

∫

√
1−x2−y2

0

e−(x2+y2+z2)3/2

dz dy dx

15.

∫ 2

0

∫

√
4−y2

0

∫

√
8−x2−y2

√
x2+y2

z2 dz dx dy

16.

∫ 3

−3

∫

√
9−y2

−
√

9−y2

∫

√
9−x2−y2

−
√

9−x2−y2

√

x2 + y2 + z2 dz dx dy

C 17. (a) Use a CAS to evaluate

∫ 2

−2

∫ 4

1

∫ π/3

π/6

r tan3 θ
√

1 + z2
dz dr dθ

(b) Find a function f(x, y, z) and sketch a region G in

3-space so that the triple integral in rectangular coordi-

nates
∫∫∫

G

f(x, y, z) dV

matches the iterated integral in cylindrical coordinates

given in part (a).

C 18. Use a CAS to evaluate
∫ π/2

0

∫ π/4

0

∫ cos θ

0

ρ17 cosφ cos19 θ dρ dφ dθ

19. Find the volume enclosed by x2 + y2 + z2 = a2 using

(a) cylindrical coordinates

(b) spherical coordinates.

20. Let G be the solid in the first octant bounded by the sphere

x2 + y2 + z2 = 4 and the coordinate planes. Evaluate
∫∫∫

G

xyz dV

(a) using rectangular coordinates

(b) using cylindrical coordinates

(c) using spherical coordinates.

In Exercises 21 and 22, use cylindrical coordinates.

21. Find the mass of the solid with density δ(x, y, z) = 3 − z

that is bounded by the cone z =
√

x2 + y2 and the plane

z = 3.

22. Find the mass of a right circular cylinder of radius a and

height h if the density is proportional to the distance from

the base. (Let k be the constant of proportionality.)

In Exercises 23 and 24, use spherical coordinates.

23. Find the mass of a spherical solid of radius a if the density

is proportional to the distance from the center. (Let k be the

constant of proportionality.)

24. Find the mass of the solid enclosed between the spheres

x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4 if the density is

δ(x, y, z) = (x2 + y2 + z2)−1/2.

In Exercises 25 and 26, use cylindrical coordinates to find the

centroid of the solid.

25. The solid that is bounded above by the sphere

x2 + y2 + z2 = 2

and below by the paraboloid z = x2 + y2.

26. The solid that is bounded by the cone z =
√

x2 + y2 and

the plane z = 2.

In Exercises 27 and 28, use spherical coordinates to find the

centroid of the solid.

27. The solid in the first octant bounded by the coordinate planes

and the sphere x2 + y2 + z2 = a2.

28. The solid bounded above by the sphere ρ = 4 and below

by the cone φ = π/3.

In Exercises 29 and 30, use the Wallis formulas in Exercises

64 and 66 of Section 8.3.

29. Find the centroid of the solid bounded above by the para-

boloid z = x2 + y2, below by the plane z = 0, and laterally

by the cylinder (x − 1)2 + y2 = 1.

30. Find the mass of the solid in the first octant bounded above

by the paraboloid z = 4 − x2 − y2, below by the plane

z = 0, and laterally by the cylinder x2 + y2 = 2x and the

plane y = 0, assuming the density to be δ(x, y, z) = z.

In Exercises 31–36, solve the problem using either cylindrical

or spherical coordinates (whichever seems appropriate).

31. Find the volume of the solid in the first octant bounded by the

sphere ρ = 2, the coordinate planes, and the cones φ = π/6

and φ = π/3.

32. Find the mass of the solid that is enclosed by the sphere

x2 + y2 + z2 = 1 and lies within the cone z =
√

x2 + y2 if

the density is δ(x, y, z) =
√

x2 + y2 + z2.

33. Find the center of gravity of the solid bounded by the para-

boloid z = 1 − x2 − y2 and the xy-plane, assuming the

density to be δ(x, y, z) = x2 + y2 + z2.

34. Find the center of gravity of the solid that is bounded by

the cylinder x2 + y2 = 1, the cone z =
√

x2 + y2, and the

xy-plane if the density is δ(x, y, z) = z.

35. Find the center of gravity of the solid hemisphere bounded

by z =
√

a2 − x2 − y2 and z = 0 if the density is propor-

tional to the distance from the origin.
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36. Find the centroid of the solid that is enclosed by the hemi-

spheres y =
√

9 − x2 − z2, y =
√

4 − x2 − z2, and the

plane y = 0.

37. Suppose that the density at a point in a gaseous spherical

star is modeled by the formula

δ = δ0e
−(ρ/R)3

where δ0 is a positive constant, R is the radius of the star,

and ρ is the distance from the point to the star’s center. Find

the mass of the star.

38. In this exercise we will obtain a formula for the volume of

the spherical wedge in Figure 15.7.7.

(a) Use a triple integral in cylindrical coordinates to show

that the volume of the solid bounded above by a sphere

ρ = ρ0, below by a cone φ = φ0, and on the sides by

θ = θ1 and θ = θ2 (θ1 < θ2) is

V = 1
3
ρ3

0 (1 − cosφ0)(θ2 − θ1)

[Hint: In cylindrical coordinates, the sphere has the

equation r2 + z2 = ρ2
0 and the cone has the equa-

tion z = r cotφ0. For simplicity, consider only the case

0 < φ0 < π/2.]
(b) Subtract appropriate volumes and use the result in part

(a) to deduce that the volume�Vof the spherical wedge

is�V= ρ3
2 − ρ3

1

3
(cosφ1 − cosφ2)(θ2 − θ1)

(c) Apply the Mean-Value Theorem to the functions cosφ

and ρ3 to deduce that the formula in part (b) can be

written as�V= ρ∗2 sinφ∗�ρ�φ�θ

where ρ∗ is between ρ1 and ρ2, φ∗ is between φ1 and

φ2, and�ρ= ρ2 − ρ1,�φ= φ2 − φ1,�θ= θ2 − θ1.

The tendency of a solid to resist a change in rotational motion

about an axis is measured by its moment of inertia about that

axis. If the solid occupies a region G in an xyz-coordinate

system, and if its density function δ(x, y, z) is continuous on

G, then the moments of inertia about the x-axis, the y-axis,

and the z-axis are denoted by Ix , Iy , and Iz, respectively, and

are defined by

Ix =
∫∫∫

G

(y2 + z2) δ(x, y, z) dV

Iy =
∫∫∫

G

(x2 + z2) δ(x, y, z) dV

Iz =
∫∫∫

G

(x2 + y2) δ(x, y, z) dV

(compare with the discussion preceding Exercises 42 and 43

of Section 15.6). In Exercises 39–42, find the indicated mo-

ment of inertia of the solid, assuming that it has constant

density δ.

39. Iz for the solid cylinder x2 + y2 ≤ a2, 0 ≤ z ≤ h.

40. Iy for the solid cylinder x2 + y2 ≤ a2, 0 ≤ z ≤ h.

41. Iz for the hollow cylinder a2
1 ≤ x2 + y2 ≤ a2

2 , 0 ≤ z ≤ h.

42. Iz for the solid sphere x2 + y2 + z2 ≤ a2.

15.8 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS;
JACOBIANS

In this section we will discuss a general method for evaluating double and triple inte-

grals by substitution. Most of the results in this section are very difficult to prove, so

our approach will be informal and motivational. Our goal is to provide a geometric

understanding of the basic principles and an exposure to computational techniques.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CHANGE OF VARIABLE IN A SINGLE
INTEGRAL

To motivate techniques for evaluating double and triple integrals by substitution, it will be

helpful to consider the effect of a substitution x = g(u) on a single integral over an interval

[a, b]. If g is differentiable and either increasing or decreasing, then g is one-to-one and

∫ b

a

f(x) dx =
∫ g−1(b)

g−1(a)

f(g(u))g′(u) du

In this relationship f(x) and dx are expressed in terms of u, and the u-limits of integration

result from solving the equations

a = g(u) and b = g(u)
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In the case where g is decreasing we have g−1(b) < g−1(a), which is contrary to our usual

convention of writing definite integrals with the larger limit of integration at the top. We

can remedy this by reversing the limits of integration and writing

∫ b

a

f(x) dx = −
∫ g−1(a)

g−1(b)

f(g(u))g′(u) du =
∫ g−1(a)

g−1(b)

f(g(u))|g′(u)| du

where the absolute value results from the fact that g′(u) is negative. Thus, regardless of

whether g is increasing or decreasing we can write
∫ b

a

f(x) dx =
∫ β

α

f(g(u))|g′(u)| du (1)

where α and β are the u-limits of integration and α < β.

The expression g′(u) that appears in (1) is called the Jacobian of the change of variable

x = g(u) in honor of C. G. J. Jacobi,
∗

who made the first serious study of change of

variables in multiple integrals in the mid 1800s. Formula (1) reveals three effects of the

change of variable x = g(u):

• The new integrand becomes f(g(u)) times the absolute value of the Jacobian.

• dx becomes du.

• The x-interval of integration is transformed into a u-interval of integration.

Our goal in this section is to show that analogous results hold for changing variables in

double and triple integrals.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TRANSFORMATIONS OF THE
PLANE

In earlier sections we considered parametric equations of three kinds:

x = x(t), y = y(t) A curve in the plane

x = x(t), y = y(t), z = z(t) A curve in 3-space

x = x(u, v), y = y(u, v), z = z(u, v) A surface in 3-space

Now, we will consider parametric equations of the form

x = x(u, v), y = y(u, v) (2)

∗
CARL GUSTAV JACOB JACOBI (1804–1851). German mathematician, Jacobi, the son of a banker, grew up in a

background of wealth and culture and showed brilliance in mathematics early. He resisted studying mathematics

by rote, preferring instead to learn general principles from the works of the masters, Euler and Lagrange. He

entered the University of Berlin at age 16 as a student of mathematics and classical studies. However, he soon

realized that he could not do both and turned fully to mathematics with a blazing intensity that he would maintain

throughout his life. He received his Ph.D. in 1825 and was able to secure a position as a lecturer at the University

of Berlin by giving up Judaism and becoming a Christian. However, his promotion opportunities remained limited

and he moved on to the University of Königsberg. Jacobi was born to teach—he had a dynamic personality and

delivered his lectures with a clarity and enthusiasm that frequently left his audience spellbound. In spite of extensive

teaching commitments, he was able to publish volumes of revolutionary mathematical research that eventually

made him the leading European mathematician after Gauss. His main body of research was in the area of elliptic

functions, a branch of mathematics with important applications in astronomy and physics as well as in other fields

of mathematics. Because of his family wealth, Jacobi was not dependent on his teaching salary in his early years.

However, his comfortable world eventually collapsed. In 1840 his family went bankrupt and he was personally

wiped out financially. In 1842 he had a nervous breakdown from overwork. In 1843 he became seriously ill with

diabetes and moved to Berlin with the help of a government grant to defray his medical expenses. In 1848 he made

an injudicious political speech that caused the government to withdraw the grant, eventually resulting in the loss

of his home. His health continued to decline and in 1851 he finally succumbed to successive bouts of influenza and

smallpox. In spite of all his problems, Jacobi was a tireless worker to the end. When a friend expressed concern

about the effect of the hard work on his health, Jacobi replied, “Certainly, I have sometimes endangered my health

by overwork, but what of it? Only cabbages have no nerves, no worries. And what do they get out of their perfect

well-being?”
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Parametric equations of this type associate points in the xy-plane with points in the uv-plane.

These equations can be written in vector form as

r = r(u, v) = x(u, v)i + y(u, v) j

where r = xi+yj is a position vector in the xy-plane and r(u, v) is a vector-valued function

of the variables u and v.

It will also be useful in this section to think of the parametric equations in (2) in terms

of inputs and outputs. If we think of the pair of numbers (u, v) as an input, then the two

equations, in combination, produce a unique output (x, y), and hence define a function T

that associates points in the xy-plane with points in the uv-plane. This function is described

by the formula

T (u, v) = (x(u, v), y(u, v))

We call T a transformation from the uv-plane to the xy-plane and (x, y) the image of (u, v)

under the transformation T. We also say that T maps (u, v) into (x, y). The set R of all

images in the xy-plane of a set S in the uv-plane is called the image of S under T. If distinct

points in the uv-plane have distinct images in the xy-plane, then T is said to be one-to-one.

In this case the equations in (2) define u and v as functions of x and y, say

u = u(x, y), v = v(x, y)

These equations, which can often be obtained by solving (2) for u and v in terms of x and

y, define a transformation from the xy-plane to the uv-plane that maps the image of (u, v)

under T back into (u, v). This transformation is denoted by T −1 and is called the inverse

of T (Figure 15.8.1).

S R

(u, v) (x, y)

T

T –1

x

y

u

v

Figure 15.8.1

One way to visualize the geometric effect of a transformation T is to determine the

images in the xy-plane of the vertical and horizontal lines in the uv-plane. Following the

discussion on page XXX in Section 15.4, sets of points in the xy-plane that are images of

horizontal lines (v constant) are called constant v-curves, and sets of points that are images

of vertical lines (u constant) are called constant u-curves (Figure 15.8.2).

Constant v-curve

Constant u-curve

x

y

u

v

Figure 15.8.2
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Example 1 Let T be the transformation from the uv-plane to the xy-plane defined by the

equations

x = 1
4
(u+ v), y = 1

2
(u− v) (3)

(a) Find T (1, 3).

(b) Sketch the constant v-curves corresponding to v = −2, −1, 0, 1, 2.

(c) Sketch the constant u-curves corresponding to u = −2, −1, 0, 1, 2.

(d) Sketch the image under T of the square region in the uv-plane bounded by the lines

u = −2, u = 2, v = −2, and v = 2.

Solution (a). Substituting u = 1 and v = 3 in (3) yields T (1, 3) = (1,−1).

Solutions (b and c). In these parts it will be convenient to express the transformation

equations with u and v as functions of x and y. We leave it for you to show that

u = 2x + y, v = 2x − y

Thus, the constant v-curves corresponding to v = −2, −1, 0, 1, and 2 are

2x − y = −2, 2x − y = −1, 2x − y = 0, 2x − y = 1, 2x − y = 2

and the constant u-curves corresponding to u = −2, −1, 0, 1, and 2 are

2x + y = −2, 2x + y = −1, 2x + y = 0, 2x + y = 1, 2x + y = 2

In Figure 15.8.3 the constant v-curves are shown in green and the constant u-curves in red.

–4 4

–4

4

–4 4

–4

4

y

x

v

u

Figure 15.8.3

Solution (d ). The image of a region can often be found by finding the image of its boundary.

In this case the images of the boundary lines u = −2, u = 2, v = −2, and v = 2 enclose

the diamond-shaped region in the xy-plane shown in Figure 15.8.4. ◭

–4 4

–4

4

–4 4

–4

4

y

x

v

u

Figure 15.8.4
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

JACOBIANS IN TWO VARIABLES
To derive the change-of-variables formula for double integrals, we will need to understand

the relationship between the area of a small rectangular region in the uv-plane and the area

of its image in the xy-plane under a transformation T given by the equations

x = x(u, v), y = y(u, v)

For this purpose, suppose that�uand�vare positive, and consider a rectangular region S

in the uv-plane enclosed by the lines

u = u0, u = u0 +�u,v = v0, v = v0 +�v
If the functions x(u, v) and y(u, v) are continuous, and if�uand�vare not too large,

then the image of S in the xy-plane will be a region R that looks like a slightly distorted

parallelogram (Figure 15.8.5). The sides of R are the constant u-curves and v-curves that

correspond to the sides of S.

S

u = u0

v = v0

v =  v0 + ∆v

u = u0 + ∆u

∆v

∆u(u0, v0)

R

Image of u = u0 + ∆u

Image of v = v0 + ∆v

Image of v = v0

x

y

u

v

Image of u =  u0

Figure 15.8.5

b

a

r(u0, v)

r(u, v0)
x

y

Figure 15.8.6

∆u

∆v

x

y ∂r

∂v

∂r

∂u

Figure 15.8.7

If we let

r = r(u, v) = x(u, v)i + y(u, v)j

be the position vector of the point in the xy-plane that corresponds to the point (u, v) in

the uv-plane, then the constant v-curve corresponding to v = v0 and the constant u-curve

corresponding to u = u0 can be represented in vector form as

r(u, v0) = x(u, v0)i + y(u, v0)j Constant v-curve

r(u0, v) = x(u0, v)i + y(u0, v)j Constant u-curve

Since we are assuming�uand�vto be small, the region R can be approximated by a

parallelogram determined by the “secant vectors”

a = r(u0 +�u,v0)− r(u0, v0) (4)

b = r(u0, v0 +�v)− r(u0, v0) (5)

shown in Figure 15.8.6. A more useful approximation of R can be obtained by using

Formulas (5) and (6) of Section 15.4 to approximate these secant vectors by tangent vectors

as follows:

a =
r(u0 +�u,v0)− r(u0, v0)�u�u

≈
∂r

∂u
�u= (

∂x

∂u
i +

∂y

∂u
j

)�u
b =

r(u0, v0 +�v)− r(u0, v0)�v�v
≈

∂r

∂v
�v= (

∂x

∂v
i +

∂y

∂v
j

)�v
where the partial derivatives are evaluated at (u0, v0) (Figure 15.8.7). Hence, it follows that
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the area of the region R, which we will denote by�A, can be approximated by the area of

the parallelogram determined by these vectors. Thus, from Formula (8) of Section 12.4 we

have�A≈ ∥

∥

∥

∥

∂r

∂u
�u× ∂r

∂v
�v∥∥∥

∥

=
∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

�u�v (6)

where the derivatives are evaluated at (u0, v0). Computing the cross product, we obtain

∂r

∂u
×

∂r

∂v
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂x

∂u

∂y

∂u
0

∂x

∂v

∂y

∂v
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

∣

k =

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

∣

k (7)

The determinant in (7) is sufficiently important that it has its own terminology and

notation.

15.8.1 DEFINITION. If T is the transformation from the uv-plane to the xy-plane

defined by the equations x = x(u, v), y = y(u, v), then the Jacobian of T is denoted

by J (u, v) or by ∂(x, y)/∂(u, v) and is defined by

J (u, v) =
∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

∣

=
∂x

∂u

∂y

∂v
−
∂y

∂u

∂x

∂v

Using the notation in this definition, it follows from (6) and (7) that�A≈ ∥

∥

∥

∥

∂(x, y)

∂(u, v)
k

∥

∥

∥

∥

�u�v
or, since k is a unit vector,�A≈ ∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

�u�v (8)

At the point (u0, v0) this important formula relates the areas of the regions R and S in

Figure 15.8.5: it tells us that for small values of�uand�v, the area of R is approximately

the absolute value of the Jacobian times the area of S. Moreover, it is proved in advanced

calculus courses that the relative error in the approximation approaches zero as�u→ 0

and�v→0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CHANGE OF VARIABLES IN
DOUBLE INTEGRALS

Our next objective is to provide a geometric motivation for the following result.

15.8.2 CHANGE-OF-VARIABLES FORMULA FOR DOUBLE INTEGRALS. If the transfor-

mation x = x(u, v), y = y(u, v) maps the region S in the uv-plane into the region R

in the xy-plane, and if the Jacobian ∂(x, y)/∂(u, v) is nonzero and does not change sign

on S, then with appropriate restrictions on the transformation and the regions it follows

that

∫∫

R

f(x, y) dAxy =
∫∫

S

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dAuv (9)

where we have attached subscripts to the dA’s to help identify the associated variables.
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. A precise statement of conditions under which Formula (9) holds would take us

beyond the scope of this course. Suffice it to say that the formula holds if T is a one-to-one

transformation, f(x, y) is continuous on R, the partial derivatives of x(u, v) and y(u, v)

exist and are continuous on S, and the regions R and S are not too complicated.

To motivate Formula (9), we proceed as follows:

• Subdivide the region S in the uv-plane into pieces by lines parallel to the coordinate

axes, and exclude from consideration any pieces that contain points outside of S. This

leaves only rectangular regions that are subsets of S. Assume that there are n such

regions and denote the kth such region by Sk . Assume that Sk has dimensions�uk by�vk and, as shown in Figure 15.8.8a, let (u∗
k, v

∗
k ) be its “lower left corner.”

• As shown in Figure 15.8.8b, the transformation T defined by the equations x = x(u, v),

y = y(u, v) maps Sk into a curvilinear parallelogram Rk in the xy-plane and maps the

point (u∗
k, v

∗
k ) into the point (x∗

k , y
∗
k ) = (x(u∗

k, v
∗
k ), y(u

∗
k, v

∗
k )) in Rk . Denote the area of

Rk by�Ak .
• In rectangular coordinates the double integral of f(x, y) over a region R is defined

as a limit of Riemann sums in which R is subdivided into rectangular subregions. It

is proved in advanced calculus courses that under appropriate conditions subdivisions

into curvilinear parallelograms can be used instead. Accepting this to be so, we can

approximate the double integral of f(x, y) over R as
∫∫

R

f(x, y) dAxy ≈
n

∑

k=1

f(x∗
k , y

∗
k

)�Ak

≈
n

∑

k=1

f(x(u∗
k, v

∗
k ), y(u

∗
k, v

∗
k ))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

�uk�vk
where the Jacobian is evaluated at (u∗

k, v
∗
k ). But the last expression is a Riemann sum

for the integral
∫∫

S

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dAuv

so Formula (9) follows if we assume that the errors in the approximations approach

zero as n→+�.

Example 2 Evaluate
∫∫

R

x − y

x + y
dA

(uk, vk)* *

Sk

∆uk

∆vk

S

(xk, yk )* *

Rk

(a) (b)

area ∆Ak

x

y

u

v

R

Figure 15.8.8
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whereR is the region enclosed by the lines x−y = 0, x−y = 1, x+y = 1, and x+y = 3

(Figure 15.8.9a).

R

x + y = 1

x + y = 3

x – y = 1

x – y = 0

(a)

(b)

S

u = 1 u = 3

v = 1

v = 0

x

y

u

v

Figure 15.8.9

Solution. This integral would be tedious to evaluate directly because the region R is

oriented in such a way that we would have to subdivide it and integrate over each part

separately. However, the occurrence of the expressions x − y and x + y in the equations of

the boundary suggests that the transformation

u = x + y, v = x − y (10)

would be helpful, since with this transformation the boundary lines

x + y = 1, x + y = 3, x − y = 0, x − y = 1

are constant u-curves and constant v-curves corresponding to the lines

u = 1, u = 3, v = 0, v = 1

in the uv-plane. These lines enclose the rectangular region S shown in Figure 15.8.9b. To

find the Jacobian ∂(x, y)/∂(u, v) of this transformation, we first solve (10) for x and y in

terms of u and v. This yields

x = 1
2
(u+ v), y = 1

2
(u− v)

from which we obtain

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
2

1
2

1
2

− 1
2

∣

∣

∣

∣

∣

= − 1
4

− 1
4

= − 1
2

Thus, from Formula (9), but with the notation dA rather than dAxy ,
∫∫

R

x − y

x + y
dA =

∫∫

S

v

u

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dAuv

=
∫∫

S

v

u

∣

∣

∣

∣

−
1

2

∣

∣

∣

∣

dAuv =
1

2

∫ 1

0

∫ 3

1

v

u
du dv

=
1

2

∫ 1

0

v ln |u|
]3

u=1

dv

=
1

2
ln 3

∫ 1

0

v dv =
1

4
ln 3 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In retrospect, the underlying idea illustrated in this example is to find a one-to-

one transformation that maps a rectangle S in the uv-plane into the region R of integration,

and then use that transformation as a substitution in the integral to produce an equivalent

integral over S.

y = x

1

2
y =   x

y = 
1

x

y = 
2

x

R

(a)

(b)

u = 1u = 
1

2

v = 1

v = 2

S

x

y

u

v

Figure 15.8.10

Example 3 Evaluate
∫∫

R

exy dA

where R is the region enclosed by the lines y = 1
2
x and y = x and the hyperbolas y = 1/x

and y = 2/x (Figure 15.8.10a).

Solution. As in the last example, we look for a transformation in which the boundary

curves in the xy-plane become constant v-curves and constant u-curves. For this purpose

we rewrite the four boundary curves as

y

x
=

1

2
,

y

x
= 1, xy = 1, xy = 2
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which suggests the transformation

u =
y

x
, v = xy (11)

With this transformation the boundary curves in the xy-plane are constant u-curves and

constant v-curves corresponding to the lines

u = 1
2
, u = 1, v = 1, v = 2

in the uv-plane. These lines enclose the region S shown in Figure 15.8.10b. To find the

Jacobian ∂(x, y)/∂(u, v) of this transformation, we first solve (11) for x and y in terms of

u and v. This yields

x =
√

v/u, y =
√
uv

from which we obtain

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
1

2u

√

v

u

1

2
√
uv

1

2

√

v

u

1

2

√

u

v

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
1

4u
−

1

4u
= −

1

2u

Thus, from Formula (9), but with the notation dA rather than dAxy ,
∫∫

R

exy dA =
∫∫

S

ev
∣

∣

∣

∣

−
1

2u

∣

∣

∣

∣

dAuv =
1

2

∫∫

S

1

u
ev dAuv

=
1

2

∫ 2

1

∫ 1

1/2

1

u
ev du dv =

1

2

∫ 2

1

ev ln |u|
]1

u=1/2

dv

=
1

2
ln 2

∫ 2

1

ev dv =
1

2
(e2 − e) ln 2 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CHANGE OF VARIABLES IN TRIPLE
INTEGRALS

Equations of the form

x = x(u, v,w), y = y(u, v,w), z = z(u, v,w) (12)

define a transformation T from uvw-space to xyz-space. Just as a transformation

x = x(u, v), y = y(u, v) in two variables maps small rectangles in the uv-plane into

curvilinear parallelograms in the xy-plane, so (12) maps small rectangular parallelepipeds

in uvw-space into curvilinear parallelepipeds in xyz-space (Figure 15.8.11). The definition

of the Jacobian of (12) is similar to Definition 15.8.1.

∆v

∆w

∆u

v

u

w

y

x

z

Figure 15.8.11

15.8.3 DEFINITION. If T is the transformation from uvw-space to xyz-space defined

by the equations x = x(u, v,w), y = y(u, v,w), z = z(u, v,w), then the Jacobian of

T is denoted by J (u, v,w) or ∂(x, y, z)/∂(u, v,w) and is defined by

J (u, v,w) =
∂(x, y, z)

∂(u, v,w)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

For small values of�u,�v, and�w, the volume�Vof the curvilinear parallelepiped

in Figure 15.8.11 is related to the volume�u�v�wof the rectangular parallelepiped by�V≈ ∣

∣

∣

∣

∂(x, y, z)

∂(u, v,w)

∣

∣

∣

∣

�u�v�w (13)
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which is the analog of Formula (8). Using this relationship and an argument similar to the

one that led to Formula (9), we can obtain the following result.

15.8.4 CHANGE-OF-VARIABLES FORMULA FOR TRIPLE INTEGRALS. If the transfor-
mation x = x(u, v,w), y = y(u, v,w), z = z(u, v,w) maps the region S in uvw-space
into the region R in xyz-space, and if the Jacobian ∂(x, y, z)/∂(u, v,w) is nonzero and
does not change sign on S, then with appropriate restrictions on the transformation and
the regions it follows that

∫∫∫

R

f(x, y, z) dVxyz =
∫∫∫

S

f(x(u, v,w), y(u, v,w), z(u, v,w))

∣

∣

∣

∣

∂(x, y, z)

∂(u, v,w)

∣

∣

∣

∣

dVuvw (14)

Example 4 Find the volume of the region G enclosed by the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

Solution. The volume V is given by the triple integral

V =
∫∫∫

G

dV

To evaluate this integral, we make the change of variables

x = au, y = bv, z = cw (15)

which maps the region S in uvw-space enclosed by a sphere of radius 1 into the region G

in xyz-space. This can be seen from (15) by noting that

x2

a2
+
y2

b2
+
z2

c2
= 1 becomes u2 + v2 + w2 = 1

The Jacobian of (15) is

∂(x, y, z)

∂(u, v,w)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

a 0 0

0 b 0

0 0 c

∣

∣

∣

∣

∣

∣

∣

= abc

Thus, from Formula (14), but with the notation dV rather than dVxyz,

V =
∫∫∫

G

dV =
∫∫∫

S

∣

∣

∣

∣

∂(x, y, z)

∂(u, v,w)

∣

∣

∣

∣

dVuvw = abc

∫∫∫

S

dVuvw

The last integral is the volume enclosed by a sphere of radius 1, which we know to be 4
3
π.

Thus, the volume enclosed by the ellipsoid is V = 4
3
πabc. ◭

Jacobians also arise in converting triple integrals in rectangular coordinates to iterated

integrals in cylindrical and spherical coordinates. For example, we will ask you to show in

Exercise 46 that the Jacobian of the transformation

x = r cos θ, y = r sin θ, z = z

is

∂(x, y, z)

∂(r, θ, z)
= r

and the Jacobian of the transformation

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ
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is

∂(x, y, z)

∂(ρ, φ, θ)
= ρ2 sinφ

Thus, Formulas (6) and (10) of Section 15.7 can be expressed in terms of Jacobians as

∫∫∫

G

f(x, y, z) dV =
∫∫∫

appropriate
limits

f(r cos θ, r sin θ, z)
∂(x, y, z)

∂(r, θ, z)
dz dr dθ (16)

∫∫∫

G

f(x, y, z) dV =
∫∫∫

appropriate
limits

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)
∂(x, y, z)

∂(ρ, φ, θ)
dρ dφ dθ

(17)

•
•
•
•
•
•
•
•

REMARK. The absolute value signs are omitted in these formulas because the Jacobians

are nonnegative (see the restrictions in Table 12.8.1).

EXERCISE SET 15.8
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, find the Jacobian ∂(x, y)/∂(u, v).

1. x = u+ 4v, y = 3u− 5v

2. x = u+ 2v2, y = 2u2 − v

3. x = sin u+ cos v, y = − cos u+ sin v

4. x =
2u

u2 + v2
, y = −

2v

u2 + v2

In Exercises 5–8, solve for x and y in terms of u and v, and

then find the Jacobian ∂(x, y)/∂(u, v).

5. u = 2x − 5y, v = x + 2y

6. u = ex , v = ye−x

7. u = x2 − y2, v = x2 + y2 (x > 0, y > 0)

8. u = xy, v = xy3 (x > 0, y > 0)

In Exercises 9–12, find the Jacobian ∂(x, y, z)/∂(u, v,w).

9. x = 3u+ v, y = u− 2w, z = v + w

10. x = u− uv, y = uv − uvw, z = uvw

11. u = xy, v = y, w = x + z

12. u = x + y + z, v = x + y − z, w = x − y + z

In Exercises 13–16, sketch the image in the xy-plane of the

set S under the given transformation.

13.

u

v

(1, 1)

S

x = u2 – v2

y = 2uv

14.

u

v

S

x = 3u + 4v

y = 4u

1

1

15.

u

v

1

1

S

x = 2u

y = 3v

16.

u

v

S

x = u cos v

y = u sin v

1 2

p/2

17. Use the transformation u = x − 2y, v = 2x + y to find
∫∫

R

x − 2y

2x + y
dA

where R is the rectangular region enclosed by the lines

x − 2y = 1, x − 2y = 4, 2x + y = 1, 2x + y = 3.
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18. Use the transformation u = x + y, v = x − y to find
∫∫

R

(x − y)ex
2−y2

dA

over the rectangular region R enclosed by the lines

x + y = 0, x + y = 1, x − y = 1, x − y = 4.

19. Use the transformation u = 1
2
(x+ y), v = 1

2
(x− y) to find

∫∫

R

sin 1
2
(x + y) cos 1

2
(x − y) dA

over the triangular region R with vertices (0, 0), (2, 0),

(1, 1).

20. Use the transformation u = y/x, v = xy to find
∫∫

R

xy3 dA

over the region R in the first quadrant enclosed by y = x,

y = 3x, xy = 1, xy = 4.

The transformation x = au, y = bv (a > 0, b > 0) can

be rewritten as x/a = u, y/b = v, and hence it maps the

circular region

u2 + v2 ≤ 1

into the elliptical region

x2

a2
+
y2

b2
≤ 1

In Exercises 21–24, perform the integration by transforming

the elliptical region of integration into a circular region of

integration and then evaluating the transformed integral in

polar coordinates.

21.

∫∫

R

√

16x2 + 9y2 dA, where R is the region enclosed by

the ellipse (x2/9)+ (y2/16) = 1.

22.

∫∫

R

e−(x2+4y2) dA, where R is the region enclosed by the

ellipse (x2/4)+ y2 = 1.

23.

∫∫

R

sin(4x2 + 9y2) dA, where R is the region in the first

quadrant enclosed by the ellipse 4x2 + 9y2 = 1 and the

coordinate axes.

24. Show that the area of the ellipse

x2

a2
+
y2

b2
= 1

is πab.

If a, b, and c are positive constants, then the transformation

x = au, y = bv, z = cw can be rewritten as x/a = u,

y/b = v, z/c = w, and hence it maps the spherical region

u2 + v2 + w2 ≤ 1

into the ellipsoidal region

x2

a2
+
y2

b2
+
z2

c2
≤ 1

In Exercises 25 and 26, perform the integration by transform-

ing the ellipsoidal region of integration into a spherical region

of integration and then evaluating the transformed integral in

spherical coordinates.

25.

∫∫∫

G

x2 dV , whereG is the region enclosed by the ellipsoid

9x2 + 4y2 + z2 = 36.

26. Find the moment of inertia about the x-axis of the solid

ellipsoid bounded by

x2

a2
+
y2

b2
+
z2

c2
= 1

given that δ(x, y, z) = 1. [See the definition preceding Ex-

ercise 39 of Section 15.7.]

In Exercises 27–30, find a transformation

u = f(x, y), v = g(x, y)

that when applied to the region R in the xy-plane has as its

image the region S in the uv-plane.

27.

u

v

2

1

x

y

S

1 2–2 –1

1

2

R

p

28.

u

v

1
x

y

S

1 2 3

1

–1

–2

–3

2

3

R

1 2 3

29.

u

v

1

1

x

y

R S

1

1

2

3

4

2 3 4 5
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30.

u

v

1

2

3

1 2 3 4–3 –2 –1

x

y

21 3

R
1

2

3

S

In Exercises 31–34, evaluate the integral by making an ap-

propriate change of variables.

31.

∫∫

R

y − 4x

y + 4x
dA, whereR is the region enclosed by the lines

y = 4x, y = 4x + 2, y = 2 − 4x, y = 5 − 4x.

32.

∫∫

R

(x2−y2) dA, whereR is the rectangular region enclosed

by the lines y = −x, y = 1 − x, y = x, y = x + 2.

33.

∫∫

R

sin(x − y)

cos(x + y)
dA, where R is the triangular region en-

closed by the lines y = 0, y = x, x + y = π/4.

34.

∫∫

R

e(y−x)
/(y+x) dA, where R is the region in the first quad-

rant enclosed by the trapezoid with vertices (0, 1), (1, 0),

(0, 4), (4, 0).

35. Use an appropriate change of variables to find the area of the

region in the first quadrant enclosed by the curves y = x,

y = 2x, x = y2, x = 4y2.

36. Use an appropriate change of variables to find the volume

of the solid bounded above by the plane x + y + z = 9,

below by the xy-plane, and laterally by the elliptic cylinder

4x2+9y2 = 36. [Hint: Express the volume as a double inte-

gral in xy-coordinates, then use polar coordinates to evaluate

the transformed integral.]

37. Use the transformation u = x, v = z − y, w = xy to find
∫∫∫

G

(z − y)2xy dV

whereG is the region enclosed by the surfaces x = 1, x = 3,

z = y, z = y + 1, xy = 2, xy = 4.

38. Use the transformation u = xy, v = yz, w = xz to find the

volume of the region in the first octant that is enclosed by

the hyperbolic cylinders xy = 1, xy = 2, yz = 1, yz = 3,

xz = 1, xz = 4.

39. (a) Verify that

∣

∣

∣

∣

∣

a1 b1

c1 d1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a2 b2

c2 d2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

∣

∣

∣

∣

∣

(b) If x = x(u, v), y = y(u, v) is a one-to-one transfor-

mation, then u = u(x, y), v = v(x, y). Assuming the

necessary differentiability, use the result in part (a) and

the chain rule to show that

∂(x, y)

∂(u, v)
·
∂(u, v)

∂(x, y)
= 1

40. In each part, confirm that the formula obtained in part (b)

of Exercise 39 holds for the given transformation.

(a) x = u− uv, y = uv

(b) x = uv, y = v2 (v > 0)

(c) x = 1
2
(u2 + v2), y = 1

2
(u2 − v2) (u > 0, v > 0)

The formula obtained in part (b) of Exercise 39 is useful in in-

tegration problems where it is inconvenient or impossible to

solve the transformation equations u = f (x, y), y = g(x, y)

explicitly for x and y in terms of u and v. In Exercises 41–43,

use the relationship

∂(x, y)

∂(u, v)
= 1

/

∂(u, v)

∂(x, y)

to avoid solving for x and y in terms of u and v.

41. Use the transformation u = xy, v = xy4 to find
∫∫

R

sin(xy) dA

where R is the region enclosed by the curves xy = π,

xy = 2π, xy4 = 1, xy4 = 2.

42. Use the transformation u = x2 − y2, v = x2 + y2 to find
∫∫

R

xy dA

where R is the region in the first quadrant that is enclosed

by the hyperbolas x2 − y2 = 1, x2 − y2 = 4 and the circles

x2 + y2 = 9, x2 + y2 = 16.

43. Use the transformation u = xy, v = x2 − y2 to find
∫∫

R

(x4 − y4)exy dA

where R is the region in the first quadrant enclosed by the

hyperbolas xy = 1, xy = 3, x2 − y2 = 3, x2 − y2 = 4.

44. The three-variable analog of the formula derived in part (b)

of Exercise 39 is

∂(x, y, z)

∂(u, v,w)
·
∂(u, v,w)

∂(x, y, z)
= 1

Use this result to show that the volume V of the oblique par-

allelepiped that is bounded by the planes x+ y+ 2z = ±3,

x − 2y + z = ±2, 4x + y + z = ±6 is V = 16.

45. (a) Show that if R is the triangular region with vertices

(0, 0), (1, 0), and (0, 1), then

∫∫

R

f (x + y) dA =
∫ 1

0

uf (u) du



April 2, 2001 12:42 g65-ch15 Sheet number 76 Page number 1090 cyan magenta yellow black

1090 Multiple Integrals

(b) Use the result in part (a) to evaluate the integral
∫∫

R

ex+y dA

46. (a) Consider the transformation x = r cos θ , y = r sin θ ,

z = z from cylindrical to rectangular coordinates,

where r ≥ 0. Show that

∂(x, y, z)

∂(r, θ, z)
= r

(b) Consider the transformation

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

from spherical to rectangular coordinates, where 0 ≤
φ ≤ π. Show that

∂(x, y, z)

∂(ρ, φ, θ)
= ρ2 sinφ

SUPPLEMENTARY EXERCISES

C CAS

1. The double integral over a regionR in the xy-plane is defined

as
∫∫

R

f (x, y) dA = lim
n→+�

n
∑

k=1

f (x∗
k , y

∗
k

)�
Ak

Describe the procedure on which this definition is based.

2. The triple integral over a solid G in an xyz-coordinate sys-

tem is defined as
∫∫∫

G

f (x, y, z) dV = lim
n→+�

n
∑

k=1

f (x∗
k , y

∗
k , z

∗
k

)�
Vk

Describe the procedure on which this definition is based.

3. (a) Express the area of a regionR in the xy-plane as a double

integral.

(b) Express the volume of a region G in an xyz-coordinate

system as a triple integral.

(c) Express the area of the portion of the surface

z = f (x, y) that lies above the regionR in the xy-plane

as a double integral.

4. (a) Write down parametric equations for a sphere of radius

a centered at the origin.

(b) Write down parametric equations for the right circular

cylinder of radius a and height h that is centered on the

z-axis, has its base in the xy-plane, and extends in the

positive z-direction.

5. (a) In physical terms, what is meant by the center of gravity

of a lamina?

(b) What is meant by the centroid of a lamina?

(c) Write down formulas for the coordinates of the center

of gravity of a lamina in the xy-plane.

(d) Write down formulas for the coordinates of the centroid

of a lamina in the xy-plane.

6. Suppose that you have a double integral over a region R in

the xy-plane and you want to transform that integral into an

equivalent double integral over a region S in the uv-plane.

Describe the procedure you would use.

7. Let R be the region in the accompanying figure. Fill in the

missing limits of integration in the iterated integral
∫

�

�

∫

�

�

f (x, y) dx dy

over R.

8. Let R be the region shown in the accompanying figure. Fill

in the missing limits of integration in the sum of the iterated

integrals
∫ 2

0

∫

�

�

f (x, y) dy dx +
∫ 3

2

∫

�

�

f (x, y) dy dx

over R.

x

y

R

2

Figure Ex-7

x

y

R

(3, 3)

(2, 4)

Figure Ex-8

9. (a) Find constants a, b, c, and d such that the transforma-

tion x = au + bv, y = cu + dv maps the region S in

the accompanying figure into the region R.

(b) Find the area of the parallelogramR by integrating over

the region S, and check your answer using a formula

from geometry.

u

v

1

1

S

x

y

R

(3, 3)

(2, 1)

(1, 2)

Figure Ex-9
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10. Give a geometric argument to show that

0 <

∫ π

0

∫ π

0

sin
√
xy dy dx < π2

In Exercises 11 and 12, evaluate the iterated integral.

11.

∫ 1

1/2

∫ 2x

0

cos(πx2) dy dx

12.

∫ 2

0

∫ 2y

−y
xey

3

dx dy

In Exercises 13 and 14, express the iterated integral as

an equivalent iterated integral with the order of integration

reversed.

13.

∫ 2

0

∫ x/2

0

exey dy dx

14.

∫ π

0

∫ π

y

sin x

x
dx dy

In Exercises 15 and 16, sketch the region whose area is rep-

resented by the iterated integral.

15.

∫ π/2

0

∫ sin x

tan(x/2)

dy dx

16.

∫ π/2

π/6

∫ a(1+cos θ)

a

r dr dθ (a > 0)

In Exercises 17 and 18, evaluate the double integral.

17.

∫∫

R

x2 sin y2 dA;R is the region that is bounded by y = x3,

y = −x3, and y = 8.

18.

∫∫

R

(4 − x2 − y2) dA; R is the sector in the first quadrant

bounded by the circle x2 + y2 = 4 and the coordinate axes.

19. Convert to rectangular coordinates and evaluate:

∫ π/2

0

∫ 2a sin θ

0

r sin 2θ dr dθ

20. Convert to polar coordinates and evaluate:

∫

√
2

0

∫

√
4−x2

x

4xy dy dx

21. Convert to cylindrical coordinates and evaluate:

∫ 2

−2

∫

√
4−x2

−
√

4−x2

∫ 16

(x2+y2)2

x2 dz dy dx

22. Convert to spherical coordinates and evaluate:

∫ 1

0

∫

√
1−x2

0

∫

√
1−x2−y2

0

1

1 + x2 + y2 + z2
dz dy dx

23. Let G be the region bounded above by the sphere ρ = a

and below by the cone φ = π/3. Express
∫∫∫

G

(x2 + y2) dV

as an iterated integral in

(a) spherical coordinates (b) cylindrical coordinates

(c) rectangular coordinates.

24. Let G = {(x, y, z) : x2 + y2 ≤ z ≤ 4x}. Express the vol-

ume of G as an iterated integral in

(a) rectangular coordinates (b) cylindrical coordinates.

In Exercises 25 and 26, find the area of the region using a

double integral.

25. The region bounded by y = 2x3, 2x+y = 4, and the x-axis.

26. The region enclosed by the rose r = cos 3θ .

In Exercises 27 and 28, find the volume of the solid using a

triple integral.

27. The solid bounded below by the cone φ = π/6 and above

by the plane z = a.

28. The solid enclosed between the surfaces x = y2 + z2 and

x = 1 − y2.

29. Find the surface area of the portion of the hyperbolic

paraboloid

r(u, v) = (u+ v)i + (u− v)j + uvk

for which u2 + v2 ≤ 4.

30. Find the surface area of the portion of the spiral ramp

r(u, v) = u cos vi + u sin vj + vk

for which 0 ≤ u ≤ 2, 0 ≤ v ≤ 3u.

In Exercises 31 and 32, find the equation of the tangent plane

to the surface at the specified point.

31. r = ui + vj + (u2 + v2)k; u = 1, v = 2

32. x = u cosh v, y = u sinh v, z = u2; (−3, 0, 9)

In Exercises 33 and 34, find the centroid of the region.

33. The region bounded by y2 = 4x and y2 = 8(x − 2).

34. The upper half of the ellipse (x/a)2 + (y/b)2 = 1.

In Exercises 35 and 36, find the centroid of the solid.

35. The solid cone with vertex (0, 0, h) and with base x2 +y2 ≤
a2 in the xy-plane.

36. The solid bounded by y = x2, z = 0, and y + z = 4.
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37. Show that
∫ +�

0

∫ +�

0

1

(1 + x2 + y2)2
dx dy =

π

4

[Hint: See Exercise 37 of Section 15.3.]

38. It can be proved that if a bounded plane region slides along

a helix in such a way that the region is always orthogonal

to the helix (i.e., orthogonal to the unit tangent vector to

the helix), then the volume swept out by the region is equal

to the area of the region times the distance traveled by its

centroid. Use this result to find the volume of the “tube” in

the accompanying figure that is swept out by sliding a circle

of radius 1
2

along the helix .

x = cos t, y = sin t, z =
t

4
(0 ≤ t ≤ 4π)

in such a way that the circle is always centered on the helix

and lies in the plane perpendicular to the helix.

C 39. The accompanying figure shows the graph of an astroidal

sphere

x2/3 + y2/3 + z2/3 = a2/3

(a) Show that this surface can be represented parametrically

as

x = a(sinφ cos θ)3

y = a(sinφ cos θ)3

z = a(cosφ)3

(0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π)

(b) Use a CAS to approximate the surface area in the case

where a = 1.

(c) Use a triple integrand and the transformation

x = ρ(sinφ cos θ)3

y = ρ(sinφ cos θ)3

z = ρ(cosφ)3

for which 0 ≤ ρ ≤ a, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π to find

the volume of the astroidal sphere.

x y

z

Figure Ex-38

z

x

y

Figure Ex-39

40. Find the average distance from a point inside a sphere of ra-

dius a to the center. [See the definition preceding Exercise

25 of Section 15.5.]

C 41. (a) Describe the surface that is represented by the paramet-

ric equations

x = a sinφ cos θ

y = b sinφ sin θ

z = c cosφ

(0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π)

where a > 0, b > 0, and c > 0.

(b) Use a CAS to approximate the area of the surface for

a = 2, b = 3, c = 4.


