

Análise Matemática II E

Departamento de Matemática FCT-UNL $2^{\rm o}$ Teste (9/6/2017) - $2^{\rm o}$ Semestre - 2016/2017

Duração: 2 horas

- 1. Considere a função definida em \mathbb{R}^2 por $f(x,y)=\left\{ egin{array}{ll} \frac{x^3-y^4}{x^2+y^2} & \mathrm{se}\ (x,y)
 eq (0,0) \\ 0 & \mathrm{se}\ (x,y)=(0,0). \end{array} \right.$
- [1.0] (a) Estude a continuidade de f em \mathbb{R}^2 ;
- [1.0] (b) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$;
- [1.5] (c) Estude a diferenciabilidade de f em (0,0).
- [2.0] 2. Calcule $\int \int_D x \ dA$, em que D é a região limitada pela curva $x=2-y^2$ e pela recta y=-x.
 - 3. Considere a função $g(x,y) = e^x \operatorname{sen}(\frac{\pi}{2} + x + 2y) + \log(1+y) \cos(x-3y)$.
- [1.0] (a) Determine D, o domínio da função g. Faça uma representação geométrica de D.
- [1.0] (b) Determine uma equação do plano tangente ao gráfico de g no ponto (0,0,g(0,0));
- [2.0] (c) Use a alínea anterior para obter um valor aproximado de g(0.07, 0.04).
 - 4. Seja f(u,v) uma função real de dominio \mathbb{R}^2 , que é diferenciável em \mathbb{R}^2 e verifica $\frac{\partial f}{\partial u}(a,-a) \frac{\partial f}{\partial v}(a,-a) = 0$, para todo $a \in \mathbb{R}$. Seja ainda ϕ a função definida por $\phi(x,y) = f(x^3 + 3y, -3x y^3)$.
- [1,5] (a) Mostre que $\frac{\partial \phi}{\partial x}(1,1) \frac{\partial \phi}{\partial y}(1,1) = 0;$
- [1.0] (b) Calcule a derivada direccional de f segundo o vector $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$ no ponto (0,0).
- [2.5] 5. Determine três números naturais x, y, z com soma igual a 20, tais que xyz^2 tenha valor máximo.
- [2.0] 6. Use coordenadas polares para calcular $\int_0^a \int_0^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} \ dy dx$, onde a é uma constante positiva.
 - 7. Considere E_1 o sólido limitado inferiormente pela superfície esférica $x^2+y^2+z^2-3z=0$ e superiormente pelo parabolóide $2-z=x^2+y^2$ e o sólido

$$E_2 = \{x, y, z\} \in \mathbb{R}^3 : x^2 + y^2 \le 9 \text{ e } z \le \sqrt{x^2 + y^2}, \ x \le 0 \text{ e } z \ge 0\}.$$

Calcule:

- [2.0] (a) o volume de E_1 , através de um integral triplo;
- [1.5] (b) o volume de E_2 , através de um integral duplo.