Cláudio Idú Gomes Morais - 42281 - MIEI Mark: 0/15 (total score: 0/15)

+25/1/12+

Departamento	de	Matemática

Matemática Discreta

Faculdade de Ciências e Tecnologia — UNL 20/06/2014 Exame de Recurso

Duração do exame: 2 horas

0 0 0 0 0

1 1 1 1

2 2

3 3 3 3 3

4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8

9 9 9 9 9

Marque o seu número de aluno preenchendo completamente os quadrados respectivos da grelha ao lado () e escreva o nome completo, o número e o curso abaixo.

Nome: Clardo Ida Gomes Korars

Número: 42281 Curso: MIET

Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta.

Questão 1 Qualquer que seja o conjunto finito A, tal que $|A| = n \operatorname{com} n > 2$, temos que:

1.5/1.5

-0.5/1.5

$$| \cup \mathcal{P}(A) | = n.$$

b
$$|\cap \mathcal{P}(A)| = n$$

$$|A \times \emptyset| = n$$

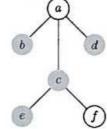
Seja R uma relação binária sobre o conjunto $\{1,2,3,4\}$ tal que $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Questão 2 é a sua matriz de adjacências.

- R não é irreflexiva, é anti-simétrica e transitiva.
- R é irreflexiva, anti-simétrica e transitiva.
- R não é irreflexiva, é anti-simétrica e não é transitiva.
- d R é irreflexiva, simétrica e transitiva.

Sejam R e S duas relações de equivalência sobre o conjunto $X = \{1, 2, 3, 4\}$, tais que $X/R = \{\{1,2\},\{3,4\}\}$ e $X/S = \{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária:

0/1.5

 $R \cap S$.


 $b R \cup S$.

SoR.

d RoS.

Questão 4 Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial ≤ sobre X definida pelo seguinte diagrama de Hasse:

- a é elemento maximal de A.
- b é elemento minimal de A.
- f é minorante de A.
- 🗻 e é minorante de A.

-0.5/1.5

- -0.5/1.5
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\boxed{\hspace{0.5cm}} \forall x \in X \, \exists^1 y \in Y \quad f(x) = y.$
- $\boxed{1} \ \forall x \in X \,\exists y \in Y \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,\,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

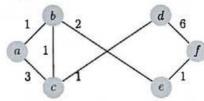
- 0/1.5
- a f é invertível.

- h é invertível.
- Nenhuma das restantes alíneas.
- g
 e invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- (5,4,3,2,1,1,1,1).

(5,5,4,3,2,1,0).


b (5,4,3,3,1,1,1,1).

d (7,5,4,3,2,1,0).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- -0.5/1.5
- a 2n-3.
- X 2n-4.
- 2n-2.
- d 2n-1.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- \boxtimes a e c têm etiquetas provisórias com valor 4.

- \bigcirc b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

-0.5/1.5

 $lue{lue{B}}$ G é euleriano.

☑ G é semi-euleriano.

b G é uma árvore.

d Nenhuma das restantes alíneas.

Daniel Filipe Canário Miguel - 43615 - MIEI Mark: 3.5/15 (total score: 3.5/15)

		140	1			
					Π	\Box

+33/1/56+

Departamento de Matemática Faculdade de Ciências e Tecnologia — UNL Matemática Discreta 20/06/2014 Exame de Recurso DURAÇÃO DO EXAME: 2 HORAS Marque o seu número de aluno preenchendo completamente os quadra-0 0 0 0 dos respectivos da grelha ao lado (🔳) e escreva o nome completo, o número 1 1 1 1 e o curso abaixo. 2 2 2 2 2 Nome: Daviel Filipe Canazio Mignel 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 Número: .43.63.5..... Curso: \7.1.\(\xi\). 7 7 7 7 7 8 8 8 8 8 Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com 9 9 9 9 9 caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta. Questão 1 Qualquer que seja o conjunto finito A, tal que |A| = n com n > 2, temos que: $|A \times \emptyset| = n.$ $| \cup \mathcal{P}(A) | = n.$ $| A \times A | = 2n.$ Seja R uma relação binária sobre o conjunto $\{1,2,3,4\}$ tal que $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Questão 2 é a sua matriz de adjacências. a R é irreflexiva, simétrica e transitiva. R não é irreflexiva, é anti-simétrica e não é transitiva. R é irreflexiva, anti-simétrica e transitiva. R não é irreflexiva, é anti-simétrica e transitiva. Sejam R e S duas relações de equivalência sobre o conjunto $X=\{1,2,3,4\}$, tais que $X/R=\{\{1,2\},\{3,4\}\}$ e $X/S=\{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária:

-0.5/1.5

1.5/1.5

-0.5/1.5

1.5/1.5

 $R \cup S$.

b SoR.

 $\mathbb{X} \cap S$.

d RoS.

Questão 4 Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial \leq sobre X definida pelo seguinte diagrama de Hasse:

f é minorante de A.

b e é minorante de A.

b é elemento minimal de A.

d a é elemento maximal de A.

- 0/1.5
- $\exists X \in X \exists y \in Y \quad f(x) = y.$
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- $\boxed{\mathrm{d}} \ \exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,\,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

- 1.5/1.5
- Nenhuma das restantes alíneas.
- f é invertível.

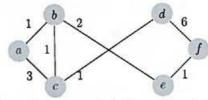
b h é invertível.

g é invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- a (5,5,4,3,2,1,0).

[(5,4,3,2,1,1,1,1).


b (7,5,4,3,2,1,0).

d (5,4,3,3,1,1,1,1).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- -0.5/1.5
- × 2n-4.
- b 2n-3.
- 2n-2.
- d 2n-1.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- 🔀 a e c têm etiquetas provisórias com valor 4.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

-0.5/1.5

G é semi-euleriano.

G é uma árvore.

- Nenhuma das restantes alíneas.
- d G é euleriano.

1.5/1.5

-0.5/1.5

0/1.5

-0.5/1.5

+28/1/6+

Departamento de Mat Matemática Discreta	emática Faculda 20/06/2014	ade de Ciências e Tecnologia — UNI Exame de Recurso
	DURAÇÃO DO EXAME:	2 HORAS
0 0 0 0 0		uno preenchendo completamente os quadra o () e escreva o nome completo, o número
2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5	Nome: Daniel 1/2	ein Pito
66666	Número: 42073	Curso: MIEI
88888	resposta certa preenchendo com caneta azul ou preta. Cada resp	ma e apenas uma resposta certa. Marque a pletamente o quadrado respectivo () composta certa vale 1,5 valores. Cada resposta arcações múltiplas anulam a questão. resposta aberta.
Questão 1 Qualque		que $ A = n \text{ com } n > 2$, temos que:
$ \cap \mathcal{P}(A) = n. $	$ A \times A = 2n. $	$ \mathcal{P}(A) = n.$ d $ A \times \emptyset = n.$
		Γ
Questão 2 Seja R v é a sua matriz de adjac	ma relação binária sobre o conjunt	to {1,2,3,4} tal que
	a, é anti-simétrica e não é transitiva	[0100]
	ti-simétrica e transitiva.	1 .
	, é anti-simétrica e transitiva.	
\blacksquare R é irreflexiva, sir	nétrica e transitiva.	
	4}} e $X/S = \{\{1,2,3\},\{4\}\}$. É ig	a sobre o conjunto $X=\{1,2,3,4\}$, tais gualmente uma relação de equivalência
a SoR.	\nearrow $R \cap S$.	$\circ S$.
	$X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$ e seguinte diagrama de Hasse:), considere a relação de ordem parcial
≥ b é elemento mini	mal de A.	d
a é elemento max	mal de A.	C
e é minorante de		
d f é minorante de	A	

Dados conjuntos X e Y, $f: X \rightarrow Y$ é uma aplicação se, e só se, Questão 5

- 0/1.5
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\exists^1 y \in Y \ \forall x \in X \quad f(x) = y.$
- $b \forall x \in X \exists y \in Y \quad f(x) = y.$
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X \to Y, g:Y \to Z$ e $h:Z \to W,$ se $g \circ f$ é sobrejectiva e hog é injectiva então

- 0/1.5
- $\nearrow g$ é invertível.

h é invertível.

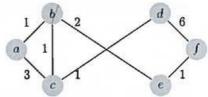
b f é invertível.

d Nenhuma das restantes alíneas.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- a (7,5,4,3,2,1,0).

(5,4,3,3,1,1,1,1).


b (5,5,4,3,2,1,0).

(5,4,3,2,1,1,1,1).

Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus Questão 8 dos n vértices de G é:

- -0.5/1.5
- × 2n-4.
- 2n-2.
- c 2n-1.
- d 2n-3.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- a e c têm etiquetas provisórias com valor 4.
- d d tem etiqueta definitiva com valor 6.

Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ a Questão 10

respectiva matriz de adjacências.

-0.5/1.5

-0.5/1.5

G é uma árvore.

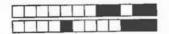
- - Nenhuma das restantes alíneas.

G é semi-euleriano.

d G é euleriano.

-0.5/1.5

-0.5/1.5


-0.5/1.5

-0.5/1.5

f é minorante de A.

Departamento de Ma Matemática Discreta	temática	Faculdade de C 20/06/2014	iências e Tecnologia — U Exame de Recu	
	Duração i	OO EXAME: 2 HOI		
0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3	dos respectivos e o curso abaix	s da grelha ao lado (🌉) e es ko.	chendo completamente os qua creva o nome completo, o nún	aero
4 4 M 4 5 5 5 5 5 6 6 M 6 6	***************************************			
7 7 7 7 7 8 8 8 8 9 9 9 9 9	resposta certa j caneta azul ou errada descont	preenchendo completament preta. Cada resposta certa	as uma resposta certa. Marque o quadrado respectivo () o a vale 1,5 valores. Cada respectivo a vale 1,5 valores. Cada respectivo de la companion de la compan	om
Questão 1 Qualque			n com n > 2, temos que:	
$ \cup \mathcal{P}(A) = n.$		$ \cap \mathcal{P}(A) = 0$	$n. \qquad \boxed{d} A \times \emptyset = n.$	
			0 1 0 0	Ì
Questão 2 Seja R u	ma relação binária	sobre o conjunto {1,2,3,	4} tal que 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0	
é a sua matriz de adjace	encias.		0 1 1 0	
a R é irreflexiva, an	ti-simétrica e transi	tiva.		1
b R é irreflexiva, sin	nétrica e transitiva.			
R não é irreflexiva	, é anti-simétrica e	não é transitiva.		
R não é irreflexiva	, é anti-simétrica e	transitiva.		
Questão 3 Sejam R que $X/R = \{\{1,2\}, \{3, \text{ sobre } X \text{ a seguinte relaç}\}$	4}} e $X/S = \{\{1, 2\}\}$	de equivalência sobre o o (2,3}, {4}}. É igualmente	conjunto $X=\{1,2,3,4\},$ te uma relação de equivalên	ais cia
$\boxtimes R \cap S$.	\triangleright $R \cup S$.	RoS.	d SoR.	
Questão 4 Dados X ≤ sobre X definida pelo	$X = \{a, b, c, d, e, f\}$ seguinte diagrama	$A = \{b, c, d, e\}$, conside de Hasse:	re a relação de ordem parc	ial
a é elemento maxi		6	d	
b é elemento minin	nal de A	C		

- 1.5/1.5
- $\exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$

- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

- 1.5/1.5
- Nenhuma das restantes alíneas.
- c h é invertível.

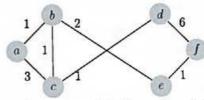
b f é invertível.

g
 e invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- (5,4,3,2,1,1,1,1).

(5,5,4,3,2,1,0).


b (5,4,3,3,1,1,1,1).

d (7,5,4,3,2,1,0).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- 1.5/1.5
- 2n-4.
- b 2n-2.
- c 2n-3.
- d 2n-1.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a d tem etiqueta definitiva com valor 6.
- a e c têm etiquetas provisórias com valor 4.
- d a tem etiqueta provisória com valor 7.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

1.5/1.5

G é uma árvore.

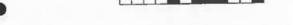
Nenhuma das restantes alíneas.

G é euleriano.

Filipe Nepomuceno Pereira - 43965 - MIEI Mark: 2.5/15 (total score: 2.5/15)

1.5/1.5

-0.5/1.5


0/1.5

-0.5/1.5

+92/1/58+

Departamento de Mai Matemática Discreta	emática F _E 20/06/20	culdade de Ciências e T	
	DURAÇÃO DO EXA		xame de Recurso
00000	← Marque o seu número	de aluno preenchendo comp no lado () e escreva o nome	
2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6 6 6		Curso: Mit	
7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9	resposta certa preenchendo caneta azul ou preta. Cad	iste uma e apenas uma respo o completamente o quadrado a resposta certa vale 1,5 val s. Marcações múltiplas anul o de resposta aberta.	respectivo () com ores. Cada resposta
Questão 1 Qualquer	que seja o conjunto finito A ,		2, temos que:
$\boxed{a} A \times A = 2n.$	$\boxed{\text{b}} \mid \cap \mathcal{P}(A) \mid = n.$		
a R não é irreflexiva	na relação binária sobre o con ncias. é anti-simétrica e não é trans	njunto $\{1,2,3,4\}$ tal que	[0 1 0 0]
B não é irreflexiva, sim	etrica e transitiva. é anti-simétrica e transitiva.		
	-simétrica e transitiva.		
Questão 3 Sejam R	e S duas relações de equivalé }} e $X/S = \{\{1, 2, 3\}, \{4\}\}.$	ència sobre o conjunto X É igualmente uma relaçã	= {1,2,3,4}, tais so de equivalência
$\boxtimes R \cap S$.	b RoS.	SoR.	$R \cup S$.
Questão 4 Dados X \leq sobre X definida pelo	= $\{a, b, c, d, e, f\}$ e $A = \{b, c, e, g\}$ seguinte diagrama de Hasse:	d,e }, considere a relação	de ordem parcial
a é elemento maxim	nal de A.	b d	
b é elemento minim			
f é minorante de A			
e é minorante de A			

-0.5/1.5

	(x) =	у.
--	-------	----

 $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$

$$\boxed{\text{h}} \ \exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$$

d $\exists y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

0/1.5

A Nenhuma das restantes alíneas.

f é invertível.

h é invertível.

 $\boxtimes g$ é invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

1.5/1.5

a (7,5,4,3,2,1,0).

(5,4,3,3,1,1,1,1).

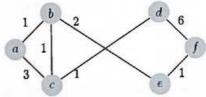
b (5,5,4,3,2,1,0).

(5,4,3,2,1,1,1,1).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

-0.5/1.5

1.5/1.5


a 2n-3.

2n-2.

2n-4.

d 2n-1.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- [a] b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- a e c têm etiquetas provisórias com valor 4.
- d a tem etiqueta provisória com valor 7.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

0/1.5

 \Box G é euleriano.

C G é uma árvore.

d Nenhuma das restantes alíneas.

al score: 8/15)			
		+5/1/	52+
Departamento de Mat	emática Faculdade	de Ciências	e Tecnologia — UNL
Matemática Discreta	20/06/2014		Exame de Recurso
	Duração do exame: 2	HORAS	
00000	← Marque o seu número de aluno		
1 111	dos respectivos da grelha ao lado () e escreva o	nome completo, o número
2 2 2 2 2	c o curso abaixo.		
3 3 3 3	Nome: Feanaisco Sa	adim de	a Riveina
4444			
5 5 5 5	***************************************		
6 6 6 6	Número: 41 979	. Curso: .	MIEI
7 7 7 7 7			

Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta.

Questão 1 Qualquer que seja o conjunto finito A, tal que |A| = n com n > 2, temos que:

0/1.5

$$| \cap \mathcal{P}(A) | = n.$$

8 8 8 8 8

9 9 9 9

$$|A \times \emptyset| = n.$$

$$| \cup \mathcal{P}(A) | = n.$$

$$d |A \times A| = 2n$$

Seja R uma relação binária sobre o conjunto $\{1,2,3,4\}$ tal que de adjacências. $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Questão 2 é a sua matriz de adjacências.

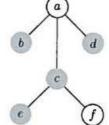
- n R é irreflexiva, anti-simétrica e transitiva.
- R não é irreflexiva, é anti-simétrica e transitiva.
- R é irreflexiva, simétrica e transitiva.
- R não é irreflexiva, é anti-simétrica e não é transitiva.

Sejam R e S duas relações de equivalência sobre o conjunto $X = \{1, 2, 3, 4\}$, tais que $X/R=\{\{1,2\},\{3,4\}\}$ e $X/S=\{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária:

1.5/1.5

1.5/1.5

$$R \cap S$$
.


b SoR.

$$\cap$$
 $R \cup S$.

d RoS.

Questão 4 Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial ≤ sobre X definida pelo seguinte diagrama de Hasse:

- e é minorante de A.
- b a é elemento maximal de A.
- f é minorante de A.
- b é elemento minimal de A.

0/1.5

- 1.5/1.5
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\boxed{\text{b}} \ \exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f: X \to Y, g: Y \to Z$ e $h: Z \to W$, se $g \circ f$ é sobrejectiva e $h \circ g$ é injectiva então

- -0.5/1.5
- Nenhuma das restantes alíneas.
- $\boxtimes g$ é invertível.

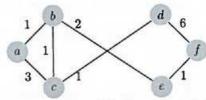
b f é invertível.

d h é invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- a (7,5,4,3,2,1,0).

(5,4,3,2,1,1,1,1).


b (5,5,4,3,2,1,0).

d (5,4,3,3,1,1,1,1).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- 1.5/1.5
- a 2n-2.
- b 2n-1.
- c 2n-3.
- 2n-4.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- $\boxed{ }$ a e c têm etiquetas provisórias com valor 4.
 - \fbox{b} d tem etiqueta definitiva com valor 6.
 - \center{c} b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
 - d a tem etiqueta provisória com valor 7.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

1.5/1.5

© G é euleriano.

b G é uma árvore.

Nenhuma das restantes alíneas.

Francisco Miguel Antunes Fernandes - 43692 - MIEI Mark: 6.5/15 (total score: 6.5/15)

+21/1/20+

Departamento de Matemática Faculdade de Ciências e Tecnologia — UNL Matemática Discreta 20/06/2014 Exame de Recurso Duração do exame: 2 horas Marque o seu número de aluno preenchendo completamente os quadra-0 0 0 0 0 dos respectivos da grelha ao lado () e escreva o nome completo, o número 1 1 1 1 1 e o curso abaixo. 2 2 2 2 Nome: Francisco Miquel Antunes 3 3 3 3 4 4 4 4 Fernandes 5 5 5 5 5 Número: 43692 Curso: Mi E i 6 6 6 6 7 7 7 7 7 8 8 8 8 Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com 9 9 9 9 9 caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta. Questão 1 Qualquer que seja o conjunto finito A, tal que $|A| = n \operatorname{com} n > 2$, temos que: $|A \times A| = 2n.$ b $|A \times \emptyset| = n$. $|A \times \emptyset| = n$. Seja R uma relação binária sobre o conjunto $\{1,2,3,4\}$ tal que $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ Questão 2 é a sua matriz de adjacências. a R é irreflexiva, anti-simétrica e transitiva. B R não é irreflexiva, é anti-simétrica e não é transitiva. R não é irreflexiva, é anti-simétrica e transitiva. R é irreflexiva, simétrica e transitiva. Sejam R e S duas relações de equivalência sobre o conjunto $X=\{1,2,3,4\}$, tais que $X/R = \{\{1,2\},\{3,4\}\}$ e $X/S = \{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência

-0.5/1.5

1.5/1.5

0/1.5

a RoS.

b SoR.

 $R \cup S$.

 $\mathbb{R} \cap S$.

Questão 4 Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial \leq sobre X definida pelo seguinte diagrama de Hasse:

f é minorante de A.

b é elemento minimal de A.

sobre X a seguinte relação binária:

e é minorante de A.

d a é elemento maximal de A.

1.5/1.5

0/1.5

- $\boxed{\hspace{-0.5cm} X} \hspace{0.1cm} \forall x \in X \hspace{0.1cm} \exists^1 y \in Y \hspace{0.3cm} f(x) = y.$
- $\exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$
- $\boxed{\text{b}} \ \forall x \in X \, \exists y \in Y \quad f(x) = y.$
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y$, $g:Y\to Z$ e $h:Z\to W$, se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

0/1.5

 $\boxtimes g$ é invertível.

h é invertível.

h f é invertível.

d Nenhuma das restantes alíneas.

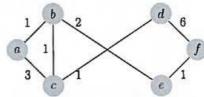
Questão 7 A seguinte sequência é uma sequência gráfica

1.5/1.5

a (5,4,3,3,1,1,1,1).

c (7,5,4,3,2,1,0).

b (5,5,4,3,2,1,0).


(5,4,3,2,1,1,1,1).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

-0.5/1.5

- 2n-2.
- 2n-4.
- c 2n-1.
- d 2n-3.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- a e c têm etiquetas provisórias com valor 4.
- \boxed{d} d tem etiqueta definitiva com valor 6.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

1.5/1.5

1.5/1.5

a G é euleriano.

Nenhuma das restantes alíneas.

b G é uma árvore.

G é semi-euleriano.

Francisco Pereira Monteiro - 38811 - MIEC Mark: 2.5/15 (total score: 2.5/15)

1.5/1.5

-0.5/1.5

-0.5/1.5

-0.5/1.5

+8/1/46+

Departamento de Mat Matemática Discreta		Faculdade de Ci- 06/2014			e Recur	
	Duração do i	EXAME: 2 HOR				
00000		úmero de aluno preenci relha ao lado (🔳) e esc				
2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5	Nome: Fancoses.	Hanteino				
66666	Número:3	88.11 Cu	ırso: <u>N</u>	1.1.5.	ζ	
8 8 8 8 9 9 9 9	resposta certa preen caneta azul ou preta errada desconta 0,5	-10 existe uma e apena chendo completamente a. Cada resposta certa valores. Marcações mu e 13 são de resposta ab	o quadrado vale 1,5 va iltiplas anu	respecti lores. Ca	ivo (m) o ada respo	on
Questão 1 Qualque	que seja o conjunto fin	ito A , tal que $ A = a$	n com n >	2, temo	s que:	
$ A \times A = 2n.$	$ \cup \mathcal{P}(A) = n.$	$ A \times \emptyset = n.$	d] [n æ(.	A = n.	
				Γο.		1
Questão 2 Seja R u	ma relação binária sobre	e o conjunto {1,2,3,4	I} tal que	0 0 0 1	0 0	
				0 1	0 0	J
	, é anti-simétrica e não i-simétrica e transitiva.	e transitiva.				
	, é anti-simétrica e trans	sitiva.				
d R é irreflexiva, sim						
Questão 3 Sejam R que $X/R = \{\{1,2\}, \{3,4\}\}$ sobre X a seguinte relaç		quivalência sobre o c {4}}. É igualmente	onjunto X uma relaç	= {1,2 ão de e	, 3, 4}, t quivalên	ai cia
a SoR.	b RoS.	$\boxtimes R \cap S$.		$R \cup S$.		
Questão 4 Dados X \leq sobre X definida pelo	= $\{a, b, c, d, e, f\}$ e A = seguinte diagrama de H		e a relação	de ord	em parc	ia
e é minorante de A	l.	6	d			
f é minorante de A						
≥ b é elemento minin		C				
d a é elemento maxin	nal de A.	(e) T				

- 0/1.5
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- d $\exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f: X \to Y$, $g: Y \to Z$ e $h: Z \to W$, se $g \circ f$ é sobrejectiva e $h \circ g$ é injectiva então

- 0/1.5
- f é invertível.

h é invertível.

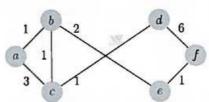
g é invertível.

d Nenhuma das restantes alíneas.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- a (7,5,4,3,2,1,0).

(5,5,4,3,2,1,0).


b (5,4,3,3,1,1,1,1).

(5,4,3,2,1,1,1,1).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- 0/1.5
- a 2n-1.
- b 2n-3.
- c 2n-2.
- X 2n-4.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- b a tem etiqueta provisória com valor 7.
- d tem etiqueta definitiva com valor 6.
- a e c têm etiquetas provisórias com valor 4.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

1.5/1.5

-0.5/1.5

G é semi-euleriano.

- © G é euleriano.
- b Nenhuma das restantes alíneas.
- d G é uma árvore.

Gonçalo Graça Ferreira Palma - 42581 - MIEI Mark: 1.5/15 (total score: 1.5/15)

-0.5/1.5

-0.5/1.5

0/1.5

-0.5/1.5

+49/1/24+

Matemática Discreta	20/06		Exa	me de Recurso
	Duração do ex	АМЕ: 2 НОР	RAS	
	Marque o seu núm dos respectivos da grell e o curso abaixo.	ero de aluno preenc na ao lado (m) e esc	hendo complet reva o nome co	amente os quadra ompleto, o número
2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 8	Nome: Gonça Palma Número: 4258.	1 cı	urso: .MI.E	I
99999	resposta certa preenche caneta azul ou preta. C errada desconta 0,5 val As questões 11, 12 e 13	ndo completamente Zada resposta certa ores. Marcações mí	o quadrado res vale 1,5 valore iltiplas anulan	spectivo () com es. Cada resposta
Questão 1 Qualquer	que seja o conjunto finito	A, tal que $ A = i$	n com n > 2	temos que:
	$\boxed{\text{b}} A \times A = 2n.$			
Questão 2 Seja R un	na relação binária sobre o ncias. é anti-simétrica e transitiv	conjunto {1, 2, 3, 4	tal que	0 0 0 0
é a sua matriz de adjacê	ncias.		[(1 0 0
b R é irreflexiva, sim	- the surface of the	<i>r</i> a.		
	i-simétrica e transitiva.			
	é anti-simétrica e não é tr	ansitiva		
Questão 3 Sejam R	e S duas relações de equiv }} e $X/S = \{\{1, 2, 3\}, \{4\}\}$	alência sobre o co	onjunto $X =$ uma relação	{1,2,3,4}, tais de equivalência
a RoS.	$\mathbb{R} \cap S$.	SoR.	dR	∪ <i>S</i> .
Questão 4 Dados X \leq sobre X definida pelo :	$=\{a,b,c,d,e,f\}$ e $A=\{b\}$ seguinte diagrama de Hasse	$\{c,c,d,e\}$, considered	e a relação de	ordem parcial
🔀 b é elemento minim	al de A.	6	d	
b α é elemento maxim	nal de A .			
e é minorante de A	·	C		
f é minorante de A				

- 1.5/1.5
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- $\exists x \in X \exists y \in Y \quad f(x) = y.$
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\boxed{1} \exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,\,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

- -0.5/1.5
- h é invertível.

Nenhuma das restantes alíneas.

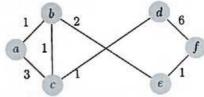
 $\boxtimes g$ é invertível.

d f é invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- (5,4,3,2,1,1,1,1).

(5,4,3,3,1,1,1,1).


Б (5,5,4,3,2,1,0).

d (7,5,4,3,2,1,0).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- -0.5/1.5
- 2n-4.
- b 2n-1.
- c 2n-3.
- 2n-2

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a d tem etiqueta definitiva com valor 6.
- a e c têm etiquetas provisórias com valor 4.
- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- d a tem etiqueta provisória com valor 7.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

1.5/1.5

G é semi-euleriano.

Nenhuma das restantes alíneas.

G é uma árvore.

d G é euleriano.

0/1.5

0/1.5

0/1.5

0/1.5

d a é elemento maximal de A.

TT	ПП	
П		\Box

+7/1/48+

Departamento de Matemática Faculdade de Ciências e Tecnologia — UNL Matemática Discreta 20/06/2014 Exame de Recurso DURAÇÃO DO EXAME: 2 HORAS Marque o seu número de aluno preenchendo completamente os quadra-0 0 0 0 dos respectivos da grelha ao lado () e escreva o nome completo, o número 1 1 1 1 1 e o curso abaixo. 2 2 2 2 Nome: GONSKO Sordeo de queino DE 3 3 3 3 3 4444 MONTO DO SOUSA MEMPES 5 5 5 5 5 Número: 42482 Curso: hIEI 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com 9 9 9 9 9 caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta. Questão 1 Qualquer que seja o conjunto finito A, tal que $|A| = n \operatorname{com} n > 2$, temos que: $| \cup \mathcal{P}(A) | = n.$ d $| \cap \mathcal{P}(A) | = n.$ $|A \times A| = 2n$. Seja R uma relação binária sobre o conjunto $\{1, 2, 3, 4\}$ tal que $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Questão 2 é a sua matriz de adjacências. a R é irreflexiva, anti-simétrica e transitiva. b R não é irreflexiva, é anti-simétrica e não é transitiva. R é irreflexiva, simétrica e transitiva. R não é irreflexiva, é anti-simétrica e transitiva. Sejam R e S duas relações de equivalência sobre o conjunto $X = \{1, 2, 3, 4\}$, tais que $X/R = \{\{1,2\},\{3,4\}\}$ e $X/S = \{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária: $X \cap S$. b SoR. \cap $R \cup S$. d RoS. Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial Questão 4 ≤ sobre X definida pelo seguinte diagrama de Hasse: il e é minorante de A. b é elemento minimal de A. c f é minorante de A.

- $0/1.5 \qquad \qquad x \in X \exists y \in Y \quad f(x) = y.$
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- d $\exists^1 y \in Y \, \forall x \in X \quad f(x) = y$.

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

- 0/1.5 Nenhuma das restantes alíneas.
- c h é invertível.

g é invertível.

d f é invertível.

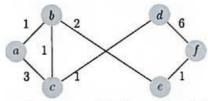
Questão 7 A seguinte sequência é uma sequência gráfica

0/1.5

(7,5,4,3,2,1,0).

(5,4,3,2,1,1,1,1).

d (5,5,4,3,2,1,0).


Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

0/1.5

0/1.5

- a 2n-3.
- b 2n-1.
- c 2n-2.
- 2n-4.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- a e c têm etiquetas provisórias com valor 4.
- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- d d tem etiqueta definitiva com valor 6.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

- 0/1.5
- \overline{a} G é euleriano.

Nenhuma das restantes alíneas.

d G é uma árvore.

Hugo Daniel Lino Rações - 43776 - MIEI Mark: 7/15 (total score: 7/15)

-0.5/1.5

-0.5/1.5

-0.5/1.5

1.5/1.5

Departamento de Mat Matemática Discreta		Tecnologia — UN Exame de Recurso
	DURAÇÃO DO EXAME: 2 HORAS	zame de Recurso
0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 5	← Marque o seu número de aluno preenchendo comp dos respectivos da grelha ao lado (■) e escreva o nome e o curso abaixo. Nome:	e completo, o número
6666	Número: 43776 Curso: M	IEI
7 7 7 7	Cuiso	.M. (
888889999	Para cada questão 1-10 existe uma e apenas uma resportante de caneta azul ou preta. Cada resposta certa vale 1,5 valerrada desconta 0,5 valores. Marcações múltiplas anulas cuestãos 11,12 a 12 a 5 a la capacidade.	respectivo (E) com lores. Cada resposta
Questão 1 Qualquer	As questões 11, 12 e 13 são de resposta aberta. que seja o conjunto finito A , tal que $ A =n$ com $n>$	0.1
$ \cap \mathcal{P}(A) = n. $	$ \cup \mathcal{P}(A) = n.$ $ A \times \emptyset = n.$	$A \times A = 2n.$
é a sua matriz de adjacê	na relação binária sobre o conjunto {1,2,3,4} tal que	0 1 1 0
R é irreflexiva, sim		[0 1 0 0]
	é anti-simétrica e transitiva.	
R não é irreflexiva,	é anti-simétrica e não é transitiva.	= {1 2 3 4} take
que $X/R = \{\{1,2\}, \{3,4\}\}$ sobre X a seguinte relação	}} e $X/S = \{\{1, 2, 3\}, \{4\}\}$. É igualmente uma relaçã	ão de equivalência
\bigcirc $R \cup S$.	h RoS. C SoR.	$R \cap S$.
Questão 4 Dados X ≤ sobre X definida pelo :	$=\{a,b,c,d,e,f\}$ e $A=\{b,c,d,e\}$, considere a relação seguinte diagrama de Hasse:	de ordem parcial
a f é minorante de A	b a	
0 - 02 03 03	ol do 4	
b a é elemento maxim c e é minorante de A. b é elemento minima	nal de A.	

Dados conjuntos X e Y, $f: X \rightarrow Y$ é uma aplicação se, e só se, Questão 5

- -0.5/1.5
- $\boxed{n} \exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$

- $\exists y \forall x \in X \exists y \in Y \quad f(x) = y.$
- $\boxed{1} \exists y \in Y \, \forall x \in X \quad f(x) = y.$

Quaisquer que sejam as aplicações $f:X \to Y$, $g:Y \to Z$ e $h:Z \to W$, se $g \circ f$ Questão 6 é sobrejectiva e $h \circ g$ é injectiva então

- 1.5/1.5
- h é invertível.

Nenhuma das restantes alíneas.

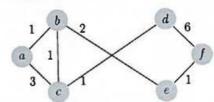
🧃 g é invertível.

d f é invertível.

A seguinte sequência é uma sequência gráfica Questão 7

- 1.5/1.5
- a (5,4,3,3,1,1,1,1).

(7,5,4,3,2,1,0).


b (5,5,4,3,2,1,0).

(5,4,3,2,1,1,1,1).

Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus Questão 8 dos n vértices de G é:

- 1.5/1.5
- a 2n-2.
- b 2n-1.
- 2n-4.
- d 2n-3.

Considere o grafo ponderado: Questão 9

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- a e c têm etiquetas provisórias com valor 4.
- a tem etiqueta provisória com valor 7.
- d d tem etiqueta definitiva com valor 6.

Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ a Questão 10

respectiva matriz de adjacências.

1.5/1.5

1.5/1.5

- G é semi-euleriano.
- b G é euleriano.

- G é uma árvore.
- d Nenhuma das restantes alíneas.

-0.5/1.5

1.5/1.5

1.5/1.5

-0.5/1.5

+31/1/60+

Departamento de Matemática Faculdade de Ciências e Tecnologia - UNL Matemática Discreta 20/06/2014 Exame de Recurso DURAÇÃO DO EXAME: 2 HORAS Marque o seu número de aluno preenchendo completamente os quadra-0 0 💯 0 0 dos respectivos da grelha ao lado (🌉) e escreva o nome completo, o número 1 1 1 1 1 e o curso abaixo. 2 2 2 2 2 Nome: Helder Reservo Lopes 3 📆 3 3 4 4 4 4 5 5 5 5 5 Número: 43093 Curso: MEI 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com 9 9 9 🥨 9 caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta. Questão 1 Qualquer que seja o conjunto finito A, tal que |A| = n com n > 2, temos que: b $|A \times A| = 2n$. $| \cup \mathcal{P}(A) | = n.$ Questão 2 é a sua matriz de adjacências. R é irreflexiva, anti-simétrica e transitiva. b R é irreflexiva, simétrica e transitiva. R não é irreflexiva, é anti-simétrica e não é transitiva. R não é irreflexiva, é anti-simétrica e transitiva. Sejam R e S duas relações de equivalência sobre o conjunto $X=\{1,2,3,4\}$, tais que $X/R = \{\{1,2\},\{3,4\}\}$ e $X/S = \{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária: a RoS. b SoR. $R \cap S$. d $R \cup S$. Questão 4 Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial ≤ sobre X definida pelo seguinte diagrama de Hasse: f é minorante de A. b a é elemento maximal de A. b é elemento minimal de A. e é minorante de A.

- 1.5/1.5
- $\exists \forall x \in X \exists y \in Y \quad f(x) = y.$
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- $\boxed{\text{b}} \ \exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$
- $\exists y \in Y \ \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

- 1.5/1.5
- Nenhuma das restantes alíneas.
- g é invertível.

b h é invertível.

d f é invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- a (5,5,4,3,2,1,0).

(5,4,3,2,1,1,1,1).

b (5,4,3,3,1,1,1,1).

d (7,5,4,3,2,1,0).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- -0.5/1.5
- a 2n-1.
- b 2n-3.
- 2n-2.
- X 2n-4.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- b d tem etiqueta definitiva com valor 6.
- a e c têm etiquetas provisórias com valor 4.
- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

-0.5/1.5

🎑 G é euleriano.

Nenhuma das restantes alíneas.

b G é uma árvore.

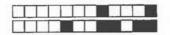
 \boxtimes G é semi-euleriano.

Joana da Silva Tavares - 43072 - MIEI Mark: 6/15 (total score: 6/15)

-0.5/1.5

-0.5/1.5

0/1.5


1.5/1.5

b é elemento minimal de A.

+17/1/28+

Departamento de Matemática Faculdade de Ciências e Tecnologia — UNL Matemática Discreta 20/06/2014 Exame de Recurso DURAÇÃO DO EXAME: 2 HORAS Marque o seu número de aluno preenchendo completamente os quadra-0 0 0 0 dos respectivos da grelha ao lado () e escreva o nome completo, o número 1 1 1 1 1 e o curso abaixo. 2 2 2 2 Nome: Jama da Silva Tavaros 3 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 Número: 43072 Curso: ATGI 7 7 7 7 7 8 8 8 8 8 Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com 9 9 9 9 9 caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta. Questão 1 Qualquer que seja o conjunto finito A, tal que |A| = n com n > 2, temos que: b $|A \times \emptyset| = n$. $| | \cap \mathcal{P}(A) | = n.$ $|A \times A| = 2n. \qquad |A \setminus \mathcal{P}(A)| = n.$ Seja R uma relação binária sobre o conjunto $\{1, 2, 3, 4\}$ tal que $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Questão 2 é a sua matriz de adjacências. a R é irreflexiva, simétrica e transitiva. R é irreflexiva, anti-simétrica e transitiva. R não é irreflexiva, é anti-simétrica e não é transitiva. R não é irreflexiva, é anti-simétrica e transitiva. Sejam R e S duas relações de equivalência sobre o conjunto $X=\{1,2,3,4\}$, tais que $X/R = \{\{1,2\},\{3,4\}\}$ e $X/S = \{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária: $\mathbb{K} \cap S$. $C R \cup S$. a RoS. d SoR. Questão 4 Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial ≤ sobre X definida pelo seguinte diagrama de Hasse: a e é minorante de A. a é elemento maximal de A. f é minorante de A.

- 0/1.5
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- b $\forall x \in X \exists y \in Y \quad f(x) = y.$
- $\boxed{\mathrm{d}} \ \exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f: X \to Y, g: Y \to Z$ e $h: Z \to W$, se $g \circ f$ é sobrejectiva e $h \circ g$ é injectiva então

- 1.5/1.5
- A Nenhuma das restantes alíneas.
- c h é invertível.

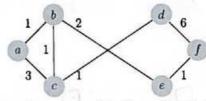
 \mathbf{g} é invertível.

f é invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- (5,4,3,3,1,1,1,1).

c (7,5,4,3,2,1,0).


(5,4,3,2,1,1,1,1).

d (5,5,4,3,2,1,0).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- -0.5/1.5
- a 2n-2.
- X 2n-4.
- c 2n-3.
- 🗐 2n-1.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a e c têm etiquetas provisórias com valor 4.
- b d tem etiqueta definitiva com valor 6.
- a tem etiqueta provisória com valor 7.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

1.5/1.5

1.5/1.5

a G é uma árvore.

☑ G é semi-euleriano.

b G é euleriano.

d Nenhuma das restantes alíneas.

1.5/1.5

-0.5/1.5

-0.5/1.5

1.5/1.5

+26/1/10+

Matemática Discreta	20/	06/2014	Exame	de Recurso		
	Duração do 1	EXAME: 2 HOR	AS			
	Marque o seu número de aluno preenchendo completamente os quadra- dos respectivos da grelha ao lado () e escreva o nome completo, o número e o curso abaixo.					
2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7	Nome: gT.Ose Montain Número: .4.3.8	Antonio Roda o Cu	gues. urso: MIEC			
88 88	resposta certa preen caneta azul ou pret: errada desconta 0,5	-10 existe uma e apena chendo completamente a. Cada resposta certa valores. Marcações mú e 13 são de resposta ab	o quadrado respe vale 1,5 valores. Iltiplas anulam a	ectivo () com Cada resposta		
Questão 1 Qualque	r que seja o conjunto fin	ito A , tal que $ A = i$	n com n > 2, te	mos que:		
$ \cap \mathcal{P}(A) = n.$	$ \cup \mathcal{P}(A) = n.$	$ A \times A = 2n$. d A :	$\times \emptyset = n.$		
			Γ.			
Questão 2 Seja R u	ma relação binária sobr	e o conjunto {1,2,3,4	i} tal que 0	0 0 0 1 1 0		
			[0	1 0 0		
R é irreflexiva, sin	, é anti-simétrica e não	4 to 1 th				
	, é anti-simétrica e tran					
Carried Control of the Control	ti-simétrica e transitiva.	alu va.				
	\mathcal{C} e S duas relações de e \mathcal{C} 4}} e \mathcal{C}/\mathcal{C} 5 = {{1,2,3},	quivalência sobre o co {4}}. É igualmente	onjunto $X = \{1$ uma relação de	1,2,3,4}, tais equivalência		
\bigcirc $R \cup S$.	b SoR.	\bowtie $R \cap S$.	dR_0	S.		
Questão 4 Dados X \leq sobre X definida pelo	$X = \{a, b, c, d, e, f\}$ e $A = 0$ seguinte diagrama de F		e a relação de o	ordem parcial		
a é elemento maxi	mal de A .	b	d			
b é elemento minir	nal de A.					
f é minorante de	A.	C				
d e é minorante de	4.		F			

Dados conjuntos X e Y, $f: X \rightarrow Y$ é uma aplicação se, e só se, Questão 5

- -0.5/1.5
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- $\boxed{\text{b}} \exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\exists y \in Y \ \forall x \in X \quad f(x) = y.$
- $\boxed{\mathrm{d}} \ \forall x \in X \ \exists y \in Y \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f: X \to Y, g: Y \to Z$ e $h: Z \to W$, se $g \circ f$ é sobrejectiva e hog é injectiva então

- 1.5/1.5
- Nenhuma das restantes alíneas.
- f é invertível.

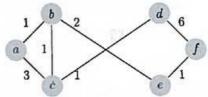
g é invertível.

d h é invertível.

A seguinte sequência é uma sequência gráfica Questão 7

- 1.5/1.5
- a (5,4,3,3,1,1,1,1).

c (5,5,4,3,2,1,0).


(5,4,3,2,1,1,1,1).

d (7.5,4,3,2,1,0).

Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus Questão 8 dos n vértices de G é:

- 1.5/1.5
- 2n-4.
- b 2n-1.
- c 2n-2.
- d 2n-3.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- d tem etiqueta definitiva com valor 6.
- a e c têm etiquetas provisórias com valor 4.
- a tem etiqueta provisória com valor 7.
- d b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.

Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a Questão 10

respectiva matriz de adjacências.

-0.5/1.5

-0.5/1.5

- Nenhuma das restantes alíneas.
- - G é euleriano.

d G é uma árvore.

José Carlos Martins Cardoso - 41650 - MIEI Mark: 2/15 (total score: 2/15)

1.5/1.5

-0.5/1.5

-0.5/1.5

-0.5/1.5

+118/1/6+

Departamento de Matemática Faculdade de Ciências e Tecnologia — UNL Matemática Discreta 20/06/2014 Exame de Recurso DURAÇÃO DO EXAME: 2 HORAS Marque o seu número de aluno preenchendo completamente os quadra-0 0 0 0 dos respectivos da grelha ao lado () e escreva o nome completo, o número 1 1 1 1 e o curso abaixo. 2 2 2 2 2 Nome: José Carlos Martinos Cardoso. 3 3 3 3 3 4 4 4 4 5 5 5 5 5 Número: 51650 Curso: MIEI 6 6 6 6 7 7 7 7 7 88888 Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com 9 9 9 9 9 caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão. As questões 11, 12 e 13 são de resposta aberta. Questão 1 Qualquer que seja o conjunto finito A, tal que |A| = n com n > 2, temos que: $|\cap \mathcal{P}(A)| = n.$ $|A \times \emptyset| = n.$ $| | \cup \mathcal{P}(A) | = n$. Seja R uma relação binária sobre o conjunto {1,2,3,4} tal que 0 0 0 0 0 0 1 1 0 Questão 2 é a sua matriz de adjacências. R é irreflexiva, simétrica e transitiva. R não é irreflexiva, é anti-simétrica e transitiva. R é irreflexiva, anti-simétrica e transitiva. R não é irreflexiva, é anti-simétrica e não é transitiva. Sejam R e S duas relações de equivalência sobre o conjunto $X=\{1,2,3,4\}$, tais que $X/R=\{\{1,2\},\{3,4\}\}$ e $X/S=\{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária: a RoS. b SoR. $R \cup S$. $\mathbb{R} \cap S$. Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial Questão 4 ≤ sobre X definida pelo seguinte diagrama de Hasse: f é minorante de A. 🔝 e é minorante de A. a é elemento maximal de A. \nearrow b é elemento minimal de A.

- 0/1.5
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$
- $c \ \forall x \in X \,\exists y \in Y \ f(x) = y.$
- $\exists 1 y \in Y \, \forall x \in X \quad f(x) = y.$
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f:X\to Y,\,g:Y\to Z$ e $h:Z\to W,$ se $g\circ f$ é sobrejectiva e $h\circ g$ é injectiva então

- 1.5/1.5
- 🌠 g é invertível.

h é invertível.

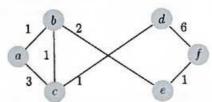
b f é invertível.

d Nenhuma das restantes alíneas.

Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- (5,4,3,2,1,1,1,1).

(5,5,4,3,2,1,0).


b (7,5,4,3,2,1,0).

d (5,4,3,3,1,1,1,1).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- 0/1.5
- a 2n-3.
- b 2n-1.
- 2n-4.
- d 2n-2.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- d tem etiqueta definitiva com valor 6.
- d b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

-0.5/1.5

- Nenhuma das restantes alíneas.
- G é uma árvore.

b G é euleriano.

-0.5/1.5

-0.5/1.5

0/1.5

1.5/1.5

+52/1/18+

			102/1/10+	
Departamento de Mat Matemática Discreta		Faculdade de Ci		
				ame de Recurso
0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3	DURAÇÃO DO	EXAME: 2 HOF	hendo comple creva o nome c Refall urso:MI	tamente os quadracompleto, o número
Questão 1 Qualquer $ \cup \mathcal{P}(A) = n.$	errada desconta 0,5	valores. Marcações me e 13 são de resposta ab nito A , tal que $ A $ =	ultiplas anula $n = n = n$ $n = n = n$	m a questão.
Questão 2 Seja R un é a sua matriz de adjacê	na relação binária sobr	e o conjunto {1,2,3,	ſ	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
d R é irreflexiva, sim	é anti-simétrica e não étrica e transitiva. e S duas relações de e $\{1\}$ e $X/S = \{\{1,2,3\}$	é transitiva. quivalência sobre o c		
$\mathbb{R} \cup S$.	b SoR.	C RoS.		$R \cap S$.
Questão 4 Dados X ≤ sobre X definida pelo b é elemento minim b f é minorante de A a é elemento maxim d e é minorante de A	al de A . I. nal de A .		10 1000	

- 1.5/1.5
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- d $\forall x \in X \exists y \in Y \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f: X \to Y$, $g: Y \to Z$ e $h: Z \to W$, se $g \circ f$ é sobrejectiva e $h \circ g$ é injectiva então

- 0/1.5
- \boxtimes g é invertível.

- c f é invertível.
- Nenhuma das restantes alíneas.
- d h é invertível.

Questão 7 A seguinte sequência é uma sequência gráfica

- 0/1.5
- a (7,5,4,3,2,1,0).

X (5,4,3,2,1,1,1,1).

b (5,5,4,3,2,1,0).

d (5,4,3,3,1,1,1,1).

Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

- -0.5/1.5
- 2n-4.
- 2n-2.
- c 2n-1.
- d 2n-3.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- d tem etiqueta definitiva com valor 6.
- 🔀 a e c têm etiquetas provisórias com valor 4.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

-0.5/1.5

-0.5/1.5

✓ G é semi-euleriano.

Nenhuma das restantes alíneas.

b G é uma árvore.

🗐 G é euleriano.

José Diogo Pires das Graças - 42877 - MIEI Mark: 1.5/15 (total score: 1.5/15)

-0.5/1.5

-0.5/1.5

0/1.5

-0.5/1.5

d e é minorante de A.

+22/1/18+

Departamento de Matemática Faculdade de Ciências e Tecnologia — UNL Matemática Discreta 20/06/2014 Exame de Recurso DURAÇÃO DO EXAME: 2 HORAS Marque o seu número de aluno preenchendo completamente os quadra-00000 dos respectivos da grelha ao lado () e escreva o nome completo, o número 1 1 1 1 1 e o curso abaixo. 2 2 2 Nome: you'Diogo Piros des araça 3 3 3 3 3 4 4 4 4 5 5 5 5 5 Número: 42877 Curso: M.T. E. I. 6 6 6 6 7 7 7 8 8 8 8 8 Para cada questão 1-10 existe uma e apenas uma resposta certa. Marque a resposta certa preenchendo completamente o quadrado respectivo () com 9 9 9 9 9 caneta azul ou preta. Cada resposta certa vale 1,5 valores. Cada resposta errada desconta 0,5 valores. Marcações múltiplas anulam a questão: As questões 11, 12 e 13 são de resposta aberta. Questão 1 Qualquer que seja o conjunto finito A, tal que $|A| = n \operatorname{com} n > 2$, temos que: $|| \cap \mathcal{P}(A)| = n.$ $| \cup \mathcal{P}(A) | = n.$ d $|A \times A| = 2n.$ $|A \times \emptyset| = n$. Seja R uma relação binária sobre o conjunto $\{1,2,3,4\}$ tal que $\begin{bmatrix}0&1&0&0\\0&0&0&0\\0&1&1&0\end{bmatrix}$ Questão 2 é a sua matriz de adjacências. 🧱 R não é irreflexiva, é anti-simétrica e não é transitiva. T. R não é irreflexiva, é anti-simétrica e transitiva. R é irreflexiva, anti-simétrica e transitiva. d R é irreflexiva, simétrica e transitiva. Sejam R e S duas relações de equivalência sobre o conjunto $X = \{1, 2, 3, 4\}$, tais que $X/R = \{\{1,2\},\{3,4\}\}$ e $X/S = \{\{1,2,3\},\{4\}\}$. É igualmente uma relação de equivalência sobre X a seguinte relação binária: $R \cap S$. b SoR. C RoS. $d R \cup S$. Dados $X = \{a, b, c, d, e, f\}$ e $A = \{b, c, d, e\}$, considere a relação de ordem parcial ≤ sobre X definida pelo seguinte diagrama de Hasse: a é elemento maximal de A. b f é minorante de A. b é elemento minimal de A.

- -0.5/1.5
- $\exists y \in Y \, \forall x \in X \quad f(x) = y.$
- $\exists^1 y \in Y \, \forall x \in X \quad f(x) = y.$
- $\forall x \in X \exists^1 y \in Y \quad f(x) = y.$

Questão 6 Quaisquer que sejam as aplicações $f: X \to Y, g: Y \to Z$ e $h: Z \to W$, se $g \circ f$ é sobrejectiva e $h \circ g$ é injectiva então

- 1.5/1.5
- Nenhuma das restantes alíneas.

f é invertível.

d h é invertível.

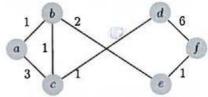
Questão 7 A seguinte sequência é uma sequência gráfica

- 1.5/1.5
- a (5,4,3,3,1,1,1,1).

(7,5,4,3,2,1,0).

(5,4,3,2,1,1,1,1).

d (5,5,4,3,2,1,0).


Questão 8 Seja G uma floresta, com n vértices e duas componentes conexas. A soma dos graus dos n vértices de G é:

-0.5/1.5

-0.5/1.5

- 2n-4.
- 2n-1.
- c 2n-2.
- d 2n-3.

Questão 9 Considere o grafo ponderado:

Aplique o algoritmo da cadeia mais curta para determinar uma cadeia f-a. Num dado momento

- a tem etiqueta provisória com valor 7.
- b e c têm etiquetas provisórias com valores 3 e 4, respectivamente.
- a e c têm etiquetas provisórias com valor 4.
- \boxed{d} d tem etiqueta definitiva com valor 6.

Questão 10 Considere G um grafo simples marcado nos vértices. Seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ a

respectiva matriz de adjacências.

- 1.5/1.5
- \Box G é euleriano.

- © G é uma árvore.
- b Nenhuma das restantes alíneas.
- G é semi-euleriano.