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PREFACE 
College Physics is written for a one-year course in introductory physics usually taken  
by students majoring in biology, the health professions, and other disciplines  
including environmental, earth, and social sciences, and technical fi elds such as  
architecture. The mathematical techniques used in this book include algebra,  
geometry, and trigonometry, but not calculus. 
This textbook, which covers the standard topics in classical physics and 20th 
century physics, is divided into six parts. Part 1 (Chapters 1–9) deals with New 
tonian mechanics and the physics of fl uids; Part 2 (Chapters 10–12) is concerned  
with heat and thermodynamics; Part 3 (Chapters 13 and 14) covers wave motion  
and sound; Part 4 (Chapters 15–21) develops the concepts of electricity and mag 
netism; Part 5 (Chapters 22–25) treats the properties of light and the fi eld of geo 
metric and wave optics; and Part 6 (Chapters 26–30) provides an introduction to  
special relativity, quantum physics, atomic physics, and nuclear physics. 
OBJECTIVES 
The main objectives of this introductory textbook are twofold: to provide the stu 
dent with a clear and logical presentation of the basic concepts and principles  
of physics, and to strengthen an understanding of the concepts and principles  
through a broad range of interesting applications to the real world. To meet those  
objectives, we have emphasized sound physical arguments and problem-solving  
methodology. At the same time, we have attempted to motivate the student through  
practical examples that demonstrate the role of physics in other disciplines. 
CHANGES TO THE EIGHTH EDITION 
A number of changes and improvements have been made to this edition. Based on  
comments from users of the seventh edition and reviewers’ suggestions, a major  
effort was made to increase the emphasis on conceptual understanding, to add  
new end-of-chapter questions and problems that are informed by research, and  
to improve the clarity of the presentation. The new pedagogical features added to  
this edition are based on current trends in science education. The following repre 
sent the major changes in the eighth edition. 
Questions and Problems 
We have substantially revised the end-of-chapter questions and problems for this  
edition. Three new types of questions and problems have been added: 
■ Multiple-Choice Questions have been introduced with several purposes in  
mind. Some require calculations designed to facilitate students’ familiarity with  
the equations, the variables used, the concepts the variables represent, and the  
relationships between the concepts. The rest are conceptual and are designed  
to encourage conceptual thinking. Finally, many students are required to take  
multiple-choice tests, so some practice with that form of question is desirable.  
Here is an example of a multiple-choice question: 
12. A truck loaded with sand accelerates along a highway.  
The driving force on the truck remains constant. What  
happens to the acceleration of the truck as its trailer  
leaks sand at a constant rate through a hole in its bot 
tom? (a) It decreases at a steady rate. (b) It increases at  
a steady rate. (c) It increases and then decreases. (d) It  
decreases and then increases. (e) It remains constant.
ix 
x Preface 
 The instructor may select multiple-choice questions to assign as homework or  
use them in the classroom, possibly with “peer instruction” methods or in con 
junction with “clicker” systems. More than 350 multiple-choice questions are  
included in this edition. Answers to odd-numbered multiple-choice questions  
are included in the Answers section at the end of the book, and answers to all  
questions are found in the Instructor’s Solutions Manual and on the instructor’s  
PowerLecture CD-ROM. 
■ Enhanced Content problems require symbolic or conceptual responses from  
the student. 
 A symbolic Enhanced Content problem requires the student to obtain an answer  
in terms of symbols. In general, some guidance is built into the problem state 
ment. The goal is to better train the student to deal with mathematics at a level  
appropriate to this course. Most students at this level are uncomfortable with  
symbolic equations, which is unfortunate because symbolic equations are the  
most effi cient vehicle for presenting relationships between physics concepts.  
Once students understand the physical concepts, their ability to solve problems  
is greatly enhanced. As soon as the numbers are substituted into an equation,  
however, all the concepts and their relationships to one another are lost, melded  
together in the student’s calculator. The symbolic Enhanced Content problems  
train students to postpone substitution of values, facilitating their ability to  
think conceptually using the equations. An example of a symbolic Enhanced  
Content problem is provided here: 
14. ecp An object of mass m is dropped from the roof of a  
building of height h. While the object is falling, a wind  
blowing parallel to the face of the building exerts a con 
stant horizontal force F on the object. (a) How long does  
it take the object to strike the ground? Express the time t 
in terms of g and h. (b) Find an expression in terms of m 
and F for the acceleration ax of the object in the horizon tal direction (taken as the positive x-direction). (c) How  
far is the object displaced horizontally before hitting the  
ground? Answer in terms of m, g, F, and h. (d) Find the  
magnitude of the object’s acceleration while it is falling,  
using the variables F, m, and g. 
 A conceptual Enhanced Content problem encourages the student to think verbally  
and conceptually about a given physics problem rather than rely solely on com 
putational skills. Research in physics education suggests that standard physics  
problems requiring calculations may not be entirely adequate in training stu 
dents to think conceptually. Students learn to substitute numbers for symbols  
in the equations without fully understanding what they are doing or what the  
symbols mean. The conceptual Enhanced Content problem combats this ten 
dency by asking for answers that require something other than a number or  
a calculation. An example of a conceptual Enhanced Concept problem is pro 
vided here: 
 4. ecp A shopper in a supermarket pushes a cart with a force  
of 35 N directed at an angle of 25 below the horizontal.  
The force is just suffi cient to overcome various frictional  
forces, so the cart moves at constant speed. (a) Find the  
work done by the shopper as she moves down a 50.0-m  
length aisle. (b) What is the net work done on the cart?  
Why? (c) The shopper goes down the next aisle, pushing  
horizontally and maintaining the same speed as before. If  
the work done by frictional forces doesn’t change, would  
the shopper’s applied force be larger, smaller, or the same?  
What about the work done on the cart by the shopper?
Preface xi 
■ Guided Problems help students break problems into steps. A physics problem  
typically asks for one physical quantity in a given context. Often, however, sev 
eral concepts must be used and a number of calculations are required to get  
that fi nal answer. Many students are not accustomed to this level of complexity  
and often don’t know where to start. A Guided Problem breaks a standard prob 
lem into smaller steps, enabling students to grasp all the concepts and strate 
gies required to arrive at a correct solution. Unlike standard physics problems,  
guidance is often built into the problem statement. For example, the problem  
might say “Find the speed using conservation of energy” rather than only ask 
ing for the speed. In any given chapter there are usually two or three problem  
types that are particularly suited to this problem form. The problem must have  
a certain level of complexity, with a similar problem-solving strategy involved  
each time it appears. Guided Problems are reminiscent of how a student might  
interact with a professor in an offi ce visit. These problems help train students  
to break down complex problems into a series of simpler problems, an essential  
problem-solving skill. An example of a Guided Problem is provided here: 
32. GP Two blocks of masses m1 and m2 (m1 m2) are placed  
on a frictionless table in contact with each other. A hori 
zontal force of magnitude F is applied to the block of mass  
m1 in Figure P4.32. (a) If P is the magnitude of the contact  
force between the blocks, draw the free-body diagrams  
for each block. (b) What is the net force on the system  
consisting of both blocks? (c) What is the net force acting  
on m1? (d) What is the net force acting on m2? (e) Write  
the x-component of Newton’s second law for each block.  
(f) Solve the resulting system of two equations and two  
unknowns, expressing the acceleration a and contact  
force P in terms of the masses and force. (g) How would  
the answers change if the force had been applied to m2 
instead? (Hint: use symmetry; don’t calculate!) Is the con 
tact force larger, smaller, or the same in this case? Why? 
F
m1 m2 
FIGURE P4.32 
In addition to these three new question and problem types, we carefully  reviewed all other questions and problems for this revision to improve their vari ety, interest, and pedagogical value while maintaining their clarity and quality.  Approximately 30% of the questions and problems in this edition are new. 
Examples 
In the last edition all in-text worked examples were reconstituted in a two-column  format to better aid student learning and help reinforce physical concepts. For this  eighth edition we have reviewed all the worked examples, made improvements,  and added a new Question at the end of each worked example. The Questions usu 
ally require a conceptual response or determination, or estimates requiring knowl edge of the relationships between concepts. The answers for the new Questions  can be found at the back of the book. A sample of an in-text worked example fol lows on the next page, with an explanation of each of the example’s main parts: 
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The Goal describes the physical  concepts being explored within the  worked example. 
The Solution section uses a two column format that gives the  explanation for each step of the  
The Problem statement  
presents the problem itself. 
EXAMPLE 13.7 Measuring the Value of g Goal Determine g from pendulum motion. 
The Strategy section helps students  analyze the problem and create a framework for  working out the solution. 
solution in the left-hand column,  while giving each accompanying  mathematical step in the  right-hand column. This layout  facilitates matching the idea with  
Problem Using a small pendulum of length 0.171 m, a geophysicist counts 72.0 complete swings in a time of 60.0 s.  What is the value of g in this location? 
Strategy First calculate the period of the pendulum by dividing the total time by the number of complete swings.  Solve Equation 13.15 for g and substitute values. 
its execution and helps students  learn how to organize their  work. Another benefi t: students  can easily use this format as a  
Solution 
Calculate the period by dividing the total elapsed time  by the number of complete oscillations: 
T 5 time 
# of oscillations 5 60.0 s 
72.0 5 0.833 s 
training tool, covering up the  solution on the right and solving  the problem using the comments  
Solve Equation 13.15 for g and substitute values: T 5 2p ÅLg S T 2 5 4p2 Lg T 2 5 139.52 10.171 m2 
on the left as a guide.
g 5 4p2L 
10.833 s2 2 5 9.73 m/s2 
Remarks follow each Solution  and highlight some of the  underlying concepts and  
methodology used in arriving at a  correct solution. In addition, the  remarks are often used to put the  problem into a larger, real-world  context. 
Remark Measuring such a vibration is a good way of determining the local value of the acceleration of gravity. 
QUESTION 13.7 
True or False: A simple pendulum of length 0.50 m has a larger frequency of vibration than a simple pendulum of  length 1.0 m. 
EXERCISE 13.7 
What would be the period of the 0.171-m pendulum on the Moon, where the acceleration of gravity is 1.62 m/s2? Answer 2.04 s 
Exercise/Answer Every worked example is followed  
immediately by an exercise with an answer. These exercises  
Question New to this edition,  each worked example will feature  a conceptual question that  promotes student understanding  of the underlying concepts  contained in the example. 
allow students to reinforce their understanding by working  a similar or related problem, with the answers giving  them instant feedback. At the option of the instructor, the  exercises can also be assigned as homework. Students who  work through these exercises on a regular basis will fi nd the  end-of-chapter problems less intimidating. 
Many Worked Examples are also available to be  assigned as Active Examples in the Enhanced  WebAssign homework management system (visit  www.serwayphysics.com for more details). 
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Online Homework 
It is now easier to assign online homework with Serway and Vuille using the widely  
acclaimed program Enhanced WebAssign. All end-of-chapter problems, active fi g 
ures, quick quizzes, and most questions and worked examples in this book are avail 
able in WebAssign. Most problems include hints and feedback to provide instan 
taneous reinforcement or direction for that problem. We have also added math  
remediation tools to help students get up to speed in algebra and trigonometry,  
animated Active Figure simulations to strengthen students’ visualization skills, and  
video to help students better understand the concepts. Visit www.serwayphysics.  
com to view an interactive demo of this innovative online homework solution. 
Content Changes 
The text has been carefully edited to improve clarity of presentation and preci 
sion of language. We hope that the result is a book both accurate and enjoyable to  
read. Although the overall content and organization of the textbook are similar to  
the seventh edition, a few changes were implemented. 
■ Chapter 1, Introduction, has a new biological example involving an estimate. 
■ Chapter 2, Motion in One Dimension, has an improved fi rst example. Quick  
Quiz 2.1 was given another part so that students would understand the distinc 
tion between average speed and average velocity. Quick Quiz 2.2 was completely  
rewritten to improve its effectiveness. An extra part was added to Example 2.4,  
and an example from the last edition was eliminated because it was not suf 
fi ciently illustrative and somewhat redundant. It was replaced with a new sym 
bolic example. 
■ Chapter 3, Vectors and Two-Dimensional Motion, features a new symbolic exam 
ple on the range equation. 
■ Chapter 4, The Laws of Motion, contains several improved Quick Quizzes and  
a revised and improved example. The fi rst three quick quizzes were combined  
into one master quick quiz, requiring the student to answer fi ve related true– 
false questions on the concept of a force. Quick Quizzes 4.4 and 4.5 were rewrit 
ten, and Example 4.6 was improved. 
■ In Chapter 5, Energy, two defi nitions of work and the defi nitions of average  
power and instantaneous power were clarifi ed. The Problem-Solving Strategy  
on conservation of energy was improved, resulting in positive changes to Exam 
ple 5.5. A new part was added to Example 5.14 to enhance student comprehen 
sion of instantaneous as opposed to average power. 
■ In Chapter 6, Momentum and Collisions, the connection between kinetic  
energy and momentum was made explicit early in the chapter and then used in  
a Quick Quiz and elsewhere in the problem set. 
■ In Chapter 7, Rotational Motion and the Law of Gravity, the defi nitions of the  
radian and radian measure were clarifi ed. A new part was added to Example  
7.1, dealing with arc length. 
■ Chapter 9, Solids and Fluids, features a new discussion of dark matter and dark  
energy in Section 9.1, States of Matter. Example 9.2 is a new biological example  
about sports injuries. 
■ Chapter 12, The Laws of Thermodynamics, has been reorganized slightly, and a  
new section (Section 12.3, Thermal Processes) has been added. Another equiv 
alent statement of the second law of thermodynamics was included along with  
further explanation. 
■ Chapter 14, Sound, has a new, more instructive Example 14.1, replacing the pre 
vious example. 
■ Chapter 15, Electric Forces and Electric Fields, has two worked examples that  
were upgraded with new parts. 
■ Chapter 16, Electrical Energy and Capacitance, has a new worked example that  
illustrates particle dynamics and electric potential. Three other worked exam 
ples were upgraded with new parts, and two new quick quizzes were added.
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■ Chapter 17, Current and Resistance, was reorganized slightly, putting the sub 
section on power ahead of superconductivity. It also has two new quick quizzes. 
■ Chapter 18, Direct-Current Circuits, has both a new and a reorganized quick  
quiz. 
■ Chapter 19, Magnetism, has a new section on types of magnetic materials as  
well as a new quick quiz. 
■ Chapter 20, Induced Voltages and Inductance, has new material on RL circuits,  
along with a new example and quick quiz. 
■ Chapter 21, Alternating-Current Circuits and Electromagnetic Waves, has a new  
series of four quick quizzes that were added to drill the fundamentals of AC cir 
cuits. The problem-solving strategy for RLC circuits was completely revised, and  
a new physics application on using alternating electric fi elds in cancer treat 
ment was added. 
■ Chapter 24, Wave Optics, has an improved example and two new quick quizzes. 
■ Chapter 26, Relativity, no longer covers relativistic addition of velocities. Three  
new quick quizzes were added to the chapter. 
■ Chapter 27, Quantum Physics, was rewritten and streamlined. Two superfl u 
ous worked examples were eliminated (old Examples 27.1 and 27.2) because  
both are discussed adequately in the text. One of two worked examples on the  
Heisenberg uncertainty principle was deleted and a new quick quiz was added.  
The scanning tunneling microscope application was deleted. 
■ Chapter 28, Atomic Physics, was rewritten and streamlined, and the subsection  
on spin was transferred to the section on quantum mechanics. The section on  
electron clouds was shortened and made into a subsection. The sections on  
atomic transitions and lasers were combined into a single, shorter section. 
■ Chapter 29, Nuclear Physics, was reduced in size by deleting less essential worked  
examples. Old worked examples 29.1 (Sizing a Neutron Star), 29.4 (Radon Gas),  
29.6 (The Beta Decay of Carbon-14), and 29.9 (Synthetic Elements) were elimi 
nated because they were similar to other examples already in the text. The medi 
cal application of radiation was shortened, and a new quick quiz was developed. 
■ Chapter 30, Nuclear Energy and Elementary Particles, was rewritten and stream 
lined. The section on nuclear reactors was combined with the one on nuclear  
fi ssion. The historical section and old Section 30.7 on the meson were elimi 
nated, and the beginning of the section on particle physics was eliminated. The  
section on strange particles and strangeness was combined with the section on  
conservation laws. The sections on quarks and colored quarks were also com 
bined into Section 30.8, Quarks and Color. 
TEXTBOOK FEATURES 
Most instructors would agree that the textbook assigned in a course should be the  
student’s primary guide for understanding and learning the subject matter. Fur 
ther, the textbook should be easily accessible and written in a style that facilitates  
instruction and learning. With that in mind, we have included many pedagogical  
features that are intended to enhance the textbook’s usefulness to both students  
and instructors. The following features are included. 
QUICK QUIZZES All the Quick Quizzes (see example below) are cast in an objec 
tive format, including multiple-choice, true–false, matching, and ranking ques 
tions. Quick Quizzes provide students with opportunities to test their understand 
ing of the physical concepts presented. The questions require students to make  
decisions on the basis of sound reasoning, and some have been written to help  
students overcome common misconceptions. Answers to all Quick Quiz questions  
are found at the end of the textbook, and answers with detailed explanations are  
provided in the Instructor’s Solutions Manual. Many instructors choose to use Quick  
Quiz questions in a “peer instruction” teaching style.
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QUICK QUIZ 4.3 A small sports car collides head-on with a massive truck.  
The greater impact force (in magnitude) acts on (a) the car, (b) the truck,  
(c) neither, the force is the same on both. Which vehicle undergoes the  
greater magnitude acceleration? (d) the car, (e) the truck, (f) the accelera 
tions are the same. 
PROBLEM-SOLVING STRATEGIES A general problem-solving strategy to be fol 
lowed by the student is outlined at the end of Chapter 1. This strategy provides stu 
dents with a structured process for solving problems. In most chapters more spe 
cifi c strategies and suggestions (see example below) are included for solving the  
types of problems featured in both the worked examples and the end-of-chapter  
problems. This feature helps students identify the essential steps in solving prob 
lems and increases their skills as problem solvers. 
PROBLEM-SOLVING STRATEGY 
NEWTON’S SECOND LAW 
Problems involving Newton’s second law can be very complex. The following  
protocol breaks the solution process down into smaller, intermediate goals: 
1. Read the problem carefully at least once. 
2. Draw a picture of the system, identify the object of primary interest, and  
indicate forces with arrows. 
3. Label each force in the picture in a way that will bring to mind what physi 
cal quantity the label stands for (e.g., T for tension). 
4. Draw a free-body diagram of the object of interest, based on the labeled  
picture. If additional objects are involved, draw separate free-body diagrams  
for them. Choose convenient coordinates for each object. 
5. Apply Newton’s second law. The x- and y-components of Newton’s second  
law should be taken from the vector equation and written individually. This  
usuallyresults in two equations and two unknowns. 
6. Solve for the desired unknown quantity, and substitute the numbers. 
BIOMEDICAL APPLICATIONS For biology and pre-med students, icons point  
the way to various practical and interesting applications of physical principles to  
biology and medicine. Whenever possible, more problems that are relevant to  
these disciplines are included. 
MCAT SKILL BUILDER STUDY GUIDE The eighth edition of College Physics con 
tains a special skill-building appendix (Appendix E) to help premed students pre 
pare for the MCAT exam. The appendix contains examples written by the text  
authors that help students build conceptual and quantitative skills. These skill 
building examples are followed by MCAT-style questions written by test prep  
experts to make sure students are ready to ace the exam. 
MCAT TEST PREPARATION GUIDE Located after the “To the Student” section  
in the front of the book, this guide outlines 12 concept-based study courses for  
the physics part of the MCAT exam. Students can use the guide to prepare for the  
MCAT exam, class tests, or homework assignments. 
APPLYING PHYSICS The Applying Physics features provide students with an  
additional means of reviewing concepts presented in that section. Some Applying  
Physics examples demonstrate the connection between the concepts presented in  
that chapter and other scientifi c disciplines. These examples also serve as models  
for students when assigned the task of responding to the Conceptual Questions 
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TIP 4.3 Newton’s Second  Law Is a Vector Equation 
In applying Newton’s second  law, add all of the forces on the  object as vectors and then fi nd  the resultant vector acceleration  by dividing by m. Don’t fi nd the  individual magnitudes of the  forces and add them like scalars.
Newton’s third law R 
APPLICATION 
 Diet Versus Exercise in  
Weight-loss Programs 
presented at the end of each chapter. For examples of Applying Physics boxes, see  Applying Physics 9.5 (Home Plumbing) on page 299 and Applying Physics 13.1  (Bungee Jumping) on page 435. 
TIPS Placed in the margins of the text, Tips address common student miscon ceptions and situations in which students often follow unproductive paths (see  example at the left). More than ninety-fi ve Tips are provided in this edition to help  students avoid common mistakes and misunderstandings. 
MARGINAL NOTES Comments and notes appearing in the margin (see example  at the left) can be used to locate important statements, equations, and concepts in  the text. 
APPLICATIONS Although physics is relevant to so much in our modern lives,  it may not be obvious to students in an introductory course. Application margin  notes (see example at the left) make the relevance of physics to everyday life more  obvious by pointing out specifi c applications in the text. Some of these applica 
tions pertain to the life sciences and are marked with a icon. 
MULTIPLE-CHOICE QUESTIONS New to this edition are end-of-chapter multiple choice questions. The instructor may select items to assign as homework or use  them in the classroom, possibly with “peer instruction” methods or with “clicker”  systems. More than 350 multiple-choice questions are included in this edition.  Answers to odd-numbered multiple-choice questions are included in the answer  section at the end of the book, and answers to all questions are found in the  Instructor’s Solutions Manual. 
CONCEPTUAL QUESTIONS At the end of each chapter there are 10–15 con ceptual questions. The Applying Physics examples presented in the text serve as  models for students when conceptual questions are assigned and show how the  concepts can be applied to understanding the physical world. The conceptual  questions provide the student with a means of self-testing the concepts presented  in the chapter. Some conceptual questions are appropriate for initiating classroom  discussions. Answers to odd-numbered conceptual questions are included in the  Answers section at the end of the book, and answers to all questions are found in  the Instructor’s Solutions Manual. 
PROBLEMS An extensive set of problems is included at the end of each chapter (in  all, almost 2 000 problems are provided in this edition). Answers to odd- numbered  problems are given at the end of the book. For the convenience of both the stu dent and instructor, about two-thirds of the problems are keyed to specifi c sections  of the chapter. The remaining problems, labeled “Additional Problems,” are not  keyed to specifi c sections. The three levels of problems are graded according to  their diffi culty. Straightforward problems are numbered in black, intermediate 
level problems are numbered in blue, and the most challenging problems are  numbered in magenta. The icon identifi es problems dealing with applications  to the life sciences and medicine. Solutions to approximately 12 problems in each  chapter are in the Student Solutions Manual/Study Guide. 
STYLE To facilitate rapid comprehension, we have attempted to write the book  in a style that is clear, logical, relaxed, and engaging. The somewhat informal and  relaxed writing style is designed to connect better with students and enhance their  reading enjoyment. New terms are carefully defi ned, and we have tried to avoid  the use of jargon. 
INTRODUCTIONS All chapters begin with a brief preview that includes a discus sion of the chapter’s objectives and content. 
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UNITS The international system of units (SI) is used throughout the text. The  
U.S. customary system of units is used only to a limited extent in the chapters on  
mechanics and thermodynamics. 
PEDAGOGICAL USE OF COLOR Readers should consult the pedagogical color  
chart (inside the front cover) for a listing of the color-coded symbols used in the  
text diagrams. This system is followed consistently throughout the text. 
IMPORTANT STATEMENTS AND EQUATIONS Most important statements and  
defi nitions are set in boldface type or are highlighted with a background screen  
for added emphasis and ease of review. Similarly, important equations are high 
lighted with a tan background screen to facilitate location. 
ILLUSTRATIONS AND TABLES The readability and effectiveness of the text mate 
rial, worked examples, and end-of-chapter conceptual questions and problems are  
enhanced by the large number of fi gures, diagrams, photographs, and tables. Full  
color adds clarity to the artwork and makes illustrations as realistic as possible.  
Three-dimensional effects are rendered with the use of shaded and lightened  
areas where appropriate. Vectors are color coded, and curves in graphs are drawn  
in color. Color photographs have been carefully selected, and their accompanying  
captions have been written to serve as an added instructional tool. A complete  
description of the pedagogical use of color appears on the inside front cover. 
SUMMARY The end-of-chapter Summary is organized by individual section  
headings for ease of reference. 
SIGNIFICANT FIGURES Signifi cant fi gures in both worked examples and end 
of-chapter problems have been handled with care. Most numerical examples and  
problems are worked out to either two or three signifi cant fi gures, depending on  
the accuracy of the data provided. Intermediate results presented in the examples  
are rounded to the proper number of signifi cant fi gures, and only those digits are  
carried forward. 
APPENDICES AND ENDPAPERS Several appendices are provided at the end of  
the textbook. Most of the appendix material represents a review of mathematical  
concepts and techniques used in the text, including scientifi c notation, algebra,  
geometry, trigonometry, differential calculus, and integral calculus. Reference  
to these appendices is made as needed throughout the text. Most of the math 
ematical review sections include worked examples and exercises with answers. In  
addition to the mathematical review, some appendices contain useful tables that  
supplement textual information. For easy reference, the front endpapers contain a  
chart explaining the use of color throughout the book and a list of frequently used  
conversion factors. 
ACTIVE FIGURES Many diagrams from the text have been animated to become  
Active Figures (identifi ed in the fi gure legend), part of the Enhanced WebAssign 
online homework system. By viewing animations of phenomena and processes that  
cannot be fully represented on a static page, students greatly increase their con 
ceptual understanding. In addition to viewing animations of the fi gures, students  
can see the outcome of changing variables to see the effects, conduct suggested  
explorations of the principles involved in the fi gure, and take and receive feedback  
on quizzes related to the fi gure. All Active Figures are included on the instructor’s  
PowerLecture CD-ROM for in-class lecture presentation. 
TEACHING OPTIONS 
This book contains more than enough material for a one-year course in introduc 
tory physics, which serves two purposes. First, it gives the instructor more fl exibility 
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in choosing topics for a specifi c course. Second, the book becomes more useful  
as a resource for students. On average, it should be possible to cover about one  
chapter each week for a class that meets three hours per week. Those sections,  
examples, and end-of-chapter problems dealing with applications of physics to life  
sciences are identifi ed with the DNA icon . We offer the following suggestions for  
shorter courses for those instructors who choose to move at a slower pace through  
the year. 
Option A: If you choose to place more emphasis on contemporary topics in phys 
ics, you could omit all or parts of Chapter 8 (Rotational Equilibrium and Rota 
tional Dynamics), Chapter 21 (Alternating-Current Circuits and Electromag 
netic Waves), and Chapter 25 (Optical Instruments). 
Option B: If you choose to place more emphasis on classical physics, you could omit  
all or parts of Part 6 of the textbook, which deals with special relativity and  
other topics in 20th-century physics. 
The Instructor’s Solutions Manual offers additional suggestions for specifi c sec 
tions and topics that may be omitted without loss of continuity if time presses. 
COURSE SOLUTIONS THAT FIT YOUR TEACHING  
GOALS AND YOUR STUDENTS’ LEARNING NEEDS 
Recent advances in educational technology have made homework management  
systems and audience response systems powerful and affordable tools to enhance  
the way you teach your course. Whether you offer a more traditional text-based  
course, are interested in using or are currently using an online homework man 
agement system such as WebAssign, or are ready to turn your lecture into an inter 
active learning environment with an audience response system, you can be con 
fi dent that the text’s proven content provides the foundation for each and every  
component of our technology and ancillary package. 
VISUALIZE WHERE YOU WANT TO TAKE YOUR COURSE 
[image: ]
WE PROVIDE YOU WITH THE FOUNDATION TO GET THERE 
Serway/Vuille, College Physics, 8e
Preface xix 
Homework Management Systems 
ENHANCED WEBASSIGN Enhanced WebAssign is the perfect solution to your  
homework management needs. Designed by physicists for physicists, this system is  
a reliable and user-friendly teaching companion. Enhanced WebAssign is available  
for College Physics, giving you the freedom to assign 
• every end-of-chapter Problem, Multiple-Choice Question, and Conceptual  [image: ]
Question, enhanced with hints and feedback 
• most worked examples, enhanced with hints and feedback, to help strengthen  
students’ problem-solving skills 
• every Quick Quiz, giving your students ample opportunity to test their concep 
tual understanding 
• animated Active Figures, enhanced with hints and feedback, to help students  
develop their visualization skills 
• a math review to help students brush up on key quantitative concepts 
Please visit www.serwayphysics.com to view an interactive demonstration of  
Enhanced WebAssign. 
The text is also supported by the following Homework Management Systems.  
Contact your local sales representative for more information. 
CAPA: A Computer-Assisted Personalized Approach and LON-CAPA,  
http://www.lon-capa.org/ 
The University of Texas Homework Service 
Audience Response Systems [image: ]
AUDIENCE RESPONSE SYSTEM CONTENT Regardless of the response system  
you are using, we provide the tested content to support it. Our ready-to-go content  
includes all the questions from the Quick Quizzes, all the end-of-chapter Multiple 
Choice Questions, test questions, and a selection of end-of-chapter questions to  
provide helpful conceptual checkpoints to drop into your lecture. Our Active Fig 
ure animations have also been enhanced with multiple-choice questions to help  
test students’ observational skills. 
We also feature the Assessing to Learn in the Classroom content from the Uni 
versity of Massachusetts. This collection of 250 advanced conceptual questions has  
been tested in the classroom for more than ten years and takes peer learning to  
a new level. Contact your local sales representative to learn more about our audi 
ence response software and hardware. 
Visit www.serwayphysics.com to download samples of our audience response  
system content. 
Lecture Presentation Resources 
The following resources provide support for your presentations in lecture. 
POWERLECTURE CD-ROM An easy-to-use multimedia lecture tool, the Power 
Lecture CD-ROM allows you to quickly assemble art, animations, digital video, and  
database fi les with notes to create fl uid lectures. The two-volume set (Volume 1:  
Chapters 1–14; Volume 2: Chapters 15–30) includes prebuilt PowerPoint® lectures,  
a database of animations, video clips, and digital art from the text as well as edit 
able electronic fi les of the Instructor’s Solutions Manual. Also included is the easy-to 
use test generator ExamView, which features all the questions from the printed Test  
Bank in an editable format. 
TRANSPARENCY ACETATES Each volume contains approximately 100 transpar 
ency acetates featuring art from the text. Volume 1 contains Chapters 1 through  
14, and Volume 2 contains Chapters 15 through 30.
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Assessment and Course Preparation Resources: 
A number of the resources listed below will help assist with your assessment and  
preparation processes, and are available to qualifi ed adopters. Please contact your  
local Cengage • Brooks/Cole sales representative for details. Ancillaries offered  
in two volumes are split as follows: Volume 1 contains Chapters 1 through 14, and  
Volume 2 contains Chapters 15 through 30. 
INSTRUCTOR’S SOLUTIONS MANUAL by Charles Teague and Jerry S. Faughn.  
Available in two volumes, the Instructor’s Solutions Manual consists of complete solu 
tions to all the problems, multiple-choice questions, and conceptual questions in  
the text, and full answers with explanations to the Quick Quizzes. An editable  
version of the complete instructor’s solutions is also available electronically on the  
PowerLecture CD-ROM. 
PRINTED TEST BANK by Ed Oberhofer. This test bank contains approximately  
1 750 multiple-choice problems and questions. Answers are provided in a sepa 
rate key. The test bank is provided in print form (in two volumes) for the instruc 
tor who does not have access to a computer, and instructors may duplicate pages  
for distribution to students. These questions are also available on the PowerLecture  
CD-ROM as either editable Word® fi les (with complete answers and solutions) or  
via the ExamView test software. 
WEBCT AND BLACKBOARD CONTENT For users of either course management  
system, we provide our test bank questions in proper WebCT and Blackboard con 
tent format for easy upload into your online course. 
INSTRUCTOR’S COMPANION WEB SITE Consult the instructor’s Web site at www. 
serwayphysics.com for additional Quick Quiz questions, a problem correlation  
guide, images from the text, and sample PowerPoint® lectures. Instructors adopt 
ing the eighth edition of College Physics may download these materials after secur 
ing the appropriate password from their local Brooks/Cole sales representative. 
Student Resources 
Brooks/Cole offers several items to supplement and enhance the classroom expe 
rience. These ancillaries allow instructors to customize the textbook to their stu 
dents’ needs and to their own style of instruction. One or more of the following  
ancillaries may be shrink-wrapped with the text at a reduced price: 
STUDENT SOLUTIONS MANUAL/STUDY GUIDE by John R. Gordon, Charles  
Teague, and Raymond A. Serway. Now offered in two volumes, the Student Solutions  
Manual/Study Guide features detailed solutions to approximately 12 problems per  
chapter. Boxed numbers identify those problems in the textbook for which com 
plete solutions are found in the manual. The manual also features a skills section,  
important notes from key sections of the text, and a list of important equations  
and concepts. Volume 1 contains Chapters 1 through 14, and Volume 2 contains  
Chapters 15 through 30. 
PHYSICS LABORATORY MANUAL, 3rd edition, by David Loyd. The Physics Labora 
tory Manual supplements the learning of basic physical principles while introduc 
ing laboratory procedures and equipment. Each chapter of the manual includes  
a prelaboratory assignment, objectives, an equipment list, the theory behind the  
experiment, experimental procedures, graphs, and questions. A laboratory report  
is provided for each experiment so that the student can record data, calculations,  
and experimental results. To develop their ability to judge the validity of their  
results, students are encouraged to apply statistical analysis to their data. A com 
plete instructor’s manual is also available to facilitate use of this manual.
Preface xxi 
ACKNOWLEDGMENTS 
In preparing the eighth edition of this textbook, we have been guided by the  
expertise of many people who have reviewed manuscript or provided prerevision  
suggestions. We wish to acknowledge the following reviewers and express our sin 
cere appreciation for their helpful suggestions, criticism, and encouragement. 
Eighth edition reviewers: 
Gary Blanpied, University of South  Carolina 
Gardner Friedlander, University School  of Milwaukee 
Dolores Gende, Parish Episcopal School Grant W. Hart, Brigham Young  University 
Joey Huston, Michigan State University Mark James, Northern Arizona University Teruki Kamon, Texas A & M University 
Mark Lucas, Ohio University 
Mark E. Mattson, James Madison  University 
J. Patrick Polley, Beloit College Eugene Surdutovich, Wayne State  University 
Marshall Thomsen, Eastern Michigan  University 
David P. Young, Louisiana State  University 
College Physics, eighth edition, was carefully checked for accuracy by Philip W.  Adams, Louisiana State University; Grant W. Hart, Brigham Young University; Thomas  K. Hemmick, Stony Brook University; Ed Oberhofer, Lake Sumter Community College;  M. Anthony Reynolds, Embry-Riddle Aeronautical University; Eugene Surdutovich, 
Wayne State University; and David P. Young, Louisi ana State University. Although  responsibility for any remaining errors rests with us, we thank them for their dedi cation and vigilance. 
Prior to our work on this revision, we conducted a survey of professors to gauge  how they used student assessment in their classroom. We were overwhelmed not  only by the number of professors who wanted to take part in the survey, but also by  their insightful comments. Their feedback and suggestions helped shape the revi 
sion of the end-of-chapter questions and problems in this edition, and so we would  like to thank the survey participants: 
Elise Adamson, Wayland Baptist University; Rhett Allain, Southeastern Louisiana University; Michael  Anderson, University of California, San Diego; James Andrews, Youngstown State University; Bradley Anta naitis, Lafayette College; Robert Astalos, Adams State College; Charles Atchley, Sauk Valley Community Col lege; Kandiah Balachandran, Kalamazoo Valley Community College; Colley Baldwin, St. John’s University;  Mahmoud Basharat, Houston Community College Northeast; Celso Batalha, Evergreen Valley College; Nata lie Batalha, San Jose State University; Charles Benesh, Wesleyan College; Raymond Benge, Tarrant County  College Northeast; Lee Benjamin, Marywood University; Edgar Bering, University of Houston; Ron Bin gaman, Indiana University East; Jennifer Birriel, Morehead State University; Earl Blodgett, University of  Wisconsin–River Falls; Anthony Blose, University of North Alabama; Jeff Bodart, Chipola College; Ken Bol land, The Ohio State University; Roscoe Bowen, Campbellsville University; Shane Brower, Grove City College;  Charles Burkhardt, St. Louis Community College; Richard Cardenas, St. Mary’s University; Kelly Casey,  Yakima Valley Community College; Cliff Castle, Jefferson College; Marco Cavaglia, University of Mississippi;  Eugene Chaffi n, Bob Jones University; Chang Chang, Drexel University; Jing Chang, Culver-Stockton Col lege; Hirendra Chatterjee, Camden County College; Soumitra Chattopadhyay, Georgia Highlands College;  Anastasia Chopelas, University of Washington; Krishna Chowdary, Bucknell University; Kelvin Chu, Uni versity of Vermont; Alice D. Churukian, Concordia College; David Cinabro, Wayne State University; Gary  Copeland, Old Dominion University; Sean Cordry, Northwestern College of Iowa; Victor Coronel, SUNY  Rockland Community College; Douglas Corteville, Iowa Western Community College; Randy Criss, Saint Leo  University; John Crutchfi eld, Rockingham Community College; Danielle Dalafave, College of New Jersey; Law rence Day, Utica College; Joe DeLeone, Corning Community College; Tony DeLia, North Florida Community  College; Duygu Demirlioglu, Holy Names University; Sandra Desmarais, Daytona Beach Community College;  Gregory Dolise, Harrisburg Area Community College; Duane Doyle, Arkansas State University–Newport;  James Dull, Albertson College of Idaho; Tim Duman, University of Indianapolis; Arthur Eggers, Community  College of Southern Nevada; Robert Egler, North Carolina State University; Steve Ellis, University of Kentucky;  Terry Ellis, Jacksonville University; Ted Eltzroth, Elgin Community College; Martin Epstein, California State  University, Los Angeles; Florence Etop, Virginia State University; Mike Eydenberg, New Mexico State Univer sity at Alamogordo; Davene Eyres, North Seattle Community College; Brett Fadem, Muhlenberg College; Greg  Falabella, Wagner College; Michael Faleski, Delta College; Jacqueline Faridani, Shippensburg University;  Abu Fasihuddin, University of Connecticut; Scott Fedorchak, Campbell University; Frank Ferrone, Drexel 
xxii Preface 
University; Harland Fish, Kalamazoo Valley Community College; Kent Fisher, Columbus State Community Col 
lege; Allen Flora, Hood College; James Friedrichsen, Austin Community College; Cynthia Galovich, Univer 
sity of Northern Colorado; Ticu Gamalie, Arkansas State University–LRAFB; Andy Gavrin, Indiana Univer 
sity Purdue University Indianapolis; Michael Giangrande, Oakland Community College; Wells Gordon, Ohio  
Valley University; Charles Grabowski, Carroll Community College; Robert Gramer, Lake City Community Col 
lege; Janusz Grebowicz, University of Houston–Downtown; Morris Greenwood, San Jacinto College Central;  
David Groh, Gannon University; Fred Grosse, Susquehanna University; Harvey Haag, Penn State DuBois;  
Piotr Habdas, Saint Joseph’s University; Robert Hagood, Washtenaw Community College; Heath Hatch, Uni 
versity of Massachusetts Amherst; Dennis Hawk, Navarro College; George Hazelton, Chowan University;  
Qifang He, Arkansas State University at Beebe; Randall Headrick, University of Vermont; Todd Holden,  
Brooklyn College; Susanne Holmes-Koetter; Doug Ingram, Texas Christian University; Dwain Ingram,  
Texas State Technical College; Rex Isham, Sam Houston State University; Herbert Jaeger, Miami University;  
Mohsen Janatpour, College of San Mateo; Peter Jeschofnig, Colorado Mountain College; Lana Jordan, Mer 
ced College; Teruki Kamon, Texas A & M University; Charles Kao, Columbus State University; David  
Kardelis, College of Eastern Utah; Edward Kearns, Boston University; Robert Keefer, Lake Sumter Commu 
nity College; Mamadou Keita, Sheridan College, Gillette Campus; Luke Keller, Ithaca College; Andrew Kerr,  
University of Findlay; Kinney Kim, North Carolina Central University; Kevin Kimberlin, Bradley University;  
George Knott, Cosumnes River College; Corinne Krauss, Dickinson State University; Christopher Kulp,  
Eastern Kentucky University; A. Anil Kumar, Prairie View A & M University; Josephine Lamela, Middlesex  
County College; Eric Lane, University of Tennessee; Gregory Lapicki, East Carolina University; Byron Leles,  
Snead State Community College; David Lieberman, Queensborough Community College; Marilyn Listvan,  
Normandale Community College; Rafael Lopez-Mobilia, University of Texas at San Antonio; Jose Lozano,  
Bradley University; Mark Lucas, Ohio University; Ntungwa Maasha, Coastal Georgia Community College;  
Keith MacAdam, University of Kentucky; Kevin Mackay, Grove City College; Steve Maier, Northwestern Okla 
homa State University; Helen Major, Lincoln University; Igor Makasyuk, San Francisco State University; Gary  
Malek, Johnson County Community College; Frank Mann, Emmanuel College; Ronald Marks, North Green 
ville University; Perry Mason, Lubbock Christian University; Mark Mattson, James Madison University; John  
McClain, Panola College; James McDonald, University of Hartford; Linda McDonald, North Park University;  
Ralph V. McGrew, Broome Community College; Janet McLarty-Schroeder, Cerritos College; Rahul Mehta,  
University of Central Arkansas; Mike Mikhaiel, Passaic County Community College; Laney Mills, College of  
Charleston; John Milton, DePaul University; Stephen Minnick, Kent State University, Tuscarawas Campus;  
Dominick Misciascio, Mercer County Community College; Arthur Mittler, University of Massachusetts Lowell;  
Glenn Modrak, Broome Community College; Toby Moleski, Muskegon Community College; G. David Moore,  
Reinhardt College; Hassan Moore, Johnson C. Smith University; David Moran, Breyer State University; Laurie  
Morgus, Drew University; David Murdock, Tennessee Technological University; Dennis Nemeschansky, Uni 
versity of Southern California; Bob Nerbun, University of South Carolina Sumter; Lorin Neufeld, Fresno  
Pacifi c University; K. W. Nicholson, Central Alabama Community College; Charles Nickles, University of Mas 
sachusetts Dartmouth; Paul Nienaber, Saint Mary’s University of Minnesota; Ralph Oberly, Marshall Univer 
sity; Terry F. O’Dwyer, Nassau Community College; Don Olive, Gardner-Webb University; Jacqueline  
Omland, Northern State University; Paige Ouzts, Lander University; Vaheribhai Patel, Tomball College;  
Bijoy Patnaik, Halifax Community College; Philip Patterson, Southern Polytechnic State University; James  
Pazun, Pfeiffer University; Chuck Pearson, Shorter College; Todd Pedlar, Luther College; Anthony Peer, Del 
aware Technical & Community College; Frederick Phelps, Central Michigan University; Robert Philbin, Trin 
idad State Junior College; Joshua Phiri, Florence- Darlington Technical College; Cu Phung, Methodist College;  
Alberto Pinkas, New Jersey City University; Ali Piran, Stephen F. Austin State University; Marie Plumb, James 
town Community College; Dwight Portman, Miami University Middletown; Rose Rakers, Trinity Christian  
College; Periasamy Ramalingam, Albany State University; Marilyn Rands, Lawrence Technological Univer 
sity; Tom Richardson, Marian College; Herbert Ringel, Borough of Manhattan Community College; Salva 
tore Rodano, Harford Community College; John Rollino, Rutgers University– Newark; Fernando Romero 
Borja, Houston Community College–Central; Michael Rulison, Oglethorpe University; Marylyn Russ,  
Marygrove College; Craig Rutan, Santiago Canyon College; Jyotsna Sau, Delaware Technical & Community  
College; Charles Sawicki, North Dakota State University; Daniel Schoun, Kettering College of Medical Arts;  
Andria Schwortz, Quinsigamond Community College; David Seely, Albion College; Ross Setze, Pearl River  
Community College; Bart Sheinberg; Peter Sheldon, Randolph-Macon Woman’s College; Wen Shen, Commu 
nity College of Southern Nevada; Anwar Shiekh, Dine College; Marllin Simon, Auburn University; Don  
Sparks, Pierce College; Philip Spickler, Bridgewater College; Fletcher Srygley, Lipscomb University; Scott  
Steckenrider, Illinois College; Donna Stokes, University of Houston; Laurence Stone, Dakota County Techni 
cal College; Yang Sun, University of Notre Dame; Gregory Suran, Raritan Valley Community College; Vahe  
Tatoian, Mt. San Antonio College; Alem Teklu, College of Charleston; Paul Testa, Tompkins Cortland Com 
munity College; Michael Thackston, Southern Polytechnic State University; Melody Thomas, Northwest Arkan 
sas Community College; Cheng Ting, Houston Community College–Southeast; Donn Townsend, Penn State  
Shenango; Herman Trivilino; Gajendra Tulsian, Daytona Beach Community College; Rein Uritam, Boston  
College; Daniel Van Wingerden, Eastern Michigan University; Ashok Vaseashta, Marshall University; Rob 
ert Vaughn, Graceland University; Robert Warasila, Suffolk County Community College; Robert Webb, Texas  
A & M University; Zodiac Webster, Columbus State University; Brian Weiner, Penn State DuBois; Jack Wells,  
Thomas More College; Ronnie Whitener, Tri-County Community College; Tom Wilbur, Anne Arundel Com 
munity College; Sam Wiley, California State University, Dominguez Hills; Judith Williams, William Penn Uni 
versity; Mark Williams; Don Williamson, Chadron State College; Neal Wilsey, College of Southern Maryland; 
Preface xxiii 
Lowell Wood, University of Houston; Jainshi Wu; Pei Xiong-Skiba, Austin Peay State University; Ming Yin,  
Benedict College; David Young, Louisiana State University; Douglas Young, Mercer University; T. Waldek  
Zerda, Texas Christian University; Peizhen Zhao, Edison Community College; Steven Zides, Wofford College;  
and Ulrich Zurcher, Cleveland State University. 
Finally, we would like to thank the following people for their suggestions and  
assistance during the preparation of earlier editions of this textbook: 
Gary B. Adams, Arizona State University; Marilyn Akins, Broome Community College; Ricardo Alarcon,  
Arizona State University; Albert Altman, University of Lowell; John Anderson, University of Pittsburgh; Law 
rence Anderson-Huang, University of Toledo; Subhash Antani, Edgewood College; Neil W. Ashcroft, Cornell  
University; Charles R. Bacon, Ferris State University; Dilip Balamore, Nassau Community College; Ralph  
Barnett, Florissant Valley Community College; Lois Barrett, Western Washington University; Natalie Batalha,  
San Jose State University; Paul D. Beale, University of Colorado at Boulder; Paul Bender, Washington State  
University; David H. Bennum, University of Nevada at Reno; Ken Bolland, The Ohio State University; Jeffery  
Braun, University of Evansville; John Brennan, University of Central Florida; Michael Bretz, University of  
Michigan, Ann Arbor; Michael E. Browne, University of Idaho; Joseph Cantazarite, Cypress College; Ronald  
W. Canterna, University of Wyoming; Clinton M. Case, Western Nevada Community College; Neal M. Cason,  
University of Notre Dame; Kapila Clara Castoldi, Oakland University; Roger W. Clapp, University of South  
Florida; Giuseppe Colaccico, University of South Florida; Lattie F. Collins, East Tennessee State University; 
Lawrence B. Colman, University of California, Davis; Andrew Cornelius, University of Nevada, Las Vegas;  
Jorge Cossio, Miami Dade Community College; Terry T. Crow, Mississippi State College; Yesim Darici, Flor 
ida International University; Stephen D. Davis, University of Arkansas at Little Rock; John DeFord, University  
of Utah; Chris J. DeMarco, Jackson Community College; Michael Dennin, University of California, Irvine; 
N. John DiNardo, Drexel University; Steve Ellis, University of Kentucky; Robert J. Endorf, University of  
Cincinnati; Steve Ellis, University of Kentucky; Hasan Fakhruddin, Ball State University/Indiana Academy;  
Paul Feldker, Florissant Valley Community College; Leonard X. Finegold, Drexel University; Emily Flynn;  
Lewis Ford, Texas A & M University; Tom French, Montgomery County Community College; Albert Thomas  
Frommhold, Jr., Auburn University; Lothar Frommhold, University of Texas at Austin; Eric Ganz, Uni 
versity of Minnesota; Teymoor Gedayloo, California Polytechnic State University; Simon George, California  
State University, Long Beach; James R. Goff, Pima Community College; Yadin Y. Goldschmidt, University  
of Pittsburgh; John R. Gordon, James Madison University; George W. Greenlees, University of Minnesota; 
Wlodzi mierz Guryn, Brookhaven National Laboratory; Steve Hagen, University of Florida; Raymond Hall,  
California State University, Fresno; Patrick Hamill, San Jose State University; Joel Handley; James Harmon,  
Oklahoma State University; Grant W. Hart, Brigham Young University; James E. Heath, Austin Community  
College; Grady Hendricks, Blinn College; Christopher Herbert, New Jersey City University; Rhett Her 
man, Radford University; John Ho, State University of New York at Buffalo; Aleksey Holloway, University  
of Nebraska at Omaha; Murshed Hossain, Rowan University; Robert C. Hudson, Roanoke College; Joey  
Huston, Michigan State University; Fred Inman, Mankato State University; Mark James, Northern Arizona  
University; Ronald E. Jodoin, Rochester Institute of Technology; Randall Jones, Loyola College in Maryland;  
Drasko Jovanovic, Fermilab; George W. Kattawar, Texas A & M University; Joseph Keane, St. Thomas  
Aquinas College; Frank Kolp, Trenton State University; Dorina Kosztin, University of Missouri–Columbia;  
Joan P. S. Kowalski, George Mason University; Ivan Kramer, University of Maryland, Baltimore County; Sol  
Krasner, University of Chicago; Karl F. Kuhn, Eastern Kentucky University; David Lamp, Texas Tech Uni 
versity; Harvey S. Leff, California State Polytechnic University; Joel Levine, Orange Coast College; Michael  
Lieber, University of Arkansas; Martha Lietz, Niles West High School; James Linbald, Saddleback Community  
College; Edwin Lo; Bill Lochslet, Pennsylvania State University; Rafael Lopez-Mobilia, University of Texas  
at San Antonio; Michael LoPresto, Henry Ford Community College; Bo Lou, Ferris State University; Jeffrey V.  
Mallow, Loyola University of Chicago; David Markowitz, University of Connecticut; Joe McCauley, Jr., Univer 
sity of Houston; Steven McCauley, California State Polytechnic University, Pomona; Ralph V. McGrew, Broome  
Community College; Bill F. Melton, University of North Carolina at Charlotte; John A. Milsom, University of  
Arizona; Monty Mola, Humboldt State University; H. Kent Moore, James Madison University; John Morack,  
University of Alaska, Fairbanks; Steven Morris, Los Angeles Harbor College; Charles W. Myles, Texas Tech  
University; Carl R. Nave, Georgia State University; Martin Nikolo, Saint Louis University; Blaine Norum,  
University of Virginia; M. E. Oakes, University of Texas at Austin; Lewis J. Oakland, University of Minnesota; 
Ed Oberhofer, Lake Sumter Community College; Lewis O’Kelly, Memphis State University; David G. Onn,  
University of Delaware; J. Scott Payson, Wayne State University; Chris Pearson, University of Michigan–Flint;  
Alexey A. Petrov, Wayne State University; T. A. K. Pillai, University of Wisconsin, La Crosse; Lawrence S.  
Pinsky, University of Houston; William D. Ploughe, The Ohio State University; Patrick Polley, Beloit College; 
Brooke M. Pridmore, Clayton State University; Joseph Priest, Miami University; James Purcell, Georgia  
State University; W. Steve Quon, Ventura College; Michael Ram, State University of New York at Buffalo; Kurt  
Reibel, The Ohio State University; M. Anthony Reynolds, Embry-Riddle Aeronautical University; Barry Rob 
ertson, Queen’s University; Virginia Roundy, California State University, Fullerton; Larry Rowan, University  
of North Carolina, Chapel Hill; Dubravka Rupnik, Louisiana State University; William R. Savage, University  
of Iowa; Reinhard A. Schumacher, Carnegie Mellon University; Surajit Sen, State University of New York at  
Buffalo; John Simon, University of Toledo; Marllin L. Simon, Auburn University; Matthew Sirocky; Don 
ald D. Snyder, Indiana University at Southbend; George Strobel, University of Georgia; Carey E. Stron 
ach, Virginia State University; Thomas W. Taylor, Cleveland State University; Perry A. Tompkins, Samford 
xxiv Preface 
University; L. L. Van Zandt, Purdue University; Howard G. Voss, Arizona State University; James Wanliss,  
Embry-Riddle Aeronautical University; Larry Weaver, Kansas State University; Donald H. White, Western  
Oregon State College; Bernard Whiting, University of Florida; George A. Williams, University of Utah; Jerry  
H. Wilson, Metropolitan State College; Robert M. Wood, University of Georgia; and Clyde A. Zaidins, Uni 
versity of Colorado at Denver. 
Gerd Kortemeyer and Randall Jones contributed several end-of-chapter problems,  
especially those of interest to the life sciences. Edward F. Redish of the University  
of Maryland graciously allowed us to list some of his problems from the Activity  
Based Physics Project. 
We are extremely grateful to the publishing team at the Brooks/Cole Publishing  
Company for their expertise and outstanding work in all aspects of this project. In  
particular, we thank Ed Dodd, who tirelessly coordinated and directed our efforts  
in preparing the manuscript in its various stages, and Sylvia Krick, who transmit 
ted all the print ancillaries. Jane Sanders Miller, the photo researcher, did a great  
job fi nding photos of physical phenomena, Sam Subity coordinated the media pro 
gram for the text, and Rob Hugel helped translate our rough sketches into accu 
rate, compelling art. Katherine Wilson of Lachina Publishing Services managed  
the diffi cult task of keeping production moving and on schedule. Mark Santee,  
Teri Hyde, and Chris Hall also made numerous valuable contributions. Mark, the  
book’s marketing manager, was a tireless advocate for the text. Teri coordinated  
the entire production and manufacturing of the text, in all its various incarna 
tions, from start to fi nish. Chris provided just the right amount of guidance and  
vision throughout the project. We also thank David Harris, a great team builder  
and motivator with loads of enthusiasm and an infectious sense of humor. Finally,  
we are deeply indebted to our wives and children for their love, support, and long 
term sacrifi ces. 
Raymond A. Serway 
St. Petersburg, Florida 
Chris Vuille 
Daytona Beach, Florida
ENGAGING APPLICATIONS 
Although physics is relevant to so much in our modern lives, it may not be obvious to students in an introductory course. In this eighth  edition of College Physics, we continue a design feature begun in the seventh edition. This feature makes the relevance of physics to  everyday life more obvious by pointing out specifi c applications in the form of a marginal note. Some of these applications pertain to  the life sciences and are marked with the DNA icon . The list below is not intended to be a complete listing of all the applications of  the principles of physics found in this textbook. Many other applications are to be found within the text and especially in the worked  examples, conceptual questions, and end-of-chapter problems. 
Chapter 3 
The long jump, p. 66 
Chapter 4 
Seat belts, p. 86 
Helicopter fl ight, p. 93 
Colliding vehicles, p. 94 
Skydiving, p. 108 
Chapter 5 
Flagellar movement; bioluminescence, p.  142 
Asteroid impact, p. 142 
Diet versus exercise in weight-loss programs,  p. 147 
Chapter 6 
Boxing and brain injury, p. 163 
Injury to passengers in car collisions, p. 165 Glaucoma testing, p. 169 
Professor Goddard was right all along:  Rockets work in space! p. 178 
Multistage rockets, p. 179 
Chapter 7 
ESA launch sites, p. 197 
Phonograph records and compact discs, p.  198 
Artifi cial gravity, p. 203 
Banked roadways, p. 205 
Why is the Sun hot? p. 213 
Geosynchronous orbit and  
telecommunications satellites, p. 217 
Chapter 8 
A weighted forearm, p. 237 
Bicycle gears, p. 241 
Warming up, p. 244 
Figure skating, p. 250 
Aerial somersaults, p. 250 
Rotating neutron stars, p. 251 
Chapter 9 
Arch structures in buildings, p. 275 Snowshoes, p. 277 
Bed of nails trick, p. 278 
Hydraulic lifts, p. 281 
Building the pyramids, pp. 282–283 Measuring blood pressure, p. 283–284 Ballpoint pens, p. 284 
Swim bladders in fi sh, p. 286 
Cerebrospinal fl uid, p. 286 
Testing your car’s antifreeze, p. 286 Checking the battery charge, p. 287 Flight of a golf ball, p. 296 
“Atomizers” in perfume bottles and paint  sprayers, p. 297 
Vascular fl utter and aneurysms, p. 297 Lift on aircraft wings, p. 297 
Sailing upwind, p. 298 
Home plumbing, p. 299 
Rocket engines, p. 299 
Air sac surface tension, p. 301 
Detergents and waterproofi ng agents, p. 303 
Turbulent fl ow of blood, p. 306 
Effect of osmosis on living cells, p. 308 Kidney function and dialysis, p. 309 
Chapter 10 
Skin temperature, p. 327 
Thermal expansion joints, p. 328 Pyrex glass, p. 329 
Bimetallic strips and thermostats,  pp. 330–331 
Rising sea levels, p. 333 
Bursting water pipes in winter, p. 334 Expansion and temperature, p. 344 
Chapter 11 
Working off breakfast, p. 354 
Physiology of exercise, p. 354 
Sea breezes and thermals, p. 355 Home insulation, pp. 368–369 
Staying warm in the arctic, p. 370 Cooling automobile engines, p. 371 Algal blooms in ponds and lakes, p. 371 Body temperature, p. 372 
Light-colored summer clothing, p. 373 Thermography, p. 373 
Radiation thermometers for measuring  body temperature, p. 373 
Thermal radiation and night vision, p. 374 Thermos bottles, p. 375 
Global warming and greenhouse gases, p.  375 
Chapter 12 
Refrigerators and heat pumps,  
pp. 402–403 
“Perpetual motion” machines, p. 409 The direction of time, p. 412 
Human metabolism, pp. 413–416 Fighting fat, p. 415 
Chapter 13 
Archery, p. 429 
Pistons and drive wheels, p. 433 
Bungee jumping, p. 435 
Pendulum clocks, p. 440 
Use of pendulum in prospecting, p. 440 Shock absorbers, p. 442 
Bass guitar strings, p. 447 
Chapter 14 
Medical uses of ultrasound, p. 460 Cavitron ultrasonic surgical aspirator,  p. 461 
Ultrasonic ranging unit for cameras, p. 461 The sounds heard during a storm,  pp. 462–463 
OSHA noise level regulations, p. 466 Sonic booms, p. 473 
Connecting your stereo speakers, p. 474 Tuning a musical instrument, p. 477 Guitar fundamentals, p. 477 
Shattering goblets with the voice, p. 480 Structural resonance in bridges and  buildings, p. 480 
Oscillations in a harbor, p. 482 
Why are instruments warmed up? p. 482 How do bugles work? p. 482 
Using beats to tune a musical instrument,  p. 485 
Why does the professor sound like Donald  Duck? p. 487 
The ear, pp. 487–489 
Cochlear implants, p. 489 
Chapter 15 
Measuring atmospheric electric fi elds, p.  512 
Lightning rods, p. 514 
Driver safety during electrical storms, p. 515 
Chapter 16 
Automobile batteries, p. 537 
The electrostatic precipitator, p. 544 The electrostatic air cleaner, p. 545 Xerographic copiers, p. 545 
Laser printers, p. 546 
Camera fl ash attachments, p. 547 
Computer keyboards, p. 547 
Electrostatic confi nement, p. 547 
Defi brillators, p. 556 
Stud fi nders, p. 559 
Chapter 17 
Dimming of aging lightbulbs, p. 578 Lightbulb failures, p. 582 
Electrical activity in the heart, pp. 585–587 Electrocardiograms, p. 585 
Cardiac pacemakers, p. 586 
Implanted cardioverter defi brillators, p. 586 
Chapter 18 
Christmas lights in series, p. 596 
Circuit breakers, p. 600 
Three-way lightbulbs, p. 601 
Timed windshield wipers, p. 608 
Bacterial growth, p. 608 
Roadway fl ashers, p. 608 
Fuses and circuit breakers, p. 612 
Third wire on consumer appliances, p. 612 Conduction of electrical signals by neurons,  pp. 613–615 
Chapter 19 
Dusting for fi ngerprints, p. 628 
Magnetic bacteria, p. 629 
Labeling airport runways, p. 629 
Compasses down under, p. 630 
Loudspeaker operation, p. 634 
Electromagnetic pumps for artifi cial hearts  and kidneys, p. 635 
Lightning strikes, p. 635 
Electric motors, p. 638 
Mass spectrometers, p. 641 
Chapter 20 
Ground fault interrupters, p. 668 
Electric guitar pickups, p. 669
xxv 
xxvi List of Active Figures
Apnea monitors, p. 669 
Space catapult, p. 671 
Magnetic tape recorders, p. 675 
Alternating-current generators, p. 676 Direct-current generators, p. 677 
Motors, p. 679 
Chapter 21 
Electric fi elds and cancer treatment, p. 699 Shifting phase to deliver more power, p. 707 Tuning your radio, p. 708 
Metal detectors at the courthouse, p. 709 Long-distance electric power transmission,  p. 711 
Radio-wave transmission, p. 714 
Solar system dust, p. 717 
A hot tin roof (solar-powered homes), p. 718 The sun and the evolution of the eye, p. 722 
Chapter 22 
Seeing the road on a rainy night, p. 734 Red eyes in fl ash photographs, p. 735 The colors of water ripples at sunset, p. 735 Double images, p. 735 
Refraction of laser light in a digital video  disk (DVD), p. 741 
Identifying gases with a spectrometer, p. 743 Submarine periscopes, p. 749 
Fiber optics in medical diagnosis and  surgery, p. 750 
Fiber optics in telecommunications, p. 750 Design of an optical fi ber, p. 751 
Chapter 23 
Day and night settings for rearview mirrors,  p. 761 
Illusionist’s trick, p. 762 
Concave vs. convex, p. 766 
Reversible waves, p. 766 
Underwater vision, p. 770 
Vision and diving masks, p. 776 
Chapter 24 
A smoky Young’s experiment, p. 794 Television signal interference, p. 794 Checking for imperfections in optical  lenses, p. 798 
The physics of CDs and DVDs, p. 800 Diffraction of sound waves, p. 804 Prism vs. grating, p. 806 
Rainbows from a CD, p. 807 
Tracking information on a CD, p. 807 Polarizing microwaves, p. 810 
Polaroid sunglasses, p. 812 
Finding the concentrations of solutions by  means of their optical activity, p. 813 Liquid crystal displays (LCDs), p. 813 
Chapter 25 
The camera, pp. 823–824 
The eye, pp. 824–829 
Using optical lenses to correct for defects,  p. 826 
Prescribing a corrective lens for a farsighted  patient, pp. 827–828 
A corrective lens for nearsightedness, p. 828 Vision of the invisible man, p. 828 Cat’s eyes, p. 836 
Chapter 26 
Faster clocks in a “mile-high city,” p. 865 
Chapter 27 
Star colors, p. 871 
Photocells, p. 875 
Using x-rays to study the work of master  painters, p. 876 
Electron microscopes, p. 882 
X-ray microscopes, p. 883 
Chapter 28 
Discovery of helium, p. 893 
Thermal or spectral, p. 893 
Auroras, p. 894 
Laser technology, p. 908 
Chapter 29 
Binding nucleons and electrons, p. 917 Energy and half-life, p. 921 
Carbon dating, p. 924 
Smoke detectors, p. 925 
Radon pollution, p. 925 
Medical applications of radiation,  pp. 929–931 
Occupational radiation exposure limits, p.  930 
Irradiation of food and medical equipment,  p. 930 
Radioactive tracers in medicine, p. 930 Magnetic resonance imaging (MRI), p. 931 
Chapter 30 
Unstable products, p. 938 
Nuclear reactor design, p. 940 
Fusion reactors, p. 941 
Positron emission tomography (PET  scanning), p. 945 
Breaking conservation laws, p. 949 Conservation of meson number, p. 951 
LIST OF ACTIVE FIGURES 
Chapter 1 Active Figures 1.6 and 1.7 
Chapter 2 Active Figures 2.2, 2.12, 2.13, and 2.15 Chapter 3 Active Figures 3.3, 3.14, and 3.15 
Chapter 4 Active Figures 4.6, 4.18, and 4.19 
Chapter 5 Active Figures 5.5, 5.15, 5.20, and 5.29 Chapter 6 Active Figure 6.7, 6.10, 6.13, and 6.15 Chapter 7 Active Figures 7.5, 7.17, and 7.21 
Chapter 8 Active Figure 8.25 
Chapter 9 Active Figures 9.3, 9.5, 9.6, 9.19, and 9.20 Chapter 10 Active Figures 10.10, 10.12, and 10.15 Chapter 12 Active Figures 12.1, 12.9, 12.12, 12.15, and 12.16 
Chapter 13 Active Figures 13.1, 13.8, 13.12, 13.13, 13.15, 13.16,  13.19, 13.24, 13.26, 13.32, 13.33, 13.34, and 13.35 
Chapter 14 Active Figures 14.8, 14.10, 14.18, and 14.25 Chapter 15 Active Figures 15.6, 15.11, 15.16, 15.21, and 15.28 Chapter 16 Active Figures 16.7, 16.18, and 16.20 
Chapter 17 Active Figures 17.4 and 17.9 
Chapter 18 Active Figures 18.1, 18.2, 18.6, 18.16, and 18.17 Chapter 19 Active Figures 19.2, 19.17, 19.19, 19.20, and 19.23 
Chapter 20 Active Figures 20.4, 20.13, 20.20, 20.22, 20.27, and  20.28 
Chapter 21 Active Figures 21.1, 21.2, 21.6, 21.7, 21.8, 21.9, and  21.20 
Chapter 22 Active Figures 22.4, 22.6, 22.7, 22.20, and 22.25 Chapter 23 Active Figures 23.2, 23.13, 23.16, and 23.25 Chapter 24 Active Figures 24.1, 24.16, 24.20, 24.21, and 24.26 Chapter 25 Active Figures 25.7, 25.8, and 25.15 Chapter 26 Active Figures 26.4, 26.6, and 26.9 
Chapter 27 Active Figures 27.2, 27.3, and 27.4 
Chapter 28 Active Figures 28.7, 28.8, and 28.17 Chapter 29 Active Figures 29.1, 29.6, and 29.7 
Chapter 30 Active Figures 30.2 and 30.8 
 TO THE STUDENT 
As a student, it’s important that you understand how to use this book most effec 
tively and how best to go about learning physics. Scanning through the pref 
ace will acquaint you with the various features available, both in the book and  
online. Awareness of your educational resources and how to use them is essential.  
Although physics is challenging, it can be mastered with the correct approach. 
HOW TO STUDY 
Students often ask how best to study physics and prepare for examinations. There  
is no simple answer to this question, but we’d like to offer some suggestions based  
on our own experiences in learning and teaching over the years. 
First and foremost, maintain a positive attitude toward the subject matter. Like  
learning a language, physics takes time. Those who keep applying themselves on a  
daily basis can expect to reach understanding and succeed in the course. Keep in  
mind that physics is the most fundamental of all natural sciences. Other science  
courses that follow will use the same physical principles, so it is important that you  
understand and are able to apply the various concepts and theories discussed in  
the text. They’re relevant! 
CONCEPTS AND PRINCIPLES 
Students often try to do their homework without fi rst studying the basic concepts.  
It is essential that you understand the basic concepts and principles before attempt 
ing to solve assigned problems. You can best accomplish this goal by carefully  
reading the textbook before you attend your lecture on the covered material. When  
reading the text, you should jot down those points that are not clear to you. Also  
be sure to make a diligent attempt at answering the questions in the Quick Quizzes  
as you come to them in your reading. We have worked hard to prepare questions  
that help you judge for yourself how well you understand the material. Pay care 
ful attention to the many Tips throughout the text. They will help you avoid mis 
conceptions, mistakes, and misunderstandings as well as maximize the effi ciency  
of your time by minimizing adventures along fruitless paths. During class, take  
careful notes and ask questions about those ideas that are unclear to you. Keep  
in mind that few people are able to absorb the full meaning of scientifi c material  
after only one reading. Your lectures and laboratory work supplement your text 
book and should clarify some of the more diffi cult material. You should minimize  
rote memorization of material. Successful memorization of passages from the text,  
equations, and derivations does not necessarily indicate that you understand the  
fundamental principles. 
Your understanding will be enhanced through a combination of effi cient study  
habits, discussions with other students and with instructors, and your ability to  
solve the problems presented in the textbook. Ask questions whenever you think  
clarifi cation of a concept is necessary. 
STUDY SCHEDULE 
It is important for you to set up a regular study schedule, preferably a daily one.  
Make sure you read the syllabus for the course and adhere to the schedule set  
by your instructor. As a general rule, you should devote about two hours of study  
time for every one hour you are in class. If you are having trouble with the course,  
seek the advice of the instructor or other students who have taken the course. You 
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may fi nd it necessary to seek further instruction from experienced students. Very  
often, instructors offer review sessions in addition to regular class periods. It is  
important that you avoid the practice of delaying study until a day or two before an  
exam. One hour of study a day for 14 days is far more effective than 14 hours the  
day before the exam. “Cramming” usually produces disastrous results, especially  
in science. Rather than undertake an all-night study session immediately before an  
exam, briefl y review the basic concepts and equations and get a good night’s rest.  
If you think you need additional help in understanding the concepts, in preparing  
for exams, or in problem solving, we suggest you acquire a copy of the Student Solu 
tions Manual/Study Guide that accompanies this textbook; this manual should be  
available at your college bookstore. 
USE THE FEATURES 
You should make full use of the various features of the text discussed in the pref 
ace. For example, marginal notes are useful for locating and describing important  
equations and concepts, and boldfaced type indicates important statements and  
defi nitions. Many useful tables are contained in the appendices, but most tables  
are incorporated in the text where they are most often referenced. Appendix A is a  
convenient review of mathematical techniques. 
Answers to all Quick Quizzes and Example Questions, as well as odd-numbered  
multiple-choice questions, conceptual questions, and problems, are given at the  
end of the textbook. Answers to selected end-of-chapter problems are provided  
in the Student Solutions Manual/Study Guide. Problem-Solving Strategies included  
in selected chapters throughout the text give you additional information about  
how you should solve problems. The contents provides an overview of the entire  
text, and the index enables you to locate specifi c material quickly. Footnotes some 
times are used to supplement the text or to cite other references on the subject  
discussed. 
After reading a chapter, you should be able to defi ne any new quantities intro 
duced in that chapter and to discuss the principles and assumptions used to arrive  
at certain key relations. The chapter summaries and the review sections of the  
Student Solutions Manual/Study Guide should help you in this regard. In some cases,  
it may be necessary for you to refer to the index of the text to locate certain topics.  
You should be able to correctly associate with each physical quantity the symbol  
used to represent that quantity and the unit in which the quantity is specifi ed.  
Further, you should be able to express each important relation in a concise and  
accurate prose statement. 
PROBLEM SOLVING 
R. P. Feynman, Nobel laureate in physics, once said, “You do not know anything  
until you have practiced.” In keeping with this statement, we strongly advise that  
you develop the skills necessary to solve a wide range of problems. Your ability to  
solve problems will be one of the main tests of your knowledge of physics, so you  
should try to solve as many problems as possible. It is essential that you under 
stand basic concepts and principles before attempting to solve problems. It is good  
practice to try to fi nd alternate solutions to the same problem. For example, you  
can solve problems in mechanics using Newton’s laws, but very often an alternate  
method that draws on energy considerations is more direct. You should not deceive  
yourself into thinking you understand a problem merely because you have seen it  
solved in class. You must be able to solve the problem and similar problems on  
your own. We have cast the examples in this book in a special, two-column format  
to help you in this regard. After studying an example, see if you can cover up the  
right-hand side and do it yourself, using only the written descriptions on the left as  
hints. Once you succeed at that, try solving the example completely on your own.  
Finally, answer the question and solve the exercise. Once you have accomplished 
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all these steps, you will have a good mastery of the problem, its concepts, and  
mathematical technique. After studying all the Example Problems in this way, you  
are ready to tackle the problems at the end of the chapter. Of these, the Guided  
Problems provide another aid to learning how to solve some of the more complex  
problems. 
The approach to solving problems should be carefully planned. A systematic  
plan is especially important when a problem involves several concepts. First, read  
the problem several times until you are confi dent you understand what is being  
asked. Look for any key words that will help you interpret the problem and per 
haps allow you to make certain assumptions. Your ability to interpret a question  
properly is an integral part of problem solving. Second, you should acquire the  
habit of writing down the information given in a problem and those quantities  
that need to be found; for example, you might construct a table listing both the  
quantities given and the quantities to be found. This procedure is sometimes used  
in the worked examples of the textbook. After you have decided on the method  
you think is appropriate for a given problem, proceed with your solution. Finally,  
check your results to see if they are reasonable and consistent with your initial  
understanding of the problem. General problem-solving strategies of this type are  
included in the text and are highlighted with a surrounding box. If you follow the  
steps of this procedure, you will fi nd it easier to come up with a solution and will  
also gain more from your efforts. 
Often, students fail to recognize the limitations of certain equations or physical  
laws in a particular situation. It is very important that you understand and remem 
ber the assumptions underlying a particular theory or formalism. For example,  
certain equations in kinematics apply only to a particle moving with constant  
acceleration. These equations are not valid for describing motion whose accelera 
tion is not constant, such as the motion of an object connected to a spring or the  
motion of an object through a fl uid. 
EXPERIMENTS 
Because physics is a science based on experimental observations, we recommend  
that you supplement the text by performing various types of “hands-on” experi 
ments, either at home or in the laboratory. For example, the common Slinky™ toy  
is excellent for studying traveling waves, a ball swinging on the end of a long string  
can be used to investigate pendulum motion, various masses attached to the end  
of a vertical spring or rubber band can be used to determine their elastic nature,  
an old pair of Polaroid sunglasses and some discarded lenses and a magnifying  
glass are the components of various experiments in optics, and the approximate  
measure of the free-fall acceleration can be determined simply by measuring with  
a stopwatch the time it takes for a ball to drop from a known height. The list of  
such experiments is endless. When physical models are not available, be imagina 
tive and try to develop models of your own. 
An Invitation to Physics 
It is our hope that you too will fi nd physics an exciting and enjoyable experience  
and that you will profi t from this experience, regardless of your chosen profession.  
Welcome to the exciting world of physics! 
To see the World in a Grain of Sand 
And a Heaven in a Wild Flower, 
Hold infi nity in the palm of your hand 
And Eternity in an hour. 
—William Blake, “Auguries of Innocence”
Welcome to your MCAT Test Preparation Guide 
 The MCAT Test Preparation Guide makes your copy of College Physics, eighth edition, the most comprehensive  MCAT study tool and classroom resource in introductory physics. The grid, which begins below and continues  on the next two pages, outlines 12 concept-based study courses for the physics part of your MCAT exam. Use it  to prepare for the MCAT, class tests, and your homework assignments.
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Vectors 
Skill Objectives: To calculate distance, angles  between vectors, and magnitudes. 
Review Plan: 
Distance and Angles:  
  Chapter 1, Sections 1.7, 1.8 
  Active Figure 1.6 
  Chapter Problems 35, 41, 44 
Using Vectors:  
  Chapter 3, Sections 3.1, 3.2 
  Quick Quizzes 3.1, 3.2 
  Examples 3.1–3.3 
  Active Figure 3.3 
  Chapter Problems 8, 13 
Motion 
Skill Objectives: To understand motion in  two dimensions and to calculate speed  and velocity, centripetal acceleration, and  acceleration in free-fall problems.  
Review Plan: 
Motion in One Dimension:  
  Chapter 2, Sections 2.1–2.6 
  Quick Quizzes 2.1–2.8 
  Examples 2.1–2.10 
  Active Figure 2.15 
  Chapter Problems 3, 10, 23, 31, 50, 59 
Motion in Two Dimensions:  
  Chapter 3, Sections 3.3, 3.4 
  Quick Quizzes 3.4–3.7 
  Examples 3.3–3.7 
  Active Figures 3.14, 3.15 
  Chapter Problems 27, 33 
Centripetal Acceleration:  
  Chapter 7, Section 7.4 
  Quick Quizzes 7.6, 7.7 
  Example 7.6 
Force 
Skill Objectives: To know and understand  Newton’s laws and to calculate resultant  forces and weight. 
Review Plan: 
Newton’s Laws:  
  Chapter 4, Sections 4.1–4.4 
  Quick Quizzes 4.1, 4.3 
  Examples 4.1–4.4 
  Active Figure 4.6 
  Chapter Problems 5, 7, 11 
Resultant Forces:  
  Chapter 4, Section 4.5 
  Quick Quizzes 4.4, 4.5 
  Examples 4.7, 4.9, 4.10 
  Chapter Problems 19, 27, 37 
Equilibrium 
Skill Objectives: To calculate momentum and  impulse, center of gravity, and torque. 
Review Plan: 
Momentum:  
  Chapter 6, Sections 6.1–6.3 
  Quick Quizzes 6.2–6.6 
  Examples 6.1–6.4, 6.6 
  Active Figures 6.7, 6.10, 6.13 
  Chapter Problems 20, 23 
Torque:  
  Chapter 8, Sections 8.1–8.4 
  Examples 8.1–8.7 
  Chapter Problems 5, 9 
xxx
Work 
Skill Objectives: To calculate friction, work,  kinetic energy, potential energy, and power. 
Review Plan: 
Friction:  
  Chapter 4, Section 4.6 
  Quick Quizzes 4.6–4.8 
  Active Figure 4.19 
Work:  
  Chapter 5, Section 5.1 
  Quick Quiz 5.1 
  Example 5.1 
  Active Figure 5.5 
  Chapter Problem 17 
Energy:  
  Chapter 5, Sections 5.2, 5.3 
  Examples 5.4, 5.5 
  Quick Quizzes 5.2, 5.3 
Power:  
  Chapter 5, Section 5.6 
  Examples 5.12, 5.13 
Waves 
Skill Objectives: To understand interference of  waves and to calculate basic properties of  waves, properties of springs, and properties  of pendulums. 
Review Plan: 
Wave Properties:  
  Chapters 13, Sections 13.1–13.4, 13.7–13.11   Quick Quizzes 13.1–13.6 
  Examples 13.1, 13.6, 13.8–13.10 
  Active Figures 13.1, 13.8, 13.12, 13.13,  13.24, 13.26, 13.32, 13.33, 13.34, 13.35   Chapter Problems 11, 17, 25, 33, 45, 55, 61 
Pendulum:  
  Chapter 13, Section 13.5 
  Quick Quizzes 13.7–13.9 
  Example 13.7 
  Active Figures 13.15, 13.16 
  Chapter Problem 39 
Matter 
Skill Objectives: To calculate pressure, density,  specifi c gravity, and fl ow rates. 
Review Plan: 
Properties:  
  Chapter 9, Sections 9.1–9.3 
  Quick Quiz 9.1 
  Examples 9.1, 9.3, 9.4 
  Active Figure 9.3 
  Chapter Problem 7 
Pressure:  
  Chapter 9, Sections 9.3–9.6 
  Quick Quizzes 9.2–9.6 
  Examples 9.4–9.9 
  Active Figures 9.19, 9.20 
  Chapter Problems 25, 43 
Flow Rates:  
  Chapter 9, Sections 9.7, 9.8 
  Quick Quiz 9.7 
  Examples 9.11–9.14 
  Chapter Problem 46 
Sound 
Skill Objectives: To understand interference of  waves and to calculate properties of waves,  the speed of sound, Doppler shifts, and  intensity. 
Review Plan: 
Sound Properties:  
  Chapter 14, Sections 14.1–14.4, 14.6   Quick Quizzes 14.1, 14.2 
  Examples 14.1, 14.2, 14.4, 14.5 
  Active Figures 14.6, 14.11 
  Chapter Problems 7, 27 
Interference/Beats:  
  Chapter 14, Sections 14.7, 14.8, 14.11   Quick Quiz 14.7 
  Examples 14.6, 14.11 
  Active Figures 14.18, 14.25 
  Chapter Problems 37, 41, 57 
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Light 
Skill Objectives: To understand mirrors and  lenses, to calculate the angles of refl ection,  to use the index of refraction, and to fi nd  focal lengths. 
Review Plan: 
Refl ection and Refraction:  
  Chapter 22, Sections 22.1–22.4 
  Quick Quizzes 22.2–22.4 
  Examples 22.1–22.4 
  Active Figures 22.4, 22.6, 22.7 
  Chapter Problems 11, 17, 19, 25 
Mirrors and Lenses:  
  Chapter 23, Sections 23.1–23.6 
  Quick Quizzes 23.1, 23.2, 23.4–23.6   Examples 23.7, 23.8, 23.9 
  Active Figures 23.2, 23.16, 23.25 
  Chapter Problems 25, 31, 35, 39 
Electrostatics 
Skill Objectives: To understand and calculate the  electric fi eld, the electrostatic force, and the  electric potential. 
Review Plan: 
Coulomb’s Law:  
  Chapter 15, Sections 15.1–15.3 
  Quick Quiz 15.2 
  Examples 15.1–15.3 
  Active Figure 15.6 
  Chapter Problems 11 
Electric Field:  
  Chapter 15, Sections 15.4, 15.5 
  Quick Quizzes 15.3–15.6  
  Examples 15.4, 15.5  
  Active Figures 15.11, 15.16 
  Chapter Problems 19, 23, 27 
Potential:  
  Chapter 16, Sections 16.1–16.3 
  Quick Quizzes 16.1, 16.3–16.7 
  Examples 16.1, 16.4 
  Active Figure 16.7 
  Chapter Problems 7, 15 
Circuits 
Skill Objectives: To understand and calculate  current, resistance, voltage, power, and  energy and to use circuit analysis. 
Review Plan: 
Ohm’s Law:  
  Chapter 17, Sections 17.1–17.4 
  Quick Quizzes 17.1, 17.3, 17.5 
  Example 17.1 
  Chapter Problem 15 
Power and Energy:  
  Chapter 17, Section 17.6 
  Quick Quizzes 17.7–17.9 
  Example 17.5 
  Active Figure 17.9 
  Chapter Problem 38 
Circuits:  
  Chapter 18, Sections 18.2, 18.3 
  Quick Quizzes 18.3, 18.5, 18.6 
  Examples 18.1–18.3 
  Active Figures 18.2, 18.6 
Atoms 
Skill Objectives: To calculate half-life and to   understand decay processes and nuclear   reactions. 
Review Plan: 
Atoms:  
  Chapter 29, Sections 29.1, 29.2 
Radioactive Decay:  
  Chapter 29, Sections 29.3–29.5 
  Examples 29.2, 29.5 
  Active Figures 29.6, 29.7 
  Chapter Problems 15, 19, 25, 31 
Nuclear Reactions:  
  Chapter 29, Section 29.6 
  Quick Quiz 29.4 
  Example 29.6 
  Chapter Problems 35, 39
xxxii
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INTRODUCTION 
The goal of physics is to provide an understanding of the physical world by developing theo ries based on experiments. A physical theory is essentially a guess, usually expressed math ematically, about how a given physical system works. The theory makes certain predictions  about the physical system which can then be checked by observations and experiments. If  the predictions turn out to correspond closely to what is actually observed, then the theory  stands, although it remains provisional. No theory to date has given a complete description  of all physical phenomena, even within a given subdiscipline of physics. Every theory is a work  in progress. 
 The basic laws of physics involve such physical quantities as force, velocity, volume, and  acceleration, all of which can be described in terms of more fundamental quantities. In  mechanics, the three most fundamental quantities are length (L), mass (M), and time (T); all  other physical quantities can be constructed from these three. 
1.1 STANDARDS OF LENGTH, MASS, AND TIME To communicate the result of a measurement of a certain physical quantity, a unit for the quantity must be defi ned. If our fundamental unit of length is defi ned  to be 1.0 meter, for example, and someone familiar with our system of measure ment reports that a wall is 2.0 meters high, we know that the height of the wall is  twice the fundamental unit of length. Likewise, if our fundamental unit of mass is  defi ned as 1.0 kilogram and we are told that a person has a mass of 75 kilograms,  then that person has a mass 75 times as great as the fundamental unit of mass. 
In 1960 an international committee agreed on a standard system of units for  the fundamental quantities of science, called SI (Système International). Its units  of length, mass, and time are the meter, kilogram, and second, respectively. 
Length 
In 1799 the legal standard of length in France became the meter, defi ned as one  ten-millionth of the distance from the equator to the North Pole. Until 1960,  
1 
Stonehenge, in southern England,  was built thousands of years ago  to help keep track of the seasons.  At dawn on the summer solstice  the sun can be seen through these  giant stone slabs. 
1.1 Standards of Length, Mass,  and Time 
1.2 The Building Blocks of  Matter 
1.3 Dimensional Analysis 
1.4 Uncertainty in  
Measurement and  
Signifi cant Figures 
1.5 Conversion of Units 
1.6 Estimates and Order-of Magnitude Calculations 
1.7 Coordinate Systems 
1.8 Trigonometry 
1.9 Problem-Solving Strategy 
1 
2 Chapter 1 Introduction 
the offi cial length of the meter was the distance between two lines on a specifi c  
bar of platinum-iridium alloy stored under controlled conditions. This standard  
was abandoned for several reasons, the principal one being that measurements  
of the separation between the lines are not precise enough. In 1960 the meter  
was defi ned as 1 650 763.73 wavelengths of orange-red light emitted from a kryp 
Defi nition of the meter R 
Defi nition of the kilogram R 
TIP 1.1 No Commas in  Numbers with Many Digits 
In science, numbers with more  than three digits are written in  groups of three digits separated  by spaces rather than commas;  so that 10 000 is the same as the  common American notation  10,000. Similarly, p   3.14159265  is written as 3.141 592 65.
Defi nition of the second R 
FIGURE 1.1 (a) The National Stand ard Kilogram No. 20, an accurate  copy of the International Standard  Kilogram kept at Sèvres, France, is  housed under a double bell jar in  a vault at the National Institute of  Standards and Technology. (b) The  nation’s primary time standard is a  cesium fountain atomic clock devel oped at the National Institute of  Standards and Technology laborato ries in Boulder, Colorado. This clock  will neither gain nor lose a second in  20 million years. 
ton-86 lamp. In October 1983 this defi nition was abandoned also, and the meter  was redefi ned as the distance traveled by light in vacuum during a time interval  of 1/299 792 458 second. This latest defi nition establishes the speed of light at  299 792 458 meters per second. 
Mass 
The SI unit of mass, the kilogram, is defi ned as the mass of a specifi c platinum iridium alloy cylinder kept at the International Bureau of Weights and Measures  at Sèvres, France (similar to that shown in Fig. 1.1a). As we’ll see in Chapter 4,  mass is a quantity used to measure the resistance to a change in the motion of an  object. It’s more diffi cult to cause a change in the motion of an object with a large  mass than an object with a small mass. 
Time 
Before 1960, the time standard was defi ned in terms of the average length of a  solar day in the year 1900. (A solar day is the time between successive appearances  of the Sun at the highest point it reaches in the sky each day.) The basic unit of  time, the second, was defi ned to be (1/60)(1/60)(1/24)   1/86 400 of the average  solar day. In 1967 the second was redefi ned to take advantage of the high preci 
sion attainable with an atomic clock, which uses the characteristic frequency of  the light emitted from the cesium-133 atom as its “reference clock.” The second  is now defi ned as 9 192 631 700 times the period of oscillation of radiation from  the cesium atom. The newest type of cesium atomic clock is shown in Figure 1.1b. 
Approximate Values for Length, Mass, and Time Intervals Approximate values of some lengths, masses, and time intervals are presented  in Tables 1.1, 1.2, and 1.3, respectively. Note the wide ranges of values. Study  these tables to get a feel for a kilogram of mass (this book has a mass of about  2 kilograms), a time interval of 1010 seconds (one century is about 3   109 seconds),  or two meters of length (the approximate height of a forward on a basketball  
  [image: ][image: ]
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TABLE 1.1 
Approximate Values of Some Measured Lengths 
1.1 Standards of Length, Mass, and Time 3 
TABLE 1.2 
Approximate Values of Some  
Length (m) 
Distance from Earth to most remote known quasar 1   1026 Distance from Earth to most remote known normal galaxies 4   1025 Distance from Earth to nearest large galaxy (M31, the Andromeda galaxy) 2   1022 Distance from Earth to nearest star (Proxima Centauri) 4   1016 One light year 9   1015 Mean orbit radius of Earth about Sun 2   1011 Mean distance from Earth to Moon 4   108 
Mean radius of Earth 6   106 Typical altitude of satellite orbiting Earth 2   105 Length of football fi eld 9   101 Length of housefl y 5   10 3 
Size of smallest dust particles 1   10 4 Size of cells in most living organisms 1   10 5 Diameter of hydrogen atom 1   10 10 Diameter of atomic nucleus 1   10 14 Diameter of proton 1   10 15 
team). Appendix A reviews the notation for powers of 10, such as the expression of  the number 50 000 in the form 5   104. 
Systems of units commonly used in physics are the Système International, in  which the units of length, mass, and time are the meter (m), kilogram (kg), and  second (s); the cgs, or Gaussian, system, in which the units of length, mass, and  time are the centimeter (cm), gram (g), and second; and the U.S. customary sys 
tem, in which the units of length, mass, and time are the foot (ft), slug, and sec ond. SI units are almost universally accepted in science and industry, and will be  used throughout the book. Limited use will be made of Gaussian and U.S. custom ary units. 
Some of the most frequently used “metric” (SI and cgs) prefi xes representing  powers of 10 and their abbreviations are listed in Table 1.4. For example, 10 3 m is  
TABLE 1.3 
Approximate Values of Some Time Intervals 
Time Interval (s) 
Age of Universe 5   1017 Age of Earth 1   1017 Average age of college student 6   108 
One year 3   107 
One day 9   104  Time between normal heartbeats 8   10 1 Perioda of audible sound waves 1   10 3 Perioda of typical radio waves 1   10 6 Perioda of vibration of atom in solid 1   10 13 
Perioda of visible light waves 2   10 15 Duration of nuclear collision 1   10 22 Time required for light to travel across a proton 3   10 24 
aA period is defi ned as the time required for one complete vibration. 
Masses 
 Mass (kg) 
Observable Universe 1   1052 Milky Way galaxy 7   1041 Sun 2   1030 Earth 6   1024 Moon 7   1022 Shark 1   102 
Human 7   101 Frog 1   10 1 Mosquito 1   10 5 Bacterium 1   10 15 Hydrogen atom 2   10 27 Electron 9   10 31 
TABLE 1.4 
Some Prefi xes for Powers  of Ten Used with “Metric”  (SI and cgs) Units 
 Power Prefi x Abbreviation  10 18 atto- a  10 15 femto- f  10 12 pico- p  10 9 nano- n  10 6 micro- m  10 3 milli- m  10 2 centi- c  10 1 deci- d  101 deka- da  103 kilo- k  106 mega- M  109 giga- G  1012 tera- T  1015 peta- P  1018 exa- E
4 Chapter 1 Introduction 
equivalent to 1 millimeter (mm), and 103 m is 1 kilometer (km). Likewise, 1 kg is  
equal to 103 g, and 1 megavolt (MV) is 106 volts (V). 
1.2 THE BUILDING BLOCKS OF MATTER 
A 1-kg (  2-lb) cube of solid gold has a length of about 3.73 cm (  1.5 in.) on a  
side. If the cube is cut in half, the two resulting pieces retain their chemical iden 
tity as solid gold. But what happens if the pieces of the cube are cut again and  
again, indefi nitely? The Greek philosophers Leucippus and Democritus couldn’t  
accept the idea that such cutting could go on forever. They speculated that the  
process ultimately would end when it produced a particle that could no longer  
be cut. In Greek, atomos means “not sliceable.” From this term comes our English  
word atom, once believed to be the smallest particle of matter but since found to be  
a composite of more elementary particles. 
The atom can be naively visualized as a miniature Solar System, with a dense,  
positively charged nucleus occupying the position of the Sun and negatively  
charged electrons orbiting like planets. This model of the atom, fi rst developed  
by the great Danish physicist Niels Bohr nearly a century ago, led to the under 
standing of certain properties of the simpler atoms such as hydrogen but failed to  
Gold cube 
Nucleus 
[image: ]
Neutron 
Gold 
Gold atoms 
explain many fi ne details of atomic structure. 
Notice the size of a hydrogen atom, listed in Table 1.1, and the size of a pro ton—the nucleus of a hydrogen atom—one hundred thousand times smaller. If  the proton were the size of a Ping Pong ball, the electron would be a tiny speck  about the size of a bacterium, orbiting the proton a kilometer away! Other atoms  are similarly constructed. So there is a surprising amount of empty space in ordi nary matter. 
After the discovery of the nucleus in the early 1900s, questions arose concerning  its structure. The exact composition of the nucleus hasn’t been defi ned completely  even today, but by the early 1930s scientists determined that two basic entities— protons and neutrons—occupy the nucleus. The proton is nature’s fundamental  carrier of positive charge, equal in magnitude but opposite in sign to the charge  on the electron. The number of protons in a nucleus determines what the element  is. For instance, a nucleus containing only one proton is the nucleus of an atom of  hydrogen, regardless of how many neutrons may be present. Extra neutrons cor 
respond to different isotopes of hydrogen— deuterium and tritium—which react  chemically in exactly the same way as hydrogen, but are more massive. An atom  having two protons in its nucleus, similarly, is always helium, although again, dif 
nucleus 
Proton 
u u[image: ]
d 
fering numbers of neutrons are possible. 
The existence of neutrons was verifi ed conclusively in 1932. A neutron has no  charge and has a mass about equal to that of a proton. One of its primary purposes  is to act as a “glue” to hold the nucleus together. If neutrons were not present, the  repulsive electrical force between the positively charged protons would cause the  nucleus to fl y apart. 
The division doesn’t stop here; it turns out that protons, neutrons, and a zoo  of other exotic particles are now thought to be composed of six particles called  quarks (rhymes with “forks,” though some rhyme it with “sharks”). These particles  have been given the names up, down, strange, charm, bottom, and top. The up, charm,  
Quark composition of a proton 
FIGURE 1.2 Levels of organization  in matter. Ordinary matter consists  of atoms, and at the center of each  atom is a compact nucleus consisting  of protons and neutrons. Protons and  neutrons are composed of quarks.  The quark composition of a proton  is shown. 
and top quarks each carry a charge equal to  23 that of the proton, whereas the  down, strange, and bottom quarks each carry a charge equal to  13 the proton  charge. The proton consists of two up quarks and one down quark (see Fig. 1.2),  giving the correct charge for the proton,  1. The neutron is composed of two  down quarks and one up quark and has a net charge of zero. 
The up and down quarks are suffi cient to describe all normal matter, so the exis tence of the other four quarks, indirectly observed in high-energy experiments,  is something of a mystery. It’s also possible that quarks themselves have internal  
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structure. Many physicists believe that the most fundamental particles may be tiny  
loops of vibrating string. 
1.3 DIMENSIONAL ANALYSIS 
In physics the word dimension denotes the physical nature of a quantity. The dis 
tance between two points, for example, can be measured in feet, meters, or fur 
longs, which are different ways of expressing the dimension of length. 
 The symbols used in this section to specify the dimensions of length, mass,  
and time are L, M, and T, respectively. Brackets [ ] will often be used to denote the  
dimensions of a physical quantity. In this notation, for example, the dimensions of  
velocity v are written [v]   L/T, and the dimensions of area A are [A]   L2. The  
dimensions of area, volume, velocity, and acceleration are listed in Table 1.5, along  
with their units in the three common systems. The dimensions of other quantities,  
such as force and energy, will be described later as they are introduced. 
In physics it’s often necessary either to derive a mathematical expression or  
equation or to check its correctness. A useful procedure for doing this is called  
dimensional analysis, which makes use of the fact that dimensions can be treated  
as algebraic quantities. Such quantities can be added or subtracted only if they  
have the same dimensions. It follows that the terms on the opposite sides of an  
equation must have the same dimensions. If they don’t, the equation is wrong. If  
they do, the equation is probably correct, except for a possible constant factor. 
To illustrate this procedure, suppose we wish to derive a formula for the distance  
x traveled by a car in a time t if the car starts from rest and moves with constant  
acceleration a. The quantity x has the dimension length: [x]   L. Time t, of course,  
has dimension [t]   T. Acceleration is the change in velocity v with time. Because  
v has dimensions of length per unit time, or [v]   L/T, acceleration must have  
dimensions [a]   L/T2. We organize this information in the form of an equation: 
3a4 5 3v4 
T 5 LT2 5 3x4 
 3t45 L/T 
3t42 
Looking at the left- and right-hand sides of this equation, we might now guess that a 5 x 
 t2 S x 5 at 2 
This expression is not quite correct, however, because there’s a constant of pro portionality—a simple numerical factor—that can’t be determined solely through  dimensional analysis. As will be seen in Chapter 2, it turns out that the correct  expression is x 5 12at 2 . 
When we work algebraically with physical quantities, dimensional analysis allows  us to check for errors in calculation, which often show up as discrepancies in units.  If, for example, the left-hand side of an equation is in meters and the right-hand  side is in meters per second, we know immediately that we’ve made an error. 
TABLE 1.5 
Dimensions and Some Units of Area, Volume, Velocity, and Acceleration System Area (L2) Volume (L3) Velocity (L/T) Acceleration (L/T2) SI m2 m3 m/s m/s2 cgs cm2 cm3 cm/s cm/s2 U.S. customary ft2 ft3 ft/s ft/s2 
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EXAMPLE 1.1 Analysis of an Equation 
Goal Check an equation using dimensional analysis. 
Problem Show that the expression v   v0   at is dimensionally correct, where v and v0 represent velocities, a is  acceleration, and t is a time interval. 
Strategy Analyze each term, fi nding its dimensions, and then check to see if all the terms agree with each other. 
Solution 
Find dimensions for v and v0. 3v4 5 3v0 4 5 LT Find the dimensions of at. 3at4 5 LT2 1T2 5 LT 
Remarks All the terms agree, so the equation is dimensionally correct. 
QUESTION 1.1 
True or False. An equation that is dimensionally correct is always physically correct, up to a constant of proportionality. 
EXERCISE 1.1 
Determine whether the equation x   vt2 is dimensionally correct. If not, provide a correct expression, up to an over all constant of proportionality. 
Answer Incorrect. The expression x   vt is dimensionally correct. 
EXAMPLE 1.2 Find an Equation 
Goal Derive an equation by using dimensional analysis. 
Problem Find a relationship between a constant acceleration a, speed v, and distance r from the origin for a par ticle traveling in a circle. 
Strategy Start with the term having the most dimensionality, a. Find its dimensions, and then rewrite those dimen sions in terms of the dimensions of v and r. The dimensions of time will have to be eliminated with v, because that’s  the only quantity in which the dimension of time appears. 
Solution 
Write down the dimensions of a: 3a4 5 LT2 
Solve the dimensions of speed for T: 3v4 5 LTS T 5 L3v4 
1L/3v4 2 2 5 3v42 
Substitute the expression for T into the equation for [a]: 3a4 5 LT2 5 L L 
Substitute L   [r], and guess at the equation: 3a4 5 3v42 3r4 S a 5 v 2r 
Remarks This is the correct equation for centripetal acceleration—acceleration towards the center of motion—to  be discussed in Chapter 7. In this case it isn’t necessary to introduce a numerical factor. Such a factor is often dis played explicitly as a constant k in front of the right-hand side—for example, a   kv2/r. As it turns out, k   1 gives the  correct expression.
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QUESTION 1.2 
True or False: Replacing v by r/t in the fi nal answer also gives a dimensionally correct equation. 
EXERCISE 1.2 
In physics, energy E carries dimensions of mass times length squared divided by time squared. Use dimensional  analysis to derive a relationship for energy in terms of mass m and speed v, up to a constant of proportionality. Set  the speed equal to c, the speed of light, and the constant of proportionality equal to 1 to get the most famous equa tion in physics. 
Answer E   kmv 2 S E   mc 2 when k   1 and v   c. 
1.4 UNCERTAINTY IN MEASUREMENT  
AND SIGNIFICANT FIGURES 
Physics is a science in which mathematical laws are tested by experiment. No physi 
cal quantity can be determined with complete accuracy because our senses are  
physically limited, even when extended with microscopes, cyclotrons, and other  
gadgets. 
Knowing the experimental uncertainties in any measurement is very important.  
Without this information, little can be said about the fi nal measurement. Using  
a crude scale, for example, we might fi nd that a gold nugget has a mass of 3 kilo 
grams. A prospective client interested in purchasing the nugget would naturally  
want to know about the accuracy of the measurement, to ensure paying a fair  
price. He wouldn’t be happy to fi nd that the measurement was good only to within  
a kilogram, because he might pay for three kilograms and get only two. Of course,  
he might get four kilograms for the price of three, but most people would be hesi 
tant to gamble that an error would turn out in their favor. 
Accuracy of measurement depends on the sensitivity of the apparatus, the skill  
of the person carrying out the measurement, and the number of times the mea 
surement is repeated. There are many ways of handling uncertainties, and here  
we’ll develop a basic and reliable method of keeping track of them in the measure 
ment itself and in subsequent calculations. 
Suppose that in a laboratory experiment we measure the area of a rectangular  
plate with a meter stick. Let’s assume that the accuracy to which we can measure a  
particular dimension of the plate is  0.1 cm. If the length of the plate is measured  
to be 16.3 cm, we can claim only that it lies somewhere between 16.2 cm and 16.4  
cm. In this case, we say that the measured value has three signifi cant fi gures. Like 
wise, if the plate’s width is measured to be 4.5 cm, the actual value lies between  
4.4 cm and 4.6 cm. This measured value has only two signifi cant fi gures. We could  
write the measured values as 16.3   0.1 cm and 4.5   0.1 cm. In general, a signifi - 
cant fi gure is a reliably known digit (other than a zero used to locate a decimal  
point). 
Suppose we would like to fi nd the area of the plate by mul tiplying the two mea 
sured values together. The fi nal value can range between (16.3   0.1 cm)(4.5   
0.1 cm)   (16.2 cm)(4.4 cm)   71.28 cm2 and (16.3   0.1 cm)(4.5   0.1 cm)   
(16.4 cm)(4.6 cm)   75.44 cm2. Claiming to know anything about the hundredths  
place, or even the tenths place, doesn’t make any sense, because it’s clear we  
can’t even be certain of the units place, whether it’s the 1 in 71, the 5 in 75, or  
somewhere in between. The tenths and the hundredths places are clearly not sig 
nifi cant. We have some information about the units place, so that number is sig 
nifi cant. Multiplying the numbers at the middle of the uncertainty ranges gives  
(16.3 cm)(4.5 cm)   73.35 cm2, which is also in the middle of the area’s uncer 
tainty range. Because the hundredths and tenths are not signifi cant, we drop them  
and take the answer to be 73 cm2, with an uncertainty of  2 cm2. Note that the  
answer has two signifi cant fi gures, the same number of fi gures as the least accu 
rately known quantity being multiplied, the 4.5-cm width. 
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There are two useful rules of thumb for determining the number of signifi cant  
fi gures. The fi rst, concerning multiplication and division, is as follows: In multiply 
ing (dividing) two or more quantities, the number of signifi cant fi gures in the  
fi nal product (quotient) is the same as the number of signifi cant fi gures in the  
least accurate of the factors being combined, where least accurate means having  
the lowest number of signifi cant fi gures. 
To get the fi nal number of signifi cant fi gures, it’s usually necessary to do some  
rounding. If the last digit dropped is less than 5, simply drop the digit. If the last  
digit dropped is greater than or equal to 5, raise the last retained digit by one. 
EXAMPLE 1.3 Installing a Carpet 
Goal Apply the multiplication rule for signifi cant fi gures. 
Problem A carpet is to be installed in a room of length 12.71 m and width 3.46 m. Find the area of the room, retain ing the proper number of signifi cant fi gures. 
Strategy Count the signifi cant fi gures in each number. The smaller result is the number of signifi cant fi gures in the  answer. 
Solution 
Count signifi cant fi gures: 12.71 m S 4 significant figures 3.46 m S 3 significant figures 
Multiply the numbers, keeping only three digits: 12.71 m 3 3.46 m 5 43.976 6 m2 S 44.0 m2 
Remarks In reducing 43.976 6 to three signifi cant fi gures, we used our rounding rule, adding 1 to the 9, which  made 10 and resulted in carrying 1 to the unit’s place. 
QUESTION 1.3 
What would the answer have been if the width were given as 3.460 m? 
EXERCISE 1.3 
Repeat this problem, but with a room measuring 9.72 m long by 5.3 m wide. 
Answer 52 m2 
TIP 1.2 Using Calculators 
Calculators were designed by  engineers to yield as many digits  as the memory of the calculator  chip permitted, so be sure to  round the fi nal answer down to  the correct number of signifi cant  fi gures. 
Zeros may or may not be signifi cant fi gures. Zeros used to position the decimal  point in such numbers as 0.03 and 0.007 5 are not signifi cant (but are useful in  avoiding errors). Hence, 0.03 has one signifi cant fi gure, and 0.007 5 has two. 
When zeros are placed after other digits in a whole number, there is a possibil ity of misinterpretation. For example, suppose the mass of an object is given as  1 500 g. This value is ambiguous, because we don’t know whether the last two zeros  are being used to locate the decimal point or whether they represent signifi cant  fi gures in the measurement. 
Using scientifi c notation to indicate the number of signifi cant fi gures removes  this ambiguity. In this case, we express the mass as 1.5   103 g if there are two sig nifi cant fi gures in the measured value, 1.50   103 g if there are three signifi cant  fi gures, and 1.500   103 g if there are four. Likewise, 0.000 15 is expressed in scien tifi c notation as 1.5   10 4 if it has two signifi cant fi gures or as 1.50   10 4 if it has  three signifi cant fi gures. The three zeros between the decimal point and the digit  1 in the number 0.000 15 are not counted as signifi cant fi gures because they only  locate the decimal point. In this book, most of the numerical examples and end of-chapter problems will yield answers having two or three signifi cant fi gures.
For addition and subtraction, it’s best to focus on the number of decimal  places in the quantities involved rather than on the number of signifi cant fi gures.  When numbers are added (subtracted), the number of decimal places in the  result should equal the smallest number of decimal places of any term in the  sum (difference). For example, if we wish to compute 123 (zero decimal places)    5.35 (two decimal places), the answer is 128 (zero decimal places) and not  128.35. If we compute the sum 1.000 1 (four decimal places)   0.000 3 (four deci mal places)   1.000 4, the result has the correct number of decimal places, namely  four. Observe that the rules for multiplying signifi cant fi gures don’t work here  because the answer has fi ve signifi cant fi gures even though one of the terms in the  sum, 0.000 3, has only one signifi cant fi gure. Likewise, if we perform the subtrac tion 1.002   0.998   0.004, the result has three decimal places because each term  in the subtraction has three decimal places. 
To show why this rule should hold, we return to the fi rst example in which we  added 123 and 5.35, and rewrite these numbers as 123.xxx and 5.35x. Digits writ ten with an x are completely unknown and can be any digit from 0 to 9. Now we  line up 123.xxx and 5.35x relative to the decimal point and perform the addition,  using the rule that an unknown digit added to a known or unknown digit yields  an unknown: 
 123.xxx 
   5.35x 
 128.xxx 
The answer of 128.xxx means that we are justifi ed only in keeping the number 128  because everything after the decimal point in the sum is actually unknown. The  example shows that the controlling uncertainty is introduced into an addition or  subtraction by the term with the smallest number of decimal places. 
In performing any calculation, especially one involving a number of steps, there  will always be slight discrepancies introduced by both the rounding process and  the algebraic order in which steps are carried out. For example, consider 2.35   5.89/1.57. This computation can be performed in three different orders. First, we  have 2.35   5.89   13.842, which rounds to 13.8, followed by 13.8/1.57   8.789 8,  rounding to 8.79. Second, 5.89/1.57   3.751 6, which rounds to 3.75, resulting in  2.35   3.75   8.812 5, rounding to 8.81. Finally, 2.35/1.57   1.496 8 rounds to  1.50, and 1.50   5.89   8.835 rounds to 8.84. So three different algebraic orders,  following the rules of rounding, lead to answers of 8.79, 8.81, and 8.84, respectively.  Such minor discrepancies are to be expected, because the last signifi cant digit is  only one representative from a range of possible values, depending on experimen tal uncertainty. The discrepancies can be reduced by carrying one or more extra  digits during the calculation. In our examples, however, intermediate results will  be rounded off to the proper number of signifi cant fi gures, and only those digits  will be carried forward. In experimental work, more sophisticated techniques are  used to determine the accuracy of an experimental result. 
1.5 CONVERSION OF UNITS 
Sometimes it’s necessary to convert units from one system to another. Conversion  n
factors between the SI and U.S. customary systems for units of length are as follows: 
o
t
s
o
B
 
k
c
 1 mile   1 609 m   1.609 km 1 ft   0.304 8 m   30.48 cm 
o
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 1 m   39.37 in.   3.281 ft 1 in.   0.025 4 m   2.54 cm 
r
a
B
 
.
E
 
y
A more extensive list of conversion factors can be found on the inside front cover  
l
l
i
B
of this book. 
Units can be treated as algebraic quantities that can “cancel” each other. We  can make a fraction with the conversion that will cancel the units we don’t want,  
1.5 Conversion of Units 9 
[image: ]This road sign near Raleigh, North  Carolina, shows distances in miles  and kilometers. How accurate are the  conversions? 
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and multiply that fraction by the quantity in question. For example, suppose we  
want to convert 15.0 in. to centimeters. Because 1 in.   2.54 cm, we fi nd that 
15.0 in. 5 15.0 in. 3 a2.54 cm 
1.00in. b 5 38.1 cm 
The next two examples show how to deal with problems involving more than  
one conversion and with powers. 
EXAMPLE 1.4 Pull Over, Buddy! 
Goal Convert units using several conversion factors. 
Problem If a car is traveling at a speed of 28.0 m/s, is the driver exceeding the speed limit of 55.0 mi/h? 
Strategy Meters must be converted to miles and seconds to hours, using the conversion factors listed on the inside  front cover of the book. Here, three factors will be used. 
Solution 
Convert meters to miles: 28.0 m/s 5 a28.0 ms b a 1.00 mi 
1 609 mb 5 1.74 3 1022 mi/s 
Convert seconds to hours: 1.74 3 1022 mi/s 5 a1.74 3 1022 mis b a60.0 sminb a60.0 min 
h b 
  62.6 mi/h 
Remarks The driver should slow down because he’s exceeding the speed limit.  
QUESTION 1.4 
Repeat the conversion, using the relationship 1.00 m/s   2.24 mi/h. Why is the answer slightly different? 
EXERCISE 1.4 
Convert 152 mi/h to m/s. 
Answer 68.0 m/s 
EXAMPLE 1.5 Press the Pedal to the Metal 
Goal Convert a quantity featuring powers of a unit. 
Problem The traffi c light turns green, and the driver of a high-performance car slams the accelerator to the fl oor.  The accelerometer registers 22.0 m/s2. Convert this reading to km/min2. 
Strategy Here we need one factor to convert meters to kilometers and another two factors to convert seconds  squared to minutes squared. 
Solution 
Multiply by the three factors:22.0 m 
1.00 s2 a 1.00 km 
1.00 3 103 mb a 60.0 s 
1.00 minb 
2 
5 79.2 km min2 
Remarks Notice that in each conversion factor the numerator equals the denominator when units are taken into  account. A common error in dealing with squares is to square the units inside the parentheses while forgetting to  square the numbers!
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QUESTION 1.5 
What time conversion factor would be used to further convert the answer to km/h2? 
EXERCISE 1.5 
Convert 4.50   103 kg/m3 to g/cm3. 
Answer 4.50 g/cm3 
1.6 ESTIMATES AND ORDER-OF-MAGNITUDE  CALCULATIONS 
Getting an exact answer to a calculation may often be diffi cult or impossible, either  for mathematical reasons or because limited information is available. In these  cases, estimates can yield useful approximate answers that can determine whether  a more precise calculation is necessary. Estimates also serve as a partial check if  the exact calculations are actually carried out. If a large answer is expected but a  small exact answer is obtained, there’s an error somewhere. 
For many problems, knowing the approximate value of a quantity—within a  factor of 10 or so—is suffi cient. This approximate value is called an order-of magnitude estimate, and requires fi nding the power of 10 that is closest to the  actual value of the quantity. For example, 75 kg   102 kg, where the symbol   means “is on the order of” or “is approximately.” Increasing a quantity by three  orders of magnitude means that its value increases by a factor of 103   1 000. 
Occasionally the process of making such estimates results in fairly crude  answers, but answers ten times or more too large or small are still useful. For  example, suppose you’re interested in how many people have contracted a certain  disease. Any estimates under ten thousand are small compared with Earth’s total  population, but a million or more would be alarming. So even relatively imprecise  information can provide valuable guidance. 
In developing these estimates, you can take considerable liberties with the num bers. For example, p   1, 27   10, and 65   100. To get a less crude estimate, it’s  permissible to use slightly more accurate numbers (e.g., p   3, 27   30, 65   70).  Better accuracy can also be obtained by systematically underestimating as many  numbers as you overestimate. Some quantities may be completely unknown, but  it’s standard to make reasonable guesses, as the examples show. 
EXAMPLE 1.6 Brain Cells Estimate 
Goal Develop a simple estimate. 
Problem Estimate the number of cells in the human  brain. 
Strategy Estimate the volume of a human brain and  divide by the estimated volume of one cell. The brain is  located in the upper portion of the head, with a volume  that could be approximated by a cube     20 cm on a side.  
Solution 
Brain cells, consisting of about 10% neurons and 90%  glia, vary greatly in size, with dimensions ranging from  a few microns to a meter or so. As a guess, take d   10  microns as a typical dimension and consider a cell to be a  cube with each side having that length. 
Estimate of the volume of a human brain: Vbrain 5 ,3 < 10.2 m2 3 5 8 3 1023 m3 < 1 3 1022 m3 Estimate the volume of a cell: Vcell 5 d 3 < 110 3 1026 m2 3 5 1 3 10215 m3 Divide the volume of a brain by the volume of a cell: number of cells 5 Vbrain 
Vcell5 0.01 m3 
1 3 10215 m3 5 1 3 1013 cells
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Remarks Notice how little attention was paid to obtaining precise values. That’s the nature of an estimate. 
QUESTION 1.6 
Would 1012 cells also be a reasonable estimate? What about 109 cells? Explain. 
EXERCISE 1.6 
Estimate the total number of cells in the human body. 
Answer 1014 (Answers may vary.) 
EXAMPLE 1.7 Stack One-Dollar Bills to the Moon 
Goal Estimate the number of stacked objects required to reach a given height. 
Problem How many one-dollar bills, stacked one on top of the other, would reach the Moon? 
Strategy The distance to the Moon is about 400 000 km. Guess at the number of dollar bills in a millimeter, and  multiply the distance by this number, after converting to consistent units. 
Solution 
1 mm a103 mm 
1 m b a103 m 
We estimate that ten stacked bills form a layer  of 1 mm. Convert mm to km: 
10 bills 
1 km b 5 107 bills 1 km 
Multiply this value by the approximate lunar  distance: 
# of dollar bills , 14 3 105 km2 a107 bills 
1 km b 5 4 3 1012 bills 
Remarks That’s the same order of magnitude as the U.S. national debt! 
QUESTION 1.7 
Based on the answer, about how many stacked pennies would reach the Moon? 
EXERCISE 1.7 
How many pieces of cardboard, typically found at the back of a bound pad of paper, would you have to stack up to  match the height of the Washington monument, about 170 m tall? 
Answer   105 (Answers may vary.) 
EXAMPLE 1.8 Number of Galaxies in the Universe 
Goal Estimate a volume and a number density, and combine. [image: ]
Problem Given that astronomers can see about 10 billion light years into space  
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S
and that there are 14 galaxies in our local group, 2 million light years from the next  
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local group, estimate the number of galaxies in the observable universe. (Note:  
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One light year is the distance traveled by light in one year, about 9.5   1015 m.) (See  
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Fig. 1.3.) 
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Strategy From the known information, we can estimate the number of galaxies  
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per unit volume. The local group of 14 galaxies is contained in a sphere a million  
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lightyears in radius, with the Andromeda group in a similar sphere, so there are  
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about 10 galaxies within a volume of radius 1million light years. Multiply that num 
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ber density by the volume of the observable universe. 
Solution 
Compute the approximate volume Vlg of the local group  of galaxies: 
FIGURE 1.3 In this deep-space  
photograph, there are few stars—just  
galaxies without end. 
Vlg 5 43pr 3 , 1106 ly2 3 5 1018 ly3
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Estimate the density of galaxies: density of galaxies 5 # of galaxies Vlg 
1018 ly3 5 10217 galaxies 
ly3 
Compute the approximate volume of the observable  
universe: 
, 10 galaxies 
Vu 5 43pr 3 , 11010 ly2 3 5 1030 ly3 
Multiply the density of galaxies by Vu: # of galaxies   (density of galaxies)Vu 5 a10217 galaxies 
ly3 b 11030 ly3 2 
  1013 galaxies 
Remarks Notice the approximate nature of the compu tation, which uses 4p/3   1 on two occasions and 14   10 for the number of galaxies in the local group. This  is completely justifi ed: Using the actual numbers would  be pointless, because the other assumptions in the prob lem—the size of the observable universe and the idea  that the local galaxy density is representative of the den sity everywhere—are also very rough approximations.  Further, there was nothing in the problem that required  using volumes of spheres rather than volumes of cubes.  Despite all these arbitrary choices, the answer still gives  useful information, because it rules out a lot of reason able possible answers. Before doing the calculation, a  guess of a billion galaxies might have seemed plausible. 
1.7 COORDINATE SYSTEMS 
QUESTION 1.8 
Of the fourteen galaxies in the local group, only one, the  Milky Way, is not a dwarf galaxy. Estimate the number of  galaxies in the universe that are not dwarfs. 
EXERCISE 1.8 
Given that the nearest star is about 4 light years away and  that the galaxy is roughly a disk 100 000 light years across  and a thousand light years thick, estimate the number of  stars in the Milky Way galaxy. 
Answer   1012 stars (Estimates will vary. The actual  answer is probably close to 4   1011 stars.) 
Many aspects of physics deal with locations in space, which require the defi nition  of a coordinate system. A point on a line can be located with one coordinate, a  point in a plane with two coordinates, and a point in space with three. 
A coordinate system used to specify locations in space consists of the following: 
• A fi xed reference point O, called the origin 
• A set of specifi ed axes, or directions, with an appropriate scale and labels on the  axes 
• Instructions on labeling a point in space relative to the origin and axes 
One convenient and commonly used coordinate system is the Cartesian coordi y (m) 
nate system, sometimes called the rectangular coordinate system. Such a system  in two dimensions is illustrated in Figure 1.4. An arbitrary point in this system  10 
is labeled with the coordinates (x, y). For example, the point P in the fi gure has  
(x, y) 
coordinates (5, 3). If we start at the origin O, we can reach P by moving 5 meters  horizontally to the right and then 3 meters vertically upwards. In the same way, the  
Q 
5 
P 
point Q has coordinates ( 3, 4), which corresponds to going 3 meters horizontally  
to the left of the origin and 4 meters vertically upwards from there. 
(–3, 4) (5, 3) 
Positive x is usually selected as right of the origin and positive y upward from  O 
the origin, but in two dimensions this choice is largely a matter of taste. (In three  
5 10 
x (m) 
dimensions, however, there are “right-handed” and “left-handed” coordinates,  which lead to minus sign differences in certain operations. These will be addressed  as needed.) 
FIGURE 1.4 Designation of points  in a two-dimensional Cartesian coor dinate system. Every point is labeled  with coordinates (x, y). 
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Sometimes it’s more convenient to locate a point in space by its plane polar  
(r, ) 
θ 
θ 
O 
r 
 = 0° 
θ 
coordinates (r, u), as in Figure 1.5. In this coordinate system, an origin O and a  reference line are selected as shown. A point is then specifi ed by the distance r from the origin to the point and by the angle u between the reference line and  a line drawn from the origin to the point. The standard reference line is usually  selected to be the positive x-axis of a Cartesian coordinate system. The angle u is  con sidered positive when measured counterclockwise from the reference line and  negative when measured clockwise. For example, if a point is specifi ed by the polar  
Reference 
line 
FIGURE 1.5 A polar coordinate  system. 
y 
sin = yr 
θ 
cos = xr 
coordinates 3 m and 60°, we locate this point by moving out 3 m from the origin  at an angle of 60° above (counterclockwise from) the reference line. A point speci fi ed by polar coordinates 3 m and  60° is located 3 m out from the origin and 60°  below (clockwise from) the reference line. 
1.8 TRIGONOMETRY 
Consider the right triangle shown in Active Figure 1.6, where side y is opposite  the angle u, side x is adjacent to the angle u, and side r is the hypotenuse of the tri angle. The basic trigonometric functions defi ned by such a triangle are the ratios  of the lengths of the sides of the triangle. These relationships are called the sine  (sin), cosine (cos), and tangent (tan) functions. In terms of u, the basic trigonomet ric functions are as follows:1 
θ 
tan = xy 
θ 
θ 
r y x 
 sin u 5side opposite u 
hypotenuse 5 yr 
 cos u 5side adjacent to u 
hypotenuse 5 xr [1.1] 
x 
 tan u 5side opposite u 
ACTIVE FIGURE 1.6 
Certain trigonometric functions of a  right triangle. 
TIP 1.3 Degrees vs.  
Radians 
When calculating trigonomet ric functions, make sure your  calculator setting—degrees or  radians—is consistent with the  degree measure you’re using in  a given problem. 
side adjacent to u 5 yx 
For example, if the angle u is equal to 30°, then the ratio of y to r is always 0.50;  that is, sin 30°   0.50. Note that the sine, cosine, and tangent functions are quanti ties without units because each represents the ratio of two lengths. 
Another important relationship, called the Pythagorean theorem, exists  between the lengths of the sides of a right triangle: 
r 2   x2   y2 [1.2] 
Finally, it will often be necessary to fi nd the values of inverse relationships. For  example, suppose you know that the sine of an angle is 0.866, but you need to  know the value of the angle itself. The inverse sine function may be expressed as  sin 1 (0.866), which is a shorthand way of asking the question “What angle has a  sine of 0.866?” Punching a couple of buttons on your calculator reveals that this  angle is 60.0°. Try it for yourself and show that tan 1 (0.400)   21.8°. Be sure that  your calculator is set for degrees and not radians. In addition, the inverse tangent  function can return only values between  90° and  90°, so when an angle is in  the second or third quadrant, it’s necessary to add 180° to the answer in the calcu lator window. 
The defi nitions of the trigonometric functions and the inverse trigonometric  functions, as well as the Pythagorean theorem, can be applied to any right trian gle, regardless of whether its sides correspond to x- and y-coordinates. 
These results from trigonometry are useful in converting from rectangular  coordinates to polar coordinates, or vice versa, as the next example shows. 
1Many people use the mnemonic SOHCAHTOA to remember the basic trigonometric formulas: Sine   Opposite/ Hypotenuse, Cosine   Adjacent/Hypotenuse, and Tangent   Opposite/Adjacent. (Thanks go to Professor Don  Chodrow for pointing this out.)
EXAMPLE 1.9 Cartesian and Polar Coordinates 
Goal Understand how to convert from plane rectangular  coordinates to plane polar coordinates and vice versa. 
Problem (a) The Cartesian coordinates of a point in the  xy-plane are (x, y)   ( 3.50 m,  2.50 m), as shown in Active  Figure 1.7. Find the polar coordinates of this point. (b) Con vert (r, u)   (5.00 m, 37.0°) to rectangular coordinates. 
Strategy Apply the trigonometric functions and their  inverses, together with the Pythagorean theorem. 
Solution 
(a) Cartesian to Polar 
Take the square root of both sides of Equation 1.2 to  
ACTIVE FIGURE 1.7 
(Example 1.9) Converting from  Cartesian coordinates to polar  coordinates. 
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y (m) 
θ 
x (m) 
r 
(–3.50, –2.50) 
fi nd the radial coordinate: r 5 "x 2 1 y2 5 "123.50 m2 2 1 122.50 m2 2 5 4.30 m 
Use Equation 1.1 for the tangent function to fi nd the  angle with the inverse tangent, adding 180° because  the angle is actually in third quadrant: 
(b) Polar to Cartesian 
tan u 5 yx 5 22.50 m 
23.50 m 5 0.714 
u 5 tan21 10.7142 5 35.5° 1 180° 5 216° 
Use the trigonometric defi nitions, Equation 1.1. x   r cos u   (5.00 m) cos 37.0°   3.99 m y   r sin u   (5.00 m) sin 37.0°   3.01 m 
Remarks When we take up vectors in two dimensions in Chapter 3, we will routinely use a similar process to fi nd  the direction and magnitude of a given vector from its components, or, conversely, to fi nd the components from the  vector’s magnitude and direction. 
QUESTION 1.9 
Starting with the answers to part (b), work backwards to recover the given radius and angle. Why are there slight dif ferences from the original quantities? 
EXERCISE 1.9 
(a) Find the polar coordinates corresponding to (x, y)   ( 3.25 m, 1.50 m). (b) Find the Cartesian coordinates cor responding to (r, u)   (4.00 m, 53.0°) 
Answers (a) (r, u)   (3.58 m, 155°) (b) (x, y)   (2.41 m, 3.19 m) 
EXAMPLE 1.10 How High Is the Building? 
Goal Apply basic results of trigonometry. 
Problem A person measures the height of a building by walk 
ing out a distance of 46.0 m from its base and shining a fl ash 
light beam toward the top. When the beam is elevated at an  
angle of 39.0° with respect to the horizontal, as shown in Fig 
ure 1.8, the beam just strikes the top of the building. Find the  
height of the building and the distance the fl ashlight beam has  
to travel before it strikes the top of the building. 
Strategy Refer to the right triangle shown in the fi gure. We  know the angle, 39.0°, and the length of the side adjacent to  it. Because the height of the building is the side opposite the  angle, we can use the tangent function. With the adjacent and  opposite sides known, we can then fi nd the hypotenuse with  the Pythagorean theorem. 
Height 
39.0° 
46.0 m 
FIGURE 1.8 (Example 1.10) 
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Solution 
Use the tangent of the given angle: tan 39.0° 5 height 
46.0 m 
Solve for the height: Height   (tan 39.0°)(46.0 m)   (0.810)(46.0 m)   37.3 m 
Find the hypotenuse of the triangle: r 5 "x 2 1 y2 5 "137.3 m2 2 1 146.0 m2 2 5 59.2 m 
Remarks In a later chapter, right-triangle trigonometry is often used when working with vectors. 
QUESTION 1.10 
Could the distance traveled by the light beam be found without using the Pythagorean Theorem? How? 
EXERCISE 1.10 
While standing atop a building 50.0 m tall, you spot a friend standing on a street corner. Using a protractor and  dangling a plumb bob, you fi nd that the angle between the horizontal and the direction to the spot on the sidewalk  where your friend is standing is 25.0°. Your eyes are located 1.75 m above the top of the building. How far away from  the foot of the building is your friend? 
Answer 111 m 
1.9 PROBLEM-SOLVING STRATEGY 
Most courses in general physics require the student to learn the skills used in solv 
ing problems, and examinations usually include problems that test such skills. This  
brief section presents some useful suggestions that will help increase your success  
in solving problems. An organized approach to problem solving will also enhance  
your understanding of physical concepts and reduce exam stress. Throughout the  
book, there will be a number of sections labeled “Problem-Solving Strategy,” many  
of them just a specializing of the list given below (and illustrated in Fig. 1.9). 
Read Problem 
General Problem-Solving Strategy 
Draw Diagram 
Label physical quantities 
Identify principle(s); list data Choose Equation(s) 
Solve Equation(s) 
Substitute known values
Check Answer 
FIGURE 1.9 A guide to problem  solving. 
1. Read the problem carefully at least twice. Be sure you understand the nature of  the problem before proceeding further. 
2. Draw a diagram while rereading the problem. 
3. Label all physical quantities in the diagram, using letters that remind you what  the quantity is (e.g., m for mass). Choose a coordinate system and label it. 4. Identify physical principles, the knowns and unknowns, and list them. Put cir cles around the unknowns. 
5. Equations, the relationships between the labeled physical quantities, should be  written down next. Naturally, the selected equations should be consistent with  the physical principles identifi ed in the previous step.  
6. Solve the set of equations for the unknown quantities in terms of the known. Do  this algebraically, without substituting values until the next step, except where  terms are zero. 
7. Substitute the known values, together with their units. Obtain a numerical  value with units for each unknown. 
8. Check your answer. Do the units match? Is the answer reasonable? Does the  plus or minus sign make sense? Is your answer consistent with an order of mag nitude estimate? 
This same procedure, with minor variations, should be followed throughout the  course. The fi rst three steps are extremely important, because they get you men 
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tally oriented. Identifying the proper concepts and physical principles assists you  
in choosing the correct equations. The equations themselves are essential, because  
when you understand them, you also understand the relationships between the  
physical quantities. This understanding comes through a lot of daily practice. 
Equations are the tools of physics: To solve problems, you have to have them  
at hand, like a plumber and his wrenches. Know the equations, and understand  
what they mean and how to use them. Just as you can’t have a conversation without  
knowing the local language, you can’t solve physics problems without knowing and  
understanding the equations. This understanding grows as you study and apply  
the concepts and the equations relating them. 
Carrying through the algebra for as long as possible, substituting numbers only  
at the end, is also important, because it helps you think in terms of the physi 
cal quantities involved, not merely the numbers that represent them. Many begin 
ning physics students are eager to substitute, but once numbers are substituted it’s  
harder to understand relationships and easier to make mistakes. 
The physical layout and organization of your work will make the fi nal product  
more understandable and easier to follow. Although physics is a challenging disci 
pline, your chances of success are excellent if you maintain a positive attitude and  
keep trying. 
EXAMPLE 1.11 A Round Trip by Air 
Goal Illustrate the Problem-Solving Strategy. 
Problem An airplane travels 4.50   102 km due east and then travels  an unknown distance due north. Finally, it returns to its starting point  by traveling a distance of 525 km. How far did the airplane travel in the  northerly direction? 
Strategy We’ve fi nished reading the problem (step 1), and have drawn  a diagram (step 2) in Figure 1.10 and labeled it (step 3). From the dia gram, we recognize a right triangle and identify (step 4) the principle  involved: the Pythagorean theorem. Side y is the unknown quantity,  and the other sides are known. 
Solution 
Write the Pythagorean theorem (step 5): r 2   x 2 + y2 
W 
FIGURE 1.10  (Example 1.11) 
N S 
E 
r 
[image: ]x = 450 km 
r = 525 km 
y = ? 
y 
x 
Solve symbolically for y (step 6): y2 5 r 2 2 x 2 S y 5 1"r 2 2 x 2 Substitute the numbers, with units (step 7): y 5 "1525 km2 2 2 14.50 3 102 km2 2 5 270 km 
Remarks Note that the negative solution has been disregarded, because it’s not physically meaningful. In checking  (step 8), note that the units are correct and that an approximate answer can be obtained by using the easier quanti ties, 500 km and 400 km. Doing so gives an answer of 300 km, which is approximately the same as our calculated  answer of 270 km. 
QUESTION 1.11 
What is the answer if both the distance traveled due east and the direct return distance are both doubled? 
EXERCISE 1.11 
A plane fl ies 345 km due south, then turns and fl ies 615 km at a heading 45.0° north of east, until it’s due east of its  starting point. If the plane now turns and heads for home, how far will it have to go? 
Answer 509 km
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SUMMARY 
1.1 Standards of Length, Mass, and Time The physical quantities in the study of mechanics can  be expressed in terms of three fundamental quantities:  length, mass, and time, which have the SI units meters (m),  kilograms (kg), and seconds (s), respectively. 
1.2 The Building Blocks of Matter 
Matter is made of atoms, which in turn are made up of a  relatively small nucleus of protons and neutrons within a  cloud of electrons. Protons and neutrons are composed of  still smaller particles, called quarks. 
1.3 Dimensional Analysis 
Dimensional analysis can be used to check equations and  to assist in deriving them. When the dimensions on both  sides of the equation agree, the equation is often correct  up to a numerical factor. When the dimensions don’t agree,  the equation must be wrong. 
1.4 Uncertainty in Measurement  
and Signifi cant Figures 
No physical quantity can be determined with complete  accuracy. The concept of signifi cant fi gures affords a basic  method of handling these uncertainties. A signifi cant fi g ure is a reliably known digit, other than a zero, used to  locate the decimal point. The two rules of signifi cant fi gures  are as follows: 
1. When multiplying or dividing using two or more quan tities, the result should have the same number of sig nifi cant fi gures as the quantity having the fewest sig nifi cant fi gures. 
2. When quantities are added or subtracted, the number  of decimal places in the result should be the same as in  the quantity with the fewest decimal places. 
 Use of scientifi c notation can avoid ambiguity in sig nifi cant fi gures. In rounding, if the last digit dropped is  less than 5, simply drop the digit, otherwise raise the last  retained digit by one. 
1.5 Conversion of Units 
Units in physics equations must always be consistent. In  solving a physics problem, it’s best to start with consistent  units, using the table of conversion factors on the inside  front cover as necessary. 
 Converting units is a matter of multiplying the given  quantity by a fraction, with one unit in the numerator  
and its equivalent in the other units in the denominator,  arranged so the unwanted units in the given quantity are  cancelled out in favor of the desired units. 
1.6 Estimates and Order-of-Magnitude Calculations Sometimes it’s useful to fi nd an approximate answer to a  question, either because the math is diffi cult or because  information is incomplete. A quick estimate can also be  used to check a more detailed calculation. In an order of-magnitude calculation, each value is replaced by the  closest power of ten, which sometimes must be guessed or  estimated when the value is unknown. The computation  is then carried out. For quick estimates involving known  values, each value can fi rst be rounded to one signifi cant  fi gure. 
1.7 Coordinate Systems 
The Cartesian coordinate system consists of two perpen dicular axes, usually called the x-axis and y-axis, with each  axis labeled with all numbers from negative infi nity to  positive infi nity. Points are located by specifying the x- and  y-values. Polar coordinates consist of a radial coordinate r which is the distance from the origin, and an angular coor dinate u which is the angular displacement from the posi tive x-axis. 
1.8 Trigonometry 
The three most basic trigonometric functions of a right tri angle are the sine, cosine, and tangent, defi ned as follows: 
 sin u 5side opposite u 
hypotenuse 5 yr 
 cos u 5side adjacent to u 
hypotenuse 5 xr [1.1] 
 tan u 5side opposite u 
side adjacent to u 5 yx 
 The Pythagorean theorem is an important relationship  between the lengths of the sides of a right triangle: 
r 2   x2   y2 [1.2] 
where r is the hypotenuse of the triangle and x and y are  the other two sides. 
FOR ADDITIONAL STUDENT RESOURCES, GO TO WWW.SERWAYPHYSICS.COM MULTIPLE-CHOICE QUESTIONS 
1. Newton’s second law of motion (Chapter 4) says that the  mass of an object times its acceleration is equal to the  net force on the object. Which of the following gives  the correct units for force? (a) kg   m/s2 (b) kg   m2/s2 
(c) kg/m   s2 (d) kg   m2/s (e) none of these 
2. Suppose two quantities, A and B, have different dimen sions. Determine which of the following arithmetic  operations could be physically meaningful. (a) A   B (b) B   A (c) A   B (d) A/B (e) AB
3. A rectangular airstrip measures 32.30 m by 210 m, with  the width measured more accurately than the length.  Find the area, taking into account signifi cant fi gures.  (a) 6.783 0   103 m2 (b) 6.783   103 m2 (c) 6.78   
103 m2 (d) 6.8   103 m2 (e) 7   103 m2 
4. Use the rules for signifi cant fi gures to fi nd the answer  to the addition problem 21.4   15   17.17   4.003.  (a) 57.573 (b) 57.57 (c) 57.6 (d) 58 (e) 60 
5. The Roman cubitus is an ancient unit of measure equiv alent to about 445 mm. Convert the 2.00-m-height of a  basketball forward to cubiti. (a) 2.52 cubiti (b) 3.12 cubiti  (c) 4.49 cubiti (d) 5.33 cubiti (e) none of these 
6. A house is advertised as having 1 420 square feet under  roof. What is the area of this house in square meters?  (a) 115 m2 (b) 132 m2 (c) 176 m2 (d) 222 m2 (e) none of  these 
7. Which of the following is the best estimate for the  mass of all the people living on Earth? (a) 2   108 kg (b) 1   109 kg (c) 2   1010 kg (d) 3   1011 kg  (e) 4   1012 kg 
CONCEPTUAL QUESTIONS 
 1. Estimate the order of magnitude of the length, in meters,  of each of the following: (a) a mouse, (b) a pool cue,  (c) a basketball court, (d) an elephant, (e) a city block. 
 2. What types of natural phenomena could serve as time  standards? 
 3. Find the order of magnitude of your age in seconds. 
 4. An object with a mass of 1 kg weighs approximately 2 lb.  Use this information to estimate the mass of the follow ing objects: (a) a baseball; (b) your physics textbook;  (c) a pickup truck. 
 5. (a) Estimate the number of times your heart beats in a  month. (b) Estimate the number of human heartbeats  in an average lifetime. 
 6. Estimate the number of atoms in 1 cm3 of a solid. (Note  that the diameter of an atom is about 10 10 m.) 
PROBLEMS 
 The Problems for this chapter may be  
assigned online at WebAssign. 
1, 2, 3   straightforward, intermediate, challenging GP   denotes guided problem 
ecp   denotes enhanced content problem 
  biomedical application 
    denotes full solution available in Student Solutions Manual/ Study Guide 
 SECTION 1.3 DIMENSIONAL ANALYSIS 
 1. The period of a simple pendulum, defi ned as the time  necessary for one complete oscillation, is measured in  time units and is given by 
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8. Find the polar coordinates corresponding to a point  located at ( 5.00, 12.00) in Cartesian coordinates.  (a) (13.0,  67.4°) (b) (13.0, 113°) (c) (14.2,  67.4°)  (d) (14.2, 113°) (e) (19,  72.5°) 
9. At a horizontal distance of 45 m from a tree, the angle  of elevation to the top of the tree is 26°. How tall is the  tree? (a) 22 m (b) 31 m (c) 45 m (d) 16 m (e) 11 m 
10. What is the approximate number of breaths a person  takes over a period of 70 years? (a) 3   106 breaths  (b) 3   107 breaths (c) 3   108 breaths (d) 3   109 breaths  (e) 3   1010 breaths 
11. Which of the following relationships is dimensionally  consistent with an expression yielding a value for accel eration? Acceleration has the units of distance divided  by time squared. In these equations, x is a distance, t is  time, and v is velocity with units of distance divided by  time. (a) v/t 2 (b) v/x2 (c) v2/t (d) v2/x (e) none of these  
 7. The height of a horse is sometimes given in units of  “hands.” Why is this a poor standard of length? 
 8. How many of the lengths or time intervals given in  Tables 1.2 and 1.3 could you verify, using only equip ment found in a typical dormitory room? 
 9. If an equation is dimensionally correct, does this mean  that the equation must be true? If an equation is not  dimensionally correct, does this mean that the equa tion can’t be true? 
10. Why is the metric system of units considered superior  to most other systems of units? 
11. How can an estimate be of value even when it is off by  an order of magnitude? Explain and give an example. 
T 5 2pÅ,g 
 where   is the length of the pendulum and g is the accel eration due to gravity, in units of length divided by time  squared. Show that this equation is dimensionally consis tent. (You might want to check the formula using your  keys at the end of a string and a stopwatch.) 
 2. (a) Suppose that the displacement of an object is related  to time according to the expression x   Bt 2. What are the  dimensions of B? (b) A displacement is related to time as  x   A sin (2pft), where A and f are constants. Find the  dimensions of A. (Hint: A trigonometric function appear 
ing in an equation must be dimensionless.) 
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 3. A shape that covers an area A and has a uniform height h has a volume V   Ah. (a) Show that V   Ah is dimension ally correct. (b) Show that the volumes of a cylinder and    
the volume by multiplying by the length. (d) Explain why  the answers don’t agree in the third signifi cant fi gure. 
of a rectangular box can be written in the form V   Ah,  identifying A in each case. (Note that A, sometimes called  the “footprint” of the object, can have any shape and that  the height can, in general, be replaced by the average  thickness of the object.) 
  
 12. The radius of a circle is measured to be (10.5   0.2) m.  Calculate (a) the area and (b) the circumference of the  circle, and give the uncertainty in each value. 
 13. Carry out the following arithmetic operations: (a) the sum  of the measured values 756, 37.2, 0.83, and 2.5; (b) the  product 0.003 2   356.3; (c) the product 5.620   p. 
 4. Each of the following equations was given by a student  during an examination: 
2mv 2 5 12mv02 1 !mgh v 5 v0 1 at 2 ma 5 v 2 
1 
 Do a dimensional analysis of each equation and explain  why the equation can’t be correct. 
 5. Newton’s law of universal gravitation is represented by F 5 GMm 
r 2 
 where F is the gravitational force, M and m are masses,  and r is a length. Force has the SI units kg · m/s2. What are  the SI units of the proportionality constant G? 
 6. ecp Kinetic energy KE (Chapter 5) has dimensions  kg · m2/s2. It can be written in terms of the momentum p (Chapter 6) and mass m as 
KE 5 p2 
2m 
 (a) Determine the proper units for momentum using  dimensional analysis. (b) Refer to Problem 5. Given the  units of force, write a simple equation relating a constant  force F exerted on an object, an interval of time t during  which the force is applied, and the resulting momentum  of the object, p. 
SECTION 1.4 UNCERTAINTY IN MEASUREMENT  AND SIGNIFICANT FIGURES 
 7. A fi sherman catches two striped bass. The smaller of  the two has a measured length of 93.46 cm (two decimal  places, four signifi cant fi gures), and the larger fi sh has  a measured length of 135.3 cm (one decimal place, four  signifi cant fi gures). What is the total length of fi sh caught  for the day? 
 8. A rectangular plate has a length of (21.3   0.2) cm and  a width of (9.8   0.1) cm. Calculate the area of the plate,  including its uncertainty. 
  
 9. How many signifi cant fi gures are there in (a) 78.9   0.2,  (b) 3.788   109, (c) 2.46   10 6, (d) 0.003 2 
 10. The speed of light is now defi ned to be 2.997 924 58    108 m/s. Express the speed of light to (a) three signifi cant  fi gures, (b) fi ve signifi cant fi gures, and (c) seven signifi - cant fi gures. 
 11. ecp A block of gold has length 5.62 cm, width 6.35 cm,  and height 2.78 cm. (a) Calculate the length times the  width and round the answer to the appropriate num ber of signifi cant fi gures. (b) Now multiply the rounded  result of part (a) by the height and again round, obtain ing the volume. (c) Repeat the process, fi rst fi nding the  width times the height, rounding it, and then obtaining  
 14. (a) Using your calculator, fi nd, in scientifi c notation with  appropriate rounding, (a) the value of (2.437   104)  (6.521 1   109)/(5.37   104) and (b) the value of  (3.141 59   102)(27.01   104)/(1 234   106). 
SECTION 1.5 CONVERSION OF UNITS 
  
 15. A fathom is a unit of length, usually reserved for measur ing the depth of water. A fathom is approximately 6 ft in  length. Take the distance from Earth to the Moon to be  250 000 miles, and use the given approximation to fi nd  the distance in fathoms. 
 16. A furlong is an old British unit of length equal to  0.125 mi, derived from the length of a furrow in an acre  of ploughed land. A fortnight is a unit of time correspond ing to two weeks, or 14 days and nights. Find the speed of  light in megafurlongs per fortnight. (One megafurlong  equals a million furlongs.) 
  
 17. A fi rkin is an old British unit of volume equal to 9 gallons.  How many cubic meters are there in 6.00 fi rkins? 
 18. Find the height or length of these natural wonders in  kilometers, meters, and centimeters: (a) The longest cave  system in the world is the Mammoth Cave system in Cen tral Kentucky, with a mapped length of 348 miles. (b) In  the United States, the waterfall with the greatest single  drop is Ribbon Falls in California, which drops 1 612 ft.  (c) At 20 320 feet, Mount McKinley in Alaska is America’s  highest mountain. (d) The deepest canyon in the United  States is King’s Canyon in California, with a depth of  8 200 ft. 
 19. A rectangular building lot measures 1.00   102 ft by 1.50    102 ft. Determine the area of this lot in square meters  (m2). 
 20. Using the data in Table 1.3 and the appropriate conver sion factors, fi nd the age of Earth in years. 
 21. Using the data in Table 1.1 and the appropriate conver sion factors, fi nd the distance to the nearest star in feet. 
 22. Suppose your hair grows at the rate of 1/32 inch per  day. Find the rate at which it grows in nanometers per sec ond. Because the distance between atoms in a molecule is  on the order of 0.1 nm, your answer suggests how rapidly  atoms are assembled in this protein synthesis. 
 23. The speed of light is about 3.00   108 m/s. Convert this  fi gure to miles per hour. 
 24. A house is 50.0 ft long and 26 ft wide and has 8.0-ft-high  ceilings. What is the volume of the interior of the house  in cubic meters and in cubic centimeters? 
 
25. The amount of water in reservoirs is often measured in  acre-ft. One acre-ft is a volume that covers an area of one  acre to a depth of one foot. An acre is 43 560 ft2. Find the  
volume in SI units of a reservoir containing 25.0 acre-ft of  water. 
26. The base of a pyramid covers an area of 13.0 acres  (1 acre   43 560 ft2) and has a height of 481 ft (Fig. P1.26).  If the volume of a pyramid is given by the expression  V   bh/3, where b is the area of the base and h is the  height, fi nd the volume of this pyramid in cubic meters.
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34. ecp Bacteria and other prokaryotes are found deep  underground, in water, and in the air. One micron (10−6 m)  is a typical length scale associated with these microbes.  (a) Estimate the total number of bacteria and other pro 
karyotes in the biosphere of the Earth. (b) Estimate the  total mass of all such microbes. (c) Discuss the relative  importance of humans and microbes to the ecology of  planet Earth. Can Homo sapiens survive without them? 
SECTION 1.7 COORDINATE SYSTEMS 
 35. A point is located in a polar coordinate system by the  co ordinates r   2.5 m and u   35°. Find the x- and y co ordinates of this point, assuming that the two coordi nate systems have the same origin. 
 36. A certain corner of a room is selected as the origin of a  rectangular coordinate system. If a fl y is crawling on an  adjacent wall at a point having coordinates (2.0, 1.0),  where the units are meters, what is the distance of the fl y  from the corner of the room? 
©
R
FIGURE P1.26 
 37. Express the location of the fl y in Problem 36 in polar  
coordinates. 
27. A quart container of ice cream is to be made in the form  of a cube. What should be the length of a side, in centi meters? (Use the conversion 1 gallon   3.786 liter.) 
SECTION 1.6 ESTIMATES AND ORDER 
OF-MAGNITUDE CALCULATIONS 
Note: In developing answers to the problems in this sec tion, you should state your important assumptions, includ ing the numerical values assigned to parameters used in  the solution. 
 28. A hamburger chain advertises that it has sold more than  50 billion hamburgers. Estimate how many pounds of  hamburger meat must have been used by the chain and  how many head of cattle were required to furnish the  meat. 
 29. Estimate the number of Ping-Pong balls that would fi t  into a typical-size room (without being crushed). In your  solution, state the quantities you measure or estimate and  the values you take for them. 
 30. Estimate the number of people in the world who  are suffering from the common cold on any given day.  (Answers may vary. Remember that a person suffers from  a cold for about a week.) 
 31. ecp (a) About how many microorganisms are found  in the human intestinal tract? (A typical bacterial length  scale is 10−6 m. Estimate the intestinal volume and assume  one hundredth of it is occupied by bacteria.) (b) Discuss  your answer to part (a). Are these bacteria benefi cial,  dangerous, or neutral? What functions could they serve? 
32. ecp Grass grows densely everywhere on a quarter-acre  plot of land. What is the order of magnitude of the num ber of blades of grass? Explain your reasoning. Note that  1 acre   43 560 ft2. 
  
33. An automobile tire is rated to last for 50 000 miles. Esti mate the number of revolutions the tire will make in its  lifetime. 
 38. Two points in a rectangular coordinate system have the  coordinates (5.0, 3.0) and ( 3.0, 4.0), where the units  are centimeters. Determine the distance between these  points. 
  
 39. Two points are given in polar coordinates by (r, u)   (2.00 m, 50.0°) and (r, u   (5.00 m,  50.0°), respectively.  What is the distance between them? 
40. ecp Given points (r1, u1) and (r2, u2) in polar coordinates,  obtain a general formula for the distance between them.  Simplify it as much as possible using the identity cos2 u   sin2 u   1. Hint: Write the expressions for the two points  in Cartesian coordinates and substitute into the usual dis tance formula. 
SECTION 1.8 TRIGONOMETRY 
 41. For the triangle shown in Figure P1.41, what are (a) the  length of the unknown side, (b) the tangent of u, and  (c) the sine of f? 
θ 
6.00 m 
9.00 mφ 
FIGURE P1.41 
 42. A ladder 9.00m long leans against the side of a building.  If the ladder is inclined at an angle of 75.0° to the hori zontal, what is the horizontal distance from the bottom of  the ladder to the building? 
  
 43. A high fountain of water is located at the center of a circu lar pool as shown in Figure P1.43. Not wishing to get his  feet wet, a student walks around the pool and measures  its circumference to be 15.0 m. Next, the student stands  
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at the edge of the pool and uses a protractor to gauge  the angle of elevation at the bottom of the fountain to be  55.0°. How high is the fountain?  
[image: ]55.0  
FIGURE P1.43 
 44. A right triangle has a hypotenuse of length 3.00 m, and  one of its angles is 30.0°. What are the lengths of (a) the  side opposite the 30.0° angle and (b) the side adjacent to  the 30.0° angle? 
 45. In Figure P1.45, fi nd (a) the side opposite u, (b) the side  adjacent to f, (c) cos u, (d) sin f, and (e) tan f. 
φ 
5.00 
3.00 
θ 
4.00 
FIGURE P1.45 
 46. In a certain right triangle, the two sides that are perpen dicular to each other are 5.00 m and 7.00 m long. What is  the length of the third side of the triangle? 
 47. In Problem 46, what is the tangent of the angle for which  5.00 m is the opposite side? 
48. GP A woman measures the angle of elevation of a  mountaintop as 12.0°. After walking 1.00 km closer to  the mountain on level ground, she fi nds the angle to be  14.0°. (a) Draw a picture of the problem, neglecting the  height of the woman's eyes above the ground. Hint: Use  two triangles. (b) Select variable names for the mountain  height (suggestion: y) and the woman’s original distance  from the mountain (suggestion: x) and label the pic ture. (c) Using the labeled picture and the tangent func 
tion, write two trigonometric equations relating the two  selected variables. (d) Find the height y of the mountain  by fi rst solving one equation for x and substituting the  result into the other equation. 
 
 49. A surveyor measures the distance across a straight river by  the following method: Starting directly across from a tree  on the opposite bank, he walks 100 m along the riverbank  to establish a baseline. Then he sights across to the tree.  The angle from his baseline to the tree is 35.0°. How wide  is the river? 
50. ecp Refer to Problem 48. Suppose the mountain height  is y, the woman’s original distance from the mountain is  x, and the angle of elevation she measures from the hori zontal to the top of the mountain is u. If she moves a dis tance d closer to the mountain and measures an angle of  elevation f, fi nd a general equation for the height of the  mountain y in terms of d, f, and u, neglecting the height  of her eyes above the ground. 
ADDITIONAL PROBLEMS 
 51. (a) One of the fundamental laws of motion states that  the acceleration of an object is directly proportional to  the resultant force on it and inversely proportional to its  mass. If the proportionality constant is defi ned to have no  dimensions, determine the dimensions of force. (b) The  newton is the SI unit of force. According to the results  for (a), how can you express a force having units of new tons by using the fundamental units of mass, length, and  time? 
 52. (a) Find a conversion factor to convert from miles per  hour to kilometers per hour. (b) For a while, federal law  mandated that the maximum highway speed would be 55  mi/h. Use the conversion factor from part (a) to fi nd the  speed in kilometers per hour. (c) The maximum highway  speed has been raised to 65 mi/h in some places. In kilo meters per hour, how much of an increase is this over the  55-mi/h limit? 
 53. One cubic centimeter (1.0 cm3) of water has a mass of  1.0   10 3 kg. (a) Determine the mass of 1.0 m3 of water.  (b) Assuming that biological substances are 98% water,  estimate the masses of a cell with a diameter of 1.0 mm,  a human kidney, and a fl y. Take a kidney to be roughly  a sphere with a radius of 4.0 cm and a fl y to be roughly a  cylinder 4.0 mm long and 2.0 mm in diameter. 
54. Soft drinks are commonly sold in aluminum containers.  To an order of magnitude, how many such containers are  thrown away or recycled each year by U.S. consumers?  How many tons of aluminum does this represent? In your  solution, state the quantities you measure or estimate and  the values you take for them. 
  
55. The displacement of an object moving under uniform  acceleration is some function of time and the accelera tion. Suppose we write this displacement as s   kamt n,  where k is a dimensionless constant. Show by dimensional  analysis that this expression is satisfi ed if m   1 and  n   2. Can the analysis give the value of k? 
56. Compute the order of magnitude of the mass of (a) a  bathtub fi lled with water and (b) a bathtub fi lled with  pennies. In your solution, list the quantities you estimate  and the value you estimate for each. 
57. You can obtain a rough estimate of the size of a mole cule by the following simple experiment: Let a droplet of  oil spread out on a smooth surface of water. The result ing oil slick will be approximately one molecule thick.  Given an oil droplet of mass 9.00   10 7 kg and density  918 kg/m3 that spreads out into a circle of radius 41.8 cm  on the water surface, what is the order of magnitude of  the diameter of an oil molecule? 
58. ecp Sphere 1 has surface area A1 and volume V1, and  sphere 2 has surface area A2 and volume V2. If the radius  of sphere 2 is double the radius of sphere 1, what is the  
 
ratio of (a) the areas, A2/A1 and (b) the volumes, V2/V1? 
59. Estimate the number of piano tuners living in New  York City. This question was raised by the physicist  Enrico Fermi, who was well known for making order-of magnitude calculations. 
60. In 2007, the U.S. national debt was about $9 trillion.  
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any of these calculations, try to guess at the answers. You  may be very surprised.) 
61. (a) How many seconds are there in a year? (b) If one  micrometeorite (a sphere with a diameter on the order of  10 6 m) struck each square meter of the Moon each sec ond, estimate the number of years it would take to cover  the Moon with micrometeorites to a depth of one meter.  (Hint: Consider a cubic box, 1 m on a side, on the Moon,  and fi nd how long it would take to fi ll the box.) 
(a) If payments were made at the rate of $1 000 per sec ond, how many years would it take to pay off the debt,  assuming that no interest were charged? (b) A dollar bill  is about 15.5 cm long. If nine trillion dollar bills were laid  end to end around the Earth’s equator, how many times  would they encircle the planet? Take the radius of the  Earth at the equator to be 6 378 km. (Note: Before doing  
 62. Imagine that you are the equipment manager of a profes sional baseball team. One of your jobs is to keep baseballs  on hand for games. Balls are sometimes lost when play ers hit them into the stands as either home runs or foul  balls. Estimate how many baseballs you have to buy per  season in order to make up for such losses. Assume that  your team plays an 81-game home schedule in a season. 
2 
Craig Breedlove, fi ve times world  land speed record holder, acceler ates across the Black Rock Desert  in Gerlach, Nevada, in his jet powered car, Spirit of America, on  its fi rst test run on September 6,  1997. Subsequent jet-powered cars  have broken the sound barrier on  land. 
2.1 Displacement 
2.2 Velocity  
2.3 Acceleration 
2.4 Motion Diagrams 
2.5 One-Dimensional Motion  with Constant  
Acceleration 
2.6 Freely Falling Objects 
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MOTION IN ONE DIMENSION 
Life is motion. Our muscles coordinate motion microscopically to enable us to walk and jog.  Our hearts pump tirelessly for decades, moving blood through our bodies. Cell wall mecha nisms move select atoms and molecules in and out of cells. From the prehistoric chase of  antelopes across the savanna to the pursuit of satellites in space, mastery of motion has been  critical to our survival and success as a species. 
 The study of motion and of physical concepts such as force and mass is called dynamics.  The part of dynamics that describes motion without regard to its causes is called kinematics.  In this chapter the focus is on kinematics in one dimension: motion along a straight line. This  kind of motion—and, indeed, any motion—involves the concepts of displacement, velocity,  and acceleration. Here, we use these concepts to study the motion of objects undergoing  constant acceleration. In Chapter 3 we will repeat this discussion for objects moving in two  dimensions. 
 The fi rst recorded evidence of the study of mechanics can be traced to the people of ancient  Sumeria and Egypt, who were interested primarily in understanding the motions of heavenly  bodies. The most systematic and detailed early studies of the heavens were conducted by the  Greeks from about 300 B.C. to A.D. 300. Ancient scientists and laypeople regarded the Earth  as the center of the Universe. This geocentric model was accepted by such notables as Aris 
totle (384–322 B.C.) and Claudius Ptolemy (about A.D. 140). Largely because of the authority  of Aristotle, the geocentric model became the accepted theory of the Universe until the 17th  century. 
 About 250 B.C., the Greek philosopher Aristarchus worked out the details of a model of  the Solar System based on a spherical Earth that rotated on its axis and revolved around the  Sun. He proposed that the sky appeared to turn westward because the Earth was turning  eastward. This model wasn’t given much consideration because it was believed that a turn 
ing Earth would generate powerful winds as it moved through the air. We now know that the  Earth carries the air and everything else with it as it rotates. 
 The Polish astronomer Nicolaus Copernicus (1473–1543) is credited with initiating the  revolution that fi nally replaced the geocentric model. In his system, called the heliocentric  model, Earth and the other planets revolve in circular orbits around the Sun. 
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 This early knowledge formed the foundation for the work of Galileo Galilei (1564–1642),  who stands out as the dominant facilitator of the entrance of physics into the modern era.  In 1609 he became one of the fi rst to make astronomical observations with a telescope. He  observed mountains on the Moon, the larger satellites of Jupiter, spots on the Sun, and the  phases of Venus. Galileo’s observations convinced him of the correctness of the Copernican  theory. His quantitative study of motion formed the foundation of Newton’s revolutionary  work in the next century. 
2.1 DISPLACEMENT 
Motion involves the displacement of an object from one place in space and time  to another. Describing motion requires some convenient coordinate system and a  specifi ed origin. A frame of reference is a choice of coordinate axes that defi nes  the starting point for measuring any quantity, an essential fi rst step in solving vir 
tually any problem in mechanics (Fig. 2.1). In Active Figure 2.2a, for example, a  car moves along the x-axis. The coordinates of the car at any time describe its posi tion in space and, more importantly, its displacement at some given time of interest. 
The displacement  x of an object is defi ned as its change in position, and is  given by 
 x   xf   xi [2.1] 
where the initial position of the car is labeled xi and the fi nal position is xf .  (The indices i and f stand for initial and fi nal, respectively.)  
SI unit: meter (m) 
We will use the Greek letter delta,  , to denote a change in any physical quantity.  From the defi nition of displacement, we see that  x (read “delta ex”) is positive if  xf is greater than xi and negative if xf is less than xi. For example, if the car moves  from point   to point   so that the initial position is xi   30 m and the fi nal  position is xf   52 m, the displacement is  x   xf   xi   52 m   30 m    22 m.  However, if the car moves from point   to point  , then the initial position is  xi   38 m and the fi nal position is xf    53 m, and the displacement is  x   xf   xi    53 m   38 m    91 m. A positive answer indicates a displacement in the posi tive x-direction, whereas a negative answer indicates a displacement in the negative  x-direction. Active Figure 2.2b displays the graph of the car’s position as a func 
tion of time. 
Because displacement has both a magnitude (size) and a direction, it’s a vector  quantity, as are velocity and acceleration. In general, a vector quantity is charac terized by having both a magnitude and a direction. By contrast, a scalar quantity  
x (m) 
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O Defi nition of displacement  
Tip 2.1 A Displacement  Isn’t a Distance! 
The displacement of an object is  not the same as the distance it  travels. Toss a tennis ball up and  catch it. The ball travels a distance equal to twice the maximum  height reached, but its displace ment is zero. 
ACTIVE FIGURE 2.2 
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(a) A car moves back  and forth along a  straight line taken to  
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be the x-axis. Because  we are interested only  in the car’s transla tional motion, we can  model it as a particle.  (b) Graph of position  vs. time for the motion  
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of the “particle.” 
t (s) 
26 Chapter 2 Motion in One Dimension 
Tip 2.2 Vectors Have  Both a Magnitude and a  Direction. 
Scalars have size. Vectors, too,  have size, but they also indicate a  direction. 
Defi nition of average speed R 
has magnitude, but no direction. Scalar quantities such as mass and temperature  are completely specifi ed by a numeric value with appropriate units; no direction is  involved. 
Vector quantities will be usually denoted in boldface type with an arrow over the  top of the letter. For example, vS represents velocity and aS denotes an acceleration,  both vector quantities. In this chapter, however, it won’t be necessary to use that  notation because in one-dimensional motion an object can only move in one of  two directions, and these directions are easily specifi ed by plus and minus signs. 
2.2 VELOCITY 
In everyday usage the terms speed and velocity are interchangeable. In physics, how ever, there’s a clear distinction between them: Speed is a scalar quantity, having  only magnitude, whereas velocity is a vector, having both magnitude and direction. 
Why must velocity be a vector? If you want to get to a town 70 km away in an hour’s  time, it’s not enough to drive at a speed of 70 km/h; you must travel in the correct  direction as well. This is obvious, but shows that velocity gives considerably more  information than speed, as will be made more precise in the formal defi nitions. 
The average speed of an object over a given time interval is the total distance  traveled divided by the total time elapsed: 
Average speed ; total distance 
total time 
SI unit: meter per second (m/s) 
In symbols, this equation might be written v   d/t, with the letter v understood  in context to be the average speed, not a velocity. Because total distance and total  time are always positive, the average speed will be positive, also. The defi nition of  average speed completely ignores what may happen between the beginning and  the end of the motion. For example, you might drive from Atlanta, Georgia, to St.  Petersburg, Florida, a distance of about 500 miles, in 10 hours. Your average speed  is 500 mi/10 h   50 mi/h. It doesn’t matter if you spent two hours in a traffi c jam  traveling only 5 mi/h and another hour at a rest stop. For average speed, only the  total distance traveled and total elapsed time are important. 
EXAMPLE 2.1 The Tortoise and the Hare 
Goal Apply the concept of average speed. 
Problem A turtle and a rabbit engage in a footrace over a distance of 4.00 km. The rabbit runs 0.500 km and then  stops for a 90.0-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a  total time of 1.75 h, the rabbit wins the race. (a) Calculate the average speed of the rabbit. (b) What was his average  speed before he stopped for a nap? 
Strategy Finding the overall average speed in part (a) is just a matter of dividing the total distance by the total time.  Part (b) requires two equations and two unknowns, the latter turning out to be the two different average speeds: v1 before the nap and v2 after the nap. One equation is given in the statement of the problem (v2   2v1), whereas the  other comes from the fact the rabbit ran for only 15 minutes because he napped for 90 minutes. 
Solution  
(a) Find the rabbit’s overall average speed. 
Apply the equation for average speed: Average speed ; total distance total time 5 4.00 km 
1.75 h 
  2.29 km/h
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(b) Find the rabbit’s average speed before his nap. 
Sum the running times, and set the sum equal to 0.25 h: t1   t2   0.250 h 
v11d2 
Substitute t1   d1/v1 and t2   d2/v2: (1) d1 
v25 0.250 h 
Substitute v2   2v1 and the values of d1 and d2 into  Equation (1): 
(2) 0.500 km 
v113.50 km 
2v15 0.250 h 
Solve Equation (2) for v1: v1   9.00 km/h 
Remark As seen in this example, average speed can be calculated regardless of any variation in speed over the  given time interval. 
QUESTION 2.1 
Does a doubling of an object’s average speed always double the magnitude of its displacement in a given amount of  time? Explain. 
EXERCISE 2.1 
Estimate the average speed of the Apollo spacecraft in meters per second, given that the craft took fi ve days to reach  the Moon from Earth. (The Moon is 3.8 × 108 m from Earth.) 
Answer ~ 900 m/s 
Unlike average speed, average velocity is a vector quantity, having both a mag 
nitude and a direction. Consider again the car of Figure 2.2, moving along the  
road (the x-axis). Let the car’s position be xi at some time ti and xf at a later time tf .  
In the time interval  t   tf   ti, the displacement of the car is  x   xf   xi. 
The average velocity v during a time interval  t is the displacement  x 
O Defi nition of average velocity  
divided by  t: 
Dt 5 x f 2 xi 
v ; Dx 
SI unit: meter per second (m/s) 
tf 2 ti[2.2] 
TABLE 2.1 
Position of the Car at  
Unlike the average speed, which is always positive, the average velocity of an  object in one dimension can be either positive or negative, depending on the sign  of the displacement. (The time interval  t is always positive.) In Figure 2.2a, for  example, the average velocity of the car is positive in the upper illustration, a posi 
tive sign indicating motion to the right along the x-axis. Similarly, a negative aver age velocity for the car in the lower illustration of the fi gure indicates that it moves  to the left along the x-axis. 
As an example, we can use the data in Table 2.1 to fi nd the average velocity in  the time interval from point   to point   (assume two digits are signifi cant): 
v 5 Dx 
Dt 5 52 m 2 30 m 
10 s 2 0 s 5 2.2 m/s 
Aside from meters per second, other common units for average velocity are feet  per second (ft/s) in the U.S. customary system and centimeters per second (cm/s)  in the cgs system. 
To further illustrate the distinction between speed and velocity, suppose we’re  watching a drag race from the Goodyear blimp. In one run we see a car follow the  straight-line path from   to   shown in Figure 2.3 during the time interval  t,  
Various Times 
Position t (s) x (m)   0 30   10 52   20 38   30 0   40  37   50  53
    x xf xi 
FIGURE 2.3 A drag race viewed  from a blimp. One car follows the red  straight-line path from   to  , and  a second car follows the blue curved  path. 
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and in a second run a car follows the curved path during the same interval. From  
the defi nition in Equation 2.2, the two cars had the same average velocity because  
they had the same displacement  x   xf   xi during the same time interval  t.  
The car taking the curved route, however, traveled a greater distance and had the  
higher average speed. 
QUICK QUIZ 2.1 Figure 2.4  
shows the unusual path of a  
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confused football player. After  receiving a kickoff at his own  goal, he runs downfi eld to  within inches of a touchdown,  then reverses direction and  races back until he’s tackled at  the exact location where he fi rst  caught the ball. During this run,  which took 25 s, what is (a) the  
0 yd 50 yd 
100 yd 
total distance he travels, (b) his  
FIGURE 2.4 (Quick Quiz 2.1) The path followed by a  confused football player. 
Graphical Interpretation of Velocity 
displacement, and (c) his aver age velocity in the x-direction?  (d) What is his average speed? 
TIP 2.3 Slopes of Graphs 
The word slope is often used in  reference to the graphs of physi cal data. Regardless of the type  of data, the slope is given by 
Slope 5 change in vertical axis change in horizontal axis 
Slope carries units. 
TIP 2.4 Average Velocity  vs. Average Speed 
Average velocity is not the same as  average speed. If you run from  x   0 m to x   25 m and back  to your starting point in a time  interval of 5 s, the average veloc ity is zero, whereas the average  speed is 10 m/s.
If a car moves along the x-axis from   to   to  , and so forth, we can plot the  positions of these points as a function of the time elapsed since the start of the  motion. The result is a position vs. time graph like those of Figure 2.5. In Figure  2.5a, the graph is a straight line because the car is moving at constant velocity.  The same displacement  x occurs in each time interval  t. In this case, the aver 
age velocity is always the same and is equal to  x/ t. Figure 2.5b is a graph of the  data in Table 2.1. Here, the position vs. time graph is not a straight line because  the velocity of the car is changing. Between any two points, however, we can draw  a straight line just as in Figure 2.5a, and the slope of that line is the average veloc 
ity  x/ t in that time interval. In general, the average velocity of an object during  the time interval  t is equal to the slope of the straight line joining the initial and  fi nal points on a graph of the object’s position versus time. 
From the data in Table 2.1 and the graph in Figure 2.5b, we see that the car  fi rst moves in the positive x-direction as it travels from   to  , reaches a position  of 52 m at time t   10 s, then reverses direction and heads backwards. In the fi rst  10 s of its motion, as the car travels from   to  , its average velocity is 2.2 m/s,  as previously calculated. In the fi rst 40 seconds, as the car goes from   to  ,  its displacement is  x    37 m   (30 m)    67 m. So the average velocity in this  interval, which equals the slope of the blue line in Figure 2.5b from   to  , is  v    x/ t  ( 67 m)/(40 s)    1.7 m/s. In general, there will be a different aver age velocity between any distinct pair of points. 
Instantaneous Velocity 
Average velocity doesn’t take into account the details of what happens during an  interval of time. On a car trip, for example, you may speed up or slow down a num ber of times in response to the traffi c and the condition of the road, and on rare  occasions even pull over to chat with a police offi cer about your speed. What is  most important to the police (and to your own safety) is the speed of your car and  the direction it was going at a particular instant in time, which together determine  the car’s instantaneous velocity. 
x (m) 
60 
60 
x (m) 
  
2.2 Velocity 29
FIGURE 2.5 (a) Posi tion vs. time graph for the  
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motion of a car moving  along the x-axis at constant  velocity. (b) Position vs.  time graph for the motion  of a car with changing  velocity, using the data  in Table 2.1. The average  velocity in the time interval  from t   0 s to t   30 s is the  slope of the blue straight  line connecting   and  . 
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So in driving a car between two points, the average velocity must be computed  over an interval of time, but the magnitude of instantaneous velocity can be read  on the car’s speedometer. 
The instantaneous velocity v is the limit of the average velocity as the time  interval  t becomes infi nitesimally small: 
O Defi nition of instantaneous  velocity  
Dx 
Dt[2.3] 
SI unit: meter per second (m/s) 
The notation lim 
v ; lim Dt S0 
Dt S0 means that the ratio  x/ t is repeatedly evaluated for smaller and smaller time intervals  t. As  t gets extremely close to zero, the ratio  x/ t gets closer and closer to a fi xed number, which is defi ned as the instantaneous  velocity. 
To better understand the formal defi nition, consider data obtained on our vehi cle via radar (Table 2.2). At t   1.00 s, the car is at x   5.00 m, and at t   3.00 s, it’s  at x   52.5 m. The average velocity computed for this interval  x/ t   (52.5 m   5.00 m)/(3.00 s   1.00 s)   23.8 m/s. This result could be used as an estimate for  the velocity at t   1.00 s, but it wouldn’t be very accurate because the speed changes  considerably in the two-second time interval. Using the rest of the data, we can con struct Table 2.3. As the time interval gets smaller, the average velocity more closely  approaches the instantaneous velocity. Using the fi nal interval of only 0.010 0 s,  we fi nd that the average velocity is v 5 Dx/Dt 5 0.470 m/0.010 0 s 5 47.0 m/s.  Because 0.010 0 s is a very short time interval, the actual instantaneous velocity is  probably very close to this latter average velocity, given the limits on the car’s abil ity to accelerate. Finally using the conversion factor on the inside front cover of the  book, we see that this is 105 mi/h, a likely violation of the speed limit. 
TABLE 2.2 
Positions of a Car at Specifi c  Instants of Time 
t (s) x (m) 
 1.00 5.00  1.01 5.47  1.10 9.67  1.20 14.3 
 1.50 26.3  2.00 34.7  3.00 52.5 
TABLE 2.3 
Calculated Values of the Time Intervals, Displacements,  and Average Velocities for the Car of Table 2.2  Time Interval (s)  t (s)  x (m) v (m/s)  1.00 to 3.00 2.00 47.5 23.8  1.00 to 2.00 1.00 29.7 29.7  1.00 to 1.50 0.50 21.3 42.6  1.00 to 1.20 0.20 9.30 46.5  1.00 to 1.10 0.10 4.67 46.7  1.00 to 1.01 0.01 0.470 47.0 
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FIGURE 2.6 Graph representing  
the motion of the car from the data  
in Table 2.2. The slope of the blue  
line represents the average velocity  
for smaller and smaller time intervals  
and approaches the slope of the green  
tangent line. 
x (m) 
50.0 
40.0 
30.0 
20.0 
10.0 
t (s) 1.00 1.50 2.00 2.50 
3.00 
As can be seen in Figure 2.6, the chords formed by the blue lines gradually  
approach a tangent line as the time interval becomes smaller. The slope of the  
line tangent to the position vs. time curve at “a given time” is defi ned to be the  
instantaneous velocity at that time. 
The instantaneous speed of an object, which is a scalar quantity, is defi ned as  
the magnitude of the instantaneous velocity. Like average speed, instantaneous  
speed (which we will usually call, simply, “speed”) has no direction associated with  
it and hence carries no algebraic sign. For example, if one object has an instanta 
neous velocity of   15 m/s along a given line and another object has an instanta 
neous velocity of  15 m/s along the same line, both have an instantaneous speed  
of 15 m/s. 
EXAMPLE 2.2 Slowly Moving Train 
Goal Obtain average and instantaneous velocities from a  10 
graph. 
8 
Problem A train moves slowly along a straight portion of  
6 
track according to the graph of position versus time in Figure  4 
x (m) 
  
  
  
  
10 8 
6 
4 
x (m) 
2.7a. Find (a) the average velocity for the total trip, (b) the  
  
2 
2 
  
average velocity during the fi rst 4.00 s of motion, (c) the aver age velocity during the next 4.00 s of motion, (d) the instanta 
t (s)  10 
t (s)  128642 
10 
 
neous velocity at t   2.00 s, and (e) the instantaneous velocity  
128642 
 
(a) 
(b) 
at t   9.00 s. 
Strategy The average velocities can be obtained by substitut 
FIGURE 2.7 (a) (Example 2.2) (b) (Exercise 2.2) 
ing the data into the defi nition. The instantaneous velocity at t   2.00 s is the same as the average velocity at that  point because the position vs. time graph is a straight line, indicating constant velocity. Finding the instantaneous  velocity when t   9.00 s requires sketching a line tangent to the curve at that point and fi nding its slope. 
Solution 
(a) Find the average velocity from  to  . 
Calculate the slope of the dashed blue line: v 5 Dx 
Dt 5 10.0 m 
12.0 s 5 10.833 m/s 
(b) Find the average velocity during the fi rst 4 seconds of  
the train’s motion. 
Dt 5 4.00 m 
Again, fi nd the slope: v 5 Dx 
(c) Find the average velocity during the next 4 seconds. v 5 Dx 
4.00 s 5 11.00 m/s 
Here, there is no change in position, so the displacement   x is zero: 
Dt 5 0 m 
4.00 s 5 0 m/s
(d) Find the instantaneous velocity at t   2.00 s. 
This is the same as the average velocity found in (b),  because the graph is a straight line: 
(e) Find the instantaneous velocity at t   9.00 s. The tangent line appears to intercept the x-axis at (3.0 s,  
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v   1.00 m/s 
v 5 Dx 
Dt 5 4.5 m 2 0 m 
0 m) and graze the curve at (9.0 s, 4.5 m). The instanta neous velocity at t   9.00 s equals the slope of the tan gent line through these points: 
9.0 s 2 3.0 s 5 0.75 m/s 
Remarks From the origin to  , the train moves at constant speed in the positive x-direction for the fi rst 4.00 s,  because the position vs. time curve is rising steadily toward positive values. From   to  , the train stops  at x   4.00 m for 4.00 s. From   to  , the train travels at increasing speed in the positive x-direction. 
QUESTION 2.2 
Would a vertical line in a graph of position versus time make sense? Explain. 
EXERCISE 2.2 
Figure 2.7b graphs another run of the train. Find (a) the average velocity from  to  ; (b) the average and instanta neous velocities from  to  ; (c) the approximate instantaneous velocity at t   6.0 s; and (d) the average and instan taneous velocity at t   9.0 s. 
Answers (a) 0 m/s (b) both are  0.5 m/s (c) 2 m/s (d) both are  2.5 m/s 
2.3 ACCELERATION 
Going from place to place in your car, you rarely travel long distances at con 
stant velocity. The velocity of the car increases when you step harder on the gas  
pedal and decreases when you apply the brakes. The velocity also changes when  
you round a curve, altering your direction of motion. The changing of an object’s  
velocity with time is called acceleration. 
Average Acceleration 
A car moves along a straight highway as in Figure 2.8. At time ti it has a velocity of  
vi, and at time tf its velocity is vf , with  v   vf   vi and  t   tf   ti. 
The average acceleration a during the time interval  t is the change in veloc ity  v divided by  t: 
Dt 5 vf 2 vi 
O Defi nition of average  acceleration 
a ; Dv 
tf 2 ti[2.4] 
SI unit: meter per second per second (m/s2) 
For example, suppose the car shown in Figure 2.8 accelerates from an initial  velocity of vi    10 m/s to a fi nal velocity of vf    20 m/s in a time interval of 2 s.  ti
(Both velocities are toward the right, selected as the positive direction.) These val vi 
ues can be inserted into Equation 2.4 to fi nd the average acceleration: 
a 5 Dv 
Dt 5 20 m/s 2 10 m/s 
2 s5 15 m/s2 
tf 
vf 
Acceleration is a vector quantity having dimensions of length divided by the  time squared. Common units of acceleration are meters per second per second  ((m/s)/s, which is usually written m/s2) and feet per second per second (ft/s2). An  
FIGURE 2.8 A car moving to the  right accelerates from a velocity of vi to a velocity of vf in the time interval   t   tf   ti. 
32 Chapter 2 Motion in One Dimension 
average acceleration of  5 m/s2 means that, on average, the car increases its veloc 
ity by 5 m/s every second in the positive x-direction. 
TIP 2.5 Negative  
Acceleration 
Negative acceleration doesn’t nec essarily mean an object is slowing  down. If the acceleration is nega tive and the velocity is also nega tive, the object is speeding up! 
For the case of motion in a straight line, the direction of the velocity of an object  and the direction of its acceleration are related as follows: When the object’s veloc ity and acceleration are in the same direction, the speed of the object increases  with time. When the object’s velocity and acceleration are in opposite directions,  the speed of the object decreases with time. 
To clarify this point, suppose the velocity of a car changes from  10 m/s to   20 m/s in a time interval of 2 s. The minus signs indicate that the velocities of  the car are in the negative x-direction; they do not mean that the car is slowing  down! The average acceleration of the car in this time interval is 
Dt 5 220 m/s 2 1210 m/s2 
a 5 Dv 
2 s 5 25 m/s2 
TIP 2.6 Deceleration 
The word deceleration means a  reduction in speed, a slowing  down. Some confuse it with a  negative acceleration, which can  
speed something up. (See Tip  2.5.) 
Defi nition of instantaneous  acceleration R 
The minus sign indicates that the acceleration vector is also in the negative  x-direction. Because the velocity and acceleration vectors are in the same direc tion, the speed of the car must increase as the car moves to the left. Positive and  negative accelerations specify directions relative to chosen axes, not “speeding up”  or “slowing down.” The terms “speeding up” or “slowing down” refer to an increase  and a decrease in speed, respectively. 
QUICK QUIZ 2.2 True or False? (a) A car must always have an acceleration  in the same direction as its velocity. (b) It’s possible for a slowing car to have  a positive acceleration. (c) An object with constant nonzero acceleration can  never stop and remain at rest. 
Instantaneous Acceleration 
The value of the average acceleration often differs in different time intervals, so  it’s useful to defi ne the instantaneous acceleration, which is analogous to the  instantaneous velocity discussed in Section 2.2. 
The instantaneous acceleration a is the limit of the average acceleration as  the time interval  t goes to zero: 
a ; lim Dt S0 
Dv 
Dt[2.5] 
v 
Slope = a– = Δv Δt 
SI unit: meter per second per second (m/s2) 
Here again, the notation lim 
Dt S0 means that the ratio  v/ t is evaluated for smaller 
and smaller values of  t. The closer  t gets to zero, the closer the ratio gets to a  fi xed number, which is the instantaneous acceleration. 
Figure 2.9, a velocity vs. time graph, plots the velocity of an object against time.  
vf  Δv   vi 
Δt
t 
tf ti 
The graph could represent, for example, the motion of a car along a busy street.  The average acceleration of the car between times ti and tf can be found by deter mining the slope of the line joining points   and  . If we imagine that point   is  brought closer and closer to point  , the line comes closer and closer to becoming  tangent at  . The instantaneous acceleration of an object at a given time equals  the slope of the tangent to the velocity vs. time graph at that time. From now on,  we will use the term acceleration to mean “instantaneous acceleration.” 
In the special case where the velocity vs. time graph of an object’s motion is a  
FIGURE 2.9 Velocity vs. time graph  for an object moving in a straight line.  The slope of the blue line connecting  points   and   is defi ned as the aver 
age acceleration in the time interval   t   tf   ti. 
straight line, the instantaneous acceleration of the object at any point is equal to its  average acceleration. This also means that the tangent line to the graph overlaps  the graph itself. In that case, the object’s acceleration is said to be uniform, which  means that it has a constant value. Constant acceleration problems are important  in kinematics and will be studied extensively in this and the next chapter. 
v 
(a) a 
(d) 
t t 
v 
(b) a 
(e) 
t t 
v 
(c) a 
(f) 
t t 
FIGURE 2.10 (Quick Quiz 2.3) Match each  velocity vs. time graph to its corresponding  acceleration vs. time graph.
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QUICK QUIZ 2.3 Parts (a), (b), and (c) of Figure 2.10 represent three  graphs of the velocities of different objects moving in straight-line paths as  functions of time. The possible accelerations of each object as functions of  time are shown in parts (d), (e), and (f). Match each velocity vs. time graph  with the acceleration vs. time graph that best describes the motion. 
EXAMPLE 2.3 Catching a Fly Ball 
Goal Apply the defi nition of instantaneous acceleration. 
Problem A baseball player moves in a straight-line path  in order to catch a fl y ball hit to the outfi eld. His velocity  as a function of time is shown in Figure 2.11a. Find his  
v (m/s) 
4 
3 
  
v (m/s) 
4 
    3 
  
2 
2 
instantaneous acceleration at points  ,  , and  . 
1 
1 
Strategy At each point, the velocity vs. time graph is a  
straight line segment, so the instantaneous acceleration  
t (s) 
    
t (s) 
will be the slope of that segment. Select two points on  each segment and use them to calculate the slope. 
O 1 2 3 4 (a) 
O 1 2 3 4 (b) 
Solution 
Acceleration at  . 
The acceleration at   equals the slope of the line con necting the points (0 s, 0 m/s) and (2.0 s, 4.0 m/s): 
Acceleration at  . 
FIGURE 2.11 (a) (Example 2.3) (b) (Exercise 2.3) 
a 5 Dv 
Dt 5 4.0 m/s 2 0 
2.0 s 2 0 5 12.0 m/s2 
 v   0, because the segment is horizontal: a 5 Dv 
Dt 5 4.0 m/s 2 4.0 m/s 
3.0 s 2 2.0 s 5 0 m/s2 
Acceleration at  . 
Dt 5 2.0 m/s 2 4.0 m/s 
The acceleration at   equals the slope of the line con necting the points (3.0 s, 4.0 m/s) and (4.0 s, 2.0 m/s): 
a 5 Dv 
4.0 s 2 3.0 s 5 22.0 m/s2 
Remarks Assume the player is initially moving in the positive x-direction. For the fi rst 2.0 s, the ballplayer moves in  the positive x-direction (the velocity is positive) and steadily accelerates (the curve is steadily rising) to a maximum  speed of 4.0 m/s. He moves for 1.0 s at a steady speed of 4.0 m/s and then slows down in the last second (the v vs. t curve is falling), still moving in the positive x-direction (v is always positive). 
QUESTION 2.3 
Can the tangent line to a velocity vs. time graph ever be vertical? Explain. 
EXERCISE 2.3 
Repeat the problem, using Figure 2.11b. 
Answer The accelerations at  ,  , and   are  3.0 m/s2, 1.0 m/s2, and 0 m/s2, respectively. 
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ACTIVE FIGURE 2.12 
(a) Motion diagram for a car moving  
v 
at constant velocity (zero accelera [image: ][image: ][image: ][image: ][image: ]
(a) 
tion). (b) Motion diagram for a car  
undergoing constant acceleration in  
the direction of its velocity. The veloc 
ity vector at each instant is indicated  
v 
by a red arrow and the constant ac [image: ][image: ][image: ][image: ][image: ]
(b) 
celeration vector by a violet arrow.  
a 
(c) Motion diagram for a car under 
going constant acceleration in the  
direction opposite the velocity at each  
v 
instant. [image: ][image: ][image: ][image: ][image: ]
(c) 
a 
2.4 MOTION DIAGRAMS 
Velocity and acceleration are sometimes confused with each other, but they’re  very different concepts, as can be illustrated with the help of motion diagrams. A  motion diagram is a representation of a moving object at successive time intervals,  with velocity and acceleration vectors sketched at each position, red for velocity  vectors and violet for acceleration vectors, as in Active Figure 2.12. The time inter 
vals between adjacent positions in the motion diagram are assumed equal. A motion diagram is analogous to images resulting from a stroboscopic photo graph of a moving object. Each image is made as the strobe light fl ashes. Active  Figure 2.12 represents three sets of strobe photographs of cars moving along a  straight roadway from left to right. The time intervals between fl ashes of the stro boscope are equal in each diagram. 
In Active Figure 2.12a, the images of the car are equally spaced: The car moves  the same distance in each time interval. This means that the car moves with con stant positive velocity and has zero acceleration. The red arrows are all the same length  (constant velocity) and there are no violet arrows (zero acceleration). 
In Active Figure 2.12b, the images of the car become farther apart as time pro gresses and the velocity vector increases with time, because the car’s displacement  between adjacent positions increases as time progresses. The car is moving with a  positive velocity and a constant positive acceleration. The red arrows are successively  longer in each image, and the violet arrows point to the right. 
In Active Figure 2.12c, the car slows as it moves to the right because its dis placement between adjacent positions decreases with time. In this case, the car  moves initially to the right with a constant negative acceleration. The velocity vec tor decreases in time (the red arrows get shorter) and eventually reaches zero, as  would happen when the brakes are applied. Note that the acceleration and velocity  vectors are not in the same direction. The car is moving with a positive velocity, but  with a negative acceleration. 
Try constructing your own diagrams for various problems involving kinematics. 
QUICK QUIZ 2.4 The three graphs in Active Figure 2.13 represent the  position vs. time for objects moving along the x-axis. Which, if any, of these  graphs is not physically possible? 
ACTIVE FIGURE 2.13 
(Quick Quiz 2.4) Which position vs.  time curve is impossible?
x 
t 
(a) 
x 
t 
(b) 
x 
t 
(c) 
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(a) 
QUICK QUIZ 2.5 Figure 2.14a is a diagram of a multifl ash image of an air  puck moving to the right on a horizontal surface. The images sketched are  separated by equal time intervals, and the fi rst and last images show the puck  at rest. (a) In Figure 2.14b, which color graph best shows the puck’s position  (b) 
as a function of time? (b) In Figure 2.14c, which color graph best shows the  puck’s velocity as a function of time? (c) In Figure 2.14d, which color graph  best shows the puck’s acceleration as a function of time? 
x 
+ 
t O v 
2.5 ONE-DIMENSIONAL MOTION  
WITH CONSTANT ACCELERATION 
Many applications of mechanics involve objects moving with constant acceleration.  This type of motion is important because it applies to numerous objects in nature,  such as an object in free fall near Earth’s surface (assuming air resistance can be  neglected). A graph of acceleration versus time for motion with constant accelera 
tion is shown in Active Figure 2.15a. When an object moves with constant accel eration, the instantaneous acceleration at any point in a time interval is equal to  the value of the average acceleration over the entire time interval. Consequently,  the velocity increases or decreases at the same rate throughout the motion, and a  
plot of v versus t gives a straight line with either positive, zero, or negative slope. Because the average acceleration equals the instantaneous acceleration when a is constant, we can eliminate the bar used to denote average values from our defi n ing equation for acceleration, writing a   a, so that Equation 2.4 becomes 
a 5 vf 2 vi 
tf 2 ti 
The observer timing the motion is always at liberty to choose the initial time, so  for convenience, let ti   0 and tf be any arbitrary time t. Also, let vi   v0 (the initial  velocity at t   0) and vf   v (the velocity at any arbitrary time t). With this notation,  we can express the acceleration as 
a 5 v 2 v0 
t 
or 
v 5 v0 1 at (for constant a) [2.6] 
Equation 2.6 states that the acceleration a steadily changes the initial velocity v0 by  an amount at. For example, if a car starts with a velocity of  2.0 m/s to the right  
(c) + 
t 
O 
– 
a 
+ 
t 
(d) 
O 
– 
FIGURE 2.14 (Quick Quiz 2.5)  Choose the correct graphs. 
a 
Slope = 0 
a 
t 
0 
(a) 
v 
Slope = a 
at 
v0 
v 
v0 
t 
t 
0 
and accelerates to the right with a    6.0 m/s2, it will have a velocity of  14 m/s  
(b) 
after 2.0 s have elapsed: 
v   v0   at     2.0 m/s   (6.0 m/s2)(2.0 s)    14 m/s 
x 
The graphical interpretation of v is shown in Active Figure 2.15b. The velocity var 
ies linearly with time according to Equation 2.6, as it should for constant accelera tion. 
Because the velocity is increasing or decreasing uniformly with time, we can  express the average velocity in any time interval as the arithmetic average of the  initial velocity v0 and the fi nal velocity v: 
Slope = v
x 0 
Slope = v0 
v 5 v0 1 v 
2 (for constant a) [2.7] 
Remember that this expression is valid only when the acceleration is constant, in  which case the velocity increases uniformly. 
We can now use this result along with the defi ning equation for average veloc ity, Equation 2.2, to obtain an expression for the displacement of an object as a  
0 t t 
(c) 
ACTIVE FIGURE 2.15 
A particle moving along the x-axis  with constant acceleration a.  (a) the acceleration vs. time graph,  (b) the velocity vs. time graph, and  (c) the position vs. time graph. 
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TABLE 2.4 
Equations for Motion in a Straight Line Under  
Constant Acceleration 
Equation Information Given by Equation 
v   v0   at Velocity as a function of time 
Dx 5 v0t 1 12at 2 Displacement as a function of time 
v2   v 02   2a  x Velocity as a function of displacement 
Note: Motion is along the x-axis. At t   0, the velocity of the particle is v0. 
function of time. Again, we choose ti   0 and tf   t, and for convenience, we write  
 x   xf   xi   x   x0. This results in 
Dx 5 vt 5 av0 1 v 
2 bt 
Dx 5 12 1v0 1 v2t (for constant a) [2.8] 
We can obtain another useful expression for displacement by substituting the  
equation for v (Eq. 2.6) into Equation 2.8: 
Dx 5 12 1v0 1 v0 1 at2t 
Dx 5 v0t 1 12at 2 (for constant a) [2.9] 
This equation can also be written in terms of the position x, since  x   x   x0.  
Active Figure 2.15c shows a plot of x versus t for Equation 2.9, which is related to the  
graph of velocity vs. time: The area under the curve in Active Figure 2.15b is equal  
to v0t 1 12at 2, which is equal to the displacement  x. In fact, the area under the  
graph of v versus t for any object is equal to the displacement  x of the object. 
Finally, we can obtain an expression that doesn’t contain time by solving Equa 
tion 2.6 for t and substituting into Equation 2.8, resulting in 
a b 5 v 2 2 v02 
Dx 5 12 1v 1 v0 2 av 2 v0 
2a 
v 2 5 v02 1 2a Dx (for constant a) [2.10] 
Equations 2.6 and 2.9 together can solve any problem in one-dimensional motion  with constant acceleration, but Equations 2.7, 2.8, and, especially, 2.10 are some times convenient. The three most useful equations—Equations 2.6, 2.9, and  2.10—are listed in Table 2.4. 
The best way to gain confi dence in the use of these equations is to work a num ber of problems. There is usually more than one way to solve a given problem,  depending on which equations are selected and what quantities are given. The dif ference lies mainly in the algebra. 
PROBLEM-SOLVING STRATEGY 
ACCELERATED MOTION 
The following procedure is recommended for solving problems involving accel erated motion. 
1. Read the problem. 
2. Draw a diagram, choosing a coordinate system, labeling initial and fi nal  points, and indicating directions of velocities and accelerations with arrows. 3. Label all quantities, circling the unknowns. Convert units as needed.
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4. Equations from Table 2.4 should be selected next. All kinematics problems  in this chapter can be solved with the fi rst two equations, and the third is  often convenient. 
5. Solve for the unknowns. Doing so often involves solving two equations for  two unknowns. It’s usually more convenient to substitute all known values  before solving. 
6. Check your answer, using common sense and estimates. 
Most of these problems reduce to writing the kinematic equations from Table  2.4 and then substituting the correct values into the constants a, v0, and x0 from the given information. Doing this produces two equations—one linear  and one quadratic—for two unknown quantities. 
EXAMPLE 2.4 The Daytona 500 
Goal Apply the basic kinematic equations. 
Problem (a) A race car starting from rest accelerates at a constant rate of 5.00 m/s2.  What is the velocity of the car after it has traveled 1.00   102 ft? (b) How much time  has elapsed? 
Strategy (a) We’ve read the problem, drawn the diagram in Figure 2.16, and  chosen a coordinate system (steps 1 and 2). We’d like to fi nd the velocity v after a  certain known displacement  x. The acceleration a is also known, as is the initial  velocity v0 (step 3, labeling, is complete), so the third equation in Table 2.4 looks  
TIP 2.7 Pigs Don’t Fly 
After solving a problem, you  should think about your answer  and decide whether it seems rea sonable. If it isn’t, look for your  mistake! 
v0 = 0 v = ? [image: ]x = 0 [image: ]x = 30.5 m + x 
FIGURE 2.16 (Example 2.4) 
most useful for solving part (a). Given the velocity, the fi rst equation in Table 2.4 can then be used to fi nd the time  in part (b). 
Solution 
(a) Convert units of  x to SI, using the information in  the inside front cover. 
1.00 3 102 ft 5 11.00 3 102 ft2 a 1 m 
3.28 ftb 5 30.5 m 
Write the kinematics equation for v 2 (step 4): v 2   v 02   2a  x 
Solve for v, taking the positive square root because the  car moves to the right (step 5): 
v 5 "v02 1 2a Dx 
Substitute v0   0, a   5.00 m/s2, and  x   30.5 m: v 5 "v02 1 2a Dx 5 "102 2 1 215.00 m/s2 2 130.5 m2   17.5 m/s 
(b) How much time has elapsed? 
Apply the fi rst equation of Table 2.4: v   at   v0 
Substitute values and solve for time t: 17.5 m/s   (5.00 m/s2)t 
t 5 17.5 m/s 
5.0 m/s2 5 3.50 s 
Remarks The answers are easy to check. An alternate technique is to use Dx 5 v0t 1 12at 2 to fi nd t and then use the  equation v   v0   at to fi nd v. 
QUESTION 2.4 
What is the fi nal speed if the displacement is increased by a factor of 4? 
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EXERCISE 2.4 
Suppose the driver in this example now slams on the brakes, stopping the car in 4.00 s. Find (a) the acceleration and  (b) the distance the car travels while braking, assuming the acceleration is constant. 
Answers (a) a    4.38 m/s2 (b) d   35.0 m 
EXAMPLE 2.5 Car Chase 
Goal Solve a problem involving two objects, one moving  at constant acceleration and the other at constant velocity. 
Problem A car traveling at a constant speed of 24.0 m/s  passes a trooper hidden behind a billboard, as in Figure  2.17. One second after the speeding car passes the bill board, the trooper sets off in chase with a constant accel eration of 3.00 m/s2. (a) How long does it take the trooper  to overtake the speeding car? (b) How fast is the trooper  going at that time? 
Strategy Solving this problem involves two simultane ous kinematics equations of position, one for the trooper  and the other for the car. Choose t   0 to correspond to  the time the trooper takes up the chase, when the car is at  xcar   24.0 m because of its head start (24.0 m/s   1.00 s).  The trooper catches up with the car when their positions  are the same, which suggests setting xtrooper   xcar and solv ing for time, which can then be used to fi nd the trooper’s  speed in part (b). 
Solution 
(a) How long does it take the trooper to overtake the  car? 
vcar = 24.0 m/s 
acar = 0 
atrooper = 3.00 m/s2 
t  = –1.00 s t  = 0 t  = ?     [image: ]
  
[image: ]
[image: ][image: ][image: ]
FIGURE 2.17 (Example 2.5) A speeding car passes a hidden  trooper. When does the trooper catch up to the car? 
Write the equation for the car’s displacement: Dxcar 5 xcar 2 x0 5 v0t 1 12acart2 
Take x0   24.0 m, v0   24.0 m/s and acar   0. Solve for  xcar: 
Write the equation for the trooper’s position, taking  x0   0, v0   0, and atrooper   3.00 m/s2: 
Set xtrooper   xcar, and solve the quadratic equation. (The  quadratic formula appears in Appendix A, Equation  A.8.) Only the positive root is meaningful. 
(b) Find the trooper’s speed at this time. 
xcar   x0   vt   24.0 m   (24.0 m/s)t 
xtrooper 5 12atroopert2 5 12 13.00 m/s2 2t2 5 11.50 m/s2 2t2 
(1.50 m/s2)t2   24.0 m   (24.0 m/s)t 
(1.50 m/s2)t2   (24.0 m/s)t   24.0 m   0 t   16.9 s 
Substitute the time into the trooper’s velocity equation: vtrooper   v0   atrooper t   0   (3.00 m/s2)(16.9 s)   50.7 m/s 
Remarks The trooper, traveling about twice as fast as the car, must swerve or apply his brakes strongly to avoid a  collision! This problem can also be solved graphically by plotting position versus time for each vehicle on the same  graph. The intersection of the two graphs corresponds to the time and position at which the trooper overtakes the  car.
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QUESTION 2.5 
The graphical solution corresponds to fi nding the intersection of what two types of curves in the xt-plane? 
EXERCISE 2.5 
A motorist with an expired license tag is traveling at 10.0 m/s down a street, and a policeman on a motorcycle, taking  another 5.00 s to fi nish his donut, gives chase at an acceleration of 2.00 m/s2. Find (a) the time required to catch the  car and (b) the distance the trooper travels while overtaking the motorist. 
Answers (a) 13.7 s (b) 188 m 
EXAMPLE 2.6 Runway Length 
Goal Apply kinematics to horizontal motion with two  phases. 
Problem A typical jetliner lands at a speed of 160 mi/h  
Origin 
a 
v v 
and decelerates at the rate of (10 mi/h)/s. If the plane trav els at a constant speed of 160 mi/h for 1.0 s after landing  before applying the brakes, what is the total displacement of  the aircraft between touchdown on the runway and coming  to rest? 
coasting 
distance 
v0 = 71.5 m/s a = 0 
t = 1.0 s 
braking distance +x 
v = 71.5 m/s 
0 
vf = 0 
a = –4.47 m/s2 
Strategy See Figure 2.18. First, convert all quantities to SI  units. The problem must be solved in two parts, or phases,  
FIGURE 2.18 (Example 2.6) Coasting and braking distances for a  landing jetliner. 
corresponding to the initial coast after touchdown, followed by braking. Using the kinematic equations, fi nd the dis placement during each part and add the two displacements. 
Solution 
Convert units of speed and acceleration to SI: v0 5 1160 mi/h2 a 0.447 m/s 1.00 mi/h b 5 71.5 m/s 
a 5 1210.0 1mi/h2/s2 a 0.447 m/s 
1.00 mi/h b 5 24.47 m/s2 
Taking a   0, v0   71.5 m/s, and t   1.00 s, fi nd the dis placement while the plane is coasting:Dxcoasting 5 v0t 1 12at 2 5 171.5 m/s2 11.00 s2 1 0 5 71.5 m 
Use the time-independent kinematic equation to fi nd  the displacement while the plane is braking. 
v 2 5 v02 1 2aDxbraking 
2a 5 0 2 171.5 m/s2 2 
Take a    4.47 m/s2 and v0   71.5 m/s. The negative  sign on a means that the plane is slowing down. 
Dxbraking 5 v 2 2 v02 
2.00124.47 m/s2 2 5 572 m 
Sum the two results to fi nd the total displacement: Dxcoasting 1 Dxbraking 5 72 m 1 572 m 5 644 m 
Remarks To fi nd the displacement while braking, we could have used the two kinematics equations involving time,  namely, Dx 5 v0t 1 12at 2 and v   v0   at, but because we weren’t interested in time, the time-independent equation  was easier to use. 
QUESTION 2.6 
How would the answer change if the plane coasted for 2.0 s before the pilot applied the brakes? 
EXERCISE 2.6 
A jet lands at 80.0 m/s, the pilot applying the brakes 2.00 s after landing. Find the acceleration needed to stop the jet  within 5.00   102 m. 
Answer a    9.41 m/s2
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EXAMPLE 2.7 The Acela: The Porsche of American Trains Goal Find accelerations and displacements from a velocity vs. time graph.
Problem The sleek high-speed electric train known as  the Acela (pronounced ahh-sell-ah) is currently in ser vice on the Washington-New York-Boston run. The Acela  consists of two power cars and six coaches and can carry  304 passengers at speeds up to 170 mi/h. In order to  negotiate curves comfortably at high speeds, the train  carriages tilt as much as 6° from the vertical, prevent 
ing passengers from being pushed to the side. A velocity  vs. time graph for the Acela is shown in Figure 2.19a.  (a) Describe the motion of the Acela. (b) Find the peak  acceleration of the Acela in miles per hour per sec 
ond ((mi/h)/s) as the train speeds up from 45 mi/h  to 170 mi/h. (c) Find the train’s displacement in miles  between t   0 and t   200 s. (d) Find the average accel eration of the Acela and its displacement in miles in the  interval from 200 s to 300 s. (The train has regenerative  
Solution 
(a) Describe the motion. 
braking, which means that it feeds energy back into the  utility lines each time it stops!) (e) Find the total displace ment in the interval from 0 to 400 s. 
Strategy For part (a), remember that the slope of the  tangent line at any point of the velocity vs. time graph  gives the acceleration at that time. To fi nd the peak accel eration in part (b), study the graph and locate the point  at which the slope is steepest. In parts (c) through (e),  estimating the area under the curve gives the displace ment during a given period, with areas below the time  axis, as in part (e), subtracted from the total. The aver age acceleration in part (d) can be obtained by substitut ing numbers taken from the graph into the defi nition of  average acceleration, a 5 Dv/Dt. 
From about  50 s to 50 s, the Acela cruises at a constant velocity in the  x-direction. Then the train accelerates in  the  x-direction from 50 s to 200 s, reaching a top speed of about 170 mi/h, whereupon it brakes to rest at 350 s and  reverses, steadily gaining speed in the  x-direction. 
(b) Find the peak acceleration. 
Dt 5 11.5 3 102 2 5.0 3 101 2 mi/h 
Calculate the slope of the steepest tangent line,  which connects the points (50 s, 50 mi/h) and  (100 s, 150 mi/h) (the light blue line in Figure  2.19b): 
(c) Find the displacement between 0 s and 200 s. 
a 5 slope 5 Dv   2.0 (mi/h)/s 
11.0 3 102 2 5.0 3 101 2s 
Using triangles and rectangles, approximate  the area in Figure 2.19c: 
Convert units to miles by converting hours  to seconds: 
(d) Find the average acceleration from 200 s  to 300 s, and fi nd the displacement. 
Dx0 S 200 s 5 area1 1 area2 1 area3 1 area4 1 area5   (5.0   101 mi/h)(5.0   101 s) 
  (5.0   101 mi/h)(5.0   101 s) 
  (1.6   102 mi/h)(1.0   102 s) 
1 12 15.0 3 101 s2 11.0 3 102 mi/h2 
1 12 11.0 3 102 s2 11.7 3 102 mi/h 2 1.6 3 102 mi/h2   2.4   104 (mi/h)s 
Dx0 S 200 s < 2.4 3 104 mi #s 
h a 1 h 
3 600 sb 5 6.7 mi 
Dt 5 11.0 3 101 2 1.7 3 102 2 mi/h 
The slope of the green line is the average  acceleration from 200 s to 300 s (Fig. 2.19b): 
a 5 slope 5 Dv 
1.0 3 102 s 
   1.6 (mi/h)/s 
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FIGURE 2.19 (Example 2.7) (a) Velocity vs. time graph for the Acela. (b) The slope of the steepest  tangent blue line gives the peak acceleration, and the slope of the green line is the average acceleration  between 200 s and 300 s. (c) The area under the velocity vs. time graph in some time interval gives the  displacement of the Acela in that time interval. (d) (Exercise 2.7). 
The displacement from 200 s to 300 s is equal to area6,  which is the area of a triangle plus the area of a very  narrow rectangle beneath the triangle: 
(e) Find the total displacement from 0 s to 400 s. 
Dx200 S 300 s < 12 11.0 3 102 s2 11.7 3 102 2 1.0 3 101 2 mi/h   (1.0   101 mi/h)(1.0   102 s) 
  9.0   103(mi/h)(s)   2.5 mi  
The total displacement is the sum of all the individual  displacements. We still need to calculate the displace ments for the time intervals from 300 s to 350 s and from  350 s to 400 s. The latter is negative because it’s below  the time axis.  
Dx300 S 350 s < 12 15.0 3 101 s2 11.0 3 101 mi/h2   2.5   102(mi/h)(s) 
Dx350 S 400 s < 12 15.0 3 101 s2 125.0 3 101 mi/h2    1.3   103(mi/h)(s) 
Find the total displacement by summing the parts: Dx0 S 400 s < 12.4 3 104 1 9.0 3 103 1 2.5 3 102  1.3   103)(mi/h)(s)   8.9 mi 
Remarks There are a number of ways to fi nd the approximate area under a graph. Choice of technique is a per sonal preference. 
QUESTION 2.7 
According to the graph in Figure 2.19a, at what different times is the acceleration zero? 
EXERCISE 2.7 
Suppose the velocity vs. time graph of another train is given in Figure 2.19d. Find (a) the maximum instantaneous  acceleration and (b) the total displacement in the interval from 0 s to 4.00   102 s. 
Answers (a) 1.0 (mi/h)/s (b) 4.7 mi
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2.6 FREELY FALLING OBJECTS [image: ]
When air resistance is negligible, all objects dropped under the infl uence of grav 
ity near Earth’s surface fall toward Earth with the same constant acceleration. This  
idea may seem obvious today, but it wasn’t until about 1600 that it was accepted.  
Prior to that time, the teachings of the great philosopher Aristotle (384–322 B.C.)  
had held that heavier objects fell faster than lighter ones. 
According to legend, Galileo discovered the law of falling objects by observing  
that two different weights dropped simultaneously from the Leaning Tower of Pisa  
hit the ground at approximately the same time. Although it’s unlikely that this par 
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GALILEO GALILEI  
Italian Physicist and Astronomer  (1564–1642) 
Galileo formulated the laws that  govern the motion of objects in free  fall. He also investigated the motion  of an object on an inclined plane,  established the concept of relative  motion, invented the thermometer,  and discovered that the motion of a  swinging pendulum could be used  to measure time intervals. After  designing and constructing his own  telescope, he discovered four of  Jupiter’s moons, found that our own  Moon’s surface is rough, discovered  sunspots and the phases of Venus,  and showed that the Milky Way con sists of an enormous number of stars.  Galileo publicly defended Nicolaus  Copernicus’s assertion that the Sun  is at the center of the Universe (the  heliocentric system). He published  Dialogue Concerning Two New World  Systems to support the Copernican  model, a view the Church declared  to be heretical. After being taken to  Rome in 1633 on a charge of heresy,  he was sentenced to life imprison ment and later was confi ned to his  villa at Arcetri, near Florence, where  he died in 1642. 
ticular experiment was carried out, we know that Galileo performed many system atic experiments with objects moving on inclined planes. In his experiments he  rolled balls down a slight incline and measured the distances they covered in suc cessive time intervals. The purpose of the incline was to reduce the acceleration  and enable Galileo to make accurate measurements of the intervals. (Some people  refer to this experiment as “diluting gravity.”) By gradually increasing the slope  of the incline he was fi nally able to draw mathematical conclusions about freely  falling objects, because a falling ball is equivalent to a ball going down a vertical  incline. Galileo’s achievements in the science of mechanics paved the way for New 
ton in his development of the laws of motion, which we will study in Chapter 4. Try the following experiment: Drop a hammer and a feather simultaneously  from the same height. The hammer hits the fl oor fi rst because air drag has a  greater effect on the much lighter feather. On August 2, 1971, this same experi ment was conducted on the Moon by astronaut David Scott, and the hammer and  feather fell with exactly the same acceleration, as expected, hitting the lunar sur face at the same time. In the idealized case where air resistance is negligible, such  motion is called free fall. 
The expression freely falling object doesn’t necessarily refer to an object dropped  from rest. A freely falling object is any object moving freely under the infl uence  of gravity alone, regardless of its initial motion. Objects thrown upward or down ward and those released from rest are all considered freely falling. 
We denote the magnitude of the free-fall acceleration by the symbol g. The value  of g decreases with increasing altitude, and varies slightly with latitude as well. At  Earth’s surface, the value of g is approximately 9.80 m/s2. Unless stated otherwise, we  will use this value for g in doing calculations. For quick estimates, use g   10 m/s2. 
If we neglect air resistance and assume that the free-fall acceleration doesn’t  vary with altitude over short vertical distances, then the motion of a freely falling  object is the same as motion in one dimension under constant acceleration. This  means that the kinematics equations developed in Section 2.6 can be applied. It’s  conventional to defi ne “up” as the   y-direction and to use y as the position vari 
able. In that case the acceleration is a    g    9.80 m/s2. In Chapter 7, we study  the variation in g with altitude. 
QUICK QUIZ 2.6 A tennis player on serve tosses a ball straight up. While the  ball is in free fall, does its acceleration (a) increase, (b) decrease, (c) increase  and then decrease, (d) decrease and then increase, or (e) remain constant? 
QUICK QUIZ 2.7 As the tennis ball of Quick Quiz 2.6 travels through the  air, does its speed (a) increase, (b) decrease, (c) decrease and then increase,  (d) increase and then decrease, or (e) remain the same? 
QUICK QUIZ 2.8 A skydiver jumps out of a hovering helicopter. A few sec onds later, another skydiver jumps out, so they both fall along the same verti cal line relative to the helicopter. Both skydivers fall with the same accelera tion. Does the vertical distance between them (a) increase, (b) decrease, or  
(c) stay the same? Does the difference in their velocities (d) increase, (e) de crease, or (f) stay the same? (Assume g is constant.) 
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EXAMPLE 2.8 Not a Bad Throw for a Rookie! 
Goal Apply the kinematic equations to a freely  falling object with a nonzero initial velocity. 
Problem A stone is thrown from the top of  a building with an initial velocity of 20.0 m/s  straight upward, at an initial height of 50.0 m  above the ground. The stone just misses the  edge of the roof on its way down, as shown in  
FIGURE 2.20 (Example 2.8) A  
freely falling object is thrown upward  
with an initial velocity of v0   
 20.0 m/s. Positions and velocities  
are given for several times. 
t = 0, y0 = 0 
v0 = 20.0 m/s 
t = 2.04 s 
ymax = 20.4 m v = 0 
Figure 2.20. Determine (a) the time needed for  the stone to reach its maximum height, (b) the  maximum height, (c) the time needed for the  stone to return to the height from which it was  thrown and the velocity of the stone at that  instant, (d) the time needed for the stone to  reach the ground, and (e) the velocity and posi tion of the stone at t   5.00 s. 
Strategy The diagram in Figure 2.20 estab lishes a coordinate system with y0   0 at the  level at which the stone is released from the  thrower’s hand, with y positive upward. Write  the velocity and position kinematic equations  for the stone, and substitute the given infor 
mation. All the answers come from these two  equations by using simple algebra or by just  substituting the time. In part (a), for example,  the stone comes to rest for an instant at its max 
imum height, so set v   0 at this point and solve  for time. Then substitute the time into the dis placement equation, obtaining the maximum  height. 
Solution 
50.0 m 
t = 4.08 s 
y = 0 
v = –20.0 m/s 
t = 5.00 s 
y = –22.5 m v = –29.0 m/s 
t = 5.83 s 
y = –50.0 m v = –37.1 m/s 
(a) Find the time when the stone reaches its maximum  
height. 
Write the velocity and position kinematic equations: v   at   v0 Dy 5 y 2 y0 5 v0t 1 12at 2 
Substitute a    9.80 m/s2, v0   20.0 m/s, and y0   0  into the preceding two equations: 
Substitute v   0, the velocity at maximum height, into  Equation (1) and solve for time: 
(b) Determine the stone’s maximum height. 
(1) v   ( 9.80 m/s2)t   20.0 m/s  (2) y   (20.0 m/s)t   (4.90 m/s2)t2 
0   ( 9.80 m/s2)t   20.0 m/s t 5 220.0 m/s 
29.80 m/s2 5 2.04 s 
Substitute the time t   2.04 s into Equation (2): ymax 5 120.0 m/s2 12.04 s2 2 14.90 m/s2 2 12.04 s2 2 5 20.4 m
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(c) Find the time the stone takes to return to its initial  
position, and fi nd the velocity of the stone at that time. 
Set y   0 in Equation (2) and solve t: 0   (20.0 m/s)t   (4.90 m/s2)t2   t(20.0 m/s   4.90 m/s2t) 
t   4.08 s 
Substitute the time into Equation (1) to get the velocity: v   20.0 m/s   ( 9.80 m/s2)(4.08 s)    20.0 m/s 
(d) Find the time required for the stone to reach the  
ground. 
In Equation (2), set y    50.0 m:  50.0 m   (20.0 m/s)t   (4.90 m/s2)t2 Apply the quadratic formula and take the positive root: t   5.83 s 
(e) Find the velocity and position of the stone at t   5.00 s. 
Substitute values into Equations (1) and (2): v   ( 9.80 m/s2)(5.00 s)   20.0 m/s    29.0 m/s y   (20.0 m/s)(5.00 s)   (4.90 m/s2)(5.00 s)2    22.5 m 
Remarks Notice how everything follows from the two kinematic equations. Once they are written down and the  constants correctly identifi ed as in Equations (1) and (2), the rest is relatively easy. If the stone were thrown down ward, the initial velocity would have been negative. 
QUESTION 2.8 
How would the answer to part (b), the maximum height, change if the person throwing the ball jumped upward at  the instant he released the ball? 
EXERCISE 2.8 
A projectile is launched straight up at 60.0 m/s from a height of 80.0 m, at the edge of a sheer cliff. The projectile  falls, just missing the cliff and hitting the ground below. Find (a) the maximum height of the projectile above the  point of fi ring, (b) the time it takes to hit the ground at the base of the cliff, and (c) its velocity at impact. 
Answers (a) 184 m (b) 13.5 s (c)  72.3 m/s 
EXAMPLE 2.9 Maximum Height Derived 
Goal Find the maximum height of a thrown projectile using symbols. 
Problem Refer to Example 2.8. Use symbolic manipulation to fi nd (a) the time tmax it takes the ball to reach its  maximum height and (b) an expression for the maximum height that doesn’t depend on time. Answers should be  expressed in terms of the quantities v0, g, and y0 only. 
Strategy When the ball reaches its maximum height, its velocity is zero, so for part (a) solve the kinematics velocity  equation for time t and set v   0. For part (b), substitute the expression for time found in part (a) into the displace ment equation, solving it for the maximum height. 
Solution 
(a) Find the time it takes the ball to reach its maximum  
height. 
Write the velocity kinematics equation: v   at   v0 
Move v0 to the left side of the equation: v   v0   at 
Divide both sides by a: v 2 v0 
a 5 ata 5 t
Turn the equation around so that t is on the left and sub stitute v   0, corresponding to the velocity at maximum  height: 
Replace t by tmax and substitute a    g : 
(b) Find the maximum height. 
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(1) t 5 2v0 
a 
(2) t max 5 v0 
g 
Write the equation for the position y at any time: y 5 y0 1 v0t 1 12at 2 ymax 5 y0 1 v0a2v0 
a b 1 12a a2v0 
2 
Substitute t    v0/a, which corresponds to the time it  takes to reach ymax, the maximum height: 
a b 
5 y0 2 v02 
a 1 12v02 
a 
Combine the last two terms and substitute a    g: (3) ymax 5 y0 1 v02 
2g 
Remarks Notice that g    9.8 m/s2, so the second term is positive overall. Equations (1)–(3) are much more useful  than a numerical answer because the effect of changing one value can be seen immediately. For example, doubling  the initial velocity v0 quadruples the displacement above the point of release. Notice also that ymax could be obtained  more readily from the time-independent equation, v 2   v02   2a  y. 
QUESTION 2.9  
By what factor would the maximum displacement above the rooftop be increased if the building were transported to  the Moon, where a 5 216g ? 
EXERCISE 2.9 
(a) Using symbols, fi nd the time tE it takes for a ball to reach the ground on Earth if released from rest at height y0.  (b) In terms of tE, how much time tM would be required if the building were on Mars, where a    0.385g? Answers (a) tE 5 Å2y0 
g (b) tM   1.61tE 
EXAMPLE 2.10 A Rocket Goes Ballistic 
Goal Solve a problem involving a powered ascent followed by  free-fall motion. 
Problem A rocket moves straight upward, starting from rest  with an acceleration of  29.4 m/s2. It runs out of fuel at the end  of 4.00 s and continues to coast upward, reaching a maximum  height before falling back to Earth. (a) Find the rocket’s velocity  and position at the end of 4.00 s. (b) Find the maximum height  the rocket reaches. (c) Find the velocity the instant before the  rocket crashes on the ground. 
Strategy Take y   0 at the launch point and y positive upward,  as in Figure 2.21. The problem consists of two phases. In phase 1  the rocket has a net upward acceleration of 29.4 m/s2, and we can  use the kinematic equations with constant acceleration a to fi nd  the height and velocity of the rocket at the end of phase 1, when  the fuel is burned up. In phase 2 the rocket is in free fall and has  an acceleration of  9.80 m/s2, with initial velocity and position  given by the results of phase 1. Apply the kinematic equations for  free fall. FIGURE 2.21 (Example 2.10)  
Two linked phases of motion for  
a rocket that is launched, uses up  
Rocket fuel 
burns out 
[image: ]
Phase 2 
a = –9.80 m/s2 
+y 
Phase 1 
a = 29.4 m/s2 
Maximum 
height ymax v = 0 
Rocket crashes after falling from ymax [image: ]
its fuel, and crashes. y = 0 Launch 
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Solution 
(a) Phase 1: Find the rocket’s velocity and position  
after 4.00 s. 
Write the velocity and position kinematic equations: (1) v   v0   at 
(2) Dy 5 y 2 y0 5 v0t 1 12 at 2 
Adapt these equations to phase 1, substituting  
a   29.4 m/s2, v0   0, and y0   0: (3) v   (29.4 m/s2)t (4) y 5 12 129.4 m/s2 2t2 5 114.7 m/s2 2t2 
Substitute t   4.00 s into Equations (3) and (4) to fi nd  the rocket’s velocity v and position y at the time of  burnout. These will be called vb and yb, respectively. 
(b) Phase 2: Find the maximum height the rocket  attains. 
Adapt Equations (1) and (2) to phase 2, substituting  a    9.8 m/s2, v0   vb   118 m/s, and y0   yb   235 m: 
Substitute v   0 (the rocket’s velocity at maximum  height) in Equation (5) to get the time it takes the  rocket to reach its maximum height: 
Substitute t   12.0 s into Equation (6) to fi nd the  rocket’s maximum height: 
(c) Phase 2: Find the velocity of the rocket just prior  to impact. 
Find the time to impact by setting y   0 in Equation  (6) and using the quadratic formula: 
vb   118 m/s and yb   235 m 
(5) v   ( 9.8 m/s2)t   118 m/s 
(6) y 5 235 m 1 1118 m/s2t 2 14.90 m/s2 2t2 
0 5 129.8 m/s2 2t 1 118 m/s S t 5 118 m/s 9.80 m/s2 5 12.0 s 
ymax   235 m   (118 m/s)(12.0 s)   (4.90 m/s2)(12.0 s)2   945 m 
0   235 m   (118 m/s)t   (4.90 m/s)t2 
t   25.9 s 
Substitute this value of t into Equation (5): v   ( 9.80 m/s2)(25.9 s)   118 m/s    136 m/s 
Remarks You may think that it is more natural to break this problem into three phases, with the second phase  ending at the maximum height and the third phase a free fall from maximum height to the ground. Although this  approach gives the correct answer, it’s an unnecessary complication. Two phases are suffi cient, one for each different  acceleration. 
QUESTION 2.10 
If, instead, some fuel remains, at what height should the engines be fi red again to brake the rocket’s fall and allow a  perfectly soft landing? (Assume the same acceleration as during the initial ascent.) 
EXERCISE 2.10 
An experimental rocket designed to land upright falls freely from a height of 2.00   102 m, starting at rest. At a  height of 80.0 m, the rocket’s engines start and provide constant upward acceleration until the rocket lands. What  acceleration is required if the speed on touchdown is to be zero? (Neglect air resistance.) 
Answer 14.7 m/s2
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2.1 Displacement 
The displacement of an object moving along the x-axis is  
a ; Dv 
tf 2 ti[2.4] 
defi ned as the change in position of the object,  x   xf   xi [2.1] 
where xi is the initial position of the object and xf is its fi nal  position. 
 A vector quantity is characterized by both a magnitude  and a direction. A scalar quantity has a magnitude only. 
2.2 Velocity 
The average speed of an object is given by 
Average speed ; total distance 
total time 
The average velocity v during a time interval  t is the dis placement  x divided by  t. 
Dt 5 xf 2 xi 
The instantaneous acceleration of an object at a certain  time equals the slope of a velocity vs. time graph at that  instant. 
2.5 One-Dimensional Motion with Constant  Acceleration 
The most useful equations that describe the motion of an  object moving with constant acceleration along the x-axis  are as follows: 
v   v0   at [2.6] 
Dx 5 v0t 1 12at 2 [2.9] 
v 2   v 02   2a  x [2.10] 
All problems can be solved with the fi rst two equations  
v ; Dx 
tf 2 ti [2.2] 
alone, the last being convenient when time doesn’t explic itly enter the problem. After the constants are properly  
The average velocity is equal to the slope of the straight  line joining the initial and fi nal points on a graph of the  position of the object versus time. 
 The slope of the line tangent to the position vs. time  curve at some point is equal to the instantaneous veloc ity at that time. The instantaneous speed of an object is  defi ned as the magnitude of the instantaneous velocity. 
2.3 Acceleration 
The average acceleration a of an object undergoing a  change in velocity  v during a time interval  t is 
identifi ed, most problems reduce to one or two equations  in as many unknowns. 
2.6 Freely Falling Objects 
An object falling in the presence of Earth’s gravity exhibits  a free-fall acceleration directed toward Earth’s center. If air  friction is neglected and if the altitude of the falling object  is small compared with Earth’s radius, then we can assume  that the free-fall acceleration g   9.8 m/s2 is constant over  the range of motion. Equations 2.6, 2.9, and 2.10 apply,  with a    g. 
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 1. An arrow is shot straight up in the air at an initial speed  of 15.0 m/s. After how much time is the arrow heading  downward at a speed of 8.00 m/s? (a) 0.714 s (b) 1.24 s  (c) 1.87 s (d) 2.35 s (e) 3.22 s 
 2. A cannon shell is fi red straight up in the air at an initial  speed of 225 m/s. After how much time is the shell at  a height of 6.20   102 m and heading down? (a) 2.96 s  (b) 17.3 s (c) 25.4 s (d) 33.6 s (e) 43.0 s 
 3. When applying the equations of kinematics for an  object moving in one dimension, which of the following  statements must be true? (a) The velocity of the object  must remain constant. (b) The acceleration of the  object must remain constant. (c) The velocity of the  object must increase with time. (d) The position of  the object must increase with time. (e) The velocity of  the object must always be in the same direction as its  acceleration. 
 4. A juggler throws a bowling pin straight up in the air.  After the pin leaves his hand and while it is in the air,  which statement is true? (a) The velocity of the pin is  always in the same direction as its acceleration. (b) The  velocity of the pin is never in the same direction as its  
acceleration. (c) The acceleration of the pin is zero.  (d) The velocity of the pin is opposite its acceleration  on the way up. (e) The velocity of the pin is in the same  direction as its acceleration on the way up. 
 5. A racing car starts from rest and reaches a fi nal speed v in a time t. If the acceleration of the car is constant dur ing this time, which of the following statements must  be true? (a) The car travels a distance vt. (b) The aver age speed of the car is v/2. (c) The acceleration of the  car is v/t. (d) The velocity of the car remains constant.  (e) None of these 
 6. A pebble is dropped from rest from the top of a tall  cliff and falls 4.9 m after 1.0 s has elapsed. How much  farther does it drop in the next 2.0 seconds? (a) 9.8 m  (b) 19.6 m (c) 39 m (d) 44 m (e) 27 m 
 7. An object moves along the x-axis, its position measured  at each instant of time. The data are organized into an  accurate graph of x vs. t. Which of the following quanti ties cannot be obtained from this graph? (a) the velocity  at any instant (b) the acceleration at any instant (c) the  displacement during some time interval (d) the average  
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