
	 1	

Fundamentos de Sistemas de Operação
MIEI 2018/2019

Laboratorial Session 2

Objectives
System	calls	fork()	and	wait().	Implementation	of	a	simple	shell.	

Exercise some system calls related to process management
In	Unix	a	process	can	create	a	new	process,	that's	a	copy	of	itself,	using	fork	system	call.	The	new	process	is	usually	
called	a	child	of	the	original	process,	the	father.	A	process	can	block,	waiting	for	the	termination	of	any	child,	using	
wait	system	call.	Try	the	following	example	of	a	program	that	forks	a	new	process	and	demonstrates	that	some	parts	
of	your	program	are	executed	by	two	different	process.	Check	also	the	examples	in	chapter	5	of	your	book	and	the	
manual	pages	(volume	2)	of	the	system	calls	fork()	and	wait().	

int main() {
 printf("I'm process %d\n", getpid());

 switch (fork()) {
 case -1: perror("fork"); exit(1); // error
 case 0: printf("I'm child %d\n", getpid());
 break;
 default: printf("I'm father %d\n", getpid());
 wait(NULL); // wait for child exit
 }
 printf("Bye!\n");
 return 0;
}

Justify	the	produced	output.	

As	seen	in	last	week,	a	system	call	takes	more	time	than	a	regular	function	call.	Each	system	call	can	take	more	or	
less	time	depending	on	the	actions	the	kernel	must	complete	internally	before	returning	a	reply	to	the	processes	
making	the	call.	Evaluate	the	time	to	create	and	terminate	a	new	process	using	forktiming.c.

Compare	the	times	with	a	simple	system	call	like	getuid()	from	Lab01.	

Command interpreter or Shell
A	command	line	interpreter	(CLI)	or	Shell	is	a	program	that	reads	commands	from	a	terminal	(or	a	file)	and	executes	
them.	There	are	two	types	of	commands:	"external"	commands,	which	require	an	executable	file	somewhere	on	the	
file	system	to	be	executed	on	separated	processes	(e.g.	ls,	gcc,	or	any	text	editor);	and	"internal"	commands,	which	
are	executed	by	the	Shell	itself	(e.g.	cd	or	exit).	Additionally,	some	Shells	interpret	a	programming	language	so	that	
you	can	write	small	programs	designated	as	shell	scripts.		

Over	the	years,	several	different	Shells	have	been	developed	for	the	Unix	system	like	the	sh	(Bourne	Shell),	csh	(C-	
Shell),	etc.	In	the	Linux	system,	the	most	commonly	used	Shell	is	the	bash	(Bourne	Again	Shell).	In	general,	all	Shells	
present	 the	 same	operation:	 an	 activity	 cycle	 comprising	 the	 reading	of	 a	 command	 line,	 its	 processing	 and	 its	
execution.	Each	command	line	specifies	one	(or	more)	commands	to	be	executed	along	with	its	(their)	operands	
(either	mandatory	or	optional).	A	Shell's	operation	may	be	summarized	by	the	following	code:	
printf("> "); fflush(stdout); //writes the prompt on the standard output
while (fgets(line, LINESIZE, stdin) != NULL) {
 if (makeargv(line, av)>0) runcommand(av);
 printf("> "); fflush(stdout);
}
	
Upon	reading	a	command	line	from	the	user,	this	code	invokes	the	function	makeargv	to	build	the	array	named	av	
so	that	it	points	to	all	words	present	in	the	string	line,	similarly	to	the	variable	argv[]	of	the	main	function.	As	a	result,	
makeargv	returns	the	number	of	words	in	av[].	Subsequently,	the	function	runcommand	executes	the	("internal"	or	

	 2	

"external")	command(s)	specified	in	that	array	av[].	One	possible	implementation	of	the	function	makeargv	is	shown	
in	the	Annex.

Execution of Internal Commands

Implement	the	function	runcommand(char *argv[]), assuming	that	receives	as	argument	a	vector	with	just	
one	string	that	can	be	the	internal	command	“exit”.	Use	library	function	strcmp	to	compare	the	command	(first	
word)	with	the	“exit”	word	and,	if	equal,	terminate	the	program	(exit).	

Introduction to External Commands

Extend	the	 function	runcommand(char *argv[]) so that,	 if	no	 internal	command	 is	recognized	(no	“exit”),	
assumes	that	argv	vector	defines	one	external	command	and	its	arguments,	and	executes	this	command	in	a	new	
child	process.	 For	now,	 the	 function	 just	uses	 the	 fork	 system	call	 to	 create	 a	new	process	 that	 should	print	 to	
standard	output	all	words	in	argv.	The	father	process	waits	for	its	child	process	to	terminate	by	using	the	wait	system	
call	before	returning	to	the	Shell's	main	execution	cycle.	

As	an	example,	consider	the	command	for	listing	the	contents	of	the	current	directory,	in	its	"long"	version:	
ls -l

In	this	case,	the	array	built	by	makeargv	will	contain "ls", "-l" and NULL. Subsequently,	the	function	runcommand	
creates	a	process	that	prints	those	words.	Example:
switch (fork()) {
 case -1: perror("fork"); exit(1);

 case 0: printf("should execute: ");
 for(int i=0; argv[i]!=NULL; i++)
 printf("%s\n", argv[i]);
 exit(0);

 default: wait(NULL); // wait for child exit
}

Will	produce	the	following	output:	

should execute:
ls
-l

Bibliography
• Chapter	5	and	appendix	F	(Lab	Tutorial)	of	recommended	book	http://www.ostep.org/	
• On-line	manual	pages	for	LibC	and	system	call	functions:	fork,	wait,	exit	and	strcmp.	

Annex

int makeargv(char *s, char *argv[]) {
 // in: s points a text string with words
 // pre: argv is predefined as char *argv[ARGVMAX]
 // out: argv[] points to all words in the string s (*s is modified!)
 // return: number of words pointed to by the elements in argv (or -1 in case of error)
 int ntokens;

 if (s==NULL || argv==NULL || ARGVMAX==0)
 return -1;

 ntokens = 0;
 argv[ntokens]=strtok(s, " \t\n");
 while ((argv[ntokens]!= NULL) && (ntokens<ARGVMAX)) {
 ntokens++;
 argv[ntokens]=strtok(NULL, " \t\n"); // breaks 's' inline at separators
 }
 argv[ntokens] = NULL; // terminate with NULL reference
 return ntokens;
}

