
1	

Fundamentos de Sistemas de Operação
MIEI 2018/2019

Laboratory session 5

Overview

Information	about	Linux	memory	map	of	a	process.	Process	internal	memory	management	with	malloc/free.		

Memory map of a Linux process

Let’s	start	by	running	a	program	(mem.c)	adapted	from	one	that	appears	in	chapter	2	of	the	OSTEP	book.	
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

int global; // global var not inicialized
int vglob = 3; // inicialized global var
const int cglob = 10; // global constant

int main(int argc, char *argv[])
{
 long pid; // local var (on stack)
 int *p; // local var for pointer

 if (argc != 2) {
 fprintf(stderr, "usage: %s <value>\n", argv[0]);
 exit(1);
 }
 p = (int*)malloc(sizeof(int)); // malloc'd memory is on "heap"
 assert(p != NULL);

 *p = atoi(argv[1]);
 pid = (long)getpid();
 global = vglob = pid; // all vars written with process ID

 printf("(pid:%ld) addr of main: %lx\n", pid, (unsigned long) main);
 printf("(pid:%ld) addr of printf: %lx\n", pid, (unsigned long) printf);
 printf("(pid:%ld) addr of getpid: %lx\n", pid, (unsigned long) getpid);
 printf("(pid:%ld) addr of p: %lx\n", pid, (unsigned long) &p);
 printf("(pid:%ld) addr of argv: %lx\n", pid, (unsigned long) argv);
 printf("(pid:%ld) addr stored in p: %lx\n", pid, (unsigned long) p);
 printf("(pid:%ld) addr of global: %lx\n", pid, (unsigned long) &global);
 printf("(pid:%ld) addr of cglob: %lx\n", pid, (unsigned long) &cglob);
 printf("(pid:%ld) addr of vglob: %lx\n", pid, (unsigned long) &vglob);

 while (*p > 0) {
 *p = *p - 1;
 sleep(10);
 printf("(pid:%ld) value of p: %d\n", pid, *p);
 }
 return 0;
}

This	program	exhibits	several	memory	objects	that	live	in	different	memory	segments	of	a	process	address	space.	
Run	 the	 program	 several	 times	 and	 observe	 that	 virtual	 addresses	 are	 always	 (more	 or	 less)	 the	 same1.	 Run	
several	instances	of	the	program	simultaneously	and	see	that	distinct	processes	emit	the	same	virtual	addresses,	
although	these	must	correspond	to	distinct	physical	addresses	(at	least	some	of	 them,	such	as	 the	ones	holding	
written	variables).	

Open	another	terminal	and,	while	running	the	process	above,	give	the	command	pmap	<pid>	(whose	information	
comes	from	the	Linux	kernel	using	the	pseudofile	/proc/<pid>/maps)		

																																																													
1	Linux	 kernel	 uses,	 by	 security	 reasons,	 a	 technique	 called	 Address	 Space	 Layout	 Randomization	 (ASLR).	 In	 order	 to	 prevent	 an	
attacker	from	jumping	to	know	locations	in	memory,	ASLR	randomly	changes	the	base	address	of	data	and	stack	segments.	According	
to	this,	some	virtual	addresses	will	not	be	exactly	the	same	in	each	process	instance,	but	just	similar.	

2	

Using	the	values	printed	by	the	program	and	the	output	of	the	command,	you	can	get	a	table	like	the	next	one	(a	
different	system	can	get	you	a	different	memory	map).	Complete	or	adapt	the	following	table	for	you	case:	

begin	add	 size	 permissions	 content	 prg	obj		 addresses	
08048000 4K r-x-- (.code) main, cglobal, etc…

08049000 4K rw--- (.data, .bss) global, vglobal

08525000 132K rw--- (heap) pointed by p

b75c9000 4K rw--- [anon]

dynamic	shared	libraries	
	
	
	
	
	
	
	

dynamic	linker	loader

b75ca000 1692K r-x-- libc-2.19.so

b7771000 8K r---- libc-2.19.so

b7773000 4K rw--- libc-2.19.so

b7774000 12K rw--- [anon]

b7782000 12K rw--- [anon]

b7785000 4K r-x-- (vdso)

b7786000 8K r---- (vvar)

b7788000 128K r-x-- ld-2.19.so

b77a8000 4K r---- ld-2.19.so

b77a9000 4K rw--- ld-2.19.so

bfb10000 132K rw--- [stack] p, argv

TOTAL:	 2152K

	
Identify	 the	 several	 program	 segments	 and	 relate	 with	 your	 C	 program	 object’s	 addresses	 and	 pages’s	 RWX	
permissions.	Notice	the	memmaped	loader	(ld.so)	and	libc	files	and	respective	data	segments.	

The system call getrlimit

Any	program	can	get	information	about	its	several	resources	limitations.	Some	resources	can	be	changed	within	
some	 hard	 limits	 imposed	 by	 the	 OS	 (and	 its	 administrator).	 Consult	 the	 manual	 page	 of	 the	 system	 call	
getrlimit.	Consider	the	following	C	program:	
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/time.h>
#include <sys/resource.h>

void Getrlimit(int limitType, struct rlimit *r) {
 int res = getrlimit(limitType, r);
 if(res < 0){ perror("getrlimit"); exit(1);}
}

int main(int argc, char *argv[]) {
 struct rlimit r;

 Getrlimit(RLIMIT_AS, &r);
 printf("Maximum size of process virtual addres space; soft limit = %lx, hard limit = %lx\n",
 (unsigned long)r.rlim_cur, (unsigned long)r.rlim_max);

 Getrlimit(RLIMIT_DATA, &r);
 printf("Maximum size of process's data segment(intialized, uninitiliazed, heap); soft limit =
%lx, hard limit = %lx\n",
 (unsigned lon)r.rlim_cur, (unsigned long)r.rlim_max);

 Getrlimit(RLIMIT_STACK, &r);
 printf("Maximum size of process stack; soft limit = %lx, hard limit = %lx\n",
 (unsigned long)r.rlim_cur, (unsigned long)r.rlim_max);
 return 0;
}

This	program	prints	several	of	its	virtual	memory	limits.	Compile	and	run	it	and	compare	the	results	obtained	with	
the	table	of	last	section.	

Now	try	to	declare	a	local	array	in	main	function	with	more	than	8MB,	like:	
char a[9*1024*1024]; or			char *a = alloca(9*1024*1024);	

3	

Can	you	execute	that	program?	Why?	Try	to	solve	your	problem	by	reading	ulimit	and	setrlimit	manuals…	

	

Malloc and System call brk

The	heap	is	a	continuous	space	of	memory	(i.e.	continuous	in	terms	of	virtual	addresses)	with	three	bounds:		

• a	starting	point	
• a	maximum	limit,	that	can	be	obtained	using	getrlimit		
• an	the	current	end	point	called	the	break.		

The	break	marks	the	end	of	the	mapped	data	memory	space,	i.e.	it	is	the	highest	virtual	address	that	can	be	used	by	
the	heap	at	some	point	in	time.	The	value	of	this	limit	can	be	changed	with	the	system	calls	brk	and	sbrk.		

#include <unistd.h>

int brk(void *addr)	–	sets	the	end	of	data	the	segment	to	the	value	specified	by	addr,	if	possible;		returns	0	on	
success	and	-1	on	error.	

void * sbrk(intptr_t incr)	–	increments	the	data	segment	by	 incr.	On	success,	returns	the	previous	program	
break;	if	the	program´s	break	was	increased,	the	returned	value	represents	a	pointer	(address)	to	the	start	of	the	
newly	allocated	memory;	on	error	returns	(void	*)-1.	 In	the	current	versions	of	Linux,	sbrk	 is	a	library	call	 that	
uses	brk.	

Consult	 the	 manual	 pages	 of	 the	 system	 calls	 brk,	 sbrk	 and	 after	 that,	 consider	 the	 following	 program	
(sbrktest.c):	
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

void *Sbrk(unsigned int increment){
 void *res = sbrk((intptr_t)increment);
 if(res == (void *)-1){
 perror("sbrk");
 exit(1);
 }
 return res;
}

int main(int argc, char *argv[])
{
 unsigned int moreSpace;

 if(argc != 2){
 printf("%s size_of_memory_to_allocate\n", argv[0]);
 exit(1);
 }
 moreSpace = atoi(argv[1]);

 // getting the current break value
 printf("Current program break = %u\n", (unsigned int) Sbrk(0));

 // moving program break
 Sbrk(moreSpace);
 printf("New program break = %u\n", (unsigned int) Sbrk(0));

 return 0;
}

Run	 the	 above	 program	 with	 increasing	 arguments	 until	 there	 is	 an	 error	 message.	 Compare	 the	 value	 that	
conducts	to	an	error	with	the	limit	indicated	by	rlimit.	

Malloc/Free 1st implementation 2

Consider	the	following	version	of	a	tentative	malloc	function	(mymalloc1.c):	
	
#include <sys/types.h>

																																																													
2	From	now	on,	this	guide	uses	parts	of	the	report	“A	Malloc	Tutorial”	by	Marwan	Burelle,	Laboratoire	Système	et	Sécurité,	
École	Pour	l'Informatique	et	les	Techniques	Avancées	(EPITA),	2009.	This	guide	is	also	in	the	clip.	

4	

#include <unistd.h>

void * myMalloc(size_t size){
 void *p = sbrk(size);
 /* If sbrk fails, we return NULL */
 if (p == (void*)-1)
 return NULL;
 return p;

}

This	code	works?	If	the	answer	is	yes,	what	is	the	reason	why	it	should	not	be	used?	

Malloc/Free 2nd implementation

As	you	cleverly	devised,	the	code	above	cannot	be	used	because	it	is	not	possible	to	free	the	allocated	memory	in	
the	code	through	a	free	function.	To	build	usable	versions	of		malloc	/	free	the	heap	can	be	organised	as	in	the	next	
figure.	This	is	extracted	from	the	report	cited	in	the	previous	footnote:	

	

	

As	sketched,	each	allocated	block	of	memory	has	two	parts:	

• metadata	--	elements	for	managing	the	space,	including	a	pointer	to	the	next	block;	
• the	 space	 to	 be	 used	 by	 the	 process,	 returned	 by	 malloc();	 please	 note	 that	 “pointer”	 in	 the	 picture	

corresponds	to	the	value	returned	to	the	process	by	malloc().	

In	C	(see	mymalloc2.c),	we	can	have	a	linked	list	for	that	metadata,	where	each	record	is	defined	according	to	the	
following	declaration:	
typedef struct s_block *t_block;

struct s_block {
 size_t size; // size of current block
 t_block next; // pointer to next block
 int free; // flag indicating that the block is free or occupied; 0 or 1. Occupies 32
 // bits but the compiler aligns the structure to a multiple of 4

};

Finding a chunk of memory to reuse using the First Fit algorithm

When	possible,	malloc	should	try	to	reuse	a	freed	block.	Suppose	we	maintain	the	following	two	global	pointers:	

• base	which	points	to	the	beginning	of	the	block	list;	
• last		which	points	 to	 the	last	element	of	 the	list	 (this	 is	useful	when	there	 is	no	space	available	and	you	

need	to	add	a	new	block	to	the	list).	
t_block find_block(size_t size){
 t_block b=base;
 while (b!=NULL && !(b->free && b->size >= size)) {
 b = b->next;
 }
 return b;
}

The	code	is	easy	to	follow	as	we	just	travel	through	the	list	until	a	block	with	size	equal	or	bigger	to	needed	size	is	
found.	If	there	is	no	such	block,	NULL	is	returned.	

5	

Extending the heap

When	there	is	no	free	block	to	reuse,	 it	 is	necessary	to	extend	the	heap,	the	sbrk()	 function	is	called	to	get	more	
space	that	is	then	added	to	our	list.	
#define BLOCK_SIZE sizeof(struct s_block)

t_block extend_heap(size_t s){
 t_block b = (t_block) sbrk(BLOCK_SIZE + s);
 if (b == (void*)-1)
 /* if sbrk fails, return NULL pointer*/
 return NULL;
 b->size = s;
 b->next = NULL;
 b->free = 0;
 if (base==NULL) base=b;
 else last->next = b;
 last = b;
 return b;
}

Work to do

Using	the	code	fragments	above	produce	working	versions	of	the	following	functions:	
void *myMalloc(unsigned int noBytesToAllocate);

int myFree(void *address);

myMalloc	and	myFree	behaviour	correspond	to	the	C	library	functions	malloc	and	free.	

To	test	your	code	add	a	function	
void debugBlockList()

that	dumps	the	contents	of	the	block	list,	printing,	in	a	separate	line,	the	metadata	associated	with	each	memory	
block.	

Final comment

Function	find_block	above	returns	to	the	caller	the	first	(free)	block	found	regardless	of	its	size.	Of	course,	this	is	a	
waste	of	space.	If	interested,	you	can	consult	the	report	cited	in	footnote	2	or	the	section	8.7	(pages	185-188)	of	
the	 book	 “The	 C	 programming	 Language	 2nd	 Ed”,	B.	Kernighan,	D.	Ritchie,	Prentice-Hall	1988	3to	 learn	 how	 to	
build	 much	 more	 efficient	 (in	 terms	 of	 memory	 usage)	 versions	 of	malloc	 and	 free.	 It	 is	 also	 useful	 to	 study	
chapters	13,	14,	and	17	of	the	course’s	reference	book	Operating	Systems:	Three	Easy	Pieces,	R.	Arpaci-Dusseau,	
R.	Arpaci-Dusseau,	2015.			

	

	

																																																													
3	This	book	is	not	included	in	the	course	references	but	any	serious	candidate	to	a	degree	in	Informatics	or	Computer	Science	
and	Engineering	must	have	it	in	its	bookshelf.	

