
1	

Fundamentos de Sistemas de Operação
MIEI 2018/2019

Laboratory session 7

Overview
Memory	mapped	files.	Static	and	dynamic	linking.		

Testing mmap
Read the manual page of mmap. The given mmcat.c program copies the contents of a file to the process’ standard output,
similarly to the cat	command. Try such program.

#include <stdlib.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>

void fatal_error(char *str){
 perror(str);
 exit(1);
}

/* mmapcopy - uses mmap to copy file fd to stdout
 */
void mmapcopy(int fd, int size) {
 char *bufp; /* ptr to memory mapped VM area */
 int n;

 bufp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
 if(bufp == MAP_FAILED) fatal_error("mmap ");

 n = write(1, bufp, size);
 if(n != size) fatal_error("write ");
}

int main(int argc, char *argv[]) {
 struct stat stat;
 int fd;

 /* check for required command line argument */
 if (argc != 2) {
 printf("usage: %s <filename>\n", argv[0]);
 exit(1);
 }

 /* copy the input argument to stdout */
 fd = open(argv[1], O_RDONLY, 0);
 if(fd < 0) fatal_error("error in open");

 if(fstat(fd, &stat) != 0) fatal_error("error in fstat");

 mmapcopy(fd, stat.st_size);
 return 0;
}

Implement	 a	 program	 that	 copies	 files	 (like	 previous	copy.c)	 but	without	 using	 read/write	 system	 calls.	 You	
should	use	mmap	to	transform	the	copy	of	files	into	a	copy	of	memory.		

Notice	that	for changes to the mapped memory be saved:	

• the	file	to	write	must	be	opened	read/write	(O_RDWR)	and	mapped	with	PROT_WRITE	and	MAP_SHARED;	
• the	file	must	be	resized	to	the	final	size.	Use	ftruncate	for	that.	

2	

After	 testing	 your	program,	note	 that	 there	 are	 files	 of	 all	 sizes,	 and	you	 can’t	map	all	 of	 them	 to	 your	process	
memory	address	space.	Then,	for	the	final	version	of	you	program,	take	that	into	account.	Try	using	as	argument	to	
your	program	the	maximum	size	of	your	mapped	memory	buffer,	 like	 in	previous	copy.c	and	fcopy.c.	Your	
program	should	be	used	like	this:	

mmcopy size			file1			file2

Notice	that:		

• 	Ideally,	 the	 used	 memory	 buffer	 should	 be	 a	 multiple	 of	 page	 size	 for	 your	 architecture.	 Use	
sysconf(_SC_PAGE_SIZE)	to	get	that	page	size;	

• in	 order	 to	 reuse	 the	 same	memory	 space,	 you	must	 use	munmap	 to	 free	 each	 unneeded	mapping	 (similar	
action	 can	 be	 achieved	 using	 option	 MAP_FIXED to	 enforce	 the	 use	 of	 the	 same	 address).	 Read	 mmap	 and	
munmap	man	pages.	

Compare	this	program	performance	with	copy.c	and	fcopy.c,	for	the	same	buffer	sizes.	

	

Static and dynamic linking

1. Comparing statically- and dynamically- linked executables

Consider	any	one	of	the	programs	used	before.	Usually,	by	default,	dynamic	linking	of	shared	libraries	is	used	by	
development	tools.	Make	a	copy	of	the	current	executable	 file	and	compile	again	the	program	forcing	 the	use	of	
static	linking.	Example:	

gcc -static -o mmcat.static mmcat.c

Then	compare	de	programs	sizes:	
size mmcat.dynamic

size mmcat.static

Try	man	ldd	and	then	execute	the	following	commands	to	see	the	used	dynamic	libraries:		
 ldd mmcat.dynamic

 ldd mmcat.static

Why	the	results	are	different?	

Execute	each	program	seeing	its	use	of	system	calls	with	strace1	command:	
strace mmcat.dynamic

strace mmcat.static

Verify	 the	differences	and	observe	 the	mmap	 calls	done	 in	the	dynamic	version	by	 the	dynamic	 linker	 loader	 to	
map	libc	library	to	the	process	as	needed.			

2. Generation of static libraries

Consider	the	several	files	that	simulates	a	set	of	usefull	functions	that	we	want	to	build	as	a	binary	code	library:			
util_file.c,		util_math.c	,	util_net.c.		

Compile	all	files	as	usually	and	after	that	build	a	library	by	creating	an	archive	file	with	all	the	compiled	files:	
 cc –c util_file.c util_math.c util_net.c.

 ar -rs libmyutil.a util_file.o util_net.o util_math.o

To	verify	the	library	contents,	do:	
 ar -t libmyutil.a

																																																													
1	If	 strace	 is	 not	 installed	 use	 your	 system	 package	management	 tool	 to	 install	 it	 or,	 if	 in	 a	 debian	 based	 distribution,	 give	 one	 of	 the	
following	commands:		apt install strace	,		apt-get install strace.	

3	

and nm –s libmyutil.a

4	

Consider	now	the	program	main.c	that	uses	your	library:	
#include <stdio.h>
#include "myutil.h"

int main() {
 printf("Inside main()\n");

 /* use a function from each object file that is in the library */
 util_file();
 util_net();
 util_math();
 return 0;
}

Compile	and	link	you	program	using	the	command:	
 cc –static -o main main.c -L. -lmyutil

The	option	-L.	gives	the	current	directory	as	one	that	contains	libraries	and	–lmyutil	requests	the	linking	of	the	
libmyutil	library.	If	you	don't	use	“-static”,	your	library	will	still	be	linked	statically	but	libc	dynamically.	Run	the	
executable	confirming	that	everything	works	as	expected.		

To	see	that	cc	is	a	compiler	driver	that	calls	the	several	phases	of	the	compiler	and	finally	the	linker	do:	
 cc -v –static -o main main.c -L. -lmyutil

3. Generation of dynamic libraries

The	 generation	 of	 a	 dynamic	 library	 is	 similar	 to	 creating	 a	 static	 library.	 Although,	 there	 are	 two	 important	
differences:		

1. The	 compiler	 must	 generate	 code	 that	 is	 position	 independent.	 As	 the	 processes	 can	 load	 the	 library	 in	
different	virtual	addresses	all	the	references	in	the	code	(jumps,	accessing	variables,	etc)	must	be	relative	(to	
current	Instruction	Pointer	register).	In	LINUX,	this	is	achieved	passing	the	flag		-fPIC	or	–fpic	to	the	compiler		

2. The	tool	used	to	create	the	library	is	not	ar.	One	must	use	the	ld	tool	(directly	or	through	cc).	The	flag	to	use	is	
“-shared”		

You	 can	 build	 both	 versions	 of	 a	 library	 but,	 for	 now,	 remove	 libmyutil.a.	 The	 sequence	 of	 commands	 used	 to	
create	a	dynamic	(also	shared)	library	is:		

cc -fpic -c util_file.c util_net.c util_math.c

ld -shared -o libmyutil.so util_file.o util_net.o util_math.o

or	just:	cc -fpic -shared -o libmyutil.so util_file.c util_net.c util_math.c

	

Run	file	command	to	verify	the	file	type	of	libmyutil.so.		

Compile	and	link	with	your	library	(you	can	use	–shared,	but	that	is	the	default):		
cc -o main main.c -L. -lmyutil

Try	to	execute	and	check	the	dynamic	linking	by	using	ldd main.	It	worked?	

At	execution	time,	usually	the	dynamic	loader	looks	for	the	shared	library	file	in	a	pre-defined	set	of	directories	
(/lib,/usr/lib,	/usr/X11R6/lib,	...).	One	way	is	to	configure	the	value	of	the	environment	variable	LD_LIBRARY_PATH	
in	order	to	extend	the	search	to	other	places.	Now	do	the	following:		

LD_LIBRARY_PATH=. ./main

Now	it	worked?	Why?	Execute	the	command		
LD_LIBRARY_PATH=. ldd main

and	see	why.		

To	know	more	about	shared	and	dynamic	libraries	study	the	Program	Library	HOWTO	from	

	http://www.dwheeler.com/program-librar	

