
1	

Fundamentos de Sistemas de Operação
MIEI 2018/2019

Laboratory session 9

Objectives
Do	parallel	counting	using	Pthreads	API;	the	use	of	mutexes.		

Counting numbers in an array
The	 following	code	belongs	to	a	program	that	counts	the	number	of	 times	a	specified	number	appears	 in	an	
array	(vector)	of	integers,	and	measures	the	time	it	takes	to	complete	such	operation.	The	array	is	initialized	
with	 random	 integer	numbers	 from	0	 to	3.	 	 The	docount	 function	 counts	 the	number	of	 elements	equal	 to	
number	given	in	tofind	(e.g.	3).		

	
int *array;
int count = 0;
int tofind = 3;

void docount(void) {
 for (int i=0; i < SIZE; i++) {
 if (array[i] == tofind) {
 count++;
 }
 }
}

int main(int argc, char *argv[]) {
 struct timeval t1,t2;

 array= (int *)malloc(SIZE*sizeof(int));
 tofind = 3;

 srand(0);
 for (int i=0; i < SIZE; i++) {
 array[i] = rand() % 4;
 }

 gettimeofday(&t1, NULL);
 docount();
 gettimeofday(&t2, NULL);

 printf("Count of %d = %d\n", tofind, count);
 printf("Elapsed time (ms) = %lf\n",
 ((t2.tv_sec - t1.tv_sec)*1000000 + (t2.tv_usec - t1.tv_usec))/1000.0);
 return 0;
}

Measure	 the	 time	that	this	sequential	program	takes	 to	count	number	3	 in	 the	array.	After	 that,	 rewrite	 this	
program	 to	 use	 two	 (or	more)	 threads	 to	 do	 that	 same	 operation,	 using	pthread_create.	 The	docount	
function	is	prepared	to	look	just	to	a	partition	of	the	data,	hence	you	can	easily	use	it	for	the	several	threads,	so	
that	each	thread	counts	the	numbers	in	some	part	of	the	array.	Don’t	forget	to	compile	with	“-pthread”	option.	

Is	the	counting	correct?	Measure	the	time	for	your	new	multithreaded	version.		

Produce	a	new,	corrected,	version	of	the	program	controlling	the	concurrency,	using	mutexes	if	needed.		Is	this	
version	faster	or	slower	that	the	previous	ones?		

There	are	several	possible	correct	solutions,	some	with	better	performance	than	others.	You	can	even	design	a	
solution	that	doesn’t	need	mutexes.	Try	to	implement	more	than	one.	Explain	the	execution	time	differences	
between	all	program	versions.	

	

