

1

Fundamentos de Sistemas de Operação

MIEI 2018/2019

Homework Assignment 1

Deadline and Delivery

This assignment is to be performed individually by each student – any detected frauds will cause failing the
discipline. The code has to be submitted for evaluation via the Mooshak system
(http://mooshak.di.fct.unl.pt/~mooshak/) using each student’s individual account -- the deadline
is 17h00, October 19th, 2018 (Friday).

Description

The goal of this assignment is to implement a process’s scheduling algorithm in an OS simulator. The simulator
is written in Java and includes the simulation of several hardware and OS concepts in a very simplified way. In
this assignment, you will only have contact with a small part of the simulator, namely concerning process
scheduling.

Scheduling algorithm

The scheduler to be implemented features two levels of priority, materialized into two queues, and behaves as
follows:

1. Every process starts with the maximum priority (and hence is placed in the high priority queue);
2. The next process to be dispatched for execution is selected from the ones with highest priority, using

Round-Robin among the processes in the same queue;
3. Process execution is limited by a time-slice (or quantum);
4. A process always runs the quantum assigned to it until the end, if it that means exceeding the quota.

For example, if a process’ quota is 7 and the quantum is 10, the process runs 10 clock ticks and not 7.
5. After running an accumulated time-quota of CPU time, a process drops to the low priority queue;
6. When the IO of a process finishes, that process is added to the high priority queue, and its quota is

renewed;

The high and low priority queue use time-slices of 10 and 20 clock ticks, respectively. In turn, the scheduler uses
time-quotas of 20 clock ticks. Note that, when a process is blocked or preempted, you should decrement the
used time of that process’ quota; if the quota becomes zero or bellow, then the process gets its priority lowered
and a new quota;

The Simulator

Your work will be confined to the implementation of class caoss.simulator.os.scheduling.FSOScheduler, of which a
skeleton is already given. This class implements the caoss.simulator.os.Scheduler interface that comprises the
following 5 methods (that trigger the several processes’ state changes):

• newProcess(Program prog) – This method is called by the simulator upon a program’s execution request and
must create a process to execute the program prog.

• ioRequest(ProcessControlBlock<SchedulingState> pcb) – It is invoked when the process (with control block pcb) that
is running in the CPU requests an input/output operation.

• ioConcluded(ProcessControlBlock<SchedulingState> pcb) – This one is called when the input/output operation
requested by the process (with control block pcb) ends.

• quantumExpired(ProcessControlBlock<SchedulingState> pcb) – This method is invoked when the process (with
control block pcb) running in the CPU exhausts its quantum (time-slice).

• processConcluded(ProcessControlBlock<SchedulingState> pcb) – It is called when the process (with control block pcb)
has concluded its execution.

To accomplish your assignment, you must also study other classes of the simulator, namely:

2

• caoss.simulator.Program – Describes the program executed by a process.

• caoss.simulator.os.ProcessControlBlock – Defines the information required by the system to manage a process’
execution. For instance, the pid and the process’ time of arrival to the system.

• caoss.simulator.os.scheduling.SchedulingState – The scheduling information that must be kept for each process in
the system is represented in this class. Examples of the information you may use are the time-quota
given to the process, its priority, and the last time when the process was scheduled.

• caoss.simulator.os.Dispatcher – Loads the execution context of a process in the target CPU. If there is no
process to dispatch, your code will mandatorily have to dispatch the idle process, i.e. null:

Dispatcher.dispatch(some_pcb) or Dispatcher.dispatch(null)

• caoss.simulator.hardware.Clock – Defines the computer’s clock. The method to obtain the current time is:

Hardware.clock.getTime()

• caoss.simulator.hardware.Timer – Implements the computer’s timer. It may be programmed to notify the
scheduler that the quantum (time-slice) assigned to a process has expired.

o To obtain the simulator’s timer use the following line of code:

Timer timer = (Timer) Hardware.devices.get(DeviceId.TIMER);

o To program the timer, use the set() method. For instance, timer.set(10) programs the timer to
interrupt the CPU and gives control to the Operating System, in 10 time units.

• caoss.simulator.os.Logger – This is the Operating System’s logger. You must use it to output the result of your
scheduling algorithm. Concretely, you must use the static method Logger.info(). You may change the detail
level of the logger by altering line 34 of class caoss.simulator.os.Logger to LOGGER.setLevel(Level.ALL). This
modification will not have impact on your submission to Mooshak.

To simplify your understanding of the simulator, you may find the implementation of a Round Robin scheduler
in class caoss.simulator.os.scheduling.RoundRobinScheduler. You can test this scheduler by copying its code to the
caoss.simulator.os.scheduling.FSOScheduler class or by altering the field scheduler of class caoss.simulator.os.FSOOS.

You also have javadoc information at your disposal in folder doc.

Output issues:

1. All processes waiting for input/output operations must be placed in queue blocked, so that their status is
printed by the logQueues method. See example below.

2. You must output the information that a process has expired its quota. To that end, use the following
code line:

Logger.info("Process " + pcb.pid + ": quota expired");

eclipse-javadoc:%E2%98%82=caoss/src%5C/main%5C/java%3Ccaoss
eclipse-javadoc:%E2%98%82=caoss/src%5C/main%5C/java%3Ccaoss.simulator
eclipse-javadoc:%E2%98%82=caoss/src%5C/main%5C/java%3Ccaoss.simulator.os
eclipse-javadoc:%E2%98%82=caoss/src%5C/main%5C/java%3Ccaoss
eclipse-javadoc:%E2%98%82=caoss/src%5C/main%5C/java%3Ccaoss.simulator
eclipse-javadoc:%E2%98%82=caoss/src%5C/main%5C/java%3Ccaoss.simulator.os

3

Development environment, compilation and execution

The simulator’s source code (available from CLIP) is a Maven managed project. You may import it to Eclipse or
some other IDE. For instance, in Eclipse, use File → Import … → Maven → Existing Maven Project, select the
caoss project, and click on the Finish button.

Subsequently, you will be able to execute the simulator by running class caoss.simulator.CAOSS.

If you prefer to compile and run the project from the command line, compile it using the mvn command:

 cd caoss
 mvn compile

To run the caoss.simulator.CAOSS class type (in directory caoss):

 java –cp target/classes caoss.simulator.CAOSS

The simulator presents a command line from where you may simulate a program execution:

exec examples/ex1.caoss

or multiple programs at once:

exec examples/ex1.caoss examples/ex2.caoss examples/ex3.caoss

To terminate the simulator’s execution type:

shutdown

Bibliography

[1] Chapter 8 of the recommended book, “Operating Systems: Three Easy Pieces Remzi H. Arpaci-Dusseau and
Andrea C. Arpaci-Dusseau”

Submission to Mooshak

You only have to submit your implementation of class caoss.simulator.os.scheduling.FSOScheduler (FSOScheduler.java).

Example of a Schedule

See below the example of a schedule using the algorithm that you will have to implement.

4

Command: exec examples/ex1.caoss examples/ex1.caoss examples/ex4.caoss

Result:
Create process 0 to run program examples/ex1.caoss

Run process 0 (quantum=10, quota=20)

Queue 0: []

Queue 1: []

Blocked []

Create process 1 to run program examples/ex1.caoss

Queue 0: [1]

Queue 1: []

Blocked []

Create process 2 to run program examples/ex4.caoss

Queue 0: [1, 2]

Queue 1: []

Blocked []

Process 0: quantum expired

Run process 1 (quantum=10, quota=20)

Queue 0: [2, 0]

Queue 1: []

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: [0, 1]

Queue 1: []

Blocked []

Process 2: IO request

Run process 0 (quantum=10, quota=10)

Queue 0: [1]

Queue 1: []

Blocked [2]

Process 0: quantum expired

Process 0: quota expired

Run process 1 (quantum=10, quota=10)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Process 1: quota expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

5

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

6

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

7

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: IO request

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [0, 1]

Blocked []

Process 2: IO request

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked [2]

Process 2: IO concluded

Queue 0: [2]

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 2 (quantum=10, quota=20)

Queue 0: []

Queue 1: [1, 0]

Blocked []

Process 2: execution concluded

Process 2: turnarround time: 482

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked []

Process 1: quantum expired

8

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked []

Process 0: quantum expired

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: [0]

Blocked []

Process 1: quantum expired

Run process 0 (quantum=20, quota=20)

Queue 0: []

Queue 1: [1]

Blocked []

Process 0: execution concluded

Process 0: turnarround time: 677

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: []

Blocked []

Process 1: quantum expired

Run process 1 (quantum=20, quota=20)

Queue 0: []

Queue 1: []

Blocked []

Process 1: execution concluded

Process 1: turnarround time: 704

Queue 0: []

Queue 1: []

Blocked []

	Fundamentos de Sistemas de Operação
	MIEI 2018/2019
	Homework Assignment 1
	Deadline and Delivery
	Description
	Scheduling algorithm
	The Simulator
	Development environment, compilation and execution
	The simulator presents a command line from where you may simulate a program execution:
	or multiple programs at once:
	To terminate the simulator’s execution type:
	shutdown
	Bibliography
	Submission to Mooshak
	Example of a Schedule

