PROBABILIDADES E ESTATÍSTICA

Exercícios sobre Probabilidades

Edição 2018

Fátima Miguens

Breve revisão sobre cálculo combinatório

1. Os escritórios de uma empresa estão equipados com telefones funcionando internamente como extensões identificadas por uma sequência de 3 algarismos, dos quais o primeiro não é zero. Quantos telefones podem ser identificados?

Solução: 900

2. Lança-se um dado sucessivamente 10 vezes. Quantos são os resultados possíveis?

Solução: 6¹⁰

- 3. Um centro comercial tem 8 portas. De quantas maneiras distintas se pode
 - (a) entrar e sair do centro comercial?
 - (b) entrar por uma porta e sair por outra?

Solução: 64, 56

- 4. De quantos modos diferentes é possível dispor numa fila para fotografia, 3 homens e 2 mulheres se:
 - (a) os homens e as mulheres puderem ocupar indistintamente qualquer lugar?
 - (b) se um dos homens, o mais alto por exemplo, ficar no meio e todos os restantes indistintamente em qualquer lugar?
 - (c) se ficarem alternadamente homens e mulheres, nunca dois homens seguidos ou duas mulheres seguidas?

Solução: 120, 24, 12

- 5. Quatro livros de Matemática, seis de Física e dois de Química, todos diferentes, devem ser arrumados numa prateleira. Quantas arrumações diferentes são possíveis, se:
 - (a) os livros de cada matéria ficarem todos juntos?
 - (b) os livros de Matemática ficarem juntos e os outros em qualquer lugar?

Solução: 207360, 8709120

6. Vinte e cinco membros de uma sociedade devem eleger um presidente, um secretário e um tesoureiro. Supondo que qualquer um dos vinte e cinco membros é elegível para qualquer dos cargos e não são admitidas acumulações de cargos, quantas são as hipóteses distintas de eleição?

Solução: 13800

7. Quantos subconjuntos de 3 elementos do conjunto $\{a, b, c, d, e\}$, pode formar?

Solução: 10

8. De quantas maneiras distintas se poderá formar uma comissão, com três elementos escolhidos de entre os vinte e cinco membros de uma sociedade?

Solução: 2300

- 9. Entre 5 Matemáticos e 7 Físicos, deve formar-se uma comissão constituída por 2 Matemáticos e 3 Físicos. Quantas comissões distintas se podem formar, se:
 - (a) qualquer Matemático e qualquer Físico puderem ser incluídos?
 - (b) um determinado Físico dever ser obrigatoriamente incluído?
 - (c) dois determinados Matemáticos nunca puderem ser incluídos?

Solução: 350, 150, 105

10. Numa repartição pública existem, além do director, 152 empregados. Destes empregados, 54 são contabilistas, 67 são secretários e 31 atendem ao balcão. O novo plano de segurança obriga a que a 10 destes empregados seja ministrado um breve curso de actuação em caso de incêndio.

De quantas maneiras diferentes pode o director formar o grupo de maneira a que ele contenha

- (a) exactamente um contabilista?
- (b) pelo menos um contabilista?
- (c) exactamente dois contabilistas?
- (d) pelo menos dois contabilistas?

Solução:
$$\binom{54}{1}\binom{98}{9}$$
, $\binom{152}{10}-\binom{98}{10}$, $\binom{54}{2}\binom{98}{8}$, $\binom{152}{10}-\binom{98}{10}-\binom{54}{10}\binom{98}{9}$

- 11. Mostre que:
 - (a) $\binom{n}{k} = \binom{n}{n-k}$, $\forall n \in \mathbb{N}$, $k \in \mathbb{N} \in 0 \le k \le n$.
 - (b) $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$, $\forall n \in \mathbb{N}$, $k \in \mathbb{N} \in \mathbb{1} \le k \le n$.

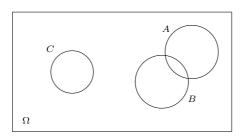
Resultados importantes a conhecer ou a recordar:

•
$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a+b)^n, \quad \forall n \in \mathbb{N}, \quad \forall a, b \in \mathbb{R}$$

$$\bullet \ \sum_{k=0}^{n} \binom{M}{k} \binom{P}{n-k} = \binom{M+P}{n}, \quad \forall \, M,P \in \mathbb{N}, \quad 0 \leq n \leq M+P, \quad 0 \leq n \leq \min\left(M,P\right)$$

Espaço de resultados e álgebra de acontecimentos

- 12. Considere $\Omega = \{a,b,c,d\}$ o espaço de resultados associado a uma experiência aleatória e os acontecimentos $A = \{a,b\}, B = \{b,c,d\}$ e $C = \{d\}.$ Escreva os acontecimentos $\overline{A}, A \cap B, A \cup C, A \cap B \cap C, B C, B \cap \overline{C}, \overline{B} \cap A, \overline{A \cap B}, \overline{A} \cup \overline{B}, \overline{A \cup B}, \overline{A} \cap \overline{B}, A \cup (B \cap C)$ e $(A \cup B) \cap C$.
- 13. Três acontecimentos A, B e C estão representados no seguinte diagrama de Venn. Reproduza a figura



e marque a região correspondente a cada um dos seguintes acontecimentos: \overline{A} , $(A \cap B) \cup (A \cap \overline{B})$, $(A \cap B) \cup C$, $\overline{B \cup C}$ e $\overline{A \cap B} \cup C$.

14. Numa experiência aleatória é medido o tempo de reacção a um determinado estímulo (em segundos). Considere o universo constituído pelos números reais positivos e os acontecimentos $A = \{x: x < 72.5\}$ e $B = \{x: x > 52.5\}$.

Descreva os seguintes acontecimentos: \overline{A} , $A \cap B$, $A \cup B$ e $A \cap \overline{B}$.

Solução:
$$\{x: x \ge 72.5\}, \{x: 52.5 < x < 72.5\}, \mathbb{R}^+, \{x: x \le 52.5\}$$

15. Sejam A e B acontecimentos não vazios de um espaço de acontecimentos (Ω, \mathcal{F}) . Usando operações sobre conjuntos expresse os seguintes acontecimentos:

- (a) Ocorrer A ou B;
- (b) Ocorrerem ambos os acontecimentos;
- (c) Ocorrer pelo menos um dos acontecimentos;
- (d) Não ocorrerem estes acontecimentos;
- (e) Ocorrer unicamente A.

Solução: $A \cup B$, $A \cap B$, $A \cup B$, $\overline{A} \cap \overline{B} = \overline{A \cup B}$, $A \cap \overline{B}$

Propriedades importantes sobre álgebra de acontecimentos:

- Leis de De Morgan
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}$
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Distributividade
 - $-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Associatividade
 - $-A \cup B \cup C = A \cup (B \cup C) = (A \cup B) \cup C$
 - $-A \cap B \cap C = A \cap (B \cap C) = (A \cap B) \cap C$
- Comutatividade $A \cup B = B \cup A$ $A \cap B = B \cap A$
- Absorção Se $A \subseteq B$, então $A \cup B = B$ e $A \cap B = A$

Cálculo de probabilidades

Lei de Laplace

- 16. 248 alunos realizaram uma prova que tinha dois problemas.
 - 116 alunos erraram o 1º problema;
 - 86 alunos erraram o 2º problema;
 - 74 alunos erraram os dois problemas.

Se for escolhida ao acaso uma prova resolvida, qual a probabilidade de:

- (a) estar errado apenas um dos problemas?
- (b) pelo menos um problema estar errado?
- (c) nenhum problema estar errado?
- (d) só estar errado o 2º problema?

Solução: 54/248, 128/248, 120/248, 12/248

- 17. Uma caixa contém 20 bombons, dos quais 6 têm recheio de licor, 5 têm recheio de amêndoa e 5 têm recheio de avelã
 - (a) Ao retirar um bombom ao acaso, qual a probabilidade de se obter:

- i. um bombom com recheio de amêndoa?
- ii. um bombom que não tenha recheio de licor?
- (b) Ao retirar ao acaso 3 bombons, determine a probabilidade de se obterem bombons com recheios de licor, avelã e avelã (por esta ordem), caso:
 - i. a extracção seja feita com reposição.
 - ii. a extracção seja feita sem reposição.

Solução: 0.25, 0.7, 0,01875, 0.017544

- 18. Uma gaveta contém 10 meias verdes e 6 meias azuis (todas distintas à parte a sua cor).
 - (a) Tiram-se 2 meias ao acaso e sem reposição. Qual a probabilidade de se obter:
 - i. um par de meias verdes?
 - ii. um par de meias da mesma cor?
 - iii. um par de meias de cores diferentes?
 - (b) Tiram-se 2 meias ao acaso e com reposição. Qual a probabilidade de se obter:
 - i. um par de meias verdes?
 - ii. um par de meias da mesma cor?
 - iii. um par de meias de cores diferentes?

Solução: 0.375, 0.5, 0.5, 0.390625, 0.53125, 0.46875

- 19. Numa população de 50 votantes, existem 30 a favor da constituição europeia e 20 contra. Para uma sondagem de opinião, seleccionaram-se ao acaso e sem reposição, 3 votantes desta população. Qual a probabilidade de, na amostra de 3 votantes,
 - (a) ninguém ser a favor da constituição europeia?
 - (b) pelo menos um ser a favor da constituição europeia?
 - (c) exactamente uma pessoa ser a favor da constituição europeia?
 - (d) a maioria ser a favor da constituição europeia?

Solução: 0.058163, 0.941837, 0.290816, 0.651020

Axiomática e consequências para o cálculo de probabilidades

20. Suponha que A e B são acontecimentos de um espaço de probabilidade (Ω, \mathcal{F}, P) , tais que: P(A) = 0.6, $P(\overline{B}) = 0.7$ e $P(A \cap B) = 0.1$. Determine $P(A \cup B)$, P(B - A), $P(\overline{A} \cap \overline{B})$, $P(\overline{A} \cup B)$ e $P(\overline{A} \cup \overline{B})$.

Solução: 0.8, 0.2, 0.2, 0.5, 0.9

21. Suponha que $A, B \in C$ são acontecimentos de um espaço de probabilidade (Ω, \mathcal{F}, P) , tais que: $P(A \cap (B \cup C)) = 0.3, P(A) = 0.6$ e $P(A \cup B \cup C) = 0.9$. Determine a $P(B \cup C)$ e a $P(\overline{A} \cap \overline{B} \cap \overline{C})$.

Solução: 0.6, 0.1

22. Alguns alunos de uma determinada escola praticam uma ou mais de 3 modalidades desportivas, nomeadamente, futebol, basquetebol e andebol.

Escolhido ao acaso um aluno, considere os acontecimentos:

- F-"praticante de futebol";
- B-"praticante de basquetebol";
- A-"praticante de andebol".

São conhecidas as seguintes proporções:

• 30% praticam futebol;

 $P(F) = \underline{\hspace{1cm}}$

• 20% praticam basquetebol;

 $P\left(B\right) =\underline{\hspace{1cm}}$

• 20% praticam andebol;

 $P(A) = \underline{\hspace{1cm}}$

• 5% praticam futebol e basquetebol;

 $P(F \cap B) = \underline{\hspace{1cm}}$ $P(F \cap A) = \underline{\hspace{1cm}}$

 $\bullet~10\%$ praticam futebol e andebol;

 $P(D \cap A)$

 $\bullet~5\%$ praticam basquetebol e andebol;

 $P(B \cap A) = \underline{\hspace{1cm}}$

• 2% praticam todas estas modalidades.

 $P(F \cap B \cap A) = \underline{\hspace{1cm}}$

Se escolhermos um aluno ao acaso, qual a probabilidade de ser:

- (a) Um jogador de futebol ou de andebol?
- (b) Um atleta?
- (c) Apenas jogador de futebol?

Solução: a) $P(F \cup A) = 0.4$ b) $P(F \cup B \cup A) = 0.52$ c) $P(F \cap \overline{B} \cap \overline{A}) = 0.17$

23. Numa experiência aleatória é medido o tempo de reacção a um determinado estímulo (em segundos). Considere o universo constituído pelos números reais positivos e os acontecimentos $A = \{x: x < 72.5\}$ e $B = \{x: x > 52.5\}$.

Sabendo que P(A) = 0.7 e que $P(A \cap B) = 0.1$, indique o valor lógico das seguintes proposições:

- (a) \overline{V} \overline{F} $P(\overline{A}) = 0.9$
- (b) V = P(A B) = 0.8
- (c) \overline{V} \overline{F} Se $P(A \cup B) = 0.95$, então P(B) = 0.35

Solução: F, F, V

24. Admita que A e B são acontecimentos de um espaço de probabilidade (Ω, \mathcal{F}, P) tais que: $A \subseteq B$ e P(B) = 0.4. Determine $P(A \cup B)$.

Solução: 0.4

25. Considere $A, B \in C$ acontecimentos de um espaço de probabilidade (Ω, \mathcal{F}, P) . Sabendo que $A \in B$ são acontecimentos mutuamente exclusivos, que P(A) = 0.6, que $P(A \cup B \cup C) = 0.7$ e que $P[(A \cup B) \cap C] = 0.1$, determine o valor de P(B) + P(C).

Solução: 0.2

26. Sendo A, B e C acontecimentos de espaço de probabilidades (Ω, \mathcal{F}, P) , tais que P(A - B) = 0.2, $P(A \cap B) = 0.3$ e $P(A \cap B \cap C) = 0.25$, calcule P(A - (B - C)).

Solução: 0.45

27. Um negociante tem 12 motores para vender, dos quais 2 estão defeituosos.

Encontra um comprador que está interessado em adquirir a totalidade dos motores se, ao proceder a uma inspecção não encontrar qualquer motor defeituoso. Se o vendedor enviar os motores num único caixote, o comprador escolhe dois ao acaso para inspecção. Se o vendedor enviar os motores em dois caixotes (seis motores em cada), o comprador inspecciona um motor escolhido ao acaso de cada caixote.

Diga qual é, do ponto de vista do vendedor, a melhor estratégia para conseguir vender todos motores:

Estratégia 1 colocar os 12 motores num só caixote;

- Estratégia 2 colocar os motores em dois caixotes (seis em cada) e pondo um motor defeituoso em cada;
- Estratégia 3 colocar os motores em dois caixotes (seis em cada) e pondo os dois defeituosos num só caixote.

Solução: Estratégia 2

Probabilidade condicionada e independência de acontecimentos

28. Dados dois acontecimentos A e B de um espaço de probabilidade (Ω, \mathcal{F}, P) tais que P(A) = 1/4, P(B) = 1/3 e $P(A \cup B) = 1/2$, calcule P(A|B), P(B|A), $P(\overline{A}|B)$ e $P(\overline{A}|\overline{B})$.

Solução: 0.25, 1/3, 0.75, 0.75

29. Uma das seguintes respostas está correcta. Determine-a e assinale-a com uma cruz sobre o quadrado correspondente.

Sejam A e B acontecimentos de um espaço de probabilidade (Ω, \mathcal{F}, P) tais que:

$$0 < P(A) < 1, P(B) = 0.4, P(B|A) = 0.5 e P(B|\overline{A}) = 0.3.$$

P(A) tem valor:

 $\boxed{\texttt{A}}$ 0.0

 $\boxed{\mathsf{B}} 0.5$

C 0.2

D Nenhuma das anteriores

Solução: B

30. Uma linha de produção em série é formada por três máquinas $A, B \in C$, colocadas nesta ordem. O produto final resulta do processamento destas três máquinas. O funcionamento das máquinas $B \in C$ está dependente do funcionamento da(das) máquinas que a(as) antecedem. Sabemos que a probabilidade da máquina A sofrer uma avaria é de 0.1. Quando esta avaria, a máquina B pode sofrer uma avaria com probabilidade 0.3, e por sua vez, quando avariam em simultâneo as máquinas $A \in B$, a máquina C deixa de operar com 0.5 de probabilidade. Determine a probabilidade de num determinado momento, se encontrarem avariadas as três máquinas.

Solução: 0.015

31. As famílias da cidade A escolhem uma de três alternativas para fazer férias: praia, campo ou ficar em casa.

Durante a última década, verificou-se que escolhiam aquelas alternativas, respectivamente, 50%, 30% e 20% das famílias da referida cidade.

A probabilidade de descansarem durante as férias está ligada à alternativa escolhida: 0.4, 0.6 e 0.5, conforme se tenha ido para a praia, para o campo ou ficado em casa.

- (a) Qual a probabilidade de uma família da cidade A descansar durante as férias?
- (b) Sabendo que determinada família descansou durante as férias, qual a alternativa mais provável de ter sido escolhida por esta família?

Solução: 0.48, praia

- 32. Os trabalhadores de uma fábrica foram, no acto de admissão, submetidos a um teste de aptidão. A experiência mostra que, dos 60% de indivíduos que no teste tiveram pontuação igual ou superior a x, 70% são considerados "bem adaptados" às tarefas que desempenham. Dos 40% que tiveram pontuação inferior a x, 50% são considerados "bem adaptados". Ao ser escolhido ao acaso um trabalhador:
 - (a) Qual a probabilidade de que seja um trabalhador "bem adaptado"?
 - (b) Qual a probabilidade de que, sendo um trabalhador "bem adaptado", tenha tido pontuação inferior a x no seu teste de aptidão?

Solução: 0.62, 0.322581

33. Determine e assinale com uma cruz no quadrado correspondente a resposta correcta de cada alínea.

Os habitantes de Nicosia (capital de Chipre) são de origem grega ou turca. 75% é de origem grega. Apurou-se que 30% dos gregos falam inglês e que, de entre os turcos, 10% falam inglês.

(a) A percentagem da população de Nicosia que fala inglês é:

lacksquare A 25% lacksquare C 75% lacksquare D 15% lacksquare Nenhuma das anteriores

(b) Suponha que visita Nicosia e encontra um seu habitante que fala inglês. Qual a probabilidade de ele ser de origem grega?

 $lacksquare{1}{0.1}$ $lacksquare{1}{0.4}$ $lacksquare{1}{0.3}$ $lacksquare{1}{0.9}$ $lacksquare{1}{0.9}$ Nenhuma das anteriores

(c) V F A origem dos habitantes de Nicosia é independente do facto de falarem inglês ou não.

Solução: B, D, F

- 34. Durante a travessia do Canal da Mancha, a probabilidade de um velejador apanhar mau tempo é de 2/3. Sabe-se ainda que, se estiver mau tempo, tem 1/4 de probabilidade de ter uma colisão com um petroleiro, mas, não estando mau tempo, a probabilidade de atravessar o Canal da Mancha sem colidir com um petroleiro é de 5/6. Face a uma futura viagem de um velejador, determine a probabilidade
 - (a) de vir a atravessar o Canal da Mancha sem colidir com um petroleiro.
 - (b) não apanhar mau tempo caso venha a colidir com um petroleiro.
 - (c) O estado do tempo é independente da ocorrência de uma colisão com um petroleiro?

Solução: 7/9, 1/4, –

- 35. A população da Britolândia (país distante do 4º Mundo) é constituída por duas etnias: os xilotos (que representam 60% da população total) e os bocemes.
 - O Partido do Povo (PP) é há largos anos o partido do poder. Entre os xilotos, o PP é o preferido, recolhendo 70% de apoios. Já o mesmo não sucede entre os bocemes e, apenas 30% destes apoiam o PP.
 - (a) Qual a percentagem nacional de apoiantes do PP?
 - (b) Numa reunião de apoiantes do PP, qual a percentagem de bocemes?
 - (c) Na opinião do Sr. Justo (um xiloto apoiante fervoroso do PP), apenas são patriotas os britolenses que pertencem à sua etnia ou os que apoiam o PP. A aceitar esta opinião, qual a percentagem de patriotas na Britolândia?

Solução: 54%, 22.2(2)%, 72%

36. Numa área de serviço de uma auto-estrada, o nº de camiões relativamente ao nº de automóveis está na proporção de 3:2. Tratando-se de um camião, a probabilidade de se abastecer é de 0.1, e tratando-se de um automóvel, a probabilidade de se abastecer é de 0.2.

Chega uma viatura à área de serviço para se abastecer. Qual a probabilidade de ser um camião?

Solução: 0.428571

- 37. Qualquer cliente que visita uma certa loja de roupa para homem compra um fato com probabilidade 0.4, uma gravata com probabilidade 0.42 e uma camisa com probabilidade 0.5. Qualquer cliente compra:
 - um fato e uma gravata com probabilidade 0.13;
 - um fato e uma camisa com probabilidade p;
 - uma gravata e uma camisa com 0.25 de probabilidade;
 - um fato, uma camisa e uma gravata com 0.08 de probabilidade.

Para um qualquer cliente que visite a loja, considere os acontecimentos:

F - Compra um fato G - Compra uma gravata C - Compra uma camisa

e responda às seguintes questões:

	(a) A probabilidad	de de não comprar	uma gravata e com	prar um fato é?	
	A 0.27	B 0.232	$\boxed{\mathtt{c}}_{0.2}$	$\boxed{ t D} \ 0.4$	E Nenhuma das anteriores
	(b) Se $p = 0.2$, a p	orobabilidade de con	mprar um fato, ou	uma gravata ou un	na camisa é?
	A 0.08	B 1	C 0.9	$\boxed{\mathtt{D}} \ 0.82$	E Nenhuma das anteriores
	(c) Sabendo que o e um fato, tem		r uma camisa, a pro	obabilidade de que	também compre uma gravata
	A 0.16	B 0.13	$\boxed{\mathtt{C}}_{0.08}$	$\boxed{\mathtt{D}}0.26$	E Nenhuma das anteriores
	(d) Os acontecime	entos F e C são ind	ependentes se, e só	se, p tem valor?	
	$lackbox{lack}{lack}$	B 1	$\boxed{\mathtt{C}}_{0.2}$	$\boxed{ t D} \ 0.4$	E Nenhuma das anteriores
	Solução: A, D, A, C				
38.	Considere a informa qual a probabilidad	-	obtidos no exercío	eio 22. Se escolhern	nos ao acaso um aluno <u>atleta</u> ,
	(a) Apenas jogado				
	(b) Um jogador de	e futebol ou de and	ebol?		
	Solução: 17/52, 10/13				
39.	Considerem-se duas	s urnas, U_1 e U_2 , e	um dado D com as	s seguintes caracter	ísticas:
		bolas numeradas de			
		oolas amarelas, 5 bo			
		amarelas, 2 faces b			1 77
	_	úmero for múltiplo	de 3, faz-se um la	ançamento do dado	da urna U_1 e regista-se o seu o; caso contrário extrai-se ao
	-	oabilidade de se obs oabilidade de se ter			se registou a cor amarela.
	Solução: a) 23/60 b)	9/23			
40.	Um certo tipo de la	motor eléctrico qua	ando avariado pod	e apresentar quatr	o diferentes tipos de fallhas,

- 40. Um certo tipo de motor eléctrico quando avariado pode apresentar quatro diferentes tipos de fallhas, denotadas por F_1 , F_2 , F_3 e F_4 , que ocorrem de modo mutuamente exclusivo e cujas probabilidades de ocorrência são iguais. Considerem-se os acontecimentos $A = \{F_1, F_2\}$, $B = \{F_1, F_3\}$ e $C = \{F_1, F_4\}$.
 - (a) Mostre que os acontecimentos $A,\,B$ e C são independentes aos pares.
 - (b) Mostre que $P(C|A\cap B)$ é diferente de P(C) e por isso, os acontecimentos $A,\ B$ e C não são independentes.
- 41. A execução de um projecto de construção de um edifício no tempo programado está relacionada com os seguintes acontecimentos:
 - E ´´escavação executada a tempo"
 - ${\cal F}$ ´´fundações executadas a tempo"
 - S 'superestrutura executada a tempo"

supostos independentes e com probabilidades iguais a, respectivamente, 0.8, 0.7 e 0.9. Calcule a probabilidade de:

- (a) O edifício ser terminado no tempo previsto, devido ao cumprimento dos prazos nas três actividades referidas.
- (b) O prazo de execução ser cumprido para a escavação e não ser cumprido em nenhuma das outras actividades.

Solução: 0.504, 0.024

- 42. Os indivíduos, A, B e C, sofrem da mesma doença e têm probabilidades de se curarem, respectivamente, 0.25, 0.15 e 0.10. Admitindo que a cura ocorre independentemente do indivíduo, determine a probabilidade de:
 - (a) nenhuma se curar.
 - (b) pelo menos duas se curarem.

Solução: 0.57375, 0.07

- 43. Sejam A e B acontecimentos independentes. Mostre que A e \overline{B} são também acontecimentos independentes. Conclua também que \overline{A} e B são acontecimentos independentes e que \overline{A} e \overline{B} são acontecimentos independentes.
- 44. Suponha que em voo os motores de avião falham com probabilidade p, independentemente de motor para motor, e que um avião faz um voo com sucesso desde que pelo menos metade dos seus motores trabalhem. Para que valores de p se deve preferir um bimotor a um quadrimotor?

Solução:]1/3,1[

- 45. A probabilidade de um atirador acertar no alvo é 0.6, independentemente do tiro realizado. Calcule a probabilidade de:
 - (a) em cinco tiros, acertar três.
 - (b) acertar pela terceira vez ao quinto tiro.
 - (c) serem necessários exactamente 10 tiros para acertar um.
 - (d) necessitar de, pelo menos, 4 tiros para acertar 2.

Solução: 0.3456, 0.20736, 0.000157, 0.352

Variável aleatória discreta

- 46. De uma v.a. X, sabe-se que:
 - Toma valores 0, 2 e 4.
 - $P((X=0) \cup (X=2)) = 0.8.$
 - $P(X=0) = \frac{3}{2}P(X=4)$.
 - (a) Deduza a função de probabilidade da v.a. X.
 - (b) Calcule: $P(X \le 2.3)$, P(X > 1.98), P(0 < X < 4), $P(0 < X \le 4)$, $P(0 \le X < 4)$, $P(0 \le X \le 4)$, P(
 - (c) Deduza a função de probabilidade.da v.a. $Y = \min(X, 2)$.
 - (d) Determine a função de distribuição da v.a. X e utilize-a para o cálculo das probabilidades pedidas na alínea b).
 - (e) Calcule E(X), $E(\sqrt{X})$, $E(\frac{2}{3+X})$ e $E[(X-1.8)^2]$. Existe $E(\frac{1}{X})$?

- (f) Determine E(2X 100), $E(2\sqrt{X} + X^2 + 1)$ e $E(X^2) E^2(X)$
- (g) Diga qual o valor de V(X), de V(6-2X) e de $V(X^2)$.

Solução: a) -, b) 0.8, 0.7, 0.5, 0.7, 0.8, 1, 0, 0, c) - d) -, e) 1.8, $0.4 + \frac{1}{\sqrt{2}}, \frac{16}{35}, 5.2, 1.96, \text{Não f})$ -96.4, $\sqrt{2} + 7, 1.96 \text{ g})$ 1.96, 7.84, 32.16

- 47. O Sr. Matias possui um café nas vizinhanças de um estádio de futebol. Da sua experiência, o Sr. Matias sabe que, em dias de futebol, costuma vender 50, ou 100, ou 150 ou 200 sandes, com probabilidades 0.2, 0.4, 0.3 e 0.1, respectivamente.
 - O Sr. Matias costuma fazer 100 sandes e quando estas se esgotam recorre a um fornecedor da terra que lhe garante o envio atempado de mais sandes.
 - (a) Qual a probabilidade de as sandes preparadas pelo Sr. Matias serem insuficientes para satisfazer a procura?
 - (b) Calcule a probabilidade de vender 200 sandes, num dia em que as sandes por ele feitas não satisfazerem a procura.
 - (c) Qual o número médio de sandes vendidas num dia de futebol? E o desvio padrão?
 - (d) Determine a função de distribuição para n.º de sandes vendidas pelo Sr. Matias num dia de futebol. Todas as sandes são vendidas a 1€. Cada sandes feita pelo Sr. Matias custa 0.25€ e as que são encomendadas ao fornecedor custam 0.65€.
 - (e) Deduza a função de probabilidade do lucro diário obtido pelo Sr. Matias.
 - (f) Determine o lucro médio por dia. Expresse através do desvio padrão, a dispersão do lucro diário.

Solução: $0.4,\,0.25,\,115,\,45,\,-,\,73.75,\,26.698549$

- 48. Um vendedor ambulante tem 8 relógios para vender, dos quais 3 estão avariados. Um cliente resolve comprar-lhe 4 relógios.
 - (a) Determine a função de probabilidade da v.a. X número de relógios avariados comprados.
 - (b) Qual a probabilidade do comprador adquirir relógios avariados e em número não superior a 2.
 - (c) Determine o valor médio e a variância de X.

Solução: -, 6/7, 1.5, 0.53571

49. Em cada alínea assinale o valor lógico da afirmação (V para verdadeira e F para falsa).

Seja X uma v.a. discreta com a seguinte função de probabilidade:

$$X \left\{ \begin{array}{cccc} -2 & a & 0 & 1 & 2 \\ 0.2 & & 0.2 & 0.2 & \end{array} \right., \quad a \in]-2, 0[$$

- (a) \overline{V} F Se P(X = a) = 0.1, então P(X = 2) = 0.3
- (b) $\boxed{\mathbb{V}}$ $\boxed{\mathbb{F}}$ Se P(X=2)=0.1, então $P(X=0|X\geq0)=0.4$
- (c) $\boxed{\mathbb{Y}}$ Se $P\left(X=a\right)=P\left(X=2\right)=0.2$ e $E\left(X\right)=0,$ então a=-1/2
- (d) $\boxed{\mathbb{Y}}$ Se a=-3/2 e $P\left(X=a\right)=P\left(X=2\right)=0.2,$ existe $E\left(\frac{1}{X}\right)$ e tem valor $\frac{0.2}{3}$
- 50. A função de probabilidade do número X de memórias de computador danificadas numa remessa de 3 memórias, é:

$$X \left\{ \begin{array}{cccc} 0 & 1 & 2 & 3 \\ 0.75 & 0.02 & & 0.15 \end{array} \right.$$

(a) Prencha os campos em branco da função de distribuição da v.a. X que se segue:

$$F_X(x) = \begin{cases} &, & x < 0 \\ 0.75, & 0 \le x < \\ &, & 1 \le x < 2 \\ &, & \le x < \end{cases}$$

- (b) Determine a probabilidade de:
 - i. Alguma ou algumas, mas não todas as memórias da remessa, estarem danificadas.
 - ii. Não mais de duas memórias da remessa estarem danificadas.
- (c) Determine:
 - i. P(X = 3 | X > 0).
 - ii. $P(1 \le X \le 3 | X \le 2)$.
- (d) Determine o valor médio, a variância e o desvio padrão de X.
- (e) Se X memórias danificadas numa remessa originam um prejuízo de C = -100X 50 euros, determine o prejuízo médio por remessa e também o desvio padrão.

Solução: 0.1, 0.85, 0.6, 0.117647, 0.63, 1.2931, 1.137146, -113, 113.714555

- 51. Num jogo de apostas é extraída ao acaso uma carta de um baralho convencional de 52 cartas. Um jogador deverá pagar \underline{e} euros para fazer uma jogada. Receberá $10 \in$ se tirar um às ou um rei, $5 \in$ se tirar uma dama ou um valete e nada receberá caso contrário. Considere G o ganho em qualquer jogada, entendendo-se por ganho a diferença entre o valor a receber e a pagar em cada jogada.
 - (a) Deduza a função de probabilidade da v.a. G.
 - (b) Para ter um jogo equilibrado em termos de ganho médio, quanto é que deverá ser pago para se fazer uma jogada?

Solução: – ; 30/13

Exercícios teóricos

- 52. Considere X uma variável aleatória discreta, para a qual existe V(X).
 - (a) Mostre que $V(X) = E(X^2) E^2(X)$.
 - (b) Se $a \in \mathbb{R}$ e $b \in \mathbb{R}^+$ são constantes, mostre que $V(a + bX) = b^2V(X)$.
 - (c) Mostre que, se X é uma v.a. degenerada então V(X)=0. Entenda-se por v.a. degenerada, uma v.a. X cujo suporte é $S_X=\{c\}$ e por isso P(X=c)=1, com $c\in\mathbb{R}$.

Par aleatório discreto

53. Numa empresa de aluguer de aviões, informam-nos de que a procura diária de aviões de passageiros X, e a procura diária de aviões de transporte rápido de correio Y, constitui um par aleatório (X,Y), cuja função de probabilidade conjunta é dada por:

$X \setminus Y$	0	1	2	
0	0			0.25
1			0.05	0.35
2	0.1		0.1	p + 0.2
3	0	0.1		p
	0.2	0.5		

- (a) Complete a função de probabilidade conjunta do par aleatório (X,Y) e indique as funções de probabilidade marginais.
- (b) Qual a probabilidade de, num dia, a procura de aviões de passageiros ser inferior à procura de aviões de transporte rápido de correio?
- (c) Para um dia em que foi pedido um avião de transporte rápido de correio, qual a probabilidade de terem sido procurados 1 ou 2 aviões de transporte de passageiros?
- (d) Existe independência entre a procura diária de aviões de cada tipo?
- (e) Determine a procura média diária de aviões de passageiros e a procura média diária de aviões de transporte rápido de correio.
 - Determine também o desvio padrão da procura diária de aviões de transporte rápido de correio.
- (f) Sabendo que $V\left(X\right)=0.8875$, determine a covariância e o coeficiente de correlação deste par aleatório. Comente o valor deste último coeficiente.
 - Determine agora a procura diária média do total de aviões de aluguer.
- (g) Calcule a variância da média $\frac{X+Y}{2}$ de aviões procurados diariamente.
- (h) Qual o valor esperado e a variância de Y X?
- (i) Deduza a função de probabilidade da procura diária total de aviões de aluguer.

$$Solução: \ -, \ 0.3, \ 0.6, \ -, \ 1.25, \ 1.1, \ 0.7, \ -0.175, \ -0.265372, \ 2.35, \ 0.256875, \ -0.15, \ 1.7275, \ -0.265372, \ 0.256875, \ -0.265372, \ 0.256875, \ -0.265372, \ 0.256875, \ -0.265372, \ -0.265372, \ -0.265372, \ -0.265372, \ -0.265372, \ -0.265372, \ -0.265372, \ -0.265372, \ -0.266875, \ -0.2$$

54. Seja (X,Y) um par aleatório discreto com a seguinte função de probabilidade conjunta:

$X \setminus Y$	0	2	3	
0	1/12	1/6		1/4
1				
2	1/12	1/6	0	
		1/3	1/3	

- (a) Complete a função de probabilidade conjunta e as funções de probabilidade marginais.
- (b) Determine $P(X \ge 2; Y < 3)$ e P(X = 0 | X + Y = 2).
- (c) X e Y são v.a.'s independentes? Justifique a sua resposta.
- (d) Sabendo que E(Y) = 5/3 e que V(X) = 1/2, calcule:

i.
$$E(X+4Y-6)$$
;

ii.
$$V(Y)$$
;

iii.
$$cov(X,Y) \in \rho(X,Y)$$
.

(e) Deduza a função de probabilidade da v.a. $T = \max(X, Y)$.

Solução:
$$-$$
, $1/4$, $2/3$, $-$, $5/3$, $14/9$, 0 , 0 , $-$

55. O número de comprimidos para o estômago que um determinado indivíduo toma por dia, é uma v.a. C, com suporte $\{2, 3, 4, 5, 6\}$, tal que:

$$P(C = 3) = 0.3; P(C = 4) = 0.4; P(C = 2) = P(C = 5) = P(C = 6).$$

O número de refeições que esse indivíduo ingere por dia é também uma v.a. R, com suporte $\{2,3,4\}$, tal que:

$$P(R=2) = 0.25 \text{ e } P(R=3) = 0.42.$$

Sabe-se ainda que:

- Só toma 6 comprimidos quando faz 4 refeições;
- Quando faz 4 refeições toma sempre mais de 3 comprimidos;
- Quando faz 2 refeições toma sempre menos de 5 comprimidos;
- P(C=2; R=2) = P(C=2; R=3);
- P(C = 3; R = 2) = P(C = 4; R = 2) = P(C = 4; R = 3).
- (a) Determine a função de probabilidade conjunta do par aleatório (C, R).
- (b) O número de comprimidos ingeridos é independente do número de refeições?
- (c) Calcule a $P(R \ge 3 | C \le 3)$ e a $P(C \ge 4; R = 3)$.
- (d) Para um dia em que comeu 2 refeições, determine a função de probabilidade do número de comprimidos ingeridos.

Solução: –, –, 0.625, 0.17, –

- 56. No pequeno supermercado SuperCompras, existem 3 caixas para pagamento e 2 funcionários capacitados para as operarem. Ás 10 horas de qualquer dia de abertura do SuperCompras, considere as v.a.'s:
 - X-n.º de caixas que é necessário abrir;
 - Y-n.º de funcionários disponíveis para operarem nas caixas de pagamento.
 - (a) Complete a função de probabilidade conjunta do par aleatório (X, Y).

X/Y	0	1	2	
1	0.01		0	
2	0		0.7	0.8
3	0			0.8 0.01
		0.29		

- (b) Determine a probabilidade de haver funcionários disponíveis para operarem nas caixas que é necessário abrir.
- (c) X e Y são v.a.'s independentes?
- (d) Indique o valor lógico das seguintes proposições:
 - i. $\nabla F E(Y) = 1$
 - ii. \overline{V} \overline{F} Sabendo que E(X) = 1.82, então V(X) = 0.1676
 - iii. V = F E(XY) = P(X = 1, Y = 1) + 2P(X = 2, Y = 1) + 3P(X = 3, Y = 1)
 - iv. V Sabendo que V(Y)=0.2339, o coeficiente de correlação do p.a. (X,Y) tem valor $\rho(X,Y)=0.6777981479$
- (e) i. Deduza a função de probabilidade da v.a. Y X.
 - ii. Determine o valor médio da v.a. Y X
 - iii. Calcule o desvio padrão da v.a. Y X

(f) Deduza a função de probabilidade da v.a. $N = \min(X, Y)$, determine o seu valor médio e a variância da v.a. 2N - 1.

```
Solução: -, 0.88, -, F, V, F, V, -, -0.13, \sqrt{0.1331} \approx 0.364838727, -, 1.69, 0.9356
```

- 57. Suponhamos que M_1 e M_2 são duas máquinas que funcionam independentemente e sejam X e Y variáveis aleatórias que representam, respectivamente, nº diário de avarias de M_1 e o nº diário de avarias de M_2 . Sabendo que:
 - A máquina M_1 nunca avaria mais do que uma vez por dia e, que a máquina M_2 avaria, no máximo, duas vezes por dia;
 - A probabilidade de M_1 não avariar é de 0.7;
 - A probabilidade de M_2 não avariar é 0.5 e a de avariar duas vezes é 0.3,

construa a tabela das funções de probabilidade conjunta e marginais associadas ao par aleatório (X,Y).

Exercícios teóricos

- 58. Demonstre a seguinte proposição:
 - Se (X,Y) é um par aleatório discreto e as v.a.'s X e Y são independentes, então E(XY) = E(X)E(Y).
- 59. Considere (X, Y) um par aleatório. Demonstre que:
 - (a) cov(X, Y) = E(XY) E(X)E(Y).
 - (b) Se $a, b, c, d \in \mathbb{R}$ são constantes, cov(a + bX, c + dY) = b d cov(X, Y) e $\rho(a + bX, c + dY) = \rho(X, Y)$

Distribuições discretas importantes

- 60. Um fabricante de computadores inspecciona, habitualmente, os chips de memória antes de os instalar. Assim, testou uma amostra de 5 retirados ao acaso de um lote de 20 chips que continha 4 defeituosos. Seja X o número de chips defeituosos detectados nessa amostra. Determine:
 - (a) A função de probabilidade de X e indique os parâmetros desta distribuição.
 - (b) O número esperado de memórias defeituosas, na amostra de 5 chips.
 - (c) A variância de X.

Solução: -, 1, 0.631579

- 61. A Rádio Electrão quer vender rapidamente os 30 computadores portáteis que tem em armazém, pelo que realizou uma promoção com descontos atractivos e oferecendo a pré-instalação do sistema operativo. Infelizmente, o processo de instalação do sistema operativo não é completamente fiável e 10 dos portáteis necessitarão de assistência complementar. Suponha que uma empresa comprou 20 computadores portáteis e considere X, o número de portáteis com problemas, de entre os comprados.
 - (a) Qual a distribuição de X?
 - (b) Determine a probabilidade de menos de 3 portáteis necessitarem de assistência complementar.
 - (c) Determine a probabilidade de mais de 6 portáteis necessitarem de assistência complementar.
 - (d) Indique o valor médio e o desvio padrão de X.

Solução: -, 0.000291, 0.560339, 6.666667, 1.237969

62. O senhor S tem uma empresa que compra e vende selos, moedas e outros artigos para coleccionistas. Este senhor guarda 20 selos dentro de uma bolsa preta, estando ainda cada selo metido num envelope opaco. 6 destes selos valem 100 € cada um e os restantes nada valem. Para promover a venda, o senhor S cobra 20 € por cada selo, mas não permitindo que o cliente veja o conteúdo do envelope. Suponha que um cliente compra 5 selos:

- (a) Qual a probabilidade de os cinco selos nada valerem?
- (b) Determine a probabilidade de o cliente não perder nem ganhar dinheiro com a compra.
- (c) Qual o lucro esperado deste cliente? E o desvio padrão?

Solução: 0.129128, 0.387384, 50, 91.046547

- 63. No supermercado SuperCompras, e num grupo específico de 20 clientes, sabe-se que 3 adquirem produtos de higiene pessoal.
 - (a) Se escolhermos ao acaso e sem reposição, 2 clientes deste grupo, considere Y o n.º de clientes que, de entre os escolhidos, adquirem produtos de higiene pessoal.
 - i. Indique a distribuição e os respectivos parâmetros da v.a. Y.
 - ii. Determine a P(Y=1).
 - iii. Calcule o valor esperado e a variância de Y
 - (b) Se escolhermos ao acaso e com reposição, 2 clientes deste grupo, considere W o n.º de clientes que, de entre os escolhidos, adquirem produtos de higiene pessoal.
 - i. Apresente a distribuição e os respectivos parâmetros da v.a. W.
 - ii. Calcule a $P(W \leq 1)$.
 - iii. Determine o valor médio e o desvio padrão de W.
 - iv. Compare a amplitude dos intervalos: [E(Y) + 1.5, (Y)] = [E(Y) + 1.5, (Y)]

$$[E(\hat{Y}) - 1.5\sigma(\hat{Y}), E(Y) + 1.5\sigma(Y)] e[E(W) - 1.5\sigma(W), E(W) + 1.5\sigma(W)]$$

 $Comente \ a \ amplitude \ destes \ intervalos, \ tendo \ em \ conta \ o \ m\'etodo \ de \ amostragem \ adoptado.$

- (c) No supermercado SuperCompras, qualquer cliente faz uma despesa superior a $50 \in$ com probabilidade 0.1 (independentemente do cliente).
 - i. Numa amostra aleatória de 10 clientes, determine a probabilidade de se registarem clientes que fazem uma despesa superior a $50 \in$.
 - ii. Se numa amostra aleatória de n clientes se espera que 45 venham a fazer uma despesa não superior a 50 \in , então n terá valor ?

```
Solução: -, \frac{51}{190}, 0.3, \frac{459}{1900}, -, 0.9775, 0.3, \sqrt{0.255} \approx 0.504975, A(Y) \approx 1.4745, A(W) \approx 1.5149, 0.65132156, 50
```

- 64. Uma determinada praga atacou uma unidade agrícola tendo contaminado três quartos da sua produção de maçãs. Considere 4 maçãs escolhidas ao acaso desta produção.
 - (a) Determine:
 - i. A probabilidade de todas elas terem sido contaminadas.
 - ii. A probabilidade de nenhuma ter sido contaminada.
 - iii. A probabilidade de não terem sido todas contaminadas.
 - (b) Deduza a função de probabilidade da v.a. X que contabiliza o número de maçãs contaminadas, entre as 4 escolhidas. Indique a distribuição (e o valor dos parâmetros) da v.a. X.
 - (c) Determine o valor médio e a variância de X.
 - (d) Suponha que se recolheram ao acaso, duas amostras de maçãs, uma com 4 e outra com 3 maçãs. Determine a probabilidade de, no conjunto das duas amostras, se encontrarem 2 maças contaminadas. Identifique a distribuição para o total de maçãs contaminadas, no conjunto das duas amostras.

65. Numa fábrica existem três máquinas da mesma marca, que trabalham independentemente. A probabilidade de cada máquina avariar num dado espaço de tempo é 0.2. Seja X a variável aleatória que representa o número de máquinas que findo esse período de tempo estão a trabalhar. Determine:

- (a) A função de probabilidade da v.a. X.
- (b) O valor esperado, a moda, a mediana, a variância e o desvio padrão de X.
- (c) A probabilidade de mais de 1 máquina se avariar no período de tempo estabelecido.

Solução: -, 2.4, 3, 3, 0.48, ≈ 0.69282 , 0.104

- 66. A probabilidade de um automóvel efectuar uma lavagem automática, quando se vai abastecer de combustível numa bomba de gasolina, é p=0.1 (independentemente do automóvel). Considere a v.a. X n.º de automóveis que entram na bomba de gasolina para se abastecerem, até ao primeiro (e inclusive) que efectua uma lavagem automática.
 - (a) Identifique a distribuição da v.a. X.
 - (b) Verifique que, para qualquer valor $p \in]0,1[$,

$$F_X(x) = P(X \le x) = 1 - (1 - p)^{[x]}, \ x \in [1, +\infty[,$$

completando as entradas nas expressões que se seguem:

$$P(X \le x) = \sum_{k=1}^{\infty} P(X = k) = \sum_{k=1}^{\infty} p(1-p) - p = p \frac{1 - (1-p)}{1 - (1-p)} = 1 - (1-p)$$

(c) Tendo em conta o resultado obtido na alínea anterior, determine $P(6 \le X \le 10)$ para p = 0.1.

$$P(6 \le X \le 10) = P(X \le) - P(X \le) = P(X \le) - P(X \le) =$$

(d) Mostre que, para qualquer valor $p \in [0, 1]$,

$$P(X > x + h | X > x) = P(X > h), \ \forall x, h \in \mathbb{N},$$

completando as entradas nas expressões que se seguem:

$$P(X > x + h | X > x) = \frac{P[(X >) \cap (X >)]}{P(X >)} = \frac{P(X >)}{P(X >)}$$

$$= \frac{1 - P(X \le)}{1 - P(X \le)} = \frac{(1 - p)}{(1 - p)} = (1 - p)$$

$$= P(X >)$$

(e) Sabendo que entraram mais de 6 automóveis até o primeiro efectuar uma lavagem automática, qual a probabilidade de terem entrado pelo menos 9 (considere p = 0.1)?

$$P(X \ge |X>) = P(X> |X>) = P(X>) =$$

Sugestão: Tenha em conta o seguinte resultado: Para $r \in]0,1[$ e $m \in \mathbb{N}_0,$ $\sum_{i=0}^m r^i = \frac{1-r^{m+1}}{1-r}.$

67. Os registos de uma oficina de automóveis, onde se realizam inspecções, mostram que $100 \times p \%$ dos automóveis são aprovados em cada inspecção. Considere X o número de inspecções de um automóvel até ser aprovado. Sabendo que cada automóvel faz em média 1.25 inspecções até ser aprovado:

- (a) Determine P(X < 3)
- (b) Se um determinado automóvel já fez mais de 2 inspecções, qual a probabilidade de virem a serem necessárias mais 4?
- (c) Determine a probabilidade de $X \in [E(X) 1.5\sigma(X), E(X) + 1.5\sigma(X)]$

Solução: 0.992, 0.0016, 0.96

- 68. A probabilidade de um automóvel efectuar uma lavagem automática, quando se vai abastecer de combustível numa bomba de gasolina, tem valor constante p = 0.1 (independentemente do automóvel).
 - (a) Se tiverem entrado $n, n \in \mathbb{N}$, automóveis numa bomba de gasolina, identifique a distribuição do número de automóveis que efectuam uma lavagem automática.
 - (b) Determine:
 - i. A probabilidade de nenhum dos próximos 6 automóveis vir a efectuar uma lavagem automática.
 - ii. A probabilidade de, pelo menos um dos próximos 10 automóveis, efectuar uma lavagem automática.
 - iii. A probabilidade de, pelo menos dois dos próximos 10 automóveis, efectuarem lavagens automáticas.
 - iv. Nos próximos 10 automóveis, o número médio dos que não fazem lavagens automáticas.
 - v. O desvio padrão do número de lavagens automáticas efectuadas em cada grupo de 25 automóveis.
 - (c) Considere a v.a. Y n.º de automóveis que entram na bomba de gasolina para se abastecerem, até que o primeiro (inclusive) efectua uma lavagem automática.
 - i. Identifique a distribuição de Y
 - ii. Determine P(Y=6).
 - iii. Determine $P(6 \le Y \le 10)$
 - iv. Sabendo que entraram mais de 6 automóveis até ao primeiro efectuar uma lavagem automática, qual a probabilidade de terem entrado menos de 9 (considere p = 0.1)?

$$P\left(Y < \mid Y > \mid\right) = 1 - P\left(Y \ge \mid Y > \mid\right) = 1 - P\left(Y > \mid Y > \mid\right) = 1 - P\left(Y > \mid\right)$$

= $P\left(Y \le \mid\right) =$

Solução: B(n, 0.1), 0.531441, 0.651322, 0.263901, 9, 1.5, G(0.1), 0.059049, 0.24181156, 0.19

- 69. Os registos de uma oficina de automóveis, onde se realizam inspecções, mostram que 80% dos automóveis são aprovados na primeira inspecção. Seja X o número de carros reprovados na primeira inspecção, de entre $n, n \in \mathbb{N}$, inspeccionados.
 - (a) Seja X o número de carros reprovados na primeira inspecção, de entre 20, inspeccionados.
 - i. Identifique a distribuição da v.a. X.
 - ii. Determine o valor médio e o desvio padrão de X.
 - (b) Quantos carros devem ser inspeccionados para ser superior a 90%, a probabilidade de haver carros reprovados na primeira inspecção.
 - (c) Considere W n.º carros a inspeccionar até que se consiga uma aprovação à primeira inspecção.
 - i. Identifique a distribuição da v.a. W.
 - ii. A probabilidade de ser necessário inspeccionar mais de 4 automóveis até que consiga uma aprovação na primeira inspecção?
 - iii. Sabendo que, após a inspecção de mais de 10 automóveis, não se conseguiu uma aprovaçao na primeira inspecção, a probabilidade de ser necessário inspeccionar mais 2 automóveis é?

(d) Admita agora que 1% dos automóveis são reprovados na primeira inspecção. Considere Y - n.º de automóveis reprovados na primeira inspecção, de entre n=40 inspeccionados.

- i. Indique a distribuição exacta e aproximada para a v.a. Y.
- ii. Determine o valor aproximado de $P(Y \ge 2)$.

Solução: $B(20,0.2), 4 \approx 1.78885$, no mínimo 11, G(0.8), 0.0016, 0.04, B(40,0.01) $P(0.4), \approx 0.061551935$

- 70. O número de chamadas que chegam à secção de atendimento ao público de uma associação de defesa do consumidor é uma v.a. com distribuição de Poisson. Sabe-se que as chamadas ocorrem a uma taxa de 1.5 chamadas em cada 10 minutos.
 - (a) Considere o período entre as 9:00 e as 9:10. Determine a probabilidade desta secção da associação:
 - i. Não receber qualquer chamada.
 - ii. Receber mais de duas chamadas.
 - iii. O número médio e a variância do número de chamadas recebidas neste período.
 - (b) Considere o período entre as 11:00 e as 11:30. Determine a probabilidade desta secção da associação:
 - i. Não receber qualquer chamada.
 - ii. Receber menos de 2 chamadas.
 - iii. O número médio e o desvio padrão do número de chamadas recebidas neste período.
 - (c) O director desta associação recebe chamadas telefónicas a uma taxa de 4 por hora e o número de chamadas tem uma distribuição de Poisson.
 - Indique a distribuição do total de chamadas recebidas na secção de atendimento e para o director, no período entre as 11:00 e as 11:30.

Solução: 0.223130, 0.191153, 1.5, 1.5, 0.011109, 0.061099, 4.5, 2.121320, -

- 71. Seja X uma variável aleatória de Poisson que representa o número de golos marcados num desafio de futebol de uma Liga profissional, onde, em média, se marcam 2.5 golos por desafio. Determine a probabilidade de:
 - (a) Num jogo se marcarem pelo menos 2 golos.
 - (b) Em dois jogos não se marcarem golos.
 - (c) Em cada um de dois jogos se marcarem pelo menos 2 golos.

Solução: 0.712703, 0.006738, 0.507945

- 72. O número de automóveis, X, que chegam por dia a uma pequena oficina para serem reparados é uma variável aleatória de Poisson com parâmetro igual a 2. Devido à reduzida dimensão da oficina, só podem ser atendidos, no máximo, 3 automóveis por dia. Se chegarem mais de 3 automóveis, os excedentes são encaminhados para outras oficinas.
 - (a) Determine a probabilidade de, num dia qualquer, serem encaminhados automóveis para outras oficinas
 - (b) Qual deverá ser a capacidade de atendimento da oficina, de modo a que a oficina possa reparar, em aproximadamente 95% dos dias, todos os automóveis que chegam?
 - (c) Qual o número esperado de automóveis que chegam por dia?
 - (d) Determine a função de probabilidade para o número de automóveis atendidos diariamente.
 - (e) Qual o número médio de automóveis atendidos diariamente?
 - (f) Qual é o número médio de automóveis que são diariamente encaminhados para outras oficinas?
 - (g) Determine a probabilidade de, em cinco dias, chegarem 9 automóveis.

Solução: 0.142877, mais 1 lugar, 2, -, 1.782, 0.218, 0.125110

73. Um grande armazém de venda de artigos para o lar, emprega 100 funcionários. A probabilidade de, diariamente qualquer um quebrar uma ou mais peças de vidro, é de 0.005. Determine a probabilidade aproximada de, num determinado dia, pelo menos 2 dos funcionários terem sido responsáveis pela quebra de peças de vidro.

Solução: 0.090204

74. Uma companhia de seguros está informada de que apenas 0.1% da população está sujeita a um certo tipo de acidentes, ao longo de um ano. Sabendo que a companhia tem 1 000 segurados desta população, qual a probabilidade aproximada de que, quando muito, 3 dos seus clientes venham a sofrer este tipo de acidentes durante o próximo ano?

Solução: 0.981011843

- 75. O Manuel vive em Évora e quer ir passar as férias em Agosto e em Vilamoura. Decide partir à boleia. Para tal coloca-se numa saída rodoviária de Évora e sabe que o n.º de veículos que saem desse local, com destino a Vilamoura se comporta segundo um Processo de Poisson com uma intensidade de $\beta = 12$ veículos por dia. Sabe também que, independentemente do veículo e da hora, a probabilidade de algum parar para lhe dar eventualmente boleia é p = 0.05.
 - (a) Qual a probabilidade de, em quatro horas, passarem 3 veículos com destino a Vilamoura?
 - (b) Das 12:00 às 18:00, em média quantos veículos passarão com destino a Vilamoura?
 - (c) Determine a probabilidade de, com destino a Vilamoura, passarem 2 veículos entre as 11:30 e as 12:30 e passarem 3 veículos entre as 14:00 e as 15:30.
 - (d) Diga qual a distribuição do total de veículos com destino a Vilamoura, que saem da saída mencionada, nos períodos horários das 10:00-12:00 e das 14:00-17:00.
 - (e) Determine a probabilidade de, entre as 8:00 e as 12:00, saírem 8 veículos com destino a Vilamoura e o Manuel conseguir que 2 destes veículos parem para lhe dar boleia?

Solução: 0.180447044, 3, 0.002518109, P(2.5), 0.000127863

Exercícios teóricos

- 76. Considere Y_1, Y_2, \ldots uma sucessão de v.a.'s independentes e identicamente distribuídas com distribuição $B(1, p), p \in [0, 1[$.
 - (a) Por resolução das alíneas que se seguem, mostre por indução em $n \in \mathbb{N}$ que $X_n = \sum_{i=1}^n Y_i \sim B\left(n,p\right)$.
 - i. Para $n = 1, X_1 \sim B(1, p)$
 - ii. Sendo válido que para $n, X_n \sim B(n, p)$, então $X_{n+1} \sim B(n+1, p)$.

Sugestão: Complete as entradas que se seguem

$$P(X_{n+1} = k) = P(X_n + Y_{n+1} = k)$$

$$= P(X_n = k; Y_{n+1} =) + P(X_n = k - 1; Y_{n+1} =)$$

$$= P(X_n = k) P(Y_{n+1} =) + P(X_n = k - 1) P(Y_{n+1} =)$$

$$= {n \choose k} p^k (1 - p)^{n-k} \times + {n \choose k - 1} p^{k-1} (1 - p)^{n-k+1} \times$$

$$= {n \choose k} + {n \choose k - 1} p - (1 - p) - (1 - p)$$

$$= {n+1 \choose k} p - (1 - p) - (1 - p) - (1 - p)$$

- (b) Verifique que $E(Y_i) = p$ e que $V(Y_i) = p(1-p)$
- (c) Demonstre que, se X é uma v.a. com distribuição B(n,p), então E(X) = np e V(X) = np (1-p)
- 77. Sejam X e Y v.a.'s independentes tais que $X \sim P(\lambda)$ e $Y \sim P(\beta)$. Completando as expressões que se seguem, mostre que $X + Y \sim P(\lambda + \beta)$.

Para $k \in \mathbb{N}_0$,

$$\begin{split} P\left(X+Y=k\right) &= \sum_{i=0}^{k} P\left(X=i,Y=\right) = \\ &= \sum_{i=0}^{k} P\left(X=i\right) P\left(Y=\right) \quad \text{Porque} \underline{\hspace{2cm}} \\ &= \sum_{i=0}^{k} e \quad -\!\!\!-\!\!\!- e \quad -\!\!\!\!- = e^{-(\lambda+\beta)} \frac{1}{k!} \sum_{i=0}^{k} \frac{k!}{i! \left(k-i\right)!} \lambda^{i} \beta^{k-i} \\ &= e^{-(\lambda+\beta)} \frac{1}{k!} \sum_{i=0}^{k} \binom{k}{i} \lambda^{i} \beta^{k-i} \quad \text{Pelo desenvolvimento do binómio de Newton} \\ -\!\!\!\!- \end{split}$$

Variável aleatória contínua

78. Em determinada estação de metropolitano, o tempo de espera (em minutos) até à chegada do primeiro comboio é uma v.a. X, com função densidade:

$$f_{X}\left(x\right) = \begin{cases} a, & 0 < x \le 1\\ 1/4, & 2 \le x \le 4\\ 0, & \text{outros valores de } x \end{cases}, \quad a \in \mathbb{R}$$

- (a) Determine o valor da constante a.
- (b) Qual a probabilidade de ser necessário esperar mais de 1 minuto e não mais de 3 minutos, pelo primeiro comboio?
- (c) Determine a função de distribuição da v.a. X. Volte a determinar o valor da probabilidade pedida na alínea anterior recorrendo a esta função.
- (d) Determine o tempo médio de espera pelo primeiro comboio. Determine também o desvio padrão.

Solução: 0.5, 0.25, -, 1.75, 1.330727

79. Em cada alínea assinale o valor lógico da afirmação (\mathbf{V} para verdadeira e \mathbf{F} para falsa).

Seja X uma v.a. absolutamente contínua com função densidade de probabilidade:

$$f_X(x) = \begin{cases} a - x, & x \in]0, a] \\ 1/2, & x \in]1, 2[\\ 0, & x \notin]0, a] \cup]1, 2[\end{cases} \quad a \in \mathbb{R}^+$$

- (a) \overline{V} \overline{F} A constante a deverá ter valor 1/2
- (b) F Se $P(X \le x) = 3/4$, então x = 3/2
- (c) $\boxed{\mathtt{V}}$ $\boxed{\mathtt{F}}$ Sabendo que $E\left(12X-11\right)=0$ e que $E\left(X^2\right)=15/12,$ então $V\left(X\right)=59/\left(12^2\right)$

Solução: F, V, V

80. A duração do tratamento (em dias) de pessoas com um determinado tipo de problemas pulmonares é uma v.a. contínua X com a seguinte função densidade:

$$f_X(x) = \begin{cases} 0, & x < a \\ 24 x^{-4}, & x \ge a \end{cases}, a \in \mathbb{R}$$

- (a) Determine a probabilidade de uma pessoa ter tido um tratamento com duração:
 - i. superior a 10 dias.
 - ii. entre 4 e 5 dias.
- (b) Determine a função de distribuição da v.a. X e aprecie a vantagem da sua utilização no cálculo das probabilidades pedidas na alínea anterior.
- (c) Calcule a duração média do tratamento.
- (d) Calcule o desvio padrão da duração do tratamento.
- (e) Se 100 pessoas fizeram este tratamento, independentemente uma das outras, e as v.a.'s X_1, X_2, \dots, X_{100} , expressam as respectivas durações, considere $\overline{X} = \frac{1}{100} \sum_{i=1}^{100} X_i$ a média das durações dos respectivos tratamentos.
 - Determine o valor médio, a variância e o desvio padrão da média das durações do tratamento destas pessoas.

Solução: 0.008, 0.061, -, 3, 1.732051, 3, 0.03, 0.173205

81. Uma máquina de enchimento automático de garrafas de cerveja de 33 cl
 comete, em cada garrafa, um erro aleatório X (em cl) com função densidade de probabilidade:

$$f_X(x) = \begin{cases} x/4 + 1/2, & -2 \le x \le 0 \\ -x/4 + 1/2, & 0 \le x \le 2 \\ 0, & \text{outros valores de } x \end{cases}$$

- (a) A função densidade de probabilidade é simétrica? Justifique.
- (b) Sendo $F_X(x)$ a função distribuição da v.a. X, verifique que $F_X(x) = 1 F_X(-x)$, $\forall x \in \mathbb{R}^+$.
- (c) Divida o suporte $S_X =]-2,2[$ em dois sub-intervalos exaustivos e disjuntos, de modo a que sejam iguais as probabilidades de X pertencer a um ou a outro.
- (d) Qual o erro médio que se comete no enchimento de cada garrafa?
- (e) Suponha fixado o seguinte critério de controle de qualidade: das garrafas cheias durante uma hora, escolhe-se uma ao acaso, e mede-se o seu conteúdo; se tiver um erro, em valor absoluto, superior a dois desvios padrões, pára-se a máquina para revisão. Qual a probabilidade de se mandar parar a máquina?

Solução: Sim e em torno de 0, Por exemplo, $\left]-2,0\right]$ e $\left]0,2\right[,$ 0, 0.033674

Exercícios teóricos

- 82. Seja X uma v.a. absolutamente contínua com função densidade de probabilidade f_X , e que se garante a existência de E(X). Sendo $a, b \in \mathbb{R}$ constantes, mostre que E(a + bX) = a + b E(X).
- 83. Seja X uma v.a. absolutamente contínua com função distribuição F_X . Para $a,b \in \mathbb{R}$ e a < b, demonstre que:
 - (a) $P(X \le a) = P(X < a) = F_X(a)$
 - (b) $P(X > b) = P(X > b) = 1 F_X(b)$

(c)
$$P(a < X \le b) = P(a \le X \le b) = P(a \le X < b) = P(a < X < b) = F_X(b) - F_X(a)$$

84. Considere X uma v.a. absolutamente contínua com função densidade de probabilidade f_X , e que se garante a existência de E(X). Se f_X é uma função simétrica em torno de $a \in \mathbb{R}$, mostre que E(X) = a.

Distribuições contínuas importantes

Uniforme

85. Um fabricante de determinada marca de óleo sabe que a procura semanal X (em milhares de litros) dessa marca de óleo é uma v.a. com a seguinte função densidade:

$$f_X(x) = \begin{cases} a, & x \in [0, 5] \\ 0, & x \notin [0, 5] \end{cases}$$

- (a) Determine o valor da constante a.
- (b) Determine a procura média.
- (c) Determine a variância e o desvio padrão de X.
- (d) A capacidade da fábrica é de 5 unidades (milhares de litros) semanais e o fabricante tem um lucro de $2000 \in$ por cada unidade vendida e um prejuízo de $500 \in$ por cada unidade não vendida. Seja y a quantidade (não excedendo as 5 unidades) que o fabricante decidiu produzir e $L \equiv L(X, y)$ o lucro obtido.
 - i. Determine a função lucro, $L \equiv L(X, y)$.
 - ii. Determine o lucro esperado.
 - iii. Qual o valor de y que permite obter um lucro esperado máximo?

Solução: $0.2, 2.5, 2.0833333, 1.443376, -, 2000y - 250y^2, 4$

- 86. Uma máquina de cortar barras de margarina com uma altura e largura constantes mas um comprimento X (em cm) aleatório, processa o corte de tal modo que a acumulação de probabilidade do comprimento final das barras, é constante no intervalo [20, 22].
 - (a) Obtenha a função densidade para o comprimento final das barras.
 - (b) A fábrica pretende saber qual o valor de x para o comprimento final das barras, de modo a garantir que 90% das barras têm comprimento superior a x. Que valor proporia?
 - (c) Qual o comprimento médio final das barras de margarina? E o desvio padrão?

Solução: -, 20.2, 21, 0.57735

Exercícios teóricos

87. Se X é uma v.a. com distribuição $U\left(a,b\right)$, verifique que a sua função de distribuição é:

$$F_X(x) = \begin{cases} 0, & x < a \\ (x-a)/(b-a), & a \le x < b \\ 1, & x \ge b \end{cases}$$

88. Mostre que se $X \sim U\left(a,b\right)$, então $E\left(X\right) = \frac{a+b}{2}$, $E\left(X^2\right) = \frac{b^3-a^3}{3\left(b-a\right)}$ e $V\left(X\right) = \frac{\left(b-a\right)^2}{12}$.

Exponencial

89. Seja X uma v.a. que representa a duração (em horas) de um componente electrónico. O preço de venda do referido componente é de $6 \in$ e o custo do seu fabrico é de $2 \in$, mas o fabricante garante o reembolso total se a sua duração for inferior a 1000 horas. A função densidade de X é:

$$f_X(x) = \begin{cases} 0, & x < \lambda \\ \frac{1}{\delta} e^{-\frac{x-\lambda}{\delta}}, & x \ge \lambda \end{cases}, \quad \lambda \in \mathbb{R}, \ \delta \in \mathbb{R}^+$$

(a) Deduza a função de distribuição de X, ou seja a função definida por $F_X(x) = P(X \le x)$, $\forall x \in \mathbb{R}$.

Para $\lambda = 0$ e $\delta = 1000$.

- (b) Determine a probabilidade do fabricante vir a reembolsar um cliente que comprou um componente.
- (c) Calcule a probabilidade de um qualquer componente vir a durar entre 1500 e 2000 horas.
- (d) Se um componente durar mais de 1500 horas, a probabilidade de vir a durar mais 500 horas tem valor $e^{-0.5}$?
- (e) Determine a duração média do componente electrónico e a variância da duração.
- (f) Determine o lucro esperado/componente e o desvio padrão do lucro/componente.

Solução: -, 0.632121, 0.087795, Sim, 1000, 1000000, 0.207277, 2.893370

- 90. O tempo de atendimento de um aluno na loja de fotocópias da FCT/UNL, no ano lectivo de 2008/9, é uma v.a. T com distribuição exponencial de valor médio igual a 20 minutos e desvio padrão de 5 minutos. Para um qualquer aluno que recorreu à loja neste ano lectivo:
 - (a) Qual a probabilidade de ter aguardado por atendimento menos de 20 minutos?
 - (b) Sabendo que já se encontrava à 15 minutos aguardando a sua vez de ser atendido, qual a probabilidade de ter esperado mais 10 minutos?

Solução: 0.632121, 0.135335

- 91. Após a implementação do acordo ortográfico mais recente, o número de erros de ortográfia que um indivíduo comete por página (A4 e completamente preenchida), comporta-se segundo um processo de Poisson a uma taxa média de 1.5 erros/página. Considere $\{N(t)\}_{t\in\mathbb{R}^+}$ o número de erros cometidos em t páginas. Para um determinado indivíduo:
 - (a) Que escreveu 2 páginas, qual a probabilidade de vir a cometer no máximo 2 erros.
 - (b) Num conjunto de 6 páginas escritas onde foram cometidos 10 erros, qual a probabilidade de metade terem ocorrido nas 2 primeiras páginas?
 - (c) Que escreveu 10 páginas, determine a probabilidade do total de erros cometidos nas 2 primeiras e nas 3 últimas ser igual a 8.
 - (d) Qual o número máximo de páginas que terão sido escritas de modo a que, com probabilidade superior ou igual a 0.01, não tenham sido cometidos erros?

Solução: 0.423190081, 0.136564548, 0.137328593, 3

Exercícios teóricos

92. Considere a função $\Gamma: \mathbb{R}_0^+ \longrightarrow \mathbb{R}^+$ definida por:

$$\Gamma\left(\alpha\right) = \int_{0}^{+\infty} x^{\alpha - 1} e^{-x} \ dx$$

e que goza das seguintes propriedades:

- $\Gamma(1) = 1$;
- $\Gamma(m+1) = m!$, $m \in \mathbb{N}$.
- (a) Se Y é uma v.a. com distribuição E(0,1), mostre que

i.
$$E(Y) = 1$$
.

ii.
$$E(Y^2) = 2 e V(Y) = 1$$
.

- (b) Para $\forall \lambda \in \mathbb{R}$ e $\forall \delta \in \mathbb{R}^+$, mostre que $X = \lambda + \delta Y$ é uma v.a. com distribuição $E(\lambda, \delta)$.
- 93. Se X é uma v.a. com distribuição $E(\lambda, \delta)$, a sua função de distribuição é:

$$F_X(x) = \begin{cases} 0, & x < \lambda \\ 1 - e^{-\frac{x-\lambda}{\delta}}, & x \ge \lambda \end{cases}$$

Considere X_1, X_2, \dots, X_n v.a.'s independentes e identicamente distribuídas (i.i.d.) com distribuição $E(\lambda, \delta)$.

Seja $N_n = \min(X_1, X_2, \dots, X_n)$. Dando resposta às seguintes alíneas, mostre que N_n é uma v.a. com distribuição Exponencial de parâmetros $\left(\lambda, \frac{\delta}{n}\right)$.

(a)
$$P(N_n > x) = P[(X_1 > x) \cap (X_2 > x) \cap ... \cap (X_n > x)].$$

(b)
$$P(N_n > x) = \prod_{i=1}^n P(X_i > x)$$
.

(c)
$$P(N_n > x) = \prod_{i=1}^{n} [1 - F_X(x)].$$

(d) A função distribuição da v.a. N_n é:

$$F_{N_n}(x) = \begin{cases} 0, & x < \lambda \\ 1 - e^{-\frac{x - \lambda}{\delta/n}}, & x \ge \lambda \end{cases}$$

Processo de Poisson e Exponencial

94. Um estudante de Engenharia que vai passar férias ao Algarve, decidiu deslocar-se à boleia num automóvel. Para esse efeito, colocou-se à entrada da auto-estrada.

Sabe-se que o número de automóveis que entram na auto-estrada num intervalo de tempo de duração t minutos, se processa de acordo com um Processo de Poisson de taxa $\delta = 0.25/\text{minuto}$.

- (a) Qual a probabilidade deste estudante ter de esperar mais de 1 minuto pela passagem do primeiro automóvel?
- (b) Qual a distribuição do tempo T (em minutos) entre entradas consecutivas de automóveis na auto-estrada?
- (c) Qual a probabilidade deste estudante ter de esperar mais de 3 minutos pela entrada do primeiro automóvel, dado que já espera à mais de 1 minuto?
- (d) Determine a probabilidade de durante 2 minutos, entrarem na auto-estrada mais de 2 automóveis.

Solução: 0.778800783, $T \sim E(0,4)$, 0.60653066, 0.014387678

- 95. No serviço de urgências do hospital A e diariamente, entre as 4:00 e as 6:00, o n.º de utentes que aí comparecem em t minutos, $N\left(t\right)$, distribui-se de acordo com um processo de Poisson à taxa de 0.25 utentes/minuto. Num determinado dia:
 - (a) Determine a probabilidade de entre as 4:00 e as 4:15 horas, comparecerem (inclusive) entre 2 a 4 utentes.

(b) Determine a probabilidade do total de utentes que chegam ao serviço de urgências, entre a 4:00 e as 4:05 e entre as 5:30 e as 5:40, não exceder os 3.

- (c) Diariamente, entre as 4:00 e as 6:00, o n.º de utentes que comparecem às consultas externas em t horas, M(t), distribui-se de acordo com um processo de Poisson de intensidade 10 utentes/hora e independentemente do n.º de utentes no serviço de urgências,
 - i. Indique a distribuição do n.º total de utentes que chegam ao serviço de urgências e que comparecem às consultas externas, entre as 5:00 e as 5:30.
 - ii. Determine a probabilidade de num dia, chegarem 5 utentes às urgências entre as 4:30 e as 4:45 e comparecerem às consultas externas no mesmo período de tempo, 4 utentes.
- (d) Indique a distribuição do tempo (em minutos) decorrido entre chegadas consecutivas de utentes às consultas externas.
- (e) i. Determine a probabilidade do tempo decorrido entre as chegadas consecutivas de dois utentes ao serviço de urgências, ser inferior a 3 minutos.
 - ii. Sabendo que no serviço de urgências o $4.^{\rm o}$ utente chegou às 5:00, calcule a probabilidade do utente seguinte chegar passado 1/4 de hora.

Solução: 0.565838343, 0.483767382, P(12.5), 0.019417056, E(0,6), 0.527633447, 0.023517745

Normal

- 96. Seja Z uma v.a. com distribuição N(0,1) (Normal Reduzida). Determine:
 - (a) $P(Z \le 0.24)$
 - (b) $P(Z \ge 2.46)$
 - (c) P(Z < -0.24)
 - (d) $P(0.24 < Z \le 2.46)$
 - (e) $P(-0.24 \le Z < 2.46)$

Solução: 0.5948, 0.0069, 0.4052, 0.3983, 0.5879

- 97. Seja X uma v.a. com distribuição N (100, 400). Calcule:
 - (a) $P(X \le 125)$
 - (b) P(X > 85)
 - (c) P(60 < X < 140)

Solução: 0.8944, 0.7734, 0.9544

- 98. Uma máquina de encher garrafas de água mineral foi calibrada para deitar uma média de 1.5 litros em garrafas com uma capacidade nominal de 1.55 litros. Sabe-se ainda que o volume de água despejado é normalmente distribuído com um desvio padrão de 30 ml. Determine:
 - (a) A percentagem de garrafas que contêm menos de 1.52 litros.
 - (b) A probabilidade de uma garrafa conter entre 1.48 e 1.52 litros.
 - (c) O valor de c tal que a percentagem de garrafas com um volume de água entre 1.5-c e 1.5+c litros, seja de 95%.
 - (d) O número esperado de garrafas, das próximas 100 a serem enchidas, em que a máquina vai tentar meter uma quantidade de água superior à capacidade.
 - (e) O volume de água abaixo do qual se encontra a fracção de 25% das garrafas menos cheias.

Solução: 74.86%, 0.4972, 0.0588, 4.75, 1.4799

99. Uma empresa fabrica computadores. O tempo que leva a produzir um lote é uma v.a. normal com valor médio de 50 dias e desvio padrão de 5 dias.

- (a) Qual a probabilidade de que o tempo de produção de um lote seja inferior a 44 dias?
- (b) É necessário estabelecer um prazo de entrega para um lote cuja produção vai ser agora iniciada. Que prazo deveremos indicar ao cliente, se a probabilidade de não o vir a cumprir fôr de 0.05?
- (c) Foram encomendados 10 lotes de computadores. Qual a probabilidade do tempo total de produção desses lotes exceder 520 dias?

Solução: 0.1151, 58.2, 0.1038

- 100. Um professor desloca-se todos os dias de manhã na sua viatura para ir para a escola. A duração da viagem é uma v.a. normal com valor médio de 20 minutos e desvio padrão de 4 minutos.
 - (a) Determine a probabilidade da viagem demorar mais de 25 minutos.
 - (b) Determine a percentagem de vezes em que chega atrasado à aula das 9:00 quando sai de casa às 8:45.
 - (c) O professor gosta de chegar à escola entre as 8:50 e às 9:00. Se sair de casa às 8:35, qual é a probabilidade de não o conseguir?
 - (d) Calcule o tempo a partir do qual se encontram as 20% das viagens mais lentas.
 - (e) Calcule a probabilidade de duas das próximas três viagens demorarem mais de 25 minutos.

Solução: 0.1056, 89.44%, 0.2112, 23.36, ≈ 0.029921

- 101. Um avião para poder descolar só pode levar, no máximo, 8 toneladas. O avião transporta 20 passageiros, podendo cada um levar a sua bagagem. O avião transporta ainda outro tipo de carga. Admita que o peso (em kg)
 - de cada passageiro é uma v.a. com distribuição N(75, c);
 - da bagagem de cada passageiro é uma v.a. com distribuição N(15,4);
 - \bullet de "outro tipo de carga" é uma v.a. com distribuição N (6000, 1000000).
 - (a) Se um passageiro for admoestado por levar mais do que 20 kg de bagagem, qual a probabilidade de tal vir a acontecer?
 - (b) Determine a probabilidade de um passageiro levar entre 14 e 20 kg de bagagem.
 - (c) Determine o valor de c, de modo a que um passageiro pese menos de 72 kg, com probabilidade 0.1587.
 - (d) Admita que c = 16. Não havendo qualquer espécie de controlo, qual a probabilidade do avião poder descolar? (Considere que todas as v.a.'s que vai usar são independentes).

Solução: $0.0062,\,0.6853,\,9,\,0.5793$

- 102. Um fabricante tem uma máquina A que pode produzir esferas para rolamentos cujo diâmetro (em cm) é uma v.a. com distribuição normal de parâmetros (5cm, 0.01cm²). No entanto, os seus clientes, exigem que o diâmetro esteja compreendido entre 4.9 e 5.1cm, pelo que as esferas que não satisfaçam este requisito vão para a sucata. Estas representam um prejuízo unitário de 1 unidade monetária, enquanto que as esferas de boa qualidade dão um lucro unitário de 2 unidades monetárias.
 - (a) Determine a percentagem da produção que é vendida e a percentagem que vai para a sucata.
 - (b) Suponha uma encomenda de $n, n \in \mathbb{N}$ esferas. Quantas esferas terão em média de ser produzidas para satisfazer esta encomenda?
 - (c) Determine o valor esperado do lucro obtido com a encomenda de n esferas.
 - (d) Determine o aumento relativo do lucro unitário esperado se o processo melhorasse de forma que o desvio padrão do diâmetro das esferas, fosse reduzido para metade.

(e) Se, para conseguir essa melhoria do processo de fabrico, fosse necessário comprar uma máquina B que custa 10 milhões de unidades monetárias (incluindo todos os encargos financeiros), determine o número esperado de esferas que seria necessário produzir para pagar este investimento.

Solução: 68.%26, 31.74%, n/0.6826, 1.535013 n, 77.82%, no mínimo 5367111

- 103. Diariamente, um jardineiro corta a relva e poda as árvores num certo jardim. Independentemente do dia, o tempo X que dispende a cortar a relva é uma v.a. com distribuição Normal de valor médio 90 min e desvio padrão 10 min, enquanto que o tempo gasto a podar as árvores é uma v.a. $Y \sim N$ (100, 225) (em minutos). Assuma que as v.a.'s X e Y são independentes.
 - (a) Calcule a probabilidade de num dia dispender mais tempo a cortar a relva do que a podar as árvores.
 - (b) O contrato de trabalho, prevê trabalhar um total de 17 horas em cinco dias/semana. Para uma determinada semana:
 - i. Indique a distribuição da diferença entre o n.º de horas de trabalho contratadas e o n.º de horas de trabalho efectuado.
 - ii. Determine a probabilidade de nesta semana, trabalhar menos do que as horas contratadas.

Solução: 0.2912, N(70, 1625) (em minutos), 0.9591

Exercícios teóricos

- 104. Considere as v.a's $Z \sim N(0,1)$ e X = a + bZ, com $a \in \mathbb{R}$ e $b \in \mathbb{R}^+$. Mostre que $X \sim N(a,b^2)$.
- 105. Considere a v.a. $Z \sim N(0, 1)$.
 - (a) Mostre que E(Z) = 0, que $E(Z^2) = 1$ e que V(Z) = 1
 - (b) Se X é uma v.a. com distribuição $N(\mu, \sigma^2)$, comprove que $E(X) = \mu$ e que $V(X) = \sigma^2$.

Pareto

- 106. Três grupos de desenvolvimento de soluções IT com volumes de vendas idênticos, têm abordagens ao risco muito distintas. O grupo A tem um controlo de qualidade implementado através de uma abordagem Entrepise Risk Management e usa uma framework de detecção e correcção de erros de última geração. O grupo B, para conseguir reduzir os custos e o time-to-market, aceita uma margem de risco maior, reduzindo o controlo de qualidade. Já o grupo C não tem qualquer preocupação com o controlo de qualidade, com um modelo de negócio que lhe permite chegar ao mercado antes dos concorrentes, aceitando os custos inerentes a todos os erros que tem que corrigir. Um aluno de PEE fez uma análise aos custos que cada grupo todos os anos incorre na correcção de erros e chegou à conclusão que os custos (em milhares de euros) para o grupo A, B e C são $C_A \sim N(10^4, 10^8)$, $C_B \sim E(0, 10^4)$ e $C_C \sim P((2 \sqrt{2})10^4, 1 + \sqrt{2})$, respectivamente.
 - (a) Verifique que todos os grupos têm o mesmo valor esperado (10^4) e variância (10^8) para os custos.
 - (b) Para cada um dos grupos, determine a probabilidade de os custos excederem o dobro do valor esperado.
 - (c) Para cada um dos grupos, determine a probabilidade de nos anos em que os custos são superiores ao valor esperado estes excederem o valor esperado em mais do dobro.
 - (d) Para cada um dos grupos, determine a probabilidade de nos anos muito maus, isto é, anos em que os custos são superiores ao dobro do esperado, estes excederem o valor esperado em mais do triplo.

Teorema Limite Central

107. Ao adicionar números, um computador arredonda cada número para o inteiro mais próximo. Admita que os erros cometidos são v.a.'s independentes e identicamente distribuídas (i.i.d.) com valor médio igual a 0 e variância igual a 1/12.

Se 1200 números forem adicionados, qual a probabilidade aproximada de que o erro total cometido não ultrapasse 15.4?

Solução: 0.9382

- 108. O saldo médio das contas de cartões de crédito dos clientes de um banco, no dia 1 de cada mês, é de -250 € e o desvio padrão é de 100 €. Considere uma amostra aleatória de 40 contas. Determine a probabilidade do saldo médio da amostra ser:
 - (a) Inferior a $-230 \in$.
 - (b) Superior a $-270 \in$.
 - (c) Estar compreendido entre -250 € e -200 €.

Solução: 0.8962, 0.8962, 0.4993

109. Um estudante decidiu amealhar diariamente uma pequena quantia para comprar uma bicicleta. As probabilidades do estudante amealhar 50, 100 e 250 cêntimos em cada dia são 0.3, 0.6 e 0.1, respectivamente. Calcule o valor aproximado da probabilidade do estudante amealhar mais de 350 euros durante um ano (365 dias).

Solução: 0.9236

- 110. Os envelopes destinados a transporte de avião são empacotados em grupos de 100, sendo depois pesados. Supondo que o peso de cada envelope é uma v.a. com valor médio igual a 1 grama e desvio padrão de 0.05g, independentemente de envelope para envelope, determine:
 - (a) A probabilidade de que um pacote, com exactamente 100 envelopes, pese mais de 100.5g.
 - (b) A probabilidade aproximada de que a média dos pesos dos 100 envelopes de um pacote diste do seu valor médio por uma quantidade superior ao seu desvio padrão.

Solução: 0.1587, 0.3174

111. Uma das seguintes respostas está correcta. Determine-a e assinale-a com uma cruz no quadrado correspondente.

Numa localidade, o preço por cada parcela de 1 m^2 de construção nova é uma v.a. com valor esperado de $1000 \in e$ um desvio padrão de $50 \in e$. Admita que o preço é independente das parcelas com 1 m^2 . Para 100 parcelas com 1 m^2 , o respectivo preço total de construção nova, situar-se-á entre os $99.000 \in e$

os 101.000 €, com probabilidade aproximada de:

 \fbox{A} 0.0320 \fbox{B} 0.1586 \fbox{C} 0.9544 \fbox{D} Nenhuma das anteriores

Solução: C

- 112. Num certo complexo industrial, inspeccionaram-se 100 componentes de um sistema eléctrico. Considere, para cada componente, uma v.a. X_i ($i=1,2,\ldots,100$) que toma valor 1 se o componente está operável e 0 se não está operável. De registos anteriores, sabe-se que a probabilidade de um qualquer componente estar operável é de 80%.
 - (a) Considere a v.a. $Y = \sum_{i=1}^{100} X_i$.
 - i. Diga qual o significado da v.a. Y?
 - ii. Qual a distribuição de Y?

- (b) Determine o valor aproximado da probabilidade de, no máximo, 80 desses componentes estarem operáveis.
- (c) Qual a probabilidade aproximada de que exactamente 80 desses componentes estejam operáveis?

Solução: -, -, 0.5, 0.0987

- 113. Uma empresa comercializa garrafas de vinho do Porto de 1 litro, vendendo-as em caixotes de 5 garrafas. Supõe-se que 4% das garrafas contêm realmente uma quantidade de líquido inferior à indicada no rótulo. Calcule a probabilidade aproximada de, num lote de 100 caixotes,
 - (a) se encontrarem entre 16 e 25 garrafas (inclusive ambos) com menos de 1 litro.
 - (b) se encontrarem 26 garrafas com menos de 1 litro.

Solução: 0.7458, 0.0418

- 114. Um sistema é formado por 100 componentes, cada um dos quais com confiabilidade de 0.95 (probabilidade de funcionamento do componente durante um certo período de tempo).
 - Se esses componentes funcionarem independentemente uns dos outros e, se o sistema completo funcionar adequadamente quando, pelo menos 90 componentes funcionarem, qual a confiabilidade do sistema?

Solução: 0.9970

- 115. O n.º de faltas cometidas pela equipa A num jogo de futebol, comporta-se segundo um Processo de Poisson com uma taxa média de 4 faltas por hora.
 - (a) Qual a probabilidade da equipa A cometer menos de 3 faltas no primeiro quarto de hora de uma partida?
 - (b) Sabendo que a equipa A numa partida, cometeu 2 faltas do primeiro quarto de hora, qual a probabilidade de vir a cometer mais de 5 até ao final dos 45 minutos da primeira parte?
 - (c) Admita que o n.º de faltas é independente do jogo a disputar. Num ano em que a equipa A vai realizar 18 jogos, escreva a expressão que permite calcular a probabilidade do total faltas que venha a cometer exceda o limite máximo de 100 faltas (considere que cada jogo a disputar tem um tempo fixo de 90 minutos).
 - (d) Realize o cálculo do valor aproximado da probabilidade pedida na alínea anterior, invocando o Teorema Limite Central.

Solução: 0.919698603,0.14287654, -, 0.7794

Simulação

Resultados prévios

Inversa de uma função distribuição

- Seja X uma v.a. com função distribuição $F(x) = P(X \le x), \quad \forall x \in \mathbb{R}$
- Representa-se e define-se a sua função inversa por

$$\overleftarrow{F}(u) = \inf \{ x \in \mathbb{R} : F(x) \ge u \}, \quad \forall u \in [0, 1]$$

- Exemplo 1

Seja X uma v.a. discreta com função de probabilidade e função distribuição:

$$X \left\{ \begin{array}{cccc} 0 & 2 & 4 \\ 0.3 & 0.5 & 0.2 \end{array} \right. \quad \text{e} \qquad F\left(x\right) = P\left(X \leq x\right) = \left\{ \begin{array}{cccc} 0, & x < 0 \\ 0.3, & 0 \leq x < 2 \\ 0.8, & 2 \leq x < 4 \\ 1, & x \geq 4 \end{array} \right.$$

A função inversa de F é:

- Exemplo 2

Seja X uma v.a. absolutamente contínua com função densidade de probabilidade e função distribuição:

$$f_X(x) = \begin{cases} 1/2, & 0 < x \le 1 \\ 1/4, & 2 \le x \le 4 \\ 0, & \text{outros valores de } x \end{cases} \quad \text{e} \quad F(x) = P(X \le x) = \begin{cases} 0, & x \le 0 \\ x/2, & 0 < x \le 1 \\ 1/2, & 1 < x \le 2 \\ x/4, & 2 < x \le 4 \\ 1, & x \ge 4 \end{cases}$$

A função inversa de F é:

$$\overleftarrow{F}(u) = \left\{ \begin{array}{ll} 2u, & u < 0.5 \\ 2, & u = 0.5 \\ 4u, & u > 0.5 \end{array} \right., \quad u \in [0, 1]$$

A Transformação Uniformizante

• Teorema da Transformação Uniformizante: Seja X uma v.a. com função distribuição F. Então a v.a. F(X) tem distribuição Uniforme no intervalo real de extremos 0 e 1. Abreviadamente,

$$F(X) \sim U(0,1)$$

• Corolário: Seja U uma v.a. com distribuição U(0,1) e X uma v.a. com função distribuição F. Então $X = \overleftarrow{F}(U)$.

Números pseudo-aleatórios

Método congruencial misto

Permite gerar uma sequência r_1, r_2, r_3, \ldots de números inteiros no intervalo $[0, \mathbf{m} - 1]$ recorrendo ao seguinte processo recursivo:

- $r_0 = semente$;
- $r_i = (\mathbf{a} r_{i-1} + \mathbf{c}) \pmod{\mathbf{m}}$

onde \mathbf{a} , \mathbf{c} e \mathbf{m} são números inteiros (a, c < m) e $r \pmod{\mathbf{m}}$ representa o resto da divisão inteira de r por \mathbf{m} .

Observações:

- Este método garante a geração de ciclos de números com comprimento menor ou igual a m.
- A escolha apropriada dos valores de a, c e m, garante a eficácia da computação, a obtenção de um ciclo de comprimento máximo \mathbf{m} , e independente da semente r_0 .

Geração de números pseudo-aleatórios no intervalo [0,1[

Para se obter uma sequência u_1, u_2, \ldots de números reais no intervalo [0, 1[, basta usar a tranformação:

$$u_i = (r_i + 0.5) / \mathbf{m}, \quad i = 1, 2, \dots$$

Exemplo

Para $r_0 = 1$, a = 5, c = 7 e m = 8, os primeiros 20 números são:

\overline{i}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
r_i	1	4	3	6	5	0	7	2	1	4	3	6	5	0	7	2	1	4	3	6	5

O ciclo tem comprimento 8.

116. Considere a seguinte sequência $u_1, u_2, \dots u_5$ de NPA's Uniformes no intervalo]0,1[. Determine a correspondente sequência x_1, x_2, \dots, x_5 de NPA's para uma v.a. X com distribuição de Bernoulli de parâmetro p = 0.4 (B(1,0.4)).

i	1	2	3	4	5
u_i	0.38	0.61	0.90	0.10	0.88
$\overline{x_i}$	0	1	1	0	1

Notas adicionais:

•
$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.6, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

$$\bullet \ \overleftarrow{F}_X(u) = \inf \left\{ x \in \mathbb{R} : F_X(x) \ge u \right\} = \left\{ \begin{array}{ll} 0, & u \le 0.6 \\ 1, & u > 0.6 \end{array} \right., \quad u \in [0, 1]$$

117. Considere a seguinte sequência $u_1, u_2, \dots u_5$ de NPA's Uniformes no intervalo]0,1[Determine a correspondente sequência x_1, x_2, \dots, x_5 de NPA's para uma v.a. X discreta com função de probabilidade (Exercício 46),

$$X \left\{ \begin{array}{cccc} 0 & 2 & 4 \\ 0.3 & 0.5 & 0.2 \end{array} \right.$$

e função distribuição

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.3, & 0 \le x < 2 \\ 0.8, & 2 \le x < 4 \\ 1, & x \ge 4 \end{cases}$$

$$\frac{i \mid 1 \quad 2 \quad 3 \quad 4 \quad 5}{u_i \mid 0.38 \quad 0.10 \quad 0.60 \quad 0.90 \quad 0.88}$$

$$\frac{x_i \mid 2 \quad 0 \quad 2 \quad 4 \quad 4}{u_i \mid 0.38 \quad 0.10 \quad 0.60 \quad 0.90 \quad 0.88}$$

Nota adicional:

$$\bullet \ \overleftarrow{F}_{X}\left(u\right)=\inf\left\{ x\in\mathbb{R}:F_{X}\left(x\right)\geq u\right\} =\left\{ \begin{array}{ll} 0, & u\leq0.3\\ 2, & 0.3< u\leq0.8\\ 4, & u>0.8 \end{array}\right., \quad u\in\left[0,1\right]$$

118. Considere X uma v.a. com distribuição Binomial de parâmetros (n, p).

Sabemos que X pode ser explicitada por $X = \sum_{i=1}^{n} Y_i$, sendo Y_1, Y_2, \dots, Y_n v.a.'s independentes e identicamente distribuídas com distribuíção de Bernoulli de parâmetro p = (B(1, p)).

Pretende-se agora gerar NPA's de uma v.a. X com distribuição B(3,0.4).

Tendo em conta o exercício 116, e a seguinte sequência $u_1, u_2, \dots u_{12}$ de NPA's Uniformes no intervalo [0, 1], a correspondente sequência de NPA's com distribuição B(3, 0.4) é:

i	1	2	3	4	5	6	7	8	9	10	11	12
u_i	0.28	0.74	0.12	0.81	0.93	0.81	0.71	0.64	0.06	0.21	0.39	0.72
y_i	0	1	0	1	1	1	1	1	0	0	0	1
$\overline{x_j}$		1			3			2			1	

119. Considere a seguinte sequência $u_1, u_2, \dots u_5$ de NPA's Uniformes no intervalo]0, 1[.

Determine a correspondente sequência x_1, x_2, \ldots, x_5 de NPA's para uma v.a. X com distribuição Geométrica de parâmetro p = 0.4 (G(0.4)) (Ter em os resultados do exercício 66).

i	1	2	3	4	5
u_i	0.38	0.70	0.10	0.90	0.98
$\overline{x_i}$	1	3	1	5	8

Notas adicionais:

•
$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 1 \\ 1 - (1 - p)^{[x]}, & x \ge 1 \end{cases}$$
, $p \in]0,1[$ $[x]$ represents a parte inteira de x

•
$$F_X(u) = \inf \{x \in \mathbb{R} : F_X(x) \ge u\} = \left[\frac{\ln (1-u)}{\ln (1-p)}\right] + 1, \quad u \in [0,1]$$

120. Considere a seguinte sequência $u_1, u_2, \dots u_5$ de NPA's Uniformes no intervalo]0,1[.

Determine a correspondente sequência x_1, x_2, \ldots, x_5 de NPA's para uma v.a. X absolutamente contínua com função densidade de probabilidade (Exercício 78),

$$f_X(x) = \begin{cases} 1/2, & 0 < x \le 1\\ 1/4, & 2 \le x \le 4\\ 0, & \text{outros valores de } x \end{cases}$$

e função distribuição

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x \le 0 \\ x/2, & 0 < x \le 1 \\ 0.5, & 1 < x \le 2 \\ x/4, & 2 < x \le 4 \\ 1, & x \ge 4 \end{cases}$$

$$\frac{i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}{u_i \quad 0.38 \quad 0.10 \quad 0.60 \quad 0.50 \quad 0.88}$$

$$x_i \quad 0.76 \quad 0.2 \quad 2.4 \quad 2 \quad 3.52$$

Nota adicional:

$$\bullet \stackrel{\longleftarrow}{F}_{X}(u) = \inf \left\{ x \in \mathbb{R} : F_{X}(x) \ge u \right\} = \begin{cases} 2u, & u < 0.5 \\ 2, & u = 0.5 \\ 4u, & u > 0.5 \end{cases}, \quad u \in [0, 1]$$

121. Considere a seguinte sequência $u_1, u_2, \dots u_5$ de NPA's Uniformes no intervalo [0, 1[.

Determine a correspondente sequência x_1, x_2, \dots, x_5 de NPA's para v.a. X com distribuição de Pareto de parâmetros (2,3) (Exercício 80).

i	1	2	3	4	5
u_i	0.38	0.80	0.10	0.99	0.90
$x_i \approx$	2.345	3.420	2.071	9.283	4.309

Notas adicionais:

•
$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 2\\ 1 - 8x^{-3}, & x \ge 2 \end{cases}$$

•
$$\overleftarrow{F}_X(u) = 2(1-u)^{-1/3}, u \in [0,1]$$