Teoria da Computação	Nome:
. ,	Número:
Segundo Semestre 2016/2017	
Mini-teste 5 - D	
06/06/2017	
Duração: 30 Minutos	Classificar (Sim/Não)

Este enunciado tem 4 páginas (incluindo esta) e 8 questões.

Apenas voltar a página quando o professor assim o disser. A folha de respostas múltiplas está anexa a este enunciado. Qualquer pergunta errada desconta 1/3 do seu valor no total da pontuação obtida com as respostas certas.

Tabela de Pontuação

Question	Points	Score
1	10	
2	10	
3	20	
4	10	
5	20	
6	10	
7	10	
8	10	
Total:	100	

- 1. (10 points) O algoritmo de parsing dado para gramáticas LL(1) não termina com sucesso se
 - A. a pilha não contém uma variável
 - B. a pilha está vazia
 - C. a variável de entrada não está vazia
 - D. ambas as palavras na variável de entrada e na pilha são vazias
 - E. nenhuma das anteriores
- 2. (10 points) Diz-se Turing-completo:
 - A. um mecanismo computacional que permite calcular qualquer função computável.
 - B. um mecanismo computacional que permite calcular uma função computável.
 - C. um mecanismo computacional que permite verificar se uma função é computável.
 - D. um mecanismo computacional que permite verificar se qualquer função é computável.
 - E. nenhuma das anteriores
- 3. (20 points) Considere a linguagem das palavras sobre o alfabeto $\{0,1,2\}$ que têm o dobro de 2s que 0s. Uma gramática com tal linguagem, sendo X o estado inicial, tem as regras
 - A. $X \longrightarrow \epsilon \mid X2X2X \mid X0X2X \mid X2X0X \mid 1X$
 - B. $X \longrightarrow \epsilon \mid X2X2X0X \mid X2X0X2X \mid X0X2X2X \mid 1X$
 - C. $X \longrightarrow \epsilon \mid X202X \mid X022X \mid X220X \mid 1X$
 - D. $X \longrightarrow \epsilon \mid X2X2X0X1X \mid X2X0X2X1X \mid X0X2X2X1X$
 - E. nenhuma das anteriores
- 4. (10 points) A gramática dada em cima
 - A. é LL porque não é recursiva à esquerda nem tem conflitos
 - B. é LL porque é recursiva à esquerda e não tem conflitos
 - C. é LL porque não é recursiva à esquerda e é não determinista
 - D. é LL porque é recursiva à esquerda e é não determinista
 - E. nenhuma das anteriores

5. (20 points) Considere a seguinte máquina de Turing.

```
s\theta
     push 0
                     s1
     push 0
                     s2
s1
s2
     store 3
                    s3
s3
     \mathtt{store}\ 4
                    s4
s4
     load 1
                    s5
s5
     ?null
                    s6
                    s9
s5
     left
s6
     load 3
                    s7
     load 4
s7
                     s8
                     17
s8
     eq
s9
     2x
                    s10
s9
     ?у
                    s12
s9
     push false
                     end
s10 push M[3] + 1
                    s11
     \mathtt{store}\ 3
s11
                     s14
s12 push M[4] + 1
                    s13
s13 store 4
                    s14
s14
     load 1
                    s15
                    s16
s15 right
s16
     store 1
                    s4
s17 ?true
                     s9
s17 ?false
                    s18
s18 push true
                     end
```

A máquina verifica se uma dada palavra sobre o alfabeto $\{X,Y\},$ guardada na posição M[1] da memória da máquina,

- A. só tem Xs e Ys
- B. tem menos Xs que Ys
- C. tem mais Xs que Ys
- D. não tem o mesmo número de Xs que Ys
- E. nenhuma das anteriores

6. (10 points) Considere a gramática $\langle \{S,T\}, \{op,cl\}, P,T\rangle$, sendo P o conjunto com as seguintes regras:

$$S \longrightarrow op T cl$$

$$T \longrightarrow \epsilon$$

$$T \longrightarrow ST$$

- A. $First(T) = \{op\}, pois First(T) = First(S) \in First(S) = \{cl\}$
- B. $First(T) = \{cl\}$, pois First(T) = First(S) e $First(S) = \{cl\}$
- C. $First(T) = \{\epsilon\}, pois First(T) = First(S) \in First(S) = \{\epsilon\}$
- D. $First(T) = \{S\}$, pois First(T) = First(S) e $First(S) = \{S\}$
- E. nenhuma das anteriores
- 7. (10 points) Considere a gramática da questão anterior.
 - A. $\mathtt{Follow}(T) = \{cl\}$, pois $\mathtt{Follow}(T) = \mathtt{First}(\epsilon) \cup \mathtt{Follow}(T)$ e pelo Lema de Arden, $\mathtt{Follow}(T) = \epsilon^*\{cl\}$
 - B. $\mathtt{Follow}(T) = \{\epsilon\}$, pois $\mathtt{Follow}(T) = \mathtt{First}(\epsilon) \cup \mathtt{Follow}(T)$ e pelo Lema de Arden, $\mathtt{Follow}(T) = \epsilon^*$
 - C. $\mathtt{Follow}(T) = \{cl\}$, $\mathtt{pois}\ \mathtt{Follow}(T) = \mathtt{First}(cl) \cup \mathtt{First}(\epsilon) \cup \mathtt{Follow}(T)$ e pelo Lema de Arden, $\mathtt{Follow}(T) = \epsilon^*\{cl\}$
 - D. $Follow(T) = \{cl\}, pois Follow(T) = First(cl)$
 - E. nenhuma das anteriores
- 8. (10 points) Considere de novo a gramática da questão 6. Tem-se que

$$\delta(T, cl) = T \longrightarrow \epsilon$$

porque:

- $A.\ cl \in {\rm First}(\epsilon)$
- B. $cl \notin \texttt{First}(\epsilon)$, mas $\epsilon \Rightarrow^* \epsilon \ e \ cl \in \texttt{Follow}(T)$
- C. $cl \notin \text{First}(\epsilon)$, mas $\epsilon \not\Rightarrow^* \epsilon$
- D. $cl \notin \text{First}(\epsilon)$, mas $\epsilon \Rightarrow^* \epsilon \in cl \notin \text{Follow}T$
- E. nenhuma das anteriores