Teoria da Computação	Nome:	
• ,	Número:	
Segundo Semestre 2017/2018		
Mini-teste 4 - A		
4/6/2018		
Duração: 40 Minutos	Classificar (Sim/Não)	

Quem não pretender ter nota nesta prova (i.e., pretender "desistir") deve indicar em cima que não pretende a prova classificada.

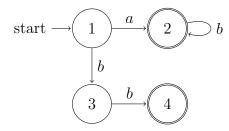
Este enunciado tem 5 páginas (incluindo esta). Apenas volte a página quando o professor assim o disser. Não é permitida a divulgação deste enunciado. A cópia em papel fornecida na prova deverá ficar sempre com um docente depois desta ser realizada (quer esteja preenchido ou não).

A folha de respostas múltiplas está anexa a este enunciado. Qualquer pergunta errada desconta 1/3 do seu valor no total da pontuação obtida com as respostas certas. Não é permitido o uso de qualquer tipo de material auxiliar ou electrónico enquanto estiver na sala em que decorre a prova.

Tabela de Pontuação

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. (10 points) O autómato



gera um sistema com as seguintes equações:

A.
$$1 = a2$$
, $b2 = 2$, $1 = b3$, $3 = b4$, $4 = \epsilon$;

B.
$$1 = a2$$
, $2 = b2$, $1 = b3$, $3 = b4$;

C.
$$1 = 2a$$
, $2 = 2b$, $1 = 3b$, $3 = 4b$, $4 = \epsilon$;

D.
$$1 = a2$$
, $2 = b2$, $3 = b1$, $4 = b3$, $4 = \epsilon$;

- E. nenhuma das anteriores.
- 2. (10 points) O sistema anterior, resolvido em ordem ao estado inicial, dá a expressão:
 - A. $bbab^*$
 - B. $bba + b^*$
 - C. $b + bab^*$
 - D. $bb\epsilon + ab^*$
 - E. $bb\epsilon + (ab)^*$
- 3. (10 points) Considere a linguagem $\{(ab)^{k^2} \mid k \in \mathbb{N}\}$. Prova-se que não é regular utilizando o Lema da Bombagem, sendo um dos contra-exemplos para n = 4:

A.
$$w = abababab$$
, $x = aba$, $y = b$ e $i = 1$

B.
$$w = abababab$$
, $x = aba$, $y = b$ e $i = 0$

C.
$$w = abababab$$
, $x = aaa$, $y = bbb$ e $i = 0$

D.
$$w = abababab$$
, $x = aba$, $y = \epsilon$, $z = bab$ e $i = 0$

E.
$$w = abababab, x = aba, y = \epsilon, z = bab$$
 e $i = 1$

4. (10 points) Seja X uma variável e E e F expressões regulares nas quais X não ocorre. O Lema de Arden tem o seguinte enunciado.

$$A. X = EX + F \iff X = E^*F$$

$$B. \ X = EX + F \ \Leftrightarrow \ X = E^* + F$$

C.
$$X = EX + F \Leftrightarrow X = EF^*$$

D.
$$X = EX + \epsilon \Leftrightarrow X = E^* + \epsilon$$

E. nenhuma das anteriores

- 5. (10 points) Lema da bombagem: se a linguagem \mathcal{L} é regular, então existe $n \in \mathbb{N}$ tal que qualquer palavra $w \in \mathcal{L}$ que tenha pelo menos n símbolos pode ser re-escrita como w = xyz com:
 - A. 1. $y = \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - B. 1. $y \neq \epsilon$;
 - 2. xy tem mais que n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - C. 1. $y \neq \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para algum $i \geq 0$.
 - $D. 1. y \neq \epsilon;$
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - E. nenhuma das anteriores
- 6. (10 points) Considere a gramática independente de contexto $G = \langle \{S\}, \{0, 1\}, P, S \rangle$ com $P = \{(S, \epsilon), (S, 0S11)\}$. A sua linguagem é:
 - A. $\{0^n 1^n \mid n \in \mathbb{N}_0\}$
 - B. $\{0^{2n}1^{2n} \mid n \in \mathbb{N}_0\}$
 - C. $\{0^n 1^{2n} \mid n \in \mathbb{N}_0\}$
 - D. $\{0^{2n}1^n \mid n \in \mathbb{N}_0\}$
 - E. $\{0^n 1^m \mid n, m \in \mathbb{N}_0\}$
- 7. (10 points) Qual das seguintes palavras é derivável pela gramática anterior?
 - A. 001
 - B. 011
 - C. 0011
 - D. 01
 - E. 1

8. (10 points) Considere a gramática independente de contexto

$$G = \langle \{S, R\}, \{(,), +, z\}, P, S \rangle$$

com P contendo as regras seguintes.

- 1) $S \rightarrow (R+S)$
- $2) S \rightarrow R$
- 3) $R \rightarrow z$

Qual das seguintes opções está correcta?

- A. $FIRST(R) = \{z\}, FIRST(S) = \{(,z\}, FOLLOW(R) = \{), +\} \in FOLLOW(S) = \{\}\}$
- B. $FIRST(S) = \{z\}, FIRST(R) = \{z\}, FOLLOW(S) = \{\}, +\}$ e $FOLLOW(R) = \{+\}$
- C. $FIRST(R) = \{(\}, FIRST(S) = \{(,z\}, FOLLOW(R) = \{)\} \in FOLLOW(S) = \{+\}$
- D. $FIRST(S) = \{z\}, FIRST(R) = \{(\}, FOLLOW(S) = \{+\} \in FOLLOW(R) = \{+\}$
- E. $FIRST(R) = \{z\}, FIRST(S) = \{z\}, FOLLOW(R) = \{\}, +\}$ e $FOLLOW(S) = \{+\}$
- 9. (10 points) Considere a gramática da questão anterior. Qual das seguintes opções está correcta?

A.
$$\frac{\delta \quad (\quad) \quad + \quad z}{S \quad 1 \quad \text{SE} \quad \text{SE} \quad 2}$$
 $R \quad 3 \quad \text{SE} \quad \text{SE} \quad 3$

C.
$$\frac{\delta \mid (\mid)\mid +\mid z}{S \mid 1 \mid 1 \mid SE \mid 2}$$
R SE 1 1 3

- 10. (10 points) Ao processar a palavra (zz), o analisador sintático LL(1) correspondente à gramática da questão 8 termina com:
 - A. a entrada e a pilha vazias.
 - B. z) na entrada e R) na pilha.
 - C.) na entrada e a pilha vazia.
 - D.) na entrada e) na pilha.
 - (E, z) na entrada (e + S) na pilha.