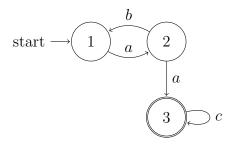
Teoria da Computação	Nome:	
• 3	Número:	
Segundo Semestre 2017/2018		
Mini-teste 4 - D		
4/6/2018		
Duração: 40 Minutos	Classificar (Sim/Não)	

Quem não pretender ter nota nesta prova (i.e., pretender "desistir") deve indicar em cima que não pretende a prova classificada.


Este enunciado tem 5 páginas (incluindo esta). Apenas volte a página quando o professor assim o disser. Não é permitida a divulgação deste enunciado. A cópia em papel fornecida na prova deverá ficar sempre com um docente depois desta ser realizada (quer esteja preenchido ou não).

A folha de respostas múltiplas está anexa a este enunciado. Qualquer pergunta errada desconta 1/3 do seu valor no total da pontuação obtida com as respostas certas. Não é permitido o uso de qualquer tipo de material auxiliar ou electrónico enquanto estiver na sala em que decorre a prova.

Tabela de Pontuação

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. (10 points) O autómato

gera um sistema com as seguintes equações:

A.
$$1 = 2a$$
, $2 = 1b$, $2 = a3$, $3 = 3c$, $3 = \epsilon$;

B.
$$1 = a2$$
, $2 = b1$, $2 = a3$, $3 = c3$, $3 = \epsilon$;

C.
$$1 = a2$$
, $b1 = 2$, $2 = a3$, $3 = c3$, $3 = \epsilon$;

D.
$$1 = a2$$
, $2 = b1$, $2 = a3$, $3 = c3$;

- E. nenhuma das anteriores.
- 2. (10 points) O sistema anterior, resolvido em ordem ao estado inicial, dá a expressão:

A.
$$(ab)^*aac^*\epsilon$$

B.
$$abc^*ba$$

C.
$$(baa)^*c$$

D.
$$(ab)^* + aac^*\epsilon$$

E.
$$(ab)^*(aa)^*c^*\epsilon$$

3. (10 points) Seja Y uma variável e E_1 e E_2 expressões regulares nas quais Y não ocorre. O Lema de Arden tem o seguinte enunciado.

A.
$$Y = E_1 Y + E_2 \iff Y = E_1^* E_2$$

B.
$$Y = E_1 Y \iff Y = E_1^*$$

C.
$$Y = E_1 Y + E_2 \iff Y = E_1 E_2^*$$

D.
$$Y = E_1 Y + E_2 \iff Y = (E_1 E_2)^*$$

- E. nenhuma das anteriores
- 4. (10 points) Considere a linguagem $\{(cab)^{k^2} \mid k \in \mathbb{N}\}$. Prova-se que não é regular utilizando o Lema da Bombagem, sendo um dos contra-exemplos para n=4:

A.
$$w = cabcabcabcab, x = cab, y = \epsilon, z = cab$$
 e $i = 0$

B.
$$w = cabcabcabcab, x = cab, y = \epsilon, z = cab$$
 e $i = 1$

C.
$$w = cabcabcabcab, x = cab, y = c e i = 1$$

E.
$$w = cabcabcabcab, x = ccc, y = aaa e i = 0$$

- 5. (10 points) Considere a gramática independente de contexto $G = \langle \{S\}, \{0, 1\}, P, S \rangle$ com $P = \{(S, \epsilon), (S, 00S1)\}$. A sua linguagem é:
 - A. $\{0^n1^n \mid n \in \mathbb{N}_0\}$
 - B. $\{0^{2n}1^{2n} \mid n \in \mathbb{N}_0\}$
 - C. $\{0^n 1^{2n} \mid n \in \mathbb{N}_0\}$
 - D. $\{0^{2n}1^n \mid n \in \mathbb{N}_0\}$
 - E. $\{0^n 1^m \mid n, m \in \mathbb{N}_0\}$
- 6. (10 points) Qual das seguintes palavras é derivável pela gramática anterior?
 - A. 001
 - B. 011
 - C. 0011
 - D. 01
 - E. 1
- 7. (10 points) Lema da bombagem: se a linguagem \mathcal{L} é regular, então existe $n \in \mathbb{N}$ tal que qualquer palavra $w \in \mathcal{L}$ que tenha pelo menos n símbolos pode ser re-escrita como w = xyz com:
 - A. 1. $y = \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - B. 1. $y \neq \epsilon$;
 - 2. xy tem mais que n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - C. 1. $y \neq \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - D. 1. $y \neq \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para algum $i \geq 0$.
 - E. nenhuma das anteriores

8. (10 points) Considere a gramática independente de contexto

$$G = \langle \{S, M\}, \{[,], \otimes, a\}, P, S \rangle$$

com P contendo as regras seguintes.

- 1) $S \to [M \otimes S]$
- $2) S \rightarrow M$
- 3) $M \rightarrow a$

Qual das seguintes opções está correcta?

- A. $FIRST(S) = \{a\}, FIRST(M) = \{a\}, FOLLOW(S) = \{], \otimes\}$ e $FOLLOW(M) = \{ \otimes \}$
- B. $FIRST(M) = \{[\}, FIRST(S) = \{[,a\}, FOLLOW(M) = \{]\} \in FOLLOW(S) = \{ \otimes \}$
- C. $FIRST(S) = \{a\}, FIRST(M) = \{[]\}, FOLLOW(S) = \{ \otimes \}$ e $FOLLOW(M) = \{ \otimes \}$
- D. $FIRST(M) = \{a\}, FIRST(S) = \{a\}, FOLLOW(M) = \{], \otimes \}$ e $FOLLOW(S) = \{ \otimes \}$
- E. $FIRST(M) = \{a\}, FIRST(S) = \{[,a\}, FOLLOW(M) = \{], \otimes\} \in FOLLOW(S) = \{]\}$
- 9. (10 points) Considere a gramática da questão anterior. Qual das seguintes opções está correcta?

- 10. (10 points) Ao processar a palavra [aa], o analisador sintático LL(1) correspondente à gramática da questão 8 termina com:
 - A.] na entrada e] na pilha.
 - B. a] na entrada e $\otimes S$] na pilha.
 - C. a entrada e a pilha vazias.
 - D. a] na entrada e M] na pilha.
 - E.] na entrada e a pilha vazia.