Teoria da Computação	Nome:	
1 3	Número:	
Segundo Semestre 2017/2018		
Mini-teste 4 - E		
4/6/2018		
Duração: 40 Minutos	Classificar (Sim/Não)	

Quem não pretender ter nota nesta prova (i.e., pretender "desistir") deve indicar em cima que não pretende a prova classificada.

Este enunciado tem 5 páginas (incluindo esta). Apenas volte a página quando o professor assim o disser. Não é permitida a divulgação deste enunciado. A cópia em papel fornecida na prova deverá ficar sempre com um docente depois desta ser realizada (quer esteja preenchido ou não).

A folha de respostas múltiplas está anexa a este enunciado. Qualquer pergunta errada desconta 1/3 do seu valor no total da pontuação obtida com as respostas certas. Não é permitido o uso de qualquer tipo de material auxiliar ou electrónico enquanto estiver na sala em que decorre a prova.

Tabela de Pontuação

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

- 1. (10 points) Lema da bombagem: se a linguagem \mathcal{L} é regular, então existe $n \in \mathbb{N}$ tal que qualquer palavra $w \in \mathcal{L}$ que tenha pelo menos n símbolos pode ser re-escrita como w = xyz com:
 - A. 1. $y = \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - B. 1. $y \neq \epsilon$;
 - 2. xy tem mais que n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - C. 1. $y \neq \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para algum $i \geq 0$.
 - D. 1. $y \neq \epsilon$;
 - 2. xy tem no máximo n símbolos;
 - 3. $xy^iz \in \mathcal{L}$, para cada $i \geq 0$.
 - E. nenhuma das anteriores
- 2. (10 points) Considere a linguagem $\{01^{k^2} \mid k \in \mathbb{N}\}$. Prova-se que não é regular utilizando o Lema da Bombagem, sendo um dos contra-exemplos para n=3:

A.
$$w = 01111$$
, $x = 01$, $y = 1$ e $i = 1$

B.
$$w = 01111$$
, $x = 00$, $y = 1$ e $i = 0$

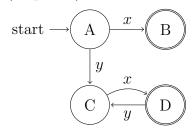
C.
$$w = 01111$$
, $x = 01$, $y = 11$ e $i = 0$

D.
$$w = 01111, x = 01, y = \epsilon e i = 1$$

E.
$$w = 01111$$
, $x = 01$, $y = 1$ e $i = 0$

3. (10 points) Seja W uma variável e α e β expressões regulares nas quais W não ocorre. O Lema de Arden tem o seguinte enunciado.

A.
$$W = \alpha W + \beta \iff W = \alpha^* + \beta$$


B.
$$W = \alpha W + \beta \iff W = \alpha \beta^*$$

C.
$$W = \alpha W + \beta \iff W = \alpha^* \beta$$

D.
$$W = \alpha W + \beta \iff X = (\alpha \beta)^* \epsilon$$

E. nenhuma das anteriores

4. (10 points) O autómato

gera um sistema com as seguintes equações:

A.
$$B = xA$$
, $C = yA$, $B = x$, $D = xC$, $C = yD$, $D = x$;

B.
$$A = xB$$
, $A = yC$, $B = x$, $C = xD$, $D = yC$, $D = x$;

C.
$$B = xA$$
, $C = yA$, $B = \epsilon$, $D = xC$, $C = yD$, $D = \epsilon$;

D.
$$A = xB$$
, $A = yC$, $B = \epsilon$, $C = xD$, $D = yC$, $D = \epsilon$;

- E. nenhuma das anteriores.
- 5. (10 points) O sistema anterior, resolvido em ordem ao estado inicial, dá a expressão:

A.
$$(x+y)(xy)^*x$$

B.
$$x^* + y(xy)^*x$$

C.
$$x + y(xy)^*x$$

D.
$$x + (yx)^*$$

E.
$$x^* + (yx)^*x$$

6. (10 points) Considere a gramática independente de contexto $G = \langle \{R\}, \{0, 1\}, P, R \rangle$ com $P = \{(R, \epsilon), (R, 00R11)\}$. A sua linguagem é:

A.
$$\{0^n 1^n \mid n \in \mathbb{N}_0\}$$

B.
$$\{0^{2n}1^{2n} \mid n \in \mathbb{N}_0\}$$

C.
$$\{0^n 1^n \mid n \in \mathbb{N}\}$$

D.
$$\{0^{2n}1^{2n} \mid n \in \mathbb{N}\}$$

E.
$$\{0^{2n}1^{2m} \mid n, m \in \mathbb{N}_0\}$$

- 7. (10 points) Qual das seguintes palavras é derivável pela gramática anterior?
 - A. 00
 - B. 000111
 - C. 0011
 - D. 01
 - E. 001111

8. (10 points) Considere a gramática independente de contexto

$$G = \langle \{X, Y\}, \{\langle, \rangle, *, a\}, P, X \rangle$$

com P contendo as regras seguintes.

- 1) $X \to aY$
- 2) $X \to \langle X * Y \rangle$
- 3) $Y \to \epsilon$

Qual das seguintes opções está correcta?

A.
$$FIRST(X) = \{a, \langle \}, FIRST(Y) = \{\epsilon \}, FOLLOW(X) = \{*, \langle \} \in FOLLOW(Y) = \{ \rangle, * \}$$

B.
$$FIRST(X) = \{*\}, FIRST(Y) = \{\}, *\},$$

 $FOLLOW(X) = \{a, \langle\} \text{ e } FOLLOW(Y) = \{\}$

C.
$$FIRST(X) = \{a, \langle \}, FIRST(Y) = \{ \}, FOLLOW(X) = \{ * \} e FOLLOW(Y) = \{ \rangle, * \}$$

D.
$$FIRST(X) = \{a\}, \quad FIRST(Y) = \{\epsilon\},$$

 $FOLLOW(X) = \{*\} \quad e \quad FOLLOW(Y) = \{\}, *\}$

E.
$$FIRST(X) = \{a, *\}, FIRST(Y) = \{\langle, *\}, FOLLOW(X) = \{a, *\} \text{ e } FOLLOW(Y) = \{\rangle, *\}$$

9. (10 points) Considere a gramática da questão anterior. Qual das seguintes opções está correcta?

B.
$$\frac{\delta \quad \langle \quad \rangle \quad a \quad * \quad \epsilon}{X \quad 2 \quad 1 \quad \text{SE} \quad \text{SE} \quad 2}$$

$$\frac{Y \quad \text{SE} \quad \text{SE} \quad \text{SE} \quad \text{SE} \quad 3}{Y \quad \text{SE} \quad \text{SE} \quad \text{SE} \quad \text{SE}}$$

- 10. (10 points) Ao processar a palavra $\langle aa* \rangle$, o analisador sintático LL(1) correspondente à gramática da questão 8 termina com:
 - A. a entrada e a pilha vazias.
 - B. $a*\rangle$ na entrada e $Y*Y\rangle$ na pilha.
 - C. $a*\rangle$ na entrada e a pilha vazia.
 - D. *> na entrada e Y*> na pilha.
 - E. $a*\rangle$ na entrada e $*Y\rangle$ na pilha.