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Preface 
This book presents many of the important ideas of computer graphics to stu dents, researchers, and practitioners. Several of these ideas are not new: They have already appeared in widely available scholarly publications, technical reports, textbooks, and lay-press articles. The advantage of writing a textbook sometime after the appearance of an idea is that its long-term impact can be understood bet ter and placed in a larger context. Our aim has been to treat ideas with as much sophistication as possible (which includes omitting ideas that are no longer as important as they once were), while still introducing beginning students to the subject lucidly and gracefully. 
This is a second-generation graphics book: Rather than treating all prior work as implicitly valid, we evaluate it in the context of today’s understanding, and update the presentation as appropriate. 
Even the most elementary issues can turn out to be remarkably subtle. Sup pose, for instance, that you’re designing a program that must run in a low-light environment—a darkened movie theatre, for instance. Obviously you cannot use a bright display, and so using brightness contrast to distinguish among different items in your program display would be inappropriate. You decide to use color instead. Unfortunately, color perception in low-light environments is not nearly as good as in high-light environments, and some text colors are easier to read than others in low light. Is your cursor still easy to see? Maybe to make that simpler, you should make the cursor constantly jitter, exploiting the motion sensitivity of the eye. So what seemed like a simple question turns out to involve issues of inter face design, color theory, and human perception. 
This example, simple as it is, also makes some unspoken assumptions: that the application uses graphics (rather than, say, tactile output or a well-isolated audio earpiece), that it does not use the regular theatre screen, and that it does not use a head-worn display. It makes explicit assumptions as well—for instance, that a cursor will be used (some UIs intentionally don’t use a cursor). Each of these assumptions reflects a user-interface choice as well. 
Unfortunately, this interrelatedness of things makes it impossible to present topics in a completely ordered fashion and still motivate them well; the subject is simply no longer linearizable. We could have covered all the mathematics, the ory of perception, and other, more abstract, topics first, and only then moved on to their graphics applications. Although this might produce a better reference work (you know just where to look to learn about generalized cross products, 
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for instance), it doesn’t work well for a textbook, since the motivating applica tions would all come at the end. Alternatively, we could have taken a case-study approach, in which we try to complete various increasingly difficult tasks, and introduce the necessary material as the need arises. This makes for a natural pro gression in some cases, but makes it difficult to give a broad organizational view of the subject. Our approach is a compromise: We start with some widely used math ematics and notational conventions, and then work from topic to topic, introducing supporting mathematics as needed. Readers already familiar with the mathemat ics can safely skip this material without missing any computer graphics; others may learn a good deal by reading these sections. Teachers may choose to include or omit them as needed. The topic-based organization of the book entails some redundancy. We discuss the graphics pipeline multiple times at varying levels of detail, for instance. Rather than referring the reader back to a previous chapter, sometimes we redescribe things, believing that this introduces a more natural flow. Flipping back 500 pages to review a figure can be a substantial distraction. 
The other challenge for a textbook author is to decide how encyclopedic to make the text. The first edition of this book really did cover a very large fraction of the published work in computer graphics; the second edition at least made pass ing references to much of the work. This edition abandons any pretense of being encyclopedic, for a very good reason: When the second edition was written, a sin gle person could carry, under one arm, all of the proceedings of SIGGRAPH, the largest annual computer graphics conference, and these constituted a fair represen tation of all technical writings on the subject. Now the SIGGRAPH proceedings (which are just one of many publication venues) occupy several cubic feet. Even a telegraphic textbook cannot cram all that information into a thousand pages. Our goal in this book is therefore to lead the reader to the point where he or she can read and reproduce many of today’s SIGGRAPH papers, albeit with some caveats: 
• First, computer graphics and computer vision are overlapping more and more, but there is no excuse for us to write a computer vision textbook; others with far greater knowledge have already done so. 
• Second, computer graphics involves programming; many graphics applica tions are quite large, but we do not attempt to teach either programming or software engineering in this book. We do briefly discuss programming (and especially debugging) approaches that are unique to graphics, however. 
• Third, most graphics applications have a user interface. At the time of this writing, most of these interfaces are based on windows with menus, and mouse interaction, although touch-based interfaces are becoming common place as well. There was a time when user-interface research was a part of graphics, but it’s now an independent community—albeit with substantial overlap with graphics—and we therefore assume that the student has some experience in creating programs with user interfaces, and don’t discuss these in any depth, except for some 3D interfaces whose implementations are more closely related to graphics. 
Of course, research papers in graphics differ. Some are highly mathematical, others describe large-scale systems with complex engineering tradeoffs, and still others involve a knowledge of physics, color theory, typography, photography, chemistry, zoology. . . the list goes on and on. Our goal is to prepare the reader to understand the computer graphics in these papers; the other material may require considerable external study as well.
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Historical Approaches 
The history of computer graphics is largely one of ad hoc approaches to the imme diate problems at hand. Saying this is in no way an indictment of the people who took those approaches: They had jobs to do, and found ways to do them. Sometimes their solutions had important ideas wrapped up within them; at other times they were merely ways to get things done, and their adoption has inter fered with progress in later years. For instance, the image-compositing model used in most graphics systems assumes that color values stored in images can be blended linearly. In actual practice, the color values stored in images are non linearly related to light intensity; taking linear combinations of these does not correspond to taking linear combinations of intensity. The difference between the two approaches began to be noticed when studios tried to combine real-world and computer-generated imagery; this compositing technology produced unacceptable results. In addition, some early approaches were deeply principled, but the associ ated programs made assumptions about hardware that were no longer valid a few years later; readers, looking first at the details of implementation, said, “Oh, this is old stuff—it’s not relevant to us at all,” and missed the still important ideas of the research. All too frequently, too, researchers have simply reinvented things known in other disciplines for years. 
We therefore do not follow the chronological development of computer graph ics. Just as physics courses do not begin with Aristotle’s description of dynamics, but instead work directly with Newton’s (and the better ones describe the limita tions of even that system, setting the stage for quantum approaches, etc.), we try to start directly from the best current understanding of issues, while still presenting various older ideas when relevant. We also try to point out sources for ideas that may not be familiar ones: Newell’s formula for the normal vector to a polygon in 3-space was known to Grassmann in the 1800s, for instance. Our hope in refer encing these sources is to increase the reader’s awareness of the variety of already developed ideas that are waiting to be applied to graphics. 
Pedagogy 
The most striking aspect of graphics in our everyday lives is the 3D imagery being used in video games and special effects in the entertainment industry and adver tisements. But our day-to-day interactions with home computers, cell phones, etc., are also based on computer graphics. Perhaps they are less visible in part because they are more successful: The best interfaces are the ones you don’t notice. It’s tempting to say that “2D graphics” is simpler—that 3D graphics is just a more complicated version of the same thing. But many of the issues in 2D graphics— how best to display images on a screen made of a rectangular grid of light-emitting elements, for instance, or how to construct effective and powerful interfaces—are just as difficult as those found in making pictures of three-dimensional scenes. And the simple models conventionally used in 2D graphics can lead the student into false assumptions about how best to represent things like color or shape. We therefore have largely integrated the presentation of 2D and 3D graphics so as to address simultaneously the subtle issues common to both. 
This book is unusual in the level at which we put the “black box.” Almost every computer science book has to decide at what level to abstract something about the computers that the reader will be familiar with. In a graphics book, we have to
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decide what graphics system the reader will be encountering as well. It’s not hard (after writing a first program or two) to believe that some combination of hardware and software inside your computer can make a colored triangle appear on your display when you issue certain instructions. The details of how this happens are not relevant to a surprisingly large part of graphics. For instance, what happens if you ask the graphics system to draw a red triangle that’s below the displayable area of your screen? Are the pixel locations that need to be made red computed and then ignored because they’re off-screen? Or does the graphics system realize, before computing any pixel values, that the triangle is off-screen and just quit? In some sense, unless you’re designing a graphics card, it just doesn’t matter all that much; indeed, it’s something you, as a user of a graphics system, can’t really control. In much of the book, therefore, we treat the graphics system as something that can display certain pixel values, or draw triangles and lines, without worrying too much about the “how” of this part. The details are included in the chapters on rasterization and on graphics hardware. But because they are mostly beyond our control, topics like clipping, antialiasing of lines, and rasterization algorithms are all postponed to later chapters. 
Another aspect of the book’s pedagogy is that we generally try to show how ideas or techniques arise. This can lead to long explanations, but helps, we hope, when students need to derive something for themselves: The approaches they’ve encountered may suggest an approach to their current problem. 
We believe that the best way to learn graphics is to first learn the mathematics behind it. The drawback of this approach compared to jumping to applications is that learning the abstract math increases the amount of time it takes to learn your first few techniques. But you only pay that overhead once. By the time you’re learning the tenth related technique, your investment will pay off because you’ll recognize that the new method combines elements you’ve already studied. 
Of course, you’re reading this book because you are motivated to write pro grams that make pictures. So we try to start many topics by diving straight into a solution before stepping back to deeply consider the broader mathematical issues. Most of this book is concerned with that stepping-back process. Having inves tigated the mathematics, we’ll then close out topics by sketching other related problems and some solutions to them. Because we’ve focused on the underlying principles, you won’t need us to tell you the details for these sketches. From your understanding of the principles, the approach of each solution should be clear, and you’ll have enough knowledge to be able to read and understand the original cited publication in its author’s own words, rather than relying on us to translate it for you. What we can do is present some older ideas in a slightly more modern form so that when you go back to read the original paper, you’ll have some idea how its vocabulary matches your own. 
Current Practice 
Graphics is a hands-on discipline. And since the business of graphics is the pre sentation of visual information to a viewer, and the subsequent interaction with it, graphical tools can often be used effectively to debug new graphical algo rithms. But doing this requires the ability to write graphics programs. There are many alternative ways to produce graphical imagery on today’s computers, and for much of the material in this book, one method is as good as another. The conversion between one programming language and its libraries and another is
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routine. But for teaching the subject, it seems best to work in a single language so that the student can concentrate on the deeper ideas. Throughout this book, we’ll suggest exercises to be written using Windows Presentation Foundation (WPF), a widely available graphics system, for which we’ve written a basic and easily mod ified program we call a “test bed” in which the student can work. For situations where WPF is not appropriate, we’ve often used G3D, a publicly available graph ics library maintained by one of the authors. And in many situations, we’ve written pseudocode. It provides a compact way to express ideas, and for most algorithms, actual code (in the language of your choice) can be downloaded from the Web; it seldom makes sense to include it in the text. The formatting of code varies; in cases where programs are developed from an informal sketch to a nearly com plete program in some language, things like syntax highlighting make no sense until quite late versions, and may be omitted entirely. Sometimes it’s nice to have the code match the mathematics, leading us to use variables with names like xR, which get typeset as math rather than code. In general, we italicize pseudocode, and use indentation rather than braces in pseudocode to indicate code blocks. In general, our pseudocode is very informal; we use it to convey the broad ideas rather than the details. 
This is not a book about writing graphics programs, nor is it about using them. Readers will find no hints about the best ways to store images in Adobe’s latest image-editing program, for instance. But we hope that, having understood the concepts in this book and being competent programmers already, they will both be able to write graphics programs and understand how to use those that are already written. 
Principles 
Throughout the book we have identified certain computer graphics principles that will help the reader in future work; we’ve also included sections on cur rent practice—sections that discuss, for example, how to approximate your ideal solution on today’s hardware, or how to compute your actual ideal solution more rapidly. Even practices that are tuned to today’s hardware can prove useful tomor row, so although in a decade the practices described may no longer be directly applicable, they show approaches that we believe will still be valuable for years. 
Prerequisites 
Much of this book assumes little more preparation than what a technically savvy undergraduate student may have: the ability to write object-oriented programs; a working knowledge of calculus; some familiarity with vectors, perhaps from a math class or physics class or even a computer science class; and at least some encounter with linear transformations. We also expect that the typical student has written a program or two containing 2D graphical objects like buttons or check boxes or icons. 
Some parts of this book, however, depend on far more mathematics, and attempting to teach that mathematics within the limits of this text is impossible. Generally, however, this sophisticated mathematics is carefully limited to a few sections, and these sections are more appropriate for a graduate course than an introductory one. Both they and certain mathematically sophisticated exercises are marked with a “math road-sign” symbol thus: . Correspondingly, topics that
xl Preface 
use deeper notions from computer science are marked with a “computer science road-sign,” . 
Some mathematical aspects of the text may seem strange to those who have met vectors in other contexts; the first author, whose Ph.D. is in mathematics, cer tainly was baffled by some of his first encounters with how graphics researchers do things. We attempt to explain these variations from standard mathematical approaches clearly and thoroughly. 
Paths through This Book 
This book can be used for a semester-long or yearlong undergraduate course, or as a general reference in a graduate course. In an undergraduate course, the advanced mathematical topics can safely be omitted (e.g., the discussions of analogs to barycentric coordinates, manifold meshes, spherical harmonics, etc.) while con centrating on the basic ideas of creating and displaying geometric models, under standing the mathematics of transformations, camera specifications, and the stan dard models used in representing light, color, reflectance, etc., along with some hints of the limitations of these models. It should also cover basic graphics appli cations and the user-interface concerns, design tradeoffs, and compromises neces sary to make them efficient, possibly ending with some special topic like creating simple animations, or writing a basic ray tracer. Even this is too much for a sin gle semester, and even a yearlong course will leave many sections of the book untouched, as future reading for interested students. 
An aggressive semester-long (14-week) course could cover the following. 
1. Introduction and a simple 2D program: Chapters 1, 2, and 3. 2. Introduction to the geometry of rendering, and further 2D and 3D pro grams: Chapters 3 and 4. Visual perception and the human visual system: Chapter 5. 
3. Modeling of geometry in 2D and 3D: meshes, splines, and implicit models. Sections 7.1–7.9, Chapters 8 and 9, Sections 22.1–22.4, 23.1–23.3, and 24.1–24.5. 
4. Images, part 1: Chapter 17, Sections 18.1–18.11. 
5. Images, part 2: Sections 18.12–18.20, Chapter 19. 
6. 2D and 3D transformations: Sections 10.1–10.12, Sections 11.1–11.3, Chapter 12. 
7. Viewing, cameras, and post-homogeneous interpolation. Sections 13.1– 13.7, 15.6.4. 
8. Standard approximations in graphics: Chapter 14, selected sections. 9. Rasterization and ray casting: Chapter 15. 
10. Light and reflection: Sections 26.1–26.7 (Section 26.5 optional); Section 26.10. 
11. Color: Sections 28.1–28.12. 
12. Basic reflectance models, light transport: Sections 27.1–27.5, 29.1–29.2, 29.6, 29.8. 
13. Recursive ray-tracing details, texture: Sections 24.9, 31.16, 20.1–20.6.
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14. Visible surface determination and acceleration data structures; overview of more advanced rendering techniques: selections from Chapters 31, 36, and 37. 
However, not all the material in every section would be appropriate for a first course. 
Alternatively, consider the syllabus for a 12-week undergraduate course on physically based rendering that takes first principles from offline to real-time ren dering. It could dive into the core mathematics and radiometry behind ray tracing, and then cycle back to pick up the computer science ideas needed for scalability and performance. 
1. Introduction: Chapter 1 
2. Light: Chapter 26 
3. Perception; light transport: Chapters 5 and 29 
4. A brief overview of meshes and scene graphs: Sections 6.6, 14.1–5 5. Transformations: Chapters 10 and 13, briefly. 
6. Ray casting: Sections 15.1–4, 7.6–9 
7. Acceleration data structures: Chapter 37; Sections 36.1–36.3, 36.5–36.6, 36.9 
8. Rendering theory: Chapters 30 and 31 
9. Rendering practice: Chapter 32 
10. Color and material: Sections 14.6–14.11, 28, and 27 
11. Rasterization: Sections 15.5–9 
12. Shaders and hardware: Sections 16.3–5, Chapters 33 and 38 
Note that these paths touch chapters out of numerical order. We’ve intention ally written this book in a style where most chapters are self-contained, with cross references instead of prerequisites, to support such traversal. 
Differences from the Previous Edition 
This edition is almost completely new, although many of the topics covered in the previous edition appear here. With the advent of the GPU, triangles are converted to pixels (or samples) by radically different approaches than the old scan-conversion algorithms. We no longer discuss those. In discussing light, we strongly favor physical units of measurement, which adds some complexity to discussions of older techniques that did not concern themselves with units. Rather than preparing two graphics packages for 2D and 3D graphics, as we did for the previous editions, we’ve chosen to use widely available systems, and provide tools to help the student get started using them. 
Website 
Often in this book you’ll see references to the book’s website. It’s at http:// cgpp.net and contains not only the testbed software and several examples
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derived from it, but additional material for many chapters, and the interactive experiments in WPF for Chapters 2 and 6. 
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For the Student 
Your professor will probably choose some route through this book, selecting top ics that fit well together, perhaps following one of the suggested trails mentioned
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earlier. Don’t let that constrain you. If you want to know about something, use the index and start reading. Sometimes you’ll find yourself lacking background, and you won’t be able to make sense of what you read. When that happens, read the background material. It’ll be easier than reading it at some other time, because right now you have a reason to learn it. If you stall out, search the Web for some one’s implementation and download and run it. When you notice it doesn’t look quite right, you can start examining the implementation, and trying to reverse engineer it. Sometimes this is a great way to understand something. Follow the practice-theory-practice model of learning: Try something, see whether you can make it work, and if you can’t, read up on how others did it, and then try again. The first attempt may be frustrating, but it sets you up to better understand the theory when you get to it. If you can’t bring yourself to follow the practice-theory practice model, at the very least you should take the time to do the inline exercises for any chapter you read. 
Graphics is a young field, so young that undergraduates are routinely coau thors on SIGGRAPH papers. In a year you can learn enough to start contributing new ideas. 
Graphics also uses a lot of mathematics. If mathematics has always seemed abstract and theoretical to you, graphics can be really helpful: The uses of math ematics in graphics are practical, and you can often see the consequences of a theorem in the pictures you make. If mathematics has always come easily to you, you can gain some enjoyment from trying to take the ideas we present and extend them further. While this book contains a lot of mathematics, it only scratches the surface of what gets used in modern research papers. 
Finally, doubt everything. We’ve done our best to tell the truth in this book, as we understand it. We think we’ve done pretty well, and the great bulk of what we’ve said is true. In a few places, we’ve deliberately told partial truths when we introduced a notion, and then amplified these in a later section when we’re discussing details. But aside from that, we’ve surely failed to tell the truth in other places as well. In some cases, we’ve simply made errors, leaving out a minus sign, or making an off-by-one error in a loop. In other cases, the current understanding of the graphics community is just inadequate, and we’ve believed what others have said, and will have to adjust our beliefs later. These errors are opportunities for you. Martin Gardner said that the true sound of scientific discovery is not “Aha!” but “Hey, that’s odd. . . .” So if every now and then something seems odd to you, go ahead and doubt it. Look into it more closely. If it turns out to be true, you’ll have cleared some cobwebs from your understanding. If it’s false, it’s a chance for you to advance the field. 
For the Teacher 
If you’re like us, you probably read the “For the Student” section even though it wasn’t for you. (And your students are probably reading this part, too.) You know that we’ve advised them to graze through the book at random, and to doubt everything. 
We recommend to you (aside from the suggestions in the remainder of this preface) two things. The first is that you encourage, or even require, that your students answer the inline exercises in the book. To the student who says, “I’ve got too much to do! I can’t waste time stopping to do some exercise,” just say, “We
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don’t have time to stop for gas . . . we’re already late.” The second is that you assign your students projects or homeworks that have both a fixed goal and an open ended component. The steady students will complete the fixed-goal parts and learn the material you want to cover. The others, given the chance to do something fun, may do things with the open-ended exercises that will amaze you. And in doing so, they’ll find that they need to learn things that might seem just out of reach, until they suddenly master them, and become empowered. Graphics is a terrific medium for this: Successes are instantly visible and rewarding, and this sets up a feedback loop for advancement. The combination of visible feedback with the ideas of scalability that they’ve encountered elsewhere in computer science can be revelatory. 
Discussion and Further Reading 
Most chapters of this book contain a “Discussion and Further Reading” section like this one, pointing to either background references or advanced applications of the ideas in the chapter. For this preface, the only suitable further reading is very general: We recommend that you immediately begin to look at the proceedings of ACM SIGGRAPH conferences, and of other graphics conferences like Euro graphics and Computer Graphics International, and, depending on your evolving interest, some of the more specialized venues like the Eurographics Symposium on Rendering, I3D, and the Symposium on Computer Animation. While at first the papers in these conferences will seem to rely on a great deal of prior knowl edge, you’ll find that you rapidly get a sense of what things are possible (if only by looking at the pictures), and what sorts of skills are necessary to achieve them. You’ll also rapidly discover ideas that keep reappearing in the areas that most interest you, and this can help guide your further reading as you learn graphics.
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Chapter 10 
Transformations in 
Two Dimensions 
10.1 Introduction 
As you saw in Chapters 2 and 6, when we think about taking an object for which we have a geometric model and putting it in a scene, we typically need to do three things: Move the object to some location, scale it up or down so that it fits well with the other objects in the scene, and rotate it until it has the right orientation. These operations—translation, scaling, and rotation—are part of every graphics system. Both scaling and rotation are linear transformations on the coordinates of the object’s points. Recall that a linear transformation, 
T : R2 → R2, (10.1) 
is one for which T(v + αw) = T(v) + αT(w) for any two vectors v and w in R2, and any real number α. Intuitively, it’s a transformation that preserves lines and leaves the origin unmoved. 
	Inline Exercise 10.1: Suppose T is linear. Insert α = 1 in the definition of linearity. What does it say? Insert v = 0 in the definition. What does it say?




	Inline Exercise 10.2: When we say that a linear transformation “preserves lines,” we mean that if   is a line, then the set of points T( ) must also lie in some line. You might expect that we’d require that T( ) actually be a line, but that would mean that transformations like “project everything perpendicularly onto the x-axis” would not be counted as “linear.” For this particular projection transformation, describe a line   such that T( ) is contained in a line, but is not itself a line.




221
222 Transformations in Two Dimensions 
The definition of linearity guarantees that for any linear transformation T, we have T(0) = 0: If we choose v = w = 0 and α = 1, the definition tells us that 
T(0) = T(0 + 10) = T(0) + 1T(0) = T(0) + T(0). (10.2) 
Subtracting T(0) from the first and last parts of this chain gives us 0 = T(0). This means that translation—moving every point of the plane by the same amount— is, in general, not a linear transformation except in the special case of translation by zero, in which all points are left where they are. Shortly we’ll describe a trick for putting the Euclidean plane into R3 (but not as the z = 0 plane as is usually done); once we do this, we’ll see that certain linear transformations on R3 end up performing translations on this embedded plane. 
For now, let’s look at only the plane. We assume that you have some famil iarity with linear transformations already; indeed, the serious student of computer graphics should, at some point, study linear algebra carefully. But one can learn a great deal about graphics with only a modest amount of knowledge of the subject, which we summarize here briefly. 
In the first few sections, we use the convention of most linear-algebra texts: 
 u 
The vectors are arrows at the origin, and we think of the vector v 
  
as being 
identified with the point (u, v). Later we’ll return to the point-vector distinction. For any 2 × 2 matrix M, the function v → Mv is a linear transformation from R2 to R2. We refer to this as a matrix transformation. In this chapter, we look at five such transformations in detail, study matrix transformations in general, and introduce a method for incorporating translation into the matrix-transformation formulation. We then apply these ideas to transforming objects and changing coor dinate systems, returning to the clock example of Chapter 2 to see the ideas in practice. 
10.2 Five Examples 
We begin with five examples of linear transformations in the plane; we’ll refer to these by the names T1, ... , T5 throughout the chapter. 
y 
x 
  
and 
Example 1: Rotation. Let M1 = 
 cos 30◦ − sin 30◦ sin 30◦ cos 30◦ 
Before y 
T1 : R2 → R2 : 
 x y 
  
→ M1 
 
 x y 
  
= 
 cos 30◦ − sin 30◦ sin 30◦ cos 30◦ 
   x y 
  
. (10.3) 
Recall that e1 denotes the vector 
 1 0 
  
and e2 = 
 0 1 
  
; this transformation sends 
x 
e1 to the vector 
 cos 30◦ sin 30◦ 
  
and e2 to 
 − sin 30◦ cos 30◦ 
  
, which are vectors that are 30◦ 
counterclockwise from the x- and y-axes, respectively (see Figure 10.1). There’s nothing special about the number 30 in this example; by replacing 30◦ with any angle, you can build a transformation that rotates things counterclock wise by that angle.
After 
Figure 10.1: Rotation by 30◦. 
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	Inline Exercise 10.3: Write down the matrix transformation that rotates every thing in the plane by 180◦ counterclockwise. Actually compute the sines and cosines so that you end up with a matrix filled with numbers in your answer. Apply this transformation to the corners of the unit square, (0, 0),(1, 0),(0, 1), and (1, 1).




y 
x 
Example 2: Nonuniform scaling. Let M2 = 
 3 0 0 2
  
and 
T2 : R2 → R2 : 
 x y 
  
 
→ M2 
 x y 
  
= 
 3 0 0 2
   x y 
  
= 
 3x 2y 
  
. (10.4) 
Before y 
This transformation stretches everything by a factor of three in the x-direction 
and a factor of two in the y-direction, as shown in Figure 10.2. If both stretch 
factors were three, we’d say that the transformation “scaled things up by three” 
and is a uniform scaling transformation. T2 represents a generalization of this 
idea: Rather than scaling uniformly in each direction, it’s called a nonuniform 
x 
scaling transformation or, less formally, a nonuniform scale. 
Once again the example generalizes: By placing numbers other than 2 and 3 
along the diagonal of the matrix, we can scale each axis by any amount we please. 
These scaling amounts can include zero and negative numbers. 
After 

	Inline Exercise 10.4: Write down the matrix for a uniform scale by −1. How does your answer relate to your answer to inline Exercise 10.3? Can you explain?




Figure 10.2: T2 stretches the x-axis by three and the y-axis 
by two. 
	Inline Exercise 10.5: Write down a transformation matrix that scales in x by zero and in y by 1. Informally describe what the associated transformation does to the house.




y 
x 
Example 3: Shearing. Let M3 = 
 1 2 0 1
  
and 
T3 : R2 → R2 : 
 x y 
  
→ M3 
 
 x y 
  
= 
 1 2 0 1
   x y 
  
= 
 x + 2y y 
  
. (10.5) 
Before 
y 
As Figure 10.3 shows, T3 preserves height along the y-axis but moves points 
parallel to the x-axis, with the amount of movement determined by the y-value. 
The x-axis itself remains fixed. Such a transformation is called a shearing trans 
formation. 
	Inline Exercise 10.6: Generalize to build a transformation that keeps the y-axis fixed but shears vertically instead of horizontally.




x 
Example 4: A general transformation. Let M4 = 
 1 −1 2 2
  
and 
T4 : R2 → R2 : 
 x y 
  
 
→ M4 
 x y 
  
= 
 1 −1 2 2
   x y 
  
. (10.6)
After 
Figure 10.3: A shearing transfor mation, T3. 
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Figure 10.4 shows the effects of T4. It distorts the house figure, but not by just a rotation or scaling or shearing along the coordinate axes. 
Example 5: A degenerate (or singular) transformation Let 
y 
x 
T5 : R2 → R2 : 
 x y 
  
 
→ 
 1 −1 2 −2 
   x y 
  
= 
  x − y 2x − 2y 
  
. (10.7) 
Before 
Figure 10.5 shows why we call this transformation degenerate: Unlike the others, it collapses the whole two-dimensional plane down to a one-dimensional 
y 
subspace, a line. There’s no longer a nice correspondence between points in the domain and points in the codomain: Certain points in the codomain no longer correspond to any point in the domain; others correspond to many points in the domain. Such a transformation is also called singular, as is the matrix defining it. Those familiar with linear algebra will note that this is equivalent to saying that 
the determinant of M5 = dependent. 
 1 −1 2 −2 
  
is zero, or saying that its columns are linearly 
x 
10.3 Important Facts about Transformations 
Here we’ll describe several properties of linear transformations from R2 to R2. These properties are important in part because they all generalize: They apply (in some form) to transformations from Rn to Rk for any n and k. We’ll mostly be concerned with values of n and k between 1 and 4; in this section, we’ll concentrate on n = k = 2. 
10.3.1 Multiplication by a Matrix Is a Linear Transformation 
If M is a 2 × 2 matrix, then the function TM defined by 
TM : R2 → R2 : x → Mx (10.8) 
is linear. All five examples above demonstrate this. 
For nondegenerate transformations, lines are sent to lines, as T1 through T4 show. For degenerate ones, a line may be sent to a single point. For instance, T5 
After 
Figure 10.4: A general transfor mation. The house has been quite distorted, in a way that’s hard to describe simply, as we’ve done for the earlier examples. 
y 
x 
Before 
 b 
sends the line consisting of all vectors of the form b 
  
y 
to the zero vector. 
Because multiplication by a matrix M is always a linear transformation, we’ll call TM the transformation associated to the matrix M. 
10.3.2 Multiplication by a Matrix Is the Only Linear Transformation 
In Rn, it turns out that for every linear transform T, there’s a matrix M with T(x) = Mx, which means that every linear transformation is a matrix transfor mation. We’ll see in Section 10.3.5 how to find M, given T, even if T is expressed in some other way. This will show that the matrix M is completely determined 
x 
After 
by the transformation T, and we can thus call it the matrix associated to the transformation.
Figure 10.5: A degenerate trans formation, T5. 
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As a special example, the matrix I, with ones on the diagonal and zeroes off the diagonal, is called the identity matrix; the associated transformation 
T(x) = Ix (10.9) 
is special: It’s the identity transformation that leaves every vector x unchanged. 
	Inline Exercise 10.7: There is an identity matrix of every size: a 1×1 identity, a 2 × 2 identity, etc. Write out the first three.




10.3.3 Function Composition and Matrix Multiplication Are Related 
If M and K are 2×2 matrices, then they define transformations TM and TK. When we compose these, we get the transformation 
TM ◦ TK : R2 → R2 : x → TM(TK(x)) = TM(Kx) (10.10) = M(Kx) (10.11) 
= (MK)x (10.12) 
= TMK(x). (10.13) 
In other words, the composed transformation is also a matrix transformation, with matrix MK. Note that when we write TM(TK(x)), the transformation TK is applied first. So, for example, if we look at the transformation T2 ◦T3, it first shears the house and then scales the result nonuniformly. 
	Inline Exercise 10.8: Describe the appearance of the house after transforming it by T1 ◦ T2 and after transforming it by T2 ◦ T1.




10.3.4 Matrix Inverse and Inverse Functions Are Related 
A matrix M is invertible if there’s a matrix B with the property that BM = MB = I. If such a matrix exists, it’s denoted M−1. 
If M is invertible and S(x) = M−1x, then S is the inverse function of TM, that is, 
S(TM(x)) = x and (10.14) 
TM(S(x)) = x. (10.15) 
	Inline Exercise 10.9: Using Equation 10.13, explain why Equation 10.15 holds.




If M is not invertible, then TM has no inverse. 
Let’s look at our examples. The matrix for T1 has an inverse: Simply replace 30 by −30 in all the entries. The resultant transformation rotates clockwise by 30◦; performing one rotation and then the other effectively does nothing (i.e., it is the identity transformation). The inverse for the matrix for T2 is diagonal, with entries
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3 and 12 . The inverse of the matrix for T3 is 1 
 1 −2 0 1
  
(note the negative sign). 
The associated transformation also shears parallel to the x-axis, but vectors in the upper half-plane are moved to the left, which undoes the moving to the right done by T3. 
For these first three it was fairly easy to guess the inverse matrices, because we could understand how to invert the transformation. The inverse of the matrix 
for T4 is 
1 
4 
  2 1 −2 1
  
, (10.16) 
which we computed using a general rule for inverses of 2 × 2 matrices (the only such rule worth memorizing): 
 a b c d
 −1 
= 1 
ad − bc 
  d −b −c a
  
. (10.17) 
Finally, for T5, the matrix has no inverse; if it did, the function T5 would be invertible: It would be possible to identify, for each point in the codomain, a single point in the domain that’s sent there. But we’ve already seen this isn’t possible. 
	Inline Exercise 10.10: Apply the formula from Equation 10.17 to the matrix for T5 to attempt to compute its inverse. What goes wrong?




10.3.5 Finding the Matrix for a Transformation 
We’ve said that every linear transformation really is just multiplication by some matrix, but how do we find that matrix? Suppose, for instance, that we’d like to find a linear transformation to flip our house across the y-axis so that the house ends up on the left side of the y-axis. (Perhaps you can guess the transformation that does this, and the associated matrix, but we’ll work through the problem directly.) 
The key idea is this: If we know where the transformation sends e1 and e2, we know the matrix. Why? We know that the transformation must have the form 
T 
 x y 
  
= 
 a b c d
   x y 
  
; (10.18) 
we just don’t know the values of a, b, c, and d. Well, T(e1) is then 
T 
 1 0 
  
= 
 a b c d
   1 0 
  
= 
 a c 
  
. (10.19) 
Similarly, T(e2) is the vector 
 b 
  
. So knowing T(e1) and T(e2) tells us all the d 
matrix entries. Applying this to the problem of flipping the house, we know that T(e1) = −e1, because we want a point on the positive x-axis to be sent to the corresponding point on the negative x-axis, so a = −1 and c = 0. On the other hand, T(e2) = e2, because every vector on the y-axis should be left untouched, so b = 0 and d = 1. Thus, the matrix for the house-flip transformation is just 
 −1 0 0 1
  
. (10.20)
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Figure 10.6: Multiplication by the matrix M takes e1 and e2 to u1 and u2, respectively, so multiplying M−1 does the opposite. Multiplying by K takes e1 and e2 to v1 and v2, so multiplying first by M−1 and then by K, that is, multiplying by KM−1, takes u1 to e1 to v1, and similarly for u2. 
	 0 
  
Inline Exercise 10.11: (a) Find a matrix transformation sending e1 to 
and 
4 
 1 
  
e2 to 
. 
1 
(b) Use the relationship of matrix inverse to the inverse of a transform, and the  0 
  
formula for the inverse of a 2 × 2 matrix, to find a transformation sending 4 
 1 
  
to e1 and 
to e2 as well.
1 




As Inline Exercise 10.11 shows, we now have the tools to send the standard basis vectors e1 and e2 to any two vectors v1 and v2, and vice versa (provided that v1 and v2 are independent, that is, neither is a multiple of the other). We can combine this with the idea that composition of linear transformations (performing one after the other) corresponds to multiplication of matrices and thus create a solution to a rather general problem. 
Problem: Given independent vectors u1 and u2 and any two vectors v1 and v2, find a linear transformation, in matrix form, that sends u1 to v1 and u2 to v2. Solution: Let M be the matrix whose columns are u1 and u2. Then 
T : R2 → R2 : x → Mx (10.21) 
sends e1 to u1 and e2 to u2 (see Figure 10.6). Therefore, 
S : R2 → R2 : x → M−1x (10.22) 
sends u1 to e1 and u2 to e2. 
Now let K be the matrix with columns v1 and v2. The transformation R : R2 → R2 : x → Kx (10.23) 
sends e1 to v1 and e2 to v2. 
If we apply first S and then R to u1, it will be sent to e1 (by S), and thence to v1 by R; a similar argument applies to u2. Writing this in equations, 
R(S(x)) = R(M−1x) (10.24) 
= K(M−1x) (10.25) 
= (KM−1)x. (10.26)
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Thus, the matrix for the transformation sending the u’s to the v’s is just KM−1. Let’s make this concrete with an example. We’ll find a matrix sending 
  
(10.27) 
to 
u1 = 
 2 3 
  
and u2 = 
  1 −1 
v1 = 
 1 
  
and v2 = 
1 
  2 −1 
  
, (10.28) 
respectively. Following the pattern above, the matrices M and K are 
M = K = 
 2 1 3 −1  1 2 1 −1 
  
(10.29) 
  
. (10.30) 
Using the matrix inversion formula (Equation 10.17), we find 
M−1 = −15 −1 −1 
−3 2
so that the matrix for the overall transformation is 
  
(10.31) 
J = KM−1 = 
 1 2 1 −1 
  
·−15 −1 −1 −3 2
  
(10.32) 
= 
  7/5 −3/5 −2/5 3/5 
  
. (10.33) 
As you may have guessed, the kinds of transformations we used in WPF in Chapter 2 are internally represented as matrix transformations, and transformation groups are represented by sets of matrices that are multiplied together to generate the effect of the group. 
	Inline Exercise 10.12: Verify that the transformation associated to the matrix J in Equation 10.32 really does send u1 to v1 and u2 to v2.




	 1 
  
 1 
  
Inline Exercise 10.13: Let u1 = 
and u2 = 
; pick any two nonzero 
3 
4 
vectors you like as v1 and v2, and find the matrix transformation that sends each ui to the corresponding vi.




The recipe above for building matrix transformations shows the following: Every linear transformation from R2 to R2 is determined by its values on two independent vectors. In fact, this is a far more general property: Any linear trans formation from R2 to Rk is determined by its values on two independent vectors, and indeed, any linear transformation from Rn to Rk is determined by its values on n independent vectors (where to make sense of these, we need to extend our definition of “independence” to more than two vectors, which we’ll do presently).
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10.3.6 Transformations and Coordinate Systems 
We tend to think about linear transformations as moving points around, but leaving the origin fixed; we’ll often use them that way. Equally important, however, is their use in changing coordinate systems. If we have two coordinate systems on R2 with the same origin, as in Figure 10.7, then every arrow has coordinates in both the red and the blue systems. The two red coordinates can be written as a vector, as 
r u 
 3 
  
s 
can the two blue coordinates. The vector u, for instance, has coordinates 
in 
2 
the red system and approximately 
 −0.2 3.6
  
in the blue system. 

	Inline Exercise 10.14: Use a ruler to find the coordinates of r and s in each of the two coordinate systems.




We could tabulate every imaginable arrow’s coordinates in the red and blue systems to convert from red to blue coordinates. But there is a far simpler way to achieve the same result. The conversion from red coordinates to blue coordinates is linear and can be expressed by a matrix transformation. In this example, the matrix is 
Figure 10.7: Two different coor dinate systems for R2; the vector u, expressed in the red coor dinate system, has coordinates 3 and 2, indicated by the dot ted lines, while the coordinates in the blue coordinate system are approximately −0.2 and 3.6, where we’ve drawn, in each case, 
M = 12  1 −√3 √3 1
  
. (10.34) 
the positive side of the first coor dinate axis in bold. 
Multiplying M by the coordinates of u in the red system gets us v = Mu (10.35) 
= 12  1 −√3 √3 1
   3 2 
  
(10.36) 
= 12 3 − 2√3 3√3 + 2 
  
(10.37) 
≈ 
 −0.2 3.6
  
, (10.38) 
which is the coordinate vector for u in the blue system. 
	Inline Exercise 10.15: Confirm, for each of the other arrows in Figure 10.7, that the same transformation converts red to blue coordinates.




By the way, when creating this example we computed M just as we did at the start of the preceding section: We found the blue coordinates of each of the two basis vectors for the red coordinate system, and used these as the columns of M. 
In the special case where we want to go from the usual coordinates on a vector to its coordinates in some coordinate system with basis vectors u1, u2, which are unit vectors and mutually perpendicular, the transformation matrix is one whose rows are the transposes of u1 and u2. 
For example, if u1 = 
 3/5 4/5 
  
and u2 = 
 −4/5 3/5 
  
(check for yourself that 
 4 
these are unit length and perpendicular), then the vector v = 2 
u-coordinates, is
  
, expressed in 
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  3/5 4/5 −4/5 3/5 
   4 2 
  
= 
  4 −2 
  
. (10.39) 
Verify for yourself that these really are the u-coordinates of v, that is, that the vector v really is the same as 4u1 + (−2)u2. 
10.3.7 Matrix Properties and the Singular Value Decomposition 
Because matrices are so closely tied to linear transformations, and because lin ear transformations are so important in graphics, we’ll now briefly discuss some important properties of matrices. 
First, diagonal matrices—ones with zeroes everywhere except on the diag onal, like the matrix M2 for the transformation T2—correspond to remarkably simple transformations: They just scale up or down each axis by some amount (although if the amount is a negative number, the corresponding axis is also flipped). Because of this simplicity, we’ll try to understand other transformations in terms of these diagonal matrices. 
Second, if the columns of the matrix M are v1, v2, ... , vk ∈ Rn, and they are pairwise orthogonal unit vectors, then MTM = Ik, the k × k identity matrix. In the special case where k = n, such a matrix is called orthogonal. If the determinant of the matrix is 1, then the matrix is said to be a special orthogonal matrix. In R2, such a matrix must be a rotation matrix like the one in T1; in R3, the transformation associated to such a matrix corresponds to rotation around some vector by some amount.1 
Less familiar to most students, but of enormous importance in much graph ics research, is the singular value decomposition (SVD) of a matrix. Its exis tence says, informally, that if we have a transformation T represented by a matrix M, and if we’re willing to use new coordinate systems on both the domain and codomain, then the transformation simply looks like a nonuniform (or possibly uniform) scaling transformation. We’ll briefly discuss this idea here, along with the application of the SVD to solving equations; the web materials for this chapter show the SVD for our example transformations and some further applications of the SVD. 
The singular value decomposition theorem says this: 
Every n × k matrix M can be factored in the form 
M = UDVT, (10.40) 
where U is n × r (where r = min(n, k)) with orthonormal columns, D is r × r diagonal (i.e., only entries of the form dii can be nonzero), and V is r × k with orthonormal columns (see Figure 10.8). 
By convention, the entries of D are required to be in nonincreasing order (i.e., |d1,1|≥|d2,2|≥|d3,3| ...) and are indicated by single subscripts (i.e., we write d1 instead of d1,1). They are called the singular values of M. It turns out that M is degenerate (i.e., singular) exactly if any singular value is 0. As a general 
1. As we mentioned in Chapter 3, rotation about a vector in R3 is better expressed as rotation in a plane, so instead of speaking about rotation about z, we speak of rotation in the xy-plane. We can then say that any special orthogonal matrix in R4 corresponds to a sequence of two rotations in two planes in 4-space.
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D V = t M U 
= 
M UD V = t = 
(a) (b) 
Figure 10.8: (a) An n × k matrix, with n > k, factors as a product of an n × n matrix with orthonormal columns (indicated by the vertical stripes on the first rectangle), a diagonal k×k matrix, and a k×k matrix with orthonormal rows (indicated by the horizontal stripes), which we write as UDVT, where U and V have orthonormal columns. (b) An n × k matrix with n < k is written as a similar product; note that the diagonal matrix in both cases is square, and its size is the smaller of n and k. 
guideline, if the ratio of the largest to the smallest singular values is very large (say, 106), then numerical computations with the matrix are likely to be unstable. 
	Inline Exercise 10.16: The singular value decomposition is not unique. If we negate the first row of VT and the first column of U in the SVD of a matrix M, show that the result is still an SVD for M.




In the special case where n = k (the one we most often encounter), the matri ces U and V are both square and represent change-of-coordinate transformations in the domain and codomain. Thus, we can see the transformation 
T(x) = Mx (10.41) 
as a sequence of three steps: (1) Multiplication by VT converts x to v-coordinates; (2) multiplication by D amounts to a possibly nonuniform scaling along each axis; and (3) multiplication by U treats the resultant entries as coordinates in the u-coordinate system, which then are transformed back to standard coordinates. 
10.3.8 Computing the SVD 
How do we find U, D, and V? In general it’s relatively difficult, and we rely on numerical linear algebra packages to do it for us. Furthermore, the results are by no means unique: A single matrix may have multiple singular value decompositions. For instance, if S is any n × n matrix with orthonormal columns, then 
I = SIST (10.42) 
is one possible singular value decomposition of the identity matrix. Even though there are many possible SVDs, the singular values are the same for all decompo sitions. 
The rank of the matrix M, which is defined as the number of linearly inde pendent columns, turns out to be exactly the number of nonzero singular values. 
10.3.9 The SVD and Pseudoinverses 
Again, in the special case where n = k so that U and V are square, it’s easy to compute M−1 if you know the SVD: 
M−1 = VD−1UT, (10.43)
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where D−1 is easy to compute—you simply invert all the elements of the diagonal. If one of these elements is zero, the matrix is singular and no such inverse exists; in this case, the pseudoinverse is also often useful. It’s defined as 
M† = VD†UT, (10.44) 
where D† is just D with every nonzero entry inverted (i.e., you try to invert the diagonal matrix D by inverting diagonal elements, and every time you encounter a zero on the diagonal, you ignore it and simply write down 0 in the answer). The definition of the pseudoinverse makes sense even when n  = k; the pseudoinverse can be used to solve “least squares” problems, which frequently arise in graphics. 
The Pseudoinverse Theorem: 
(a) If M is an n × k matrix with n > k, the equation Mx = b generally represents an overdetermined system of equations2 which may have no solution. The vector 
x0 = M†b (10.45) 
represents an optimal “solution” to this system, in the sense that Mx0 is as close to b as possible. 
(b) If M is an n × k matrix with n < k, and rank n, the equation Mx = b represents an underdetermined system of equations.3 The vector 
x0 = M†b (10.46) 
represents an optimal solution to this system, in the sense that x0 is the shortest vector satisfying Mx = b. 
Here are examples of each of these cases. 
Example 1: An overdetermined system 
The system 
   t = 43 (10.47) 
 2 
1 
has no solution: There’s simply no number t with 2t = 4 and 1t = 3 (see Fig 
 2 
ure 10.9). But among all the multiples of M = 1 
  
, there is one that’s closest to 
(4, 3) 
the vector b = 
 4 3 
  
, namely 2.2 
 2 1 
  
= 
 4. 4 2.2
  
, as you can discover with elemen 
2 
tary geometry. The theorem tells us we can compute this directly, however, using the pseudoinverse. The SVD and pseudoinverse of M are 
M = UDVT = ( 1√5 21 ) √5   1  (10.48) 
1 
Figure 10.9: The equations 
t 
 2 1 
  
= 
 4 3 
  
have no common 
M† = VD†U =  1   1/√5 ( 1√5 2 1 ) (10.49) =  0.4 0.2 . (10.50) 
2. In other words, a situation like “five equations in three unknowns.” 3. That is, a situation like “three equations in five unknowns.”
solution. But the multiples of the vector [2 1]T form a line in the plane that passes by the point (4, 3), and there’s a point of this line (shown in a red circle on the topmost arrow) that’s as close to (4, 3) as possible. 
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And the solution guaranteed by the theorem is 
t = M†b =  0.4 0.2  43 = 2.2. (10.51) 
Example 2: An underdetermined system 
The system 
 1 3  xy = 4 (10.52) 
has a great many solutions; any point (x, y) on the line x + 3y = 4 is a solution 
y = 3/4 
x + 3y = 4 
x = 4 
(see Figure 10.10). The solution that’s closest to the origin is the point on the line x + 3y = 4 that’s as near to (0, 0) as possible, which turns out to be x = 0.4; y = 
1.2. In this case, the matrix M is  1 3 ; its SVD and pseudoinverse are simply M = UDVT =  1   √10   1/√10 3/√10 and (10.53) 
Figure 10.10: Any point of the blue line is a solution; the red point is closest to the origin. 
M† = VD†U = 
 1/√10 3/√10
   1/√10   1 = 1/10 3/10
  
. (10.54) 
And the solution guaranteed by the theorem is 
M†b = 
 1/10 3/10
   4 = 0.4 1.2
  
. (10.55) 
Of course, this kind of computation is much more interesting in the case where the matrices are much larger, but all the essential characteristics are present even in these simple examples. 
A particularly interesting example arises when we have, for instance, two polyhedral models (consisting of perhaps hundreds of vertices joined by trian gular faces) that might be “essentially identical”: One might be just a translated, rotated, and scaled version of the other. In Section 10.4, we’ll see how to represent translation along with rotation and scaling in terms of matrix multiplication. We can determine whether the two models are in fact essentially identical by listing the coordinates of the first in the columns of a matrix V and the coordinates of the second in a matrix W, and then seeking a matrix A with 
AV = W. (10.56) 
This amounts to solving the “overconstrained system” problem; we find that A = V†W is the best possible solution. If, having computed A, we find that 
AV = W, (10.57) 
then the models are essentially identical; if the left and right sides differ, then the models are not essentially identical. (This entire approach depends, of course, on corresponding vertices of the two models being listed in the corresponding order; the more general problem is a lot more difficult.) 
10.4 Translation 
We now describe a way to apply linear transformations to generate translations, and at the same time give a nice model for the points-versus-vectors ideas we’ve espoused so far.
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The idea is this: As our Euclidean plane (our set of points), we’ll take the plane w = 1 in xyw-space (see Figure 10.11). The use of w here is in preparation for what we’ll do in 3-space, which is to consider the three-dimensional set defined by w = 1 in xyzw-space. 
Having done this, we can consider transformations that multiply such vectors by a 3 × 3 matrix M. The only problem is that the result of such a multiplication may not have a 1 as its last entry. We can restrict our attention to those that do: 
w 
y x 
Figure 10.11: The w = 1 plane in xyw-space. 
⎡ 
⎣abc 
def pqr 
⎤ ⎦ 
⎡ 
⎣xy 1 
⎤ 
⎦ = 
⎡ 
⎣x y  1 
⎤ 
⎦ . (10.58) 
For this equation to hold for every x and y, we must have px + qy + r = 1 for all x, y. This forces p = q = 0 and r = 1. 
Thus, we’ll consider transformations of the form 
⎡ 
⎣abc 
def 001 
⎤ ⎦ 
⎡ 
⎣xy 1 
⎤ 
⎦ = 
⎡ 
⎣x y  1 
⎤ 
⎦ . (10.59) 
If we examine the special case where the upper-left corner is a 2 × 2 identity matrix, we get 
⎡ 
⎣1 0 c 
0 1 f 001 
⎤ ⎦ 
⎡ 
⎣xy 1 
⎤ 
⎦ = 
⎡ 
⎣x + c 
y + f 1 
⎤ 
⎦ . (10.60) 
As long as we pay attention only to the x- and y-coordinates, this looks like a translation! We’ve added c to each x-coordinate and f to each y-coordinate (see Figure 10.12). Transformations like this, restricted to the plane w = 1, are called affine transformations of the plane. Affine transformations are the ones most often used in graphics. 
On the other hand, if we make c = f = 0, then the third coordinate becomes irrelevant, and the upper-left 2×2 matrix can perform any of the operations we’ve seen up until now. Thus, with the simple trick of adding a third coordinate and requiring that it always be 1, we’ve managed to unify rotation, scaling, and all the other linear transformations with the new class of transformations, translations, to get the class of affine transformations. 
10.5 Points and Vectors Again 
Back in Chapter 7, we said that points and vectors could be combined in certain ways: The difference of points is a vector, a vector could be added to a point 
T 
Figure 10.12: The house figure, before and after a translation generated by shearing par allel to the w = 1 plane.
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to get a new point, and more generally, affine combinations of points, that is, combinations of the form 
α1P1 + α2P2 + ... + αkPk, (10.61) 
were allowed if and only if α1 + α2 + ... + αk = 1. 
We now have a situation in which these distinctions make sense in terms of familiar mathematics: We can regard points of the plane as being elements of R3 whose third coordinate is 1, and vectors as being elements of R3 whose third coordinate is 0. 
With this convention, it’s clear that the difference of points is a vector, the sum of a vector and a point is a point, and combinations like the one in Equation 10.61 yield a point if and only if the sum of the coefficients is 1 (because the third coordinate of the result will be exactly the sum of the coefficients; for the sum to be a point, this third coordinate is required to be 1). 
You may ask, “Why, when we’re already familiar with vectors in 3-space, should we bother calling some of them ‘points in the Euclidean plane’ and others ‘two-dimensional vectors’?” The answer is that the distinctions have geometric significance when we’re using this subset of 3-space as a model for 2D transfor mations. Adding vectors in 3-space is defined in linear algebra, but adding together two of our “points” gives a location in 3-space that’s not on the w = 1 plane or the w = 0 plane, so we don’t have a name for it at all. 
Henceforth we’ll use E2 (for “Euclidean two-dimensional space”) to denote this w = 1 plane in xyw-space, and we’ll write (x, y) to mean the point of E2 
corresponding to the 3-space vector 
⎡ 
⎣xy 1 
⎤ 
⎦. It’s conventional to speak of an affine 
transformation as acting on E2, even though it’s defined by a 3 × 3 matrix. 
10.6 Why Use 3 × 3 Matrices Instead of a Matrix and a Vector? 
Students sometimes wonder why they can’t just represent a linear transformation plus translation in the form 
T(x) = Mx + b, (10.62) 
where the matrix M represents the linear part (rotating, scaling, and shearing) and b represents the translation. 
First, you can do that, and it works just fine. You might save a tiny bit of storage (four numbers for the matrix and two for the vector, so six numbers instead of nine), but since our matrices always have two 0s and a 1 in the third column, we don’t really need to store that column anyhow, so it’s the same. Otherwise, there’s no important difference. 
Second, the reason to unify the transformations into a single matrix is that it’s then very easy to take multiple transformations (each represented by a matrix) and compose them (perform one after another): We just multiply their matrices together in the right order to get the matrix for the composed transformation. You can do this in the matrix-and-vector formulation as well, but the programming is slightly messier and more error-prone.
236 Transformations in Two Dimensions 
There’s a third reason, however: It’ll soon become apparent that we can also work with triples whose third entry is neither 1 nor 0, and use the operation of homogenization (dividing by w) to convert these to points (i.e., triples with w = 1), except when w = 0. This allows us to study even more transformations, one of which is central to the study of perspective, as we’ll see later. 
The singular value decomposition provides the tool necessary to decompose not just linear transformations, but affine ones as well (i.e., combinations of linear transformations and translations). 
10.7 Windowing Transformations 
v 
As an application of our new, richer set of transformations, let’s examine window ing transformations, which send one axis-aligned rectangle to another, as shown 
(u2, v2) 
in Figure 10.13. (We already discussed this briefly in Chapter 3.) We’ll first take a direct approach involving a little algebra. We’ll then examine a more automated approach. 
We’ll need to do essentially the same thing to the first and second coordinates, so let’s look at how to transform the first coordinate only. We need to send u1 to x1 and u2 to x2. That means we need to scale up any coordinate difference by the factor x2−x1 
u2−u1. So our transformation for the first coordinate has the form t → x2 − x1 
u2 − u1t + something. (10.63) 
If we apply this to t = u1, we know that we want to get x1; this leads to the equation 
(u1, v1) (u2, v1) 
y 
(x2, y2) 
u x 
x2 − x1 
u2 − u1u1 + something = x1. (10.64) 
Solving for the missing offset gives 
(x1, y1) 
(x2, y1) 
x1 − x2 − x1 
u2 − u1u1 = x1u2 − u1 
u2 − u1− x2 − x1 
u2 − u1u1 (10.65) 
= x1u2 − x1u1 − x2u1 + x1u1 
u2 − u1(10.66) 
= x1u2 − x2u1 
u2 − u1, (10.67) 
so that the transformation is 
t → x2 − x1 
u2 − u1t + x1u2 − x2u1 
u2 − u1. (10.68) 
Doing essentially the same thing for the v and y terms (i.e., the second coordi nate) we get the transformation, which we can write in matrix form: 
T(x) = Mx, (10.69) 
where 
Figure 10.13: Window transfor mation setup. We need to move the uv-rectangle to the xy rectangle. 
⎡ 
⎤ 
x2−x1 
u2−u1 0 x1u2−x2u1 
M = 
⎣ 
0 y2−y1 v2−v1 
u2−u1 
y1v2−y2v1 v2−v1 
⎦ . (10.70)
00 1 
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	Inline Exercise 10.17: Multiply the matrix M of Equation 10.70 by the vector  u1 v1 1 T to confirm that you do get  x1 y1 1 T. Do the same for the opposite corner of the rectangle.




We’ll now show you a second way to build this transformation (and many others as well). 
10.8 Building 3D Transformations 
Recall that in 2D we could send the vectors e1 and e2 to the vectors v1 and v2 by building a matrix M whose columns were v1 and v2, and then use two such matrices (inverting one along the way) to send any two independent vectors v1 and v2 to any two vectors w1 and w2. We can do the same thing in 3-space: We can send the standard basis vectors e1, e2, and e3 to any three other vectors, just by using those vectors as the columns of a matrix. Let’s start by sending e1, e2, and e3 to three corners of our first rectangle—the two we’ve already specified and the lower-right one, at location (u2, v1). The three vectors corresponding to these 
points are⎡ ⎣u1v1 
1 
⎤ 
⎦ , 
⎡ 
⎣u2 
v2 
1 
⎤ 
⎦ , and 
⎡ 
⎣u2 
v1 
1 
⎤ 
⎦ . (10.71) 
Because the three corners of the rectangle are not collinear, the three vectors are independent. Indeed, this is our definition of independence for vectors in n-space: Vectors v1, ... , vk are independent if there’s no (k−1)-dimensional subspace con taining them. In 3-space, for instance, three vectors are independent if there’s no plane through the origin containing all of them. 
So the matrix 
M1 = 
⎡ 
⎣u1 u2 u2 
v1 v2 v1 111 
⎤ 
⎦ , (10.72) 
which performs the desired transformation, will be invertible. We can similarly build the matrix M2, with the corresponding xs and ys in it. Finally, we can compute 
M2M−1 
1 , (10.73) 
which will perform the desired transformation. For instance, the lower-left cor ner of the starting rectangle will be sent, by M−1 
1 , to e1 (because M1 sent e1 to 
the lower-left corner); multiplying e1 by M2 will send it to the lower-left corner of the target rectangle. A similar argument applies to all three corners. Indeed, if we compute the inverse algebraically and multiply out everything, we’ll once again arrive at the matrix given in Equation 10.7. But we don’t need to do so: We know that this must be the right matrix. Assuming we’re willing to use a matrix inversion routine, there’s no need to think through anything more than “I want these three points to be sent to these three other points.” 
Summary: Given any three noncollinear points P1, P2, P3 in E2, we can find a matrix transformation and send them to any three points Q1, Q2, Q3 with the procedure above.
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10.9 Another Example of Building a 2D Transformation 
Suppose we want to find a 3×3 matrix transformation that rotates the entire plane 30◦ counterclockwise around the point P = (2, 4), as shown in Figure 10.14. As you’ll recall, WPF expresses this transformation via code like this: 
	<RotateTransform Angle="-30" CenterX="2" CenterY="4"/>




An implementer of WPF then must create a matrix like the one we’re about to build. 
Here are two approaches. 
y 
x 
y 
(2, 4) 
First, we know how to rotate about the origin by 30◦; we can use the transfor 
(2, 4) 
mation T1 from the start of the chapter. So we can do our desired transformation 
in three steps (see Figure 10.15). 
1. Move the point (2, 4) to the origin. 
x 
2. Rotate by 30◦. 
3. Move the origin back to (2, 4). 
The matrix that moves the point (2, 4) to the origin is 
⎡ 
⎣1 0 −2 
0 1 −4 00 1 
⎤ 
⎦ . (10.74) 
Figure 10.14: We’d like to rotate the entire plane by 30◦ counter clockwise about the point P = (2, 4). 
The one that moves it back is similar, except that the 2 and 4 are not negated. And the rotation matrix (expressed in our new 3 × 3 format) is 
⎡ ⎣ 
cos 30◦ − sin 30◦ 0 sin 30◦ cos 30◦ 0 0 01 
⎤ 
⎦ . (10.75) 
The matrix representing the entire sequence of transformations is therefore 
⎡ 
⎣102 
014 001 
⎤ 
⎡ 
⎤ 
⎣cos 30◦ − sin 30◦ 0 ⎦ 
⎦ 
sin 30◦ cos 30◦ 0 0 01 
⎡ 
⎣1 0 −2 
0 1 −4 00 1 
⎤ 
⎦ . (10.76) 

	Inline Exercise 10.18: (a) Explain why this is the correct order in which to multiply the transformations to get the desired result. 
(b) Verify that the point (2, 4) is indeed left unmoved by multiplying  241 T by the sequence of matrices above.




The second approach is again more automatic: We find three points whose target locations we know, just as we did with the windowing transformation above. We’ll use P = (2, 4), Q = (3, 4) (the point one unit to the right of P), and R = (2, 5) (the point one unit above P). We know that we want P sent to P, Q sent to (2+ cos 30◦, 4+ sin 30◦), and R sent to (2−sin 30◦, 4+ cos 30◦). (Draw a picture to convince yourself that these are correct). The matrix that achieves this is just
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⎤ 
⎡ 
⎣2 2 + cos 30◦ 4 − sin 30◦ ⎦ 
4 4 + sin 30◦ 4 + cos 30◦ 111 
⎡ 
⎣232 
445 111 
⎤ 
−1 
y 
⎦ 
. (10.77) 
Both approaches are reasonably easy to work with. 
x 
There’s a third approach—a variation of the second—in which we specify 
where we want to send a point and two vectors, rather than three points. In this 
case, we might say that we want the point P to remain fixed, and the vectors e1 
and e2 to go to 
⎡ 
⎣cos 30◦ 
sin 30◦ 0 
⎤ 
⎦ and 
⎡ 
⎣− sin 30◦ 
cos 30◦ 
0 
⎤ 
⎦ , (10.78) 
y 
respectively. In this case, instead of finding matrices that send the vectors e1, e2, 
x 
and e3 to the desired three points, before and after, we find matrices that send those 
vectors to the desired point and two vectors, before and after. These matrices are 
⎡ ⎣ 
210 401 100 
⎤ 
⎦ and 
⎡ 
⎣2 cos 30◦ − sin 30◦ 
4 sin 30◦ cos 30◦ 10 0 
⎤ 
⎦ , (10.79) 
y 
so the overall matrix is 
⎡ 
⎤ 
⎣2 cos 30◦ − sin 30◦ 
⎦ 
4 sin 30◦ cos 30◦ 
10 0 
⎡ 
⎣210 
401 100 
⎤ 
−1 
x 
⎦ 
. (10.80) 
These general techniques can be applied to create any linear-plus-translation transformation of the w = 1 plane, but there are some specific ones that are good to know. Rotation in the xy-plane, by an amount θ (rotating the positive x-axis toward the positive y-axis) is given by 
Figure 10.15: The house after translating (2, 4) to the origin, after rotating by 30◦, and after 
Rxy(θ) = 
⎡ 
⎣cos θ − sin θ 0 
sin θ cos θ 0 0 01 
⎤ 
⎦ . (10.81) 
translating the origin back to (2, 4). 
In some books and software packages, this is called rotation around z; we prefer the term “rotation in the xy-plane” because it also indicates the direction of rotation (from x, toward y). The other two standard rotations are 
⎤ 
⎦ (10.82) 
and 
Ryz(θ) = 
⎡ 
⎣10 0 
0 cos θ − sin θ 0 sin θ cos θ 
Rzx(θ) = 
⎡ 
⎣cos θ 0 sin θ 
01 0 
− sin θ 0 cos θ 
⎤ 
⎦ ; (10.83) 
note that the last expression rotates z toward x, and not the opposite. Using this naming convention helps keep the pattern of plusses and minuses symmetric.
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10.10 Coordinate Frames 
In 2D, a linear transformation is completely specified by its values on two indepen dent vectors. An affine transformation (i.e., linear plus translation) is completely specified by its values on any three noncollinear points, or on any point and pair of independent vectors. A projective transformation on the plane (which we’ll dis cuss briefly in Section 10.13) is specified by its values on four points, no three collinear, or on other possible sets of points and vectors. These facts, and the cor responding ones for transformations on 3-space, are so important that we enshrine them in a principle: 
	THE TRANSFORMATION UNIQUENESS PRINCIPLE: For each class of transformations—linear, affine, and projective—and any corresponding coor dinate frame, and any set of corresponding target elements, there’s a unique transformation mapping the frame elements to the correponding elements in the target frame. If the target elements themselves constitute a frame, then the transformation is invertible.




To make sense of this, we need to define a coordinate frame. As a first exam ple, a coordinate frame for linear transformations is just a “basis”: In two dimen sions, that means “two linearly independent vectors in the plane.” The elements of the frame are the two vectors. So the principle says that if u and v are linearly independent vectors in the plane, and u  and v  are any two vectors, then there’s a unique linear transformation sending u to u  and v to v . It further says that if u  and v  are independent, then the transformation is invertible. 
More generally, a coordinate frame is a set of geometric elements rich enough to uniquely characterize a transformation in some class. For linear transformations of the plane, a coordinate frame consists of two independent vectors in the plane, as we said; for affine transforms of the plane, it consists of three noncollinear points in the plane, or of one point and two independent vectors, etc. 
In cases where there are multiple kinds of coordinate frames, there’s always a way to convert between them. For 2D affine transformations, the three non collinear points P, Q, and R can be converted to P, v1 = Q − P, and v2 = R − P; the conversion in the other direction is obvious. (It may not be obvious that the vectors v1 and v2 are linearly independent. See Exercise 10.4.) 
There’s a restricted use of “coordinate frame” for affine maps that has some advantages. Based on the notion that the origin and the unit vectors along the posi tive directions for each axis form a frame, we’ll say that a rigid coordinate frame for the plane is a triple (P, v1, v2), where P is a point and v1 and v2 are perpendic ular unit vectors with the rotation from v1 toward v2 being counterclockwise (i.e., 
with 
 0 −1 1 0
  
v1 = v2). The corresponding definition for 3-space has one point 
and three mutually perpendicular unit vectors forming a right-hand coordinate system. Transforming one rigid coordinate frame (P, v1, v2) to another (Q, u1, u2) can always be effected by a sequence of transformation, 
TQ ◦ R ◦ T−1 
P , (10.84) 
where TP(A) = A+P is translation by P, and similarly for TQ, and R is the rotation given by 
R = [u1; u2] · [v1; v2]T, (10.85)
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where the semicolon indicates that u1 is the first column of the first factor, etc. 
The G3D library, which we use in examples in Chapters 12, 15, and 32, uses rigid coordinate frames extensively in modeling, encapsulating them in a class, CFrame. 
10.11 Application: Rendering from a Scene Graph 
We’ve discussed affine transformations on a two-dimensional affine space, and how, once we have a coordinate system and can represent points as triples, as in x =  x y 1 T, we can represent a transformation by a 3 × 3 matrix M. We transform the point x by multiplying it on the left by M to get Mx. With this in mind, let’s return to the clock example of Chapter 2 and ask how we could start from a WPF description and convert it to an image, that is, how we’d do some of 
[image: ]
Figure 10.16: Our clock model. y 5 21 
the work that WPF does. You’ll recall that the clock shown in Figure 10.16 was created in WPF with code like this, 
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	<Canvas ... > 
<Ellipse 
Canvas.Left="-10.0" Canvas.Top="-10.0" 
Width="20.0" Height="20.0" 
Fill="lightgray" /> 
<Control Name="Hour Hand" .../> 
<Control Name="Minute Hand" .../> 
<Canvas.RenderTransform> 
<TransformGroup> 
<ScaleTransform ScaleX="4.8" ScaleY="4.8" /> 
<TranslateTransform X="48" Y="48" /> 
</TransformGroup> 
</Canvas.RenderTransform> 
</Canvas>
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where the code for the hour hand is 
Figure 10.17: The clock-hand template. 

	<Control Name="HourHand" Template="{StaticResource ClockHandTemplate}"> <Control.RenderTransform> 
<TransformGroup> 
<ScaleTransform ScaleX="1.7" ScaleY="0.7" /> 
<RotateTransform Angle="180"/> 
<RotateTransform x:Name="ActualTimeHour" Angle="0"/> 
</TransformGroup> 
</Control.RenderTransform> 
</Control>
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and the code for the minute hand is similar, the only differences being that ActualTimeHour is replaced by ActualTimeMinute and the scale by 1.7 in X and 0.7 in Y is omitted. 
The ClockHandTemplate was a polygon defined by five points in the plane: (−0. 3, −1),(−0.2, 8),(0, 9),(0.2, 8), and (0. 3, −1) (see Figure 10.17). We’re going to slightly modify this code so that the clock face and clock hands are both described in the same way, as polygons. We could create a polygonal version of the circular face by making a regular polygon with, say, 1000 vertices, but to keep the code simple and readable, we’ll make an octagonal approximation of a circle instead.
242 Transformations in Two Dimensions Now the code begins like this: 
	<Canvas ... 
<Canvas.Resources> 
<ControlTemplate x:Key="ClockHandTemplate"> 
<Polygon 
Points="-0.3,-1 -0.2,8 0,9 0.2,8 0.3,-1" 
Fill="Navy"/> 
</ControlTemplate> 
<ControlTemplate x:Key="CircleTemplate"> 
<Polygon 
Points="1,0 0.707,0.707 0,1 -.707,.707 
-1,0 -.707,-.707 0,-1 0.707,-.707" 
Fill="LightGray"/> 
</ControlTemplate> 
</Canvas.Resources>
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This code defines the geometry that we’ll use to create the face and hands of the clock. With this change, the circular clock face will be defined by transforming a template “circle,” represented by eight evenly spaced points on the unit circle. This form of specification, although not idiomatic in WPF, is quite similar to scene specification in many other scene-graph packages. 
The actual creation of the scene now includes building the clock face from the CircleTemplate, and building the hands as before. 
	<!- 1. Background of the clock -> 
<Control Name="Face" 
Template="{StaticResource CircleTemplate}"> 
<Control.RenderTransform> 
<ScaleTransform ScaleX="10" ScaleY="10" /> 
</Control.RenderTransform> 
</Control> 
<!- 2. The minute hand -> 
<Control Name="MinuteHand" 
Template="{StaticResource ClockHandTemplate}"> 
<Control.RenderTransform> 
<TransformGroup> 
<RotateTransform Angle="180" /> 
<RotateTransform x:Name="ActualTimeMinute" Angle="0" /> 
</TransformGroup> 
</Control.RenderTransform> 
</Control> 
<!- 3. The hour hand -> 
<Control Name="HourHand" Template="{StaticResource ClockHandTemplate}"> <Control.RenderTransform> 
<TransformGroup> 
<ScaleTransform ScaleX="1.7" ScaleY="0.7" /> 
<RotateTransform Angle="180" /> 
<RotateTransform x:Name="ActualTimeHour" 
Angle="0" /> 
</TransformGroup> 
</Control.RenderTransform> 
</Control>
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All that remains is the transformation from Canvas to WPF coordinates, and the timers for the animation, which set the ActualTimeMinute and ActualTimeHour values.
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	<Canvas.RenderTransform> 
...same as before... 
</Canvas.RenderTransform> 
<Canvas.Triggers> 
<EventTrigger RoutedEvent="FrameworkElement.Loaded"> <BeginStoryboard> 
<Storyboard> 
<DoubleAnimation 
Storyboard.TargetName="ActualTimeHour" 
Storyboard.TargetProperty="Angle" 
From="0.0" To="360.0" 
Duration="00:00:01:0" RepeatBehavior="Forever" 
/> 
<DoubleAnimation 
Storyboard.TargetName="ActualTimeMinute" 
Storyboard.TargetProperty="Angle" 
From="0.0" To="4320.0" 
Duration="00:00:01:0" RepeatBehavior="Forever" 
/> 
</Storyboard> 
</BeginStoryboard> 
</EventTrigger> 
</Canvas.Triggers> 
</Canvas>
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As a starting point in transforming this scene description into an image, we’ll 
assume that we have a basic graphics library that, given an array of points rep resenting a polygon, can draw that polygon. The points will be represented by a 3×k array of homogeneous coordinate triples, so the first column of the array will be the homogeneous coordinates of the first polygon point, etc. 
We’ll now explain how we can go from something like the WPF description to a sequence of drawPolygon calls. First, let’s transform the XAML code into a tree structure, as shown in Figure 10.18, representing the scene graph (see Chapter 6). 
We’ve drawn transformations as diamonds, geometry as blue boxes, and named parts as beige boxes. For the moment, we’ve omitted the matter of instanc ing of the ClockHandTemplate and pretended that we have two separate identical copies of the geometry for a clock hand. We’ve also drawn next to each transfor mation the matrix representation of the transformation. We’ve assumed that the angle in ActualTimeHour is 15◦ (whose cosine and sine are approximately 0.96 and 0.26, respectively) and the angle in ActualTimeMinutes is 180◦ (i.e., the clock is showing 12:30).
	Inline Exercise 10.19: (a) Remembering that rotations in WPF are specified in degrees and that they rotate objects in a clockwise direction, check that the matrix given for the rotation of the hour hand by 15◦ is correct. (b) If you found that the matrix was wrong, recall that in WPF x increases to the right and y increases down. Does this change your answer? By the way, if you ran this program in WPF and debugged it and printed the matrix, you’d find the negative sign on the (2, 1) entry instead of the (1, 2) entry. That’s because WPF internally uses row vectors to represents points, and multiplies them by transformation matrices on the right.
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Figure 10.18: A scene-graph representation of the XAML code for the clock. 
The order of items in the tree is a little different from the textual order, but there’s a natural correspondence between the two. If you consider the hour hand and look at all transformations that occur in its associated render transform or in the render transform of anything containing it (i.e., the whole clock), those are exactly the transforms you encounter as you read from the leaf node corresponding to the hour hand up toward the root node. 
	Inline Exercise 10.20: Write down all transformations applied to the circle template that’s used as the clock face by reading the XAML program. Confirm that they’re the same ones you get by reading upward from the “Circle” box in Figure 10.18.




In the scene graph we’ve drawn, the transformation matrices are the most important elements. We’re now going to discuss how these matrices and the coor dinates of the points in the geometry nodes interact. 
Recall that there are two ways to think about transformations. The first is to say that the minute hand, for instance, has a rotation operation applied to each of its points, creating a new minute hand, which in turn has a translation applied to each point, creating yet another new minute hand, etc. The tip of the minute hand is at location (0, 9), once and for all. The tip of the rotated minute hand is somewhere else, and the tip of the translated and rotated minute hand is somewhere else again. It’s common to talk about all of these as if they were the same thing (“Now the tip of the minute hand is at (3, 17). . . ”), but that doesn’t really make sense—the tip of the minute hand cannot be in two different places.
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The second view says that there are several different coordinate systems, and that the transformations tell you how to get from the tip’s coordinates in one sys tem to its coordinates in another. We can then say things like, “The tip of the minute hand is at (0, 9) in object space or object coordinates, but it’s at (0, −9) in canvas coordinates.” Of course, the position in canvas coordinates depends on the amount by which the tip of the minute hand is rotated (we’ve assumed that the ActualTimeMinute rotation is 180◦, so it has just undergone two 180◦ rotations). Similarly, the WPF coordinates for the tip of the minute hand are computed by fur ther scaling each canvas coordinate by 4.8, and then adding 48 to each, resulting in WPF coordinates of (48, 4.8). 
	The terms object space, world space, image space, and screen space are frequently used in graphics. They refer to the idea that a single point of some object (e.g., “Boston” on a texture-mapped globe) starts out as a point on a unit sphere (object space), gets transformed into the “world” that we’re going to render, eventually is projected onto an image plane, and finally is displayed on a screen. In some sense, all those points refer to the same thing. But each point has different coordinates. When we talk about a certain point “in world space” or “in image space,” we really mean that we’re working with the coordinates of the point in a coordinate system associated with that space. In image space, those coordinates may range from −1 to 1 (or from 0 to 1 in some systems), while in screen space, they may range from 0 to 1024, and in object space, the coordinates are a triple of real numbers that are typically in the range [−1, 1] for many standard objects like the sphere or cube.




For this example, we have seven coordinate systems, most indicated by pale green boxes. Starting at the top, there are WPF coordinates, the coordinates used by drawPolygon(). It’s possible that internally, drawPolygon() must convert to, say, pixel coordinates, but this conversion is hidden from us, and we won’t dis cuss it further. Beneath the WPF coordinates are canvas coordinates, and within the canvas are the clock-face coordinates, minute-hand coordinates, and hour-hand coordinates. Below this are the hand coordinates, the coordinate system in which the single prototype hand was created, and circle coordinates, in which the pro totype octagonal circle approximation was created. Notice that in our model of the clock, the clock-face, minute-hand, and hour-hand coordinates all play similar roles: In the hierarchy of coordinate systems, they’re all children of the canvas coordinate system. It might also have been reasonable to make the minute-hand and hour-hand coordinate systems children of the clock-face coordinate system. The advantage of doing so would have been that translating the clock face would have translated the whole clock, making it easier to adjust the clock’s position on the canvas. Right now, adjusting the clock’s position on the canvas requires that we adjust three different translations, which we’d have to add to the face, the minute hand, and the hour hand. 
We’re hoping to draw each shape with a drawPolygon() call, which takes an array of point coordinates as an argument. For this to make sense, we have to declare the coordinate system in which the point coordinates are valid. We’ll assume that drawPolygon() expects WPF coordinates. So when we want to tell it about the tip of the minute hand, we’ll need the numbers (48, 4.8) rather than (0, 9).
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Here’s a strawman algorithm for converting a scene graph into a sequence of drawPolygon() calls. We’ll work with 3 × k arrays of coordinates, because we’ll represent the point (0, 9) as a homogeneous triple (0, 9, 1), which we’ll write vertically as a column of the matrix that represents the geometry. 
	for each polygonal geometry element, g 
let v be the 3 × k array of vertices of g 
let n be the parent node of g 
let M be the 3 × 3 identity matrix 
while (n is not the root) 
if n is a transformation with matrix S 
M = SM 
n = parent of n 
w = Mv 
drawPolygon(w)




1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
As you can see, we multiply together several matrices, and then multiply the 
result (the composite transformation matrix) by the vertex coordinates to get the WPF coordinates for each polygon, which we then draw. 
	Inline Exercise 10.21: (a) How many elementary operations are needed, approximately, to multiply a 3 × 3 matrix by a 3 × k matrix? 
(b) If A and B are 3×3 and C is 3×1000, would you rather compute (AB)C or A(BC), where the parentheses are meant to indicate the order of calculations that you perform? 
(c) In the code above, should we have multiplied the vertex coordinates by each matrix in turn, or was it wiser to accumulate the matrix product and only multiply by the vertex array at the end? Why?




If we hand-simulate the code in the clock example, the circle template coordi nates are multiplied by the matrix 
⎡ 
⎣1 0 48 
0 1 48 00 1 
⎤ ⎦ 
⎡ 
⎣4.8 0 0 
0 4.8 0 0 01 
⎤ ⎦ 
⎡ 
⎣10 0 0 
0 10 0 0 01 
⎤ 
⎦ . (10.86) 
The minute-hand template coordinates are multiplied by the matrix 
⎡ 
⎣1 0 48 
0 1 48 00 1 
⎤ ⎦ 
⎡ 
⎣4.8 0 0 
0 4.8 0 0 01 
⎤ ⎦ 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ ⎦ 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ 
⎦ . (10.87) 
And the hour-hand template coordinates are multiplied by the matrix 
⎡ 
⎣1 0 48 
0 1 48 00 1 
⎤ ⎦ 
⎡ 
⎣4.8 0 0 
0 4.8 0 0 01 
⎤ 
⎤ 
⎡ 
⎣0.96 −0.26 0 ⎦ 
⎦ 
0.26 0.96 0 0 01 
· 
⎡ ⎣ 
−1 00 0 −1 0 0 01 
⎤ ⎦ 
⎡ ⎣ 
1.7 0 0 0 0.7 0 0 01 
⎤ 
⎦ . (10.88)
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	Inline Exercise 10.22: Explain where each of the matrices for the minute hand arose.




Notice how much of this matrix multiplication is shared. We could have com puted the product for the circle and reused it in each of the others, for instance. For a large scene graph, the overlap is often much greater. If there are 70 transfor mations applied to an object with only five or six vertices, the cost of multiplying matrices together far outweighs the cost of multiplying the composite matrix by the vertex coordinate array. 
We can avoid duplicated work by revising our strawman algorithm. We per form a depth-first traversal of the scene graph, maintaining a stack of matrices as we do so. Each time we encounter a new transformation with matrix M, we mul tiply M by the current transformation matrix C (the one at the top of the stack) and push the result, MC, onto the stack. Each time our traversal rises up through a transformation node, we pop a matrix from the stack. The result is that whenever we encounter geometry (like the coordinates of the hand points, or of the ellipse points), we can multiply the coordinate array on the left by the current transfor mation to get the WPF coordinates of those points. In the pseudocode below, we assume that the scene graph is represented by a Scene class with a method that returns the root node of the graph, and that a transformation node has a matrix method that returns the matrix for the associated transformation, while a geometry node has a vertexCoordinateArray method that returns a 3 × k array containing the homogeneous coordinates of the k points in the polygon. 
	void drawScene(Scene myScene) 
s = empty Stack 
s.push( 3 × 3 identity matrix ) 
explore(myScene.rootNode(), s) 
void explore(Node n, Stack& s) 
if n is a transformation node 
push n.matrix() * s.top() onto s 
else if n is a geometry node 
drawPolygon(s.top() * n.vertexCoordinateArray()) 
foreach child k of n 
explore(k, s) 
if n is a transformation node 
pop top element from s
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In some complex models, the cost of matrix multiplications can be enormous. 
If the same model is to be rendered over and over, and none of the transformations change (e.g., a model of a building in a driving-simulation game), it’s often worth it to use the algorithm above to create a list of polygons in world coordinates that can be redrawn for each frame, rather than reparsing the scene once per frame. This is sometimes referred to as prebaking or baking a model. 
The algorithm above is the core of the standard one used for scene traversals in scene graphs. There are two important additions, however. 
First, geometric transformations are not the only things stored in a scene graph—in some cases, attributes like color may be stored as well. In a simple
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version, each geometry node has a color, and the drawPolygon procedure is passed both the vertex coordinate array and the color. In a more complex version, the color attribute may be set at some node in the graph, and that color is used for all the geometry “beneath” that node. In this latter form, we can keep track of the color with a parallel stack onto which colors are pushed as they’re encountered, just as transformations are pushed onto the transformation stack. The difference is that while transformations are multiplied by the previous composite transforma tion before being pushed on the stack, the colors, representing an absolute rather than a relative attribute, are pushed without being combined in any way with pre vious color settings. It’s easy to imagine a scene graph in which color-alteration nodes are allowed (e.g., “Lighten everything below this node by 20%”); in such a structure, the stack would have to accumulate color transformations. Unless the transformations are quite limited, there’s no obvious way to combine them except to treat them as a sequence of transformations; matrix transformations are rather special in this regard. 
Second, we’ve studied an example in which the scene graph is a tree, but depth-first traversal actually makes sense in an arbitrary directed acyclic graph (DAG). And in fact, our clock model, in reality, is a DAG: The geometry for the two clock hands is shared by the hands (using a WPF StaticResource). During the depth-first traversal we arrive at the hand geometry twice, and thus render two different hands. For a more complex model (e.g., a scene full of identical robots) such repeated encounters with the same geometry may be very frequent: Each robot has two identical arms that refer to the same underlying arm model; each arm has three identical fingers that refer to the same underlying finger model, etc. It’s clear that in such a situation, there’s some lost effort in retraversal of the arm model. Doing some analysis of a scene graph to detect such retraversals and avoid them by prebaking can be a useful optimization, although in many of today’s graphics applications, scene traversal is only a tiny fraction of the cost, and lighting and shading computations (for 3D models) dominate. You should avoid optimizing the scene-traversal portions of your code until you’ve verified that they are the expensive part. 
10.11.1 Coordinate Changes in Scene Graphs 
Returning to the scene graph and the matrix products, the transformations applied to the minute hand to get WPF coordinates, 
⎡ ⎣ 
1 0 48 0 1 48 00 1 
⎤ ⎦ 
⎡ 
⎣4.8 0 0 
0 4.8 0 0 01 
⎤ ⎦ 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ ⎦ 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ 
⎦ , (10.89) 
represent the transformation from minute-hand coordinates to WPF coordinates. To go from WPF coordinates to minute-hand coordinates, we need only apply the inverse transformation. Remembering that (AB)−1 = B−1A−1, this inverse transformation is 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ ⎦ 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ 
⎡ 
⎤ 
⎣1/4.8 0 0 ⎦ 
⎦ 
0 1/4.8 0 
0 01 
⎡ 
⎣1 0 −48 
0 1 −48 00 1 
⎤ 
⎦ . (10.90) 
You can similarly find the coordinate transformation matrix to get from any one coordinate system in a scene graph to any other. Reading upward, you accumulate
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the matrices you encounter, with the first matrix being farthest to the right; reading downward, you accumulate their inverses in the opposite order. When we build scene graphs in 3D, exactly the same rules apply. 
For a 3D scene, there’s the description not only of the model, but also of how to transform points of the model into points on the display. This latter description is provided by specifying a camera. But even in 2D, there’s something closely analogous: The Canvas in which we created our clock model corresponds to the “world” of a 3D scene; the way that we transform this world to make it appear on the display (scale by (4.8, 4.8) and then translate by (48, 48)) corresponds to the viewing transformation performed by a 3D camera. 
Typically the polygon coordinates (the ones we’ve placed in templates) are called modeling coordinates. Given the analogy to 3D, we can call the canvas coordinates world coordinates, while the WPF coordinates can be called image coordinates. These terms are all in common use when discussing 3D scene graphs. 
As an exercise, let’s consider the tip of the hour hand; in modeling coordinates (i.e., in the clock-hand template) the tip is located at (0, 9). In the same way, the tip of the minute hand, in modeling coordinates, is at (0, 9). What are the Canvas coordinates of the tip of the hour hand? We must multiply (reading from leaf toward root) by all the transformation matrices from the hour-hand template up to the Canvas, resulting in 
⎡ 
⎤ 
⎣0.96 −0.26 0 ⎦ 
0.26 0.96 0 0 01 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ ⎦ 
⎡ 
⎣1.7 0 0 
0 0.7 0 0 01 
⎤ ⎦ 
⎡ 
⎣09 1 
⎤ 
⎦ (10.91) 
= 
⎡ ⎣ 
⎤ 
−1.64 −.18 0 ⎦ 
−0.44 −0.68 0 001 
⎡ ⎣ 
0 9 1 
⎤ 
⎦ = 
⎡ ⎣ 
1.63 
−6.09 1 
⎤ 
⎦ , (10.92) 
where all coordinates have been rounded to two decimal places for clarity. The Canvas coordinates of the tip of the minute hand are 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ ⎦ 
⎡ 
⎣−1 00 
0 −1 0 0 01 
⎤ ⎦ 
⎡ 
⎣09 1 
⎤ 
⎦ = 
⎡ 
⎣09 1 
⎤ 
⎦ . (10.93) 
We can thus compute a vector from the hour hand’s tip to the minute hand’s tip by subtracting these two, getting  −1.63 15.08 0 T. The result is the homogeneous-coordinate representation of the vector  −1.63 15.08 T in Canvas coordinates. 
Suppose that we wanted to know the direction from the tip of the minute hand to the tip of the hour hand in minute-hand coordinates. If we knew this direction, we could add, within the minute-hand part of the model, a small arrow that pointed toward the hour-hand. To find this direction vector, we need to know the coordi nates of the tip of the hour hand in minute-hand coordinates. So we must go from hour-hand coordinates to minute-hand coordinates, which we can do by working up the tree from the hour hand to the Canvas, and then back down to the minute hand. The location of the hour-hand tip, in minute-hand coordinates, is given by
image106.png




image25.png




image26.png




image31.png




image32.png




image29.png




image30.png




image21.png




image23.png




image54.png




image56.png




image102.png




image50.png




image52.png




image47.png




image48.png




image43.png




image45.png




image42.png




image40.png




image41.png




image104.png




image101.png




image110.png




image113.png




image103.png




image109.png




image111.png




image35.png




image33.png




image34.png




image38.png




image39.png




image36.png




image37.png




image49.png




image44.png




image46.png




image55.png




image57.png




image51.png




image53.png




image59.png




image60.png




image58.png




image3.png




image4.png




image1.png




image2.png




image7.png




image8.png




image5.png




image6.png




image9.png




image10.png




image11.png




image14.png




image15.png




image12.png




image13.png




image18.png




image19.png




image16.png




image17.png




image20.png




image81.png




image82.png




image85.png




image86.png




image107.png




image83.png




image84.png




image89.png




image90.png




image87.png




image88.png




image93.png




image91.png




image92.png




image96.png




image108.png




image97.png




image94.png




image95.png




image99.png




image100.png




image98.png




image63.png




image64.png




image61.png




image62.png




image112.png




image67.png




image68.png




image65.png




image66.png




image69.png




image70.png




image71.png




image74.png




image75.png




image72.png




image105.png




image73.png




image78.png




image79.png




image76.png




image77.png




image80.png




image22.png




image24.png




image27.png




image28.png




