
MDS 2018/19 © Departamento de Informática, FCT/UNL 6 – Activity Diagrams

Module 3

Domain Class Diagrams

Vasco Amaral
vma@fct.unl.pt

1

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

You know… classes
You have been working with
them for 3 years...

Keep in mind all you know about them. It remains relevant.
Keep an open mind. Today you will see them from a different perspective.

2

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Objects
(quick reminder of what you learned in Introduction to Programming, just in case...)

3

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

What is an object?

4

● A discrete entity with a well-defined boundary that
encapsulates state and behavior; an instance of a class.
○ Objects combine data and function in a cohesive

unit
○ Objects hide data behind a layer of operations

■ This is known as encapsulation, or data hiding
■ Encapsulation is good style, although not

mandatory

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Object properties

● Identity

○ Every object is uniquely identifiable

● State

○ The current state of an object is determined by the values of

its attributes and the relationships to other objects in a

given point in time

● Behavior

○ The behavior of an object is characterized by its operations

■ Some operations modify the object’s state

■ Other operations allow querying the object about its

state

5

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Objects collaborate to generate system
behavior

● Objects form links among themselves and send messages back

and forth through those links

● When an object receives a message, it checks its set of

operations looking for an operation whose signature matches

the one in the message

○ If a match exists, the object invokes the operation and,

possibly, returns a result to the object which sent the

message

6

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Objects in UML

7

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Classes
(quick reminder of what you learned in Introduction to Programming, just in case...)

8

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

What is a class?

9

● The descriptor for a set of objects that share the same
attributes, operations, methods, relationships, and behavior

● Every object is an instance of exactly one class

○ Objects of the same class share a common structure

■ The same set of operations

■ The same set of attributes (but different values)

■ The same set of relationships

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Objects are instantiations of classes

10

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

The <<instantiate>> stereotype classifies the kind
of association between objects and classes

11

Class level

Instance level

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Analysis classes

12

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Analysis classes

● Represent a crisp abstraction of the problem domain
● Model important aspects of the problem domain,

such as “customer”, or “product”
● Should map clear in a clear and unambiguous way to

real-world business concepts
○ This includes having adequate names for the classes

representing those concepts

13

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Analysis classes

● Often, it is up to the modeller to clarify confused, or
inappropriate business concepts into more adequate
analysis classes

● The analysis model should only contain analysis
classes
○ Classes arising from design considerations are NOT

part of the analysis model

● Later, during design, these analysis classes will be
refined into one or more design classes

14

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Analysis classes form the Domain Class
Diagram

● Domain class diagram contains the set of base classes
of the problem (classes of type entity)

● This diagram will be later extended to contemplate
other kinds of classes and dependencies between
them

● Types and arguments for operations come later

15

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

A class has a name

● The name is a mandatory feature of the

class

● It should be a noun from the domain

vocabulary

● Different classes with the same name are
only possible if they are defined in
different packages

● The name can be qualified by the package

name (e.g. Bank::Account, where Bank is

the package and Account the class)

16

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

A class has attributes

● Only an important subset of candidate
attributes should be modelled during

analysis

● Attribute names are mandatory
○ Typically, use nouns that make sense in

the particular domain

● Attribute types are optional, during

analysis

○ Use them to clarify the domain model,

when adequate

17

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

A class has operations

● An operation name is usually a verb to

represent the class behavior

● Operations are abstractions of something
the object can do

● Operations are shared by all instance

objects of the class

● Only high-level operations are required,

during analysis, to clarify the

responsibilities of the class

● Parameters and return types are optional

and should only be used if they help

understanding the model

18

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

An analysis class often hides many details

And so do we. :-)

Just so you know, the following are hidden, for

the time being:

● Visibility of attributes and operations

● Stereotypes - only shown if they help

understanding the model

● Tagged values - only shown if they help

understanding the model

We will get back to these later!

19

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

What makes a good analysis class?

● Its name reflects its intent
● It is a crisp abstraction that models one specific

element of the problem domain
○ Must have a clear and obvious semantics

● It maps on to a clearly identifiable feature of the
problem domain

20

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

What makes a good analysis class?

● It has a small, well defined, set of responsibilities
● Offers a clear separation between:

○ Specification and implementation
○ What is visible and hidden

● Has high cohesion
● Has low coupling to other classes

21

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Responsibilities describe cohesive sets of
operations

● A responsibility is a contract, or obligation, that the
class has to its clients

● It is a service provided to other classes
● Each class should have a cohesive set of

responsibilities closely related to the intent of the
class (expressed by the class name)

22

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Responsibilities describe cohesive sets of
operations

● If you find a subset of responsibilities that break this
cohesion and do not really match the intent of the
class, you may have found a candidate for another
class

23

Related

Unrelated

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Responsibilities describe cohesive sets of
operations

● If you find a subset of responsibilities that break this
cohesion and do not really match the intent of the
class, you may have found a candidate for another
class

● An even distribution of responsibilities among classes
tends to lead to relatively low coupling among those
classes
○ Localization of control, or too many

responsibilities will increase coupling with the
class where it occurs

24

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Hints & Tips for creating
well-formed analysis classes

25

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Keep classes as simple as possible

● About 3 to 5 responsibilities per class
● The class should be focused, with a small and

manageable set of responsibilities

26

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Classes should not be isolated

● Classes are supposed to collaborate with each other
to provide benefits for to the system

● Isolated classes do not collaborate
● Each class should collaborate with a small number of

other classes
● Classes may delegate part of their responsibilities to

“helper” classes

27

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Beware of too many too small classes

● Modelling is a balancing act
● Too many, too small classes (with just one or two

responsibilities each) may indicate that you are
missing an opportunity to consolidate some of those
small classes into larger ones

28

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Beware of too few too big classes

● Modelling is a balancing act
● Too few, too big classes (with over 5 responsibilities

each) may indicate that you are creating classes
which are not cohesive

● You may find opportunities to decompose some of
these into more cohesive classes, with a more
manageable set of responsibilities each

29

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Beware of “functoids”

● A functoid is a normal procedural function disguised
as a class

● These are relatively common when analysts originally
trained with the technique of top-down functional
decomposition start using OO for the first time
○ This difficulty in changing paradigms

phenomenon is known as the paradigm shift
problem

30

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Beware of God classes

● These classes seem to do everything
○ Classes with “system”, or “controller”, in their

names are often candidates
● Look up for cohesive subsets of responsibilities

within these classes and factor them out accordingly
into smaller classes
○ These classes should then collaborate to

implement the behavior originally offered by the
God class

31

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Beware of deep inheritance trees

● In a good inheritance hierarchy, each level should
have a well-defined purpose

● A common mistake is to use inheritance for
functional decomposition where each level has a
single responsibility

● In analysis, inheritance should be used when there is
a clear and obvious hierarchy derived directly from
the problem domain

● Business classes tend to form broader, rather than
deeper, hierarchies

32

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

So, how to identify classes?
● Noun/verb analysis
● CRC analysis
● RUP technique

33

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Noun/verb analysis

34

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Finding classes through noun/verb analysis

● Analyse a textual specification of the requirements
● Nouns and noun phrases help to identify classes or

attributes
● Verbs and verb phrases help to identify

responsibilities or operations of a class
● Beware of synonyms and homonyms, as these can

create confusion

35

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Finding classes through noun/verb analysis

● Requires domain knowledge

● This technique is
○ Good for identifying classes
○ Bad for identifying their requirements

(characteristics and relations)

36

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Noun/verb analysis procedure

1. Collect relevant documentation
○ requirements (text/model), use case model, project

glossary, …

2. Highlight nouns/noun phrases (candidate classes and attributes)

3. Highlight verbs/verb phrases (candidate responsibilities)

4. Clarify terms you are not familiar with, with the help of domain

experts

5. Use a project glossary to collect these terms, identify synonyms

and homonyms - candidate classes, attributes and

responsibilities

6. Tentatively allocate attributes and responsibilities to classes

7. In this process, try to identify relationships between classes (use

cases are a good starting point for these)
37

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Identify the candidate classes and attributes
(nouns and noun phrases)

Bank customers can debit and credit amounts in their bank

accounts, or ask for their current balance. These operations may be

performed in ATM machines, or in the bank counter. The

transactions on a bank account are performed via a bank check, or

using the ARM machines with a card. There are two kinds of bank

accounts: current account and savings account. A savings account

pays interest and cannot be accessed via the ATM machines.

38

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Identify the candidate classes and attributes
(nouns and noun phrases)

Bank customers can debit and credit amounts in their bank

accounts, or ask for their current balance. These operations may be

performed in ATM machines, or in the bank counter. The

transactions on a bank account are performed via a bank check, or

using the ATM machines with a card. There are two kinds of bank

accounts: current account and savings account. A savings account

pays interest and cannot be accessed via the ATM machines.

39

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Identify the candidate operations (verbs and
verb phrases)

Bank customers can debit and credit amounts in their bank

accounts, or ask for their current balance. These operations may be

performed in ATM machines, or in the bank counter. The

transactions on a bank account are performed via a bank check, or

using the ATM machines with a card. There are two kinds of bank

accounts: current account and savings account. A savings account

pays interest and cannot be accessed via the ATM machines.

So, which of these are classes, attributes and responsibilities?

40

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC analysis

41

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Finding classes with CRC analysis

42

● CRC stands for Class, Responsibilities and Collaborators

● CRC is a brainstorming technique in which you capture on sticky

notes the important things in the problem domain.

● Commonly done with sticky notes (post-its)

● Record in each note the class, its responsibilities and collaborators

● Sticky notes in a whiteboard and draw lines between collaborating

classes, to identify candidate relationships

● Typically, this is used in conjunction with noun / verb analysis of use

cases, requirements, glossary, etc.
Class Name:
Bank Account

Responsibilities:
Maintain balance

Collaborators:
Bank

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Brainstorm

Phase 1: Brainstorm - gather information
Participants: OO analysts, stakeholders, domain experts, and a facilitator
1. Explain participants this is a true brainstorm

a. All ideas are accepted as good ideas

b. Ideas are recorded, but not debated - never argue about something, just write it

down and move on

2. Ask team members to name the “things” that operate in their business
domain - for example, customer, or product

a. Write each “thing” on a sticky note: it is a candidate class or attribute of a class

b. Stick the note on a wall, or whiteboard

3. Ask team members to state responsibilities those things might have and
record those in the corresponding compartment in the sticky note

4. Ask team members to identify classes that might work together; rearrange
notes on the whiteboard to reflect this organization and draw lines
between cooperating classes, or record collaborators in the corresponding
compartment

43

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Brainstorm

Phase 1: Brainstorm - gather information
Participants: OO analysts, stakeholders, domain experts, and a facilitator
1. Explain participants this is a true brainstorm

a. All ideas are accepted as good ideas

b. Ideas are recorded, but not debated - never argue about something, just write it

down and move on

2. Ask team members to name the “things” that operate in their business
domain - for example, customer, or product

a. Write each “thing” on a sticky note: it is a candidate class or attribute of a class

b. Stick the note on a wall, or whiteboard

3. Ask team members to state responsibilities those things might have and
record those in the corresponding compartment in the sticky note

4. Ask team members to identify classes that might work together; rearrange
notes on the whiteboard to reflect this organization and draw lines
between cooperating classes, or record collaborators in the corresponding
compartment

44

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Brainstorm

Phase 1: Brainstorm - gather information
Participants: OO analysts, stakeholders, domain experts, and a facilitator
1. Explain participants this is a true brainstorm

a. All ideas are accepted as good ideas

b. Ideas are recorded, but not debated - never argue about something, just write it

down and move on

2. Ask team members to name the “things” that operate in their business
domain - for example, customer, or product

a. Write each “thing” on a sticky note: it is a candidate class or attribute of a class

b. Stick the note on a wall, or whiteboard

3. Ask team members to state responsibilities those things might have and
record those in the corresponding compartment in the sticky note

4. Ask team members to identify classes that might work together; rearrange
notes on the whiteboard to reflect this organization and draw lines
between cooperating classes, or record collaborators in the corresponding
compartment

45

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Brainstorm

Phase 1: Brainstorm - gather information
Participants: OO analysts, stakeholders, domain experts, and a facilitator
1. Explain participants this is a true brainstorm

a. All ideas are accepted as good ideas

b. Ideas are recorded, but not debated - never argue about something, just write it

down and move on

2. Ask team members to name the “things” that operate in their business
domain - for example, customer, or product

a. Write each “thing” on a sticky note: it is a candidate class or attribute of a class

b. Stick the note on a wall, or whiteboard

3. Ask team members to state responsibilities those things might have and
record those in the corresponding compartment in the sticky note

4. Ask team members to identify classes that might work together; rearrange
notes on the whiteboard to reflect this organization and draw lines
between cooperating classes, or record collaborators in the corresponding
compartment

46

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Brainstorm

Phase 1: Brainstorm - gather information
Participants: OO analysts, stakeholders, domain experts, and a facilitator
1. Explain participants this is a true brainstorm

a. All ideas are accepted as good ideas

b. Ideas are recorded, but not debated - never argue about something, just write it

down and move on

2. Ask team members to name the “things” that operate in their business
domain - for example, customer, or product

a. Write each “thing” on a sticky note: it is a candidate class or attribute of a class

b. Stick the note on a wall, or whiteboard

3. Ask team members to state responsibilities those things might have and
record those in the corresponding compartment in the sticky note

4. Ask team members to identify classes that might work together; rearrange
notes on the whiteboard to reflect this organization and draw lines
between cooperating classes, or record collaborators in the corresponding
compartment

47

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Analyze information

Phase 2: Analyze information
Participants: OO analysts, domain experts
● Decide which sticky notes should be classes (those which represent key

business concepts)
● Other notes may become classes, or attributes

○ If a note seems to be logically a part of another note, it is probably
representing an attribute

○ If a note does not seem particularly important, or has little
interesting behavior, maybe it can be an attribute for another class

● If you really do not know what to do with a note, make it a class
● Make a best guess and get this process to closure - this is just a first cut

model, you will come back to it to refine it, later

48

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Analyze information

Phase 2: Analyze information
Participants: OO analysts, domain experts
● Decide which sticky notes should be classes (those which represent key

business concepts)
● Other notes may become classes, or attributes

○ If a note seems to be logically a part of another note, it is probably
representing an attribute

○ If a note does not seem particularly important, or has little
interesting behavior, maybe it can be an attribute for another class

● If you really do not know what to do with a note, make it a class
● Make a best guess and get this process to closure - this is just a first cut

model, you will come back to it to refine it, later

49

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Analyze information

Phase 2: Analyze information
Participants: OO analysts, domain experts
● Decide which sticky notes should be classes (those which represent key

business concepts)
● Other notes may become classes, or attributes

○ If a note seems to be logically a part of another note, it is probably
representing an attribute

○ If a note does not seem particularly important, or has little
interesting behavior, maybe it can be an attribute for another class

● If you really do not know what to do with a note, make it a class
● Make a best guess and get this process to closure - this is just a first cut

model, you will come back to it to refine it, later

50

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Analyze information

Phase 2: Analyze information
Participants: OO analysts, domain experts
● Decide which sticky notes should be classes (those which represent key

business concepts)
● Other notes may become classes, or attributes

○ If a note seems to be logically a part of another note, it is probably
representing an attribute

○ If a note does not seem particularly important, or has little
interesting behavior, maybe it can be an attribute for another class

● If you really do not know what to do with a note, make it a class
● Make a best guess and get this process to closure - this is just a first cut

model, you will come back to it to refine it, later

51

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

CRC Analysis procedure - Analyze information

Phase 2: Analyze information
Participants: OO analysts, domain experts
● Decide which sticky notes should be classes (those which represent key

business concepts)
● Other notes may become classes, or attributes

○ If a note seems to be logically a part of another note, it is probably
representing an attribute

○ If a note does not seem particularly important, or has little
interesting behavior, maybe it can be an attribute for another class

● If you really do not know what to do with a note, make it a class
● Make a best guess and get this process to closure - this is just a first cut

model, you will come back to it to refine it, later

52

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

RUP stereotypes

53

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Stereotype Icon Semantics

<<boundary>>
A class that mediates interaction
between the system and its
environment

<<control>>
A class that encapsulates
use-case-specific behavior

<<entity>>
A class that is used to model
persistent information about
something

Consider three distinct types of analysis
classes

54

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Identifying <<boundary>> classes

● These classes are in the boundary of your system and

communicate with external actors that you identified through

Use Case Analysis

● Communications between actors and your system must be

enabled by some <<boundary>> class instance

● There are three types of <<boundary>> classes
○ User interface classes - classes that interface between the

system and humans

○ System interface classes - classes that interface with other

systems

○ Device interface classes - classes that interface with other

devices - e.g. sensors

55

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Identifying <<boundary>> classes

● When a boundary class services more than one actor, these

actors should be of the same kind (a human, a system, or a

device)

○ If they are of different kinds, there is probably something

wrong

● Keep at a high abstraction level

○ You are concerned with identifying the class, not with its

specific details

○ Do not model interface details here - a dummy

(user/system/device) interface class will do just fine

56

You will fill in those details during design, not now!

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Identifying <<control>> classes

● <<control>> classes coordinate system behavior
during one or more use cases

● Consider the behavior of the system as described by
the use cases, and then work out how these
responsibilities can be partitioned among several
<<control>> classes
○ Simple behavior may be distributed among

<<boundary>> or <<entity>> classes
○ More complex behavior is better localized in a

<<control>> class

57

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Don’t be a <<control>> freak! :-)

● <<control>> classes should arise naturally from the problem

domain

● Do not “artificially” create a <<control>> class for each use case
○ You are NOT trying to analyse this system through functional

decomposition

● <<control>> classes tend to cross-cut several use cases

● Sometimes, a single use case is better modelled with several

<<control>> classes

● If a <<control>> class is too complex, and if you find it to be not

as cohesive as one would like, this may be a good hint to break it

into a set of cohesive <<control>> classes

58

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Identifying <<entity>> classes

● <<entity>> classes model something with simple behavior that

mostly consists of getting and setting values. They:

○ Crosscut several use cases

○ Manipulated by <<control>> classes

○ Provide information to and accept information from

boundary classes

○ Represent key things managed by the system

○ Are often persistent

● <<entity>> classes express the logical data structure of the

system

○ They are closely related to entities, or tables, in a data

model, when there is a data model

59

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Finding classes from other sources

● Physical objects, such as aircraft, or person, may indicate an

object

● Paperwork (invoices, orders, …) can be a good source as well
○ Be careful not to replicate in the system excessive paperwork

that the system is supposed to simplify

● Known interfaces to the outside world (e.g. screens,

keyboards) are candidate classes, particularly for embedded

systems

● Conceptual entities are crucial, even if they do not manifest

as physical objects
○ Look up for cohesive abstractions

60

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Create your first-cut model

61

Improve names to adhere to
any relevant guidelines that
may apply

04
● If the organization has a particular set of

guidelines, use it
● Otherwise, use a generic one

Collaborators (the lines
linking the sticky notes)
represent associations
among classes

03 ● We will look into these in a moment

Consolidate classes, attributes
and responsibilities into an
analysis tool

02
● Project glossary for synonyms and homonyms
● Look up for inconsistencies from the different

sources and solve them

Compare all sources of
classes01

● Noun/verb analysis
● CRC cards
● RUP
● Other sources

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Relationships

62

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

What is a relationship?

● UML relationships connect model elements

● You have seen a few examples so far

○ Actors to Actors

■ Generalization

○ Actors to Use Cases

■ Association

○ Use Cases and Use Cases

■ Generalization, <<include>>, <<extend>>

○ Activities

■ Control flow, data flow

63

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Relationships among classes and objects

● An association is a relationship between classes
● A link is a relationship between objects
● A link is an instantiation of an association
● Objects instantiate classes just as links instantiate associations

64

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Association syntax

● Association name

○ Verb phrase, indicating an action of the source object to the

target object (i.e. the semantics of the association)

■ May be annotated with a small black arrowhead to

denote direction

● Role name

○ Noun phrase indicating the role of the objects linked by

instances of the association

● Multiplicity

○ Constrains the number of objects of a class participating in a

relationship at any point in time

● Navigability

○ If unidirectional, associations should include an arrow

65

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

“A company employs many persons”
“A person is employed by exactly one company”

66

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Multiplicity constrains the number of objects of a class
participating in a relationship at any point in time

● Person objects can only be employed by one company at any given
time

● Person objects must always be employed by one company
● Over time, a Person object might be employed by different companies

67

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

What kinds of multiplicities can we define?

These multiplicity
adornments should be
placed next to the
corresponding classes.
When reading a model,
you can use these
adornments to correctly
express the model
intention.

68

Adornment Semantics

0..1 0 or 1

0..* 0 or more

* 0 or more

1 Exactly 1

1..* 1 or more

1..4 1 to 4

1..3, 7..10, 22 1 to 3, 7 to 10, 22

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Make sure you read associations and
multiplicities precisely

A Company employes exactly 7 employees

A Person may be employed in exactly 1 Company

A BankAccount relates to exactly 1 owner

A BankAccount relates to 1 or more operators

A Person may own 0 to many BankAccounts

A Person may operate 0 to many BankAcccounts

69

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Reflexive associations are associations to the
same class

This model can be instantiated as in the following example:

70

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

In a hierarchy, an object may have 0 or 1 objects directly
above it (parent). The object may have 0 or more children.

Parent

71

Children

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

In a network, each node may have 0 to many
objects directly connected to it

72

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Navigability indicates that objects in the source
class “know about” objects in the target class

73

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

UML specifies 3 alternative idioms for
navigability

● Strict UML 2 navigability - all crosses and arrows are
explicitly used
○ This is the most precise alternative

● No navigability - no crosses or arrows are used
○ This is the most ambiguous alternative

● Standard practice - only arrows are defined
○ This is a compromise idiom, and the one most

commonly used, in practice

74

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Comparing the alternative idioms

75

Adopted in this course

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Adopted in this course

Caveats:
● It is impossible to know if navigability is fully defined, or not, with this idiom
● It changes the semantics of a unidirectional relationship from

Undefined->Navigable to NotNavigable->Navigable
● It is impossible to show both-ways non-navigable associations (but these

are not used in practice)

76

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Class associations and class attributes

● The object from the source class has a reference to an object of

the target class

● If the association has a role in the target class, that role

corresponds to a pseudo-attribute in the source class, which can

then be transformed into an attribute

● In this example, the class House has a pseudo-attribute called

address, of type Address

77

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

This association can be transformed into code!

public class House {

 Address address;

}

public class Address {

}

78

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

WARNING:
Although we have just shown you
code generated from an analysis
class, you should only perform
code generation from design
class models!

79

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

With other cardinalities, you may need a
collection of some kind (e.g. Collection, or Array)

public class Company {

 Collection<Person> person;

}

public class Person {

}

80

public class Company {

 Person[] person;

}

public class Person {

}

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Why do we need association classes?

● In many to many associations, what can you do if you need to

assign a value (e.g. the salary of the Person to the association?)

○ The Person may work for more than one company

○ If that is so, we cannot store information about the salary in

any of the classes

■ If we store the salary in the company, which salary

corresponds to which person?

■ If we store the salary in the person and the person

works with more than one company, which salary

corresponds to that particular

81

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

The salary property is best represented as an
association class

● There can only be one link between two instances (one of Company,
one of Person) at any given point in time

● The salary attribute is stored in an association class called Job
● The association class has, in practice a link to a Company and another

to Person
● What if you need to represent persons who work in different

companies at the same time?

82

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

The association class can be reified (i.e. Job can
be transformed into a real class)

83

public class Company {

 Collection<Job> company;

}
public class Job {

 Company company;

 Person person;

 double salary;

}

public class Company {

 Collection<Job> company;

}

More than one link may exist between a company and a person at any given point in time!

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Inheritance and polymorphism

84

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Generalization is a relationship between a more
general and a more specific class

85

● The more specific class is entirely consistent with the
more general class

● The two classes obey the Liskov substitution principle
○ We can use the more specific class anywhere the more

general class is expected without breaking the system

○ This is a much stronger dependency type than

dependency through class associations

○ This mechanism leads to the highest level of coupling

between classes

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

We create a generalization hierarchy by generalizing from more
specific classes and specializing from more general classes

86

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Generalization and inheritance

● Classes can be organized hierarchically where the
superclass is the generalization of one or more
classes (subclasses)

● A subclass inherits the attributes, operations,
relationships and dependencies of the superclass

● The subclass can add new features and override
other features

● Generalization in UML is implemented as inheritance
in OOP

87

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Overriding, and why we might need it...

● Square and Circle are

types of Shape

● They inherit features,

relationships and constraints

from shape

● Inherited elements are not

visible in the diagram (they

are implicit!)

● However, features like the
draw() and getArea()
operations cannot be
generally defined for Shape

88

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Subclasses override inherited operations by
providing a new operation with the same signature

Warning: programming languages such as C++ and Java do not include
the return type in the operation signature. If you redefine the return
type to a non-conforming type, you get a compiler or interpreter error.

89

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Actually, do we really want to create Shape objects?
Not really. How would we implement some of those methods?

When a superclass was created to factorize common properties and
behaviors of a set of classes, but contains one or more operations that we
know we will need to redefine anyway, we should use an abstract class!

90

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Abstract operations do not have an implementation: it is
deferred to concrete operations in the sub-classes

91

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Abstract classes include one or more abstract
operations and cannot be instantiated

92

An abstract class is denoted by one of the following:
their name in italic, the stereotype <<abstract>>, or the tagged value {abstract}

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

getBoundingArea() is concrete because it is always
computed the same way (width * height)

93

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Advantages of using abstract classes and
operations

● The set of abstract operations

in the abstract class must be

implemented in the concrete

sub-classes

● You can write code to

manipulate Shapes and then

substitute Square, or Circle, as appropriate

● Code written for the abstract class should work correctly for all

concrete classes - remember the substitution principle!

94

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Keep classes at the same hierarchical level at
the same level of abstraction

In this case, Jaguar XJS is a particular model from a given car brand, while Truck is a vehicle
defined at a different level of abstraction. This is bad practice.

95

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Polymorphism

96

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

A polymorphic operation is an operation with
several implementations

97

Objects from different sub-classes will receive exactly the same message, but react
differently to it, according to their own implementation of the called operation

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

A polymorphic operation is an operation with
several implementations

● Square and Circle specialize

Shape

● They must provide

implementations for the

abstract operations draw()

and getArea()

98

Objects from different sub-classes will receive exactly the same message, but react
differently to it, according to their own implementation of the called operation

Concrete classes must provide concrete implementations to ALL the
abstract operations inherited from their abstract super-classes
Objects of different sub-classes will implement the inherited abstract
operation differently - hence the term polymorphism

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Each element of the Shapes collection in
Canvas will be of a particular sub-class

99

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

When calling a draw() or a getArea() operation of Shape from
Canvas, we do not know which kind of Shape will answer

100

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

The actual class to answer the call will be determined via a
mechanism named dynamic binding

101

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Each collection member will use its own
implementation of the draw() operation

102

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Can you override concrete operations?

YES!

But please don’t. It is really bad style!

103

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Generalization sets partition subclasses
according to a specific rule

How would you partition these shapes?

104

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

You can use generalization sets to segregate
the two sets (2d and 3d shapes)

105

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Generalization sets can be constrained

● {complete}

○ subclasses cover all possibilities

● {incomplete}

○ there may be other subclasses not modelled yet

● {disjoint}

○ an object can be an instance of one and only one of the

members of the generalization set (this is the most

common)

● {overlapping}

○ an object can be an instance of more than one of the

members of the generalization set (requires multiple

inheritance, or multiple classification)

106

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Generalization sets can be combined

107

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Applying generalization sets to shapes

108

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Resolve generalization sets into new classes in
the inheritance hierarchy

109

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Benefits and challenges of inheritance

● Benefits of Inheritance
○ Abstraction mechanism/ classify entities
○ Mechanism for reuse

● Challenges
○ We can only understand classes if we know their

superclasses
○ Sometimes the inheritance graph is not

compatible with efficiency

110

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

N-ary associations

111

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

N-ary association is represented by a diamond connected
to each of the 3 (or more) associated classifiers

112

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Advanced association types

113

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Qualified associations and why do we need
them

How can you navigate from a Club to a specific Member?

114

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

A qualified association selects a single member
from the target set

● The qualifier is expressed as a

unique property of the type in

the target set, or at least an

expression that leads to a

unique element of the target set

● The qualifier belongs to the

association, rather than to the

Club class

● Now, there is at most one

member of the Member class

that can be qualified for

selection

● Rather than a one to many

association, we now have a one

to at most one relationship

115

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

A dependency establishes that an object of the
client class depends, in some way, on the supplier

● Sometimes, the dependency is there but it is not really an

association or generalization (e.g. an object of a given type is

passed to an object of another class as an operation parameter)

● We consider three kinds of dependencies

○ Usage - the client uses services from the supplier to

implement some of the client’s behavior

○ Abstraction - the supplier is more abstract than the client

(e.g. an analysis class is more abstract than its

corresponding design class)

○ Permission - The supplier offers some kind of access to its

contents to a client

116

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

<<use>> dependency

● An operation of class A needs a parameter of class B
● An operation of class A returns an object of class B
● An operation of class A does something that uses an object of class B

○ For example, doSomething() may create a local variable of the class
B type

117

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

<<use>> dependency: An operation of class A
needs a parameter of class B

118

class A {
 …
 void foo(B b) {
 …
 }
}

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

<<use>> dependency: An operation of class A
returns an object of class B

119

class A {
 …
 B bar() {
 …
 }
}

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

<<use>> dependency: An operation of class A
does something that uses an object of class B

120

class A {
 …
 void doSomething() {
 B myB = new B();
 // use myB in some way
 …
 }
}

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Other dependencies

● <<call>>
○ Dependency between operations - the client operation

invokes the supplier operation

● <<parameter>>
○ The supplier is used as a parameter of the client operation

● <<send>>
○ The client is an operation that sends the supplier (which

must be a signal) to some unspecified target

● <<instantiate>>
○ The client is an instance of the supplier

121

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

<<instantiate>> dependency:
The client is an instance of the supplier

122

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Yet some more advanced
dependencies

123

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Abstraction dependencies

● <<trace>>

○ The client and the supplier represent the same concept but

are in different models

● <<substitute>>

○ The client may be substituted by the supplier at runtime

● <<refine>>

○ The client is a different (refined) version of the supplier (e.g.

the client is an optimized version of the supplier

● <<derive>>

○ A thing can be derived from some other thing

124

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

<<derive>> can be presented in 3 different ways:
the first alternative is the most common

125

MDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Permission dependencies

● <<access>>
○ This is a dependency between packages where the client package can access all

of the public contents of the supplier package, while the packages namespaces

remain separate - we will revisit this when discussing package diagrams

● <<import>>
○ This is a dependency between packages where the client package can access all

of the public contents of the supplier package, while the namespaces of the

packages are merged - we will revisit this when discussing package diagrams

● <<permit>>
○ This is a controlled violation of encapsulation where the client may access the

private members of the supplier - this is not only often NOT supported by tools

and should be avoided if possible - programming languages like Java and C# do

not support this mechanism, unlike older languages, such as C++

126

MDS 2018/19 © Departamento de Informática, FCT/UNL 6 – Activity Diagrams

Did you really understand Class
Diagrams? Test yourself at:
http://elearning.uml.ac.at/

127

MDS 2018/19 © Departamento de Informática, FCT/UNL 6 – Activity DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 7 – Analysis Class Diagrams

Bibliography

Jim Arlow and Ila Neustadt, “UML 2 and the Unified Process”,
Second Edition, Addison-Wesley 2006

• Chapters 7, 8, 9, 10

128

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Package diagrams show the
structure of the designed system,
at the level of Packages

129

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

The Package is the UML mechanism to group
things

● Provides an encapsulated namespace within which all
names must be unique

● Groups semantically related elements
● Defines a semantic boundary in the model
● Provides units for parallel working and configuration

management
● Packages are a logical grouping mechanism

○ Physical grouping is achieved with components

130

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Every model element is owned by one package

● The ownership hierarchy forms a tree
● The top level package is stereotyped as <<toplevel>>
● By default, all model elements are owned by the top

level package
● The package hierarchy forms a namespace hierarchy

where the top level package is the namespace root

131

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Analysis packages should contain

● Use cases
● Analysis classes
● Use cases realizations

132

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

A UML package is represented as a folder

133

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

The package name can be represented in the
tab, if package contents are shown

134

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

The package name can be represented in the
tab, if package contents are shown

135

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Elements with public visibility (+) are visible to
elements outside the package

136

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Elements with private visibility (-) are visible to
elements outside the package

137

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Visibility determines whether a package
element is visible outside the package, or not

● Use visibility to control the amount of coupling
between packages

● Keep the package interface small and simple
○ Minimize the package elements with public

visibility
○ Maximize the package elements with private

visibility

138

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Packages and namespaces

● A package defines an encapsulated namespace
● Within a namespace, all element names are unique
● When referring to an element of another namespace,

we need to use its qualified name
● Qualified names are similar to pathnames in

directory structures

139

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Example: Qualified names of Librarian and Borrower
Library::Users::Librarian
Library::Users::Borrower

140

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Packages can be nested into other packages
Users is nested into Library

141

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Nested packages may also be represented with
an alternative syntax

142

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

These are equivalent: use the one which is
most effective for communication in each case

143

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

A dependency relationship indicates that one
package depends in some way on another package

144

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

<<use>> dependency

● An element in the client package uses a public
element in the supplier package in some way
○ The client depends on the supplier

● This is the default dependency

145

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

<<import>> dependency

● Public elements of the supplier namespace are added
as public elements of the client namespace

● Elements in the client can access all public elements
in the supplier without qualified names

146

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

<<access>> dependency

● Public elements of the supplier namespace are added
as private elements of the client namespace

● Elements in the client can access all public elements
in the supplier without qualified names

147

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

<<trace>> dependency

● <<trace>> usually represents a historical
development of one element into another more
developed version of it
○ A relationship between models rather than

elements

148

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

<<supplier>> dependency

● Public elements of the supplier package are merged
with elements of the client package

● This is only used in metamodelling
○ Metamodelling is used for modelling modelling

languages

149

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Dependency transitivity

● Some dependencies are transitive, other are not
○ <<import>> is transitive

■ Imported elements are made public
○ <<access>> is not transitive

■ Accessed elements are made private

150

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Lack of transitivity in <<access>> allows you to
manage coupling and cohesion

● Nothing is accessed unless it is explicitly accessed
○ public elements in package C become private

elements in package B
○ public elements in package B become private

elements in package A
○ elements in package A have no access to elements

in package C

151

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Elements of a Package Diagram: summary

152

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Package model development
considerations

153

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Package generalization

● Child packages inherit
elements from their
parent

● Child packages may
override parent
elements

● Child packages may
add new elements

● The substitutability
principle must apply

154

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Architectural analysis

● Partitions related classes into analysis packages and
then layers the packages

155

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Architectural analysis goals

● Minimize dependencies between analysis packages
● Minimize the number of public elements in each

analysis package
● Maximize the number of private elements in each

analysis package
● Goal: minimize coupling between packages

156

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Finding analysis packages

● Look for classes that form a cohesive structure
● Look for inheritance hierarchies
● Use cases may also be a source for packages

○ Packages may be cohesive from a business
perspective

○ This may not be the case, as a use case may use
cross-cutting classes - those used in several
packages

157

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Cleaning-up your packages may involve

● Moving classes between packages

● Adding packages

● Removing packages

● Aim for:

○ Low coupling between packages
○ High cohesion within each package

158

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Avoid cyclic packages dependencies

Possible workarounds:
● Merge packages
● Split: Factor

common elements
to a third package,
have the two
packages original
packages
depending on the
new one and
recalculate
dependencies

159

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

What really happens when we merge packages

160

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Model diagrams show some
abstraction or specific view of a
system, to describe some
architectural, logical, or
behavioral aspects of the system

161

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Elements of a Model Diagram

162

<<trace>>

<<trace>>

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Three-tier architecture

● Each tier directly assesses to the
tier right below it
○ Top tiers depend on those

below them
○ Bottom tiers are “unaware”

of top tiers

163

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Example of a three-tier architecture

164

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Layered architectures (aka n-tier architectures)

165

MDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package DiagramsMDS 2018/19 © Departamento de Informática, FCT/UNL 11 – Package Diagrams

Bibliography

166

Jim Arlow and Ila Neustadt, “UML 2 and the Unified Process”,
Second Edition, Addison-Wesley 2006

• Chapter 11

