ALGORITMOS GENÉTICOS CAP 4.1.4

Parcialmente adaptado de http://aima.eecs.berkeley.edu

O que são algoritmos genéticos

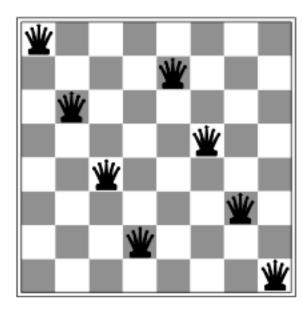
- Técnicas de optimização estocásticas inspiradas no processo de evolução por seleção natural
- Começam com uma população de indivíduos (ou cromossomas) gerados aleatoriamente
- Fazem evoluir em simultâneo a população (soluções alternativas) por intermédio de operadores de seleção, reprodução e mutação
- Os operadores genéticos permitem manter a diversidade da população e evitam que os AG convirjam prematuramente para um máximo local
- Com uma modelação correta do problema, a qualidade média das gerações sucessivas será aumentada, em particular a do seu melhor indivíduo

Conceitos básicos de AGs

- A população é constituída por um número geralmente fixo de indivíduos
- Cada cromossoma (ou indivíduo) é representado por uma cadeia de símbolos de um alfabeto finito, normalmente uma cadeia binária de 0s e 1s.
- Os cromossomas são constituídos por genes e os valores que cada gene pode tomar são os alelos.
- A qualidade de cada indivíduo é avaliada por uma função de mérito (fitness function) que influencia a probabilidade de seleção dos indivíduos para reprodução
- A reprodução combina dois indivíduos para gerar novo(s) indivíduo(s)
- Os filhos podem sofrer mutações genéticas aleatórias no seu cromossoma antes de serem colocados na população (geração seguinte)
- Uma geração pode ser substituída integralmente pelos seus descendentes ou manter alguns dos seus indivíduos mais aptos.

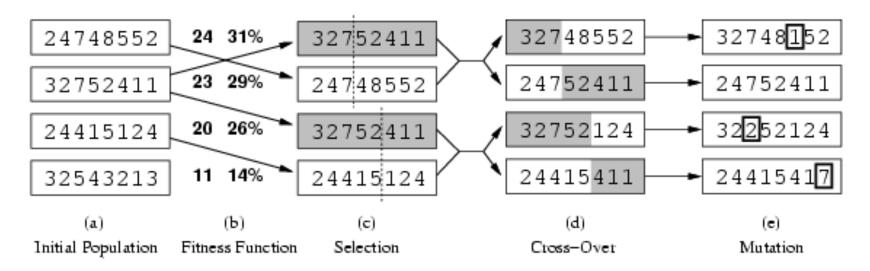
As rainhas novamente

 Podemos representar um estado por um cromossoma constituído por N-genes, em que cada alelo corresponde à posição ocupada pela rainha respectiva:



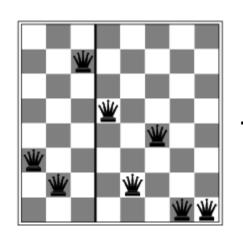
Alfabeto	Crom	nossom	а					
{0,1}	111	101	011	001	110	100	010	000
{1,2,3,4,5,6,7,8}	8	6	4	2	7	5	3	1

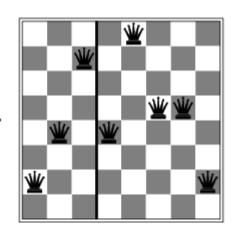
Funcionamento do AG

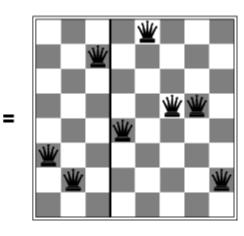


- Função de mérito: número de pares de rainhas que não se atacam (min = 0, max = 8 × 7/2 = 28)
- O indivíduo j é selecionado para reprodução com probabilidade $P(x_j) = \frac{f(x_j)}{\sum_{i=1}^k f(x_i)}$
- Neste exemplo,
 - 24/(24+23+20+11) = 31%
 - 23/(24+23+20+11) = 29% etc

Operação de recombinação







O locus (ponto de corte) é escolhido aleatoriamente:

Progenitores	Descendência
327 52411	32748552
24748552	24752411

Progenitores	Descendência
32752411	22758451
2 474 8 5 5 2	34742512

1 ponto de corte

Uniforme com máscara 01110101

Outros métodos permitem a reprodução com N pontos de corte, mas normalmente melhores resultados são obtidos com a recombinação uniforme, em que é criada aleatoriamente uma máscara para copiar o material genético.

Operação de mutação

- Alteração aleatória de um valor dos genes, com uma probabilidade baixa (0.001 valor típico)
- Evita que o algoritmo genético fique preso em máximos locais

Maximização de funções

- Como fazer para encontrar o máximo da função $f(x) = x*sin(10\pi x)+1.0$ com precisão de 6 casas decimais no intervalo [-1..2]?
- A função de mérito é simplesmente a função que pretendemos maximizar
- Serão necessários 22 bits:
 - \cdot 2097152=2²¹ < 3 000 000 < 2²² = 4194304
- O valor correspondente de x é obtido por simples aritmética a partir do número em decimal representado pelo indivíduo i:
 - $x = -1.0 + decimal(i)*(1 (-2))/(2^{22} 1) = -1.0 + decimal(i)* 3 / (4194303)$
- Por exemplo, o cromossoma 100010111011010100011 representa o valor de x=0,637197
 - $x = -1.0 + (2\ 288\ 967) * 3 / (4194303) = 0,637197$
- Podem experimentar o algoritmo com a aplicação disponibilizada em http://www.obitko.com/tutorials/genetic-algorithms/example-3d-function.php

Uma implementação de AG

```
function GENETIC-ALGORITHM (problem, FITNESS-FN) returns an individual
   inputs: population, a set of individuals
             FITNESS-FN, a function that measures the fitness of an individual
 repeat
      new\_population \leftarrow empty set
      loop for i from 1 to Size(population) do
         x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
         y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
         child \leftarrow \text{Reproduce}(x, y)
         if (random number \leq mutation probability) then child \leftarrow \text{Mutate}(child)
         add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough or enough time has elapsed
  return best individual in population, according to FITNESS-FN
function REPRODUCE(x, y) returns an individual
   inputs: x, y, parent individuals
  n \leftarrow \text{Length}(\mathbf{x})
  c \leftarrow \text{random number from } 1 \text{ to } n
  return Append(Substring(x,1,c), Substring(y,c+1,n))
```

Outra implementação de AG

```
function GENETIC-ALGORITHM (problem, FITNESS-FN) returns an individual
   inputs: population, a set of individuals
             FITNESS-FN, a function that measures the fitness of an individual
 repeat
      new\_population \leftarrow empty set
      loop for i from 1 to Size(population)/2 do
         x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
         y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
         if (random number \leq crossover probability) then
             child_1, child_2 \leftarrow \text{Reproduce}(x, y)
         else
             child_1, child_2 \leftarrow x, y
         endif
         if (random number \leq mutation probability) then child_1 \leftarrow \text{MUTATE}(child_1)
         if (random number \leq mutation probability) then child_2 \leftarrow \text{MUTATE}(child_2)
         add child_1 and child_2 to new\_population
      population \leftarrow new\_population
  until some individual is fit enough or enough time has elapsed
  return best individual in population, according to FITNESS-FN
```

Valores empíricos

- Para grandes populações (100 indivíduos)
 - Probabilidade de recombinação 0.6
 - Probabilidade de mutação 0.001
- Para populações pequenas (30 indivíduos)
 - Probabilidade de recombinação 0.9
 - Probabilidade de mutação 0.01

Outros operadores de selecção

- amostragem universal estocástica
 - Mecanismo para obter de uma vez só todos os indivíduos para reprodução.
- por posição
 - Ordenam-se os indivíduos por posição, utilizando esta posição para atribuir as probabilidades de seleção.
- por torneio
 - Seja k um parâmetro entre 0 e 1. Selecionam-se dois indivíduos aleatoriamente da população. Gera-se um número aleatório r. Se r < k fica-se com o melhor indivíduo; caso contrário seleciona-se para reprodução o pior deles.
- estado estável
 - Substitui-se uma percentagem dos piores indivíduos
- por truncatura
 - Só se deixa reproduzir uma percentagem dos melhores indivíduos.
- Elitista
 - Retém-se sempre um pequeno número dos melhores indivíduos.

O caixeiro viajante

- O problema do caixeiro viajante requer cuidados especiais para a sua resolução com algoritmos genéticos
 - Representação dos cromossomas
 - Operador de recombinação
 - Operador de mutação

Cromossoma para o TSP

 A representação natural recorre a uma lista ordenada de cidades para representar o circuito

1 8 3 4 6 2 7 9 5

Problemas a resolver

- A dificuldade essencial é o operador de recombinação dado que qualquer dos métodos vistos anteriormente podem criar indivíduos inviáveis (abortos...)
- Duas aproximações possíveis:
 - Reparar os indivíduos
 - Garantir que a recombinação só gera indivíduos válidos

Operador de recombinação PMX

- Partially mapped crossover (PMX)
- Escolhe uma subsequência a partir de um dos pais e preserva a ordem, na medida das possibilidades, do outro progenitor.
- Seleccionam-se dois pontos de corte
 - p1=1 2 3 | 4 5 6 7 | 8 9
 p2=4 5 2 | 1 8 7 6 | 9 3
- A selecção induz o conjunto de equivalências 4↔1, 5 ↔ 8, 6 ↔ 7 e 7 ↔ 6.
- Os segmentos entre os pontos são trocados

```
f1=___|1876|__f2=___|4567|__
```

Copiam-se os restantes valores que não introduzam repetições

```
f1=_23 | 1876 | _9
f2=_2 | 4567 | 93
```

Recorre-se às equivalências para substituir os restantes valores

```
    f1=4 2 3 | 1 8 7 6 | 5 9 (porque 4↔1 e 5 ↔ 8)
```

```
    f2=1 8 2 | 4 5 6 7 | 9 3 (porque 4↔1 e 5 ↔ 8)
```

Operador de recombinação OX

- Order crossover (OX)
- Seleciona-se uma subsequência e mantém-se a ordem do outro progenitor.
- Selecionam-se dois pontos de corte
 - p1=1 2 3 | 4 5 6 7 | 8 9
 - p2=4 5 2 | 1 8 7 6 | 9 3
- Copiam-se os segmentos para os descendentes
 - f1=___|4567|__f2=__||1876|__
- Copiam-se os valores do outro progenitor sequencialmente a partir do segundo ponto de corte, evitando repetições de cidades
 - f1=2 1 8 | 4 5 6 7 | 9 3
 - f2=3 4 5 | 1 8 7 6 | 9 2

Outras variantes do OX

- Selecionam-se dois pontos de corte
 - p1=1 2 3 | 4 5 6 7 | 8 9
 - p2=4 5 2 | 1 8 7 6 | 9 3
- Copiam-se os segmentos para os descendentes
 - f1=___|4567|__
 - f2=___| 1 8 7 6 |___
- Em vez de se começar a partir do segundo ponto de corte começa-se pela ordem do outro progenitor desde o início
 - f1=2 1 8 | 4 5 6 7 | 9 3
 - f2=2 3 4 | 1 8 7 6 | 5 9
- Em vez de utilizar uma subsequência, pode-se gerar uma máscara aleatória para selecionar as cidades a manter para a geração seguinte.

Operador de recombinação CX

- Cycle crossover (CX) não necessita de pontos de corte
 - p1=1 2 3 4 5 6 7 8 9
 - p2=4 1 2 8 7 6 9 3 5
- Começa-se na primeira cidade de p1
 - f1=1 _ _ _ _ _
- A respectiva em p2 é a 4, colocando-se essa cidade na posição de p1
 - f1=1 _ _ 4 _ _ _ _
- A respectiva em p2 é a 8, colocando-se essa cidade na posição de p1
 - f1=1 _ _ 4 _ _ _ <mark>8</mark> _
- Itera-se até introduzir um ciclo (cidade já colocada)
 - f1=1 2 3 4 _ _ _ 8 _
- Preenchem-se as restantes a partir da sequência no outro progenitor:
 - f1=1 2 3 4 7 6 9 8 5

Operadores de mutação

- Inversão (inverte subsequência)
 - 12 | 3456 | 789
 - 12 | 6543 | 789
- Inserção (move arbitrariamente 1 cidade)
 - 123456789
 - 127345689
- Deslocamento (move subsequência)
 - 12345|678|9
 - 1 | 6 7 8 | 2 3 4 5 9
- Troca (troca duas cidades)
 - 123456789
 - 723456189

Algoritmos meméticos

- Após aplicação de qualquer um dos operadores genéticos e mesmo da inicialização da população, efetua-se uma procura local
- Estes algoritmos são designados por algoritmos meméticos
- Por exemplo, pode-se aplicar o algoritmo trepa-colinas para melhorar o indivíduo
 - Considerando todas as trocas de duas ou três cidades e escolhendo a melhor alternativa até atingir um mínimo local
- É preciso ter cuidado na escolha do operador de mutação para não efetuar as mesmas operações que a procura local.
- Uma possibilidade é não efetuar procura local após mutação.

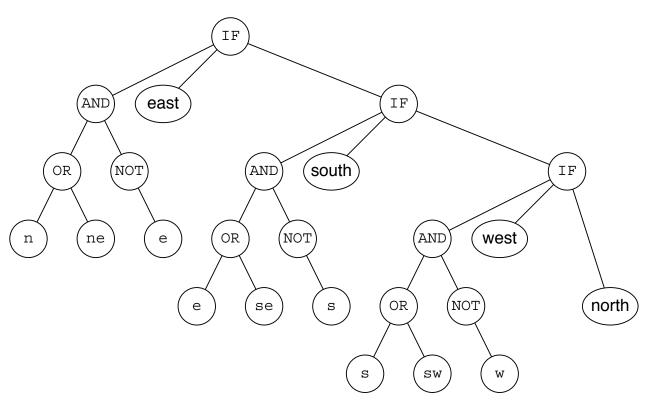
Outros algoritmos de inspiração evolucionária

- Programação Genética
 - Evolução de programas
- Estratégias Evolutivas
 - Evolução de vectores reais com distribuições normais para resolução de problemas de Engenharia
 - O operador dominante é a mutação
- Programação Evolutiva
 - Os indivíduos são máquinas de estados

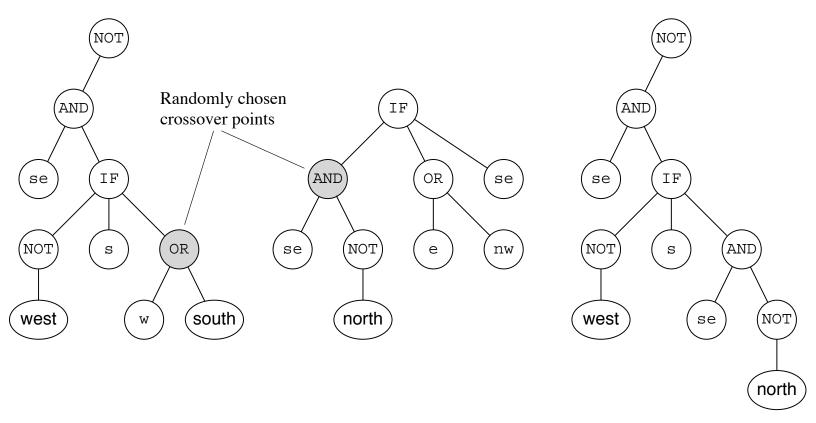
Programação Genética

- Cada indivíduo é um programa. A qualidade de um indivíduo é obtida por execução do programa relativamente a um conjunto de testes.
- O material genético encontra-se estruturado em árvore
- O material genético é de tamanho variável durante o processo evolutivo
- O operador de recombinação troca subárvores entre os dois progenitores, preservando a sintaxe
- O operador de mutação substitui uma subárvore por outra construída aleatoriamente
- A população inicial é obtida pela geração aleatória de funções e terminais que constituem os programas.

Evolução de seguidores de paredes [Nilsson]



Recombinação de programas



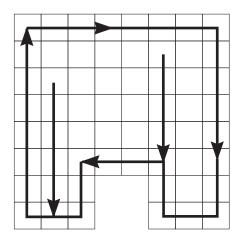
Mother program

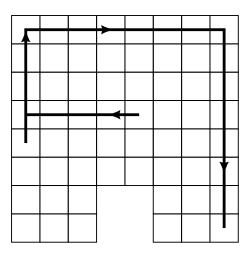
Father program

Child program

© 1998 Morgan Kaufman Publishers

Exemplo de programas gerados





Conclusões

- Grande impacto em problemas de optimização, nomeadamente problemas de escalonamento, desenho de circuitos integrados, classificação, simulação e controlo.
- Algoritmos que suscitam muito interesse, provavelmente por causa das suas origens na teoria da evolução.
- Falta estudar condições que identifiquem claramente as situações em que os algoritmos genéticos têm bom comportamento.

PROCURA LOCAL EM ESPAÇOS CONTÍNUOS CAP 4.2

Parcialmente adaptado de http://aima.eecs.berkeley.edu

Procura local em espaços contínuos

- Muitos problemas podem ser representados como maximização/ minimização de funções multidimensionais em Rⁿ.
- Existem inúmeras técnicas, mas iremos abordar brevemente aquelas baseadas no gradiente de uma função $f(x_1, ..., x_n)$ que se supõe diferenciável em \mathbb{R}^n .
- O gradiente da função f, denotado por ∇f define-se por:

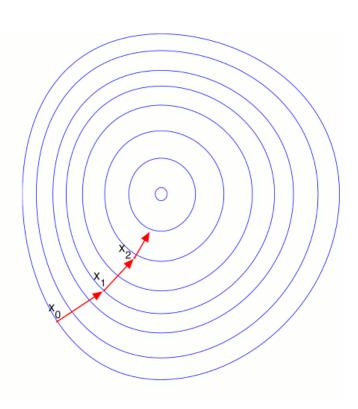
$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Subida pelo gradiente

- Partindo de uma solução inicial x0
- Executa-se iterativamente o algoritmo

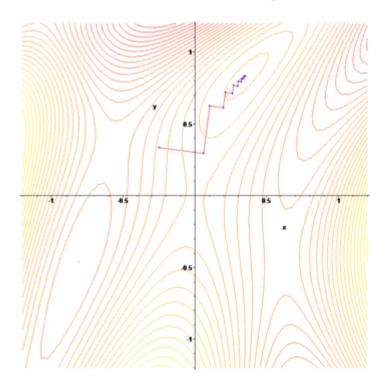
$$\mathbf{x}_{n+1} = \mathbf{x}_n + \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

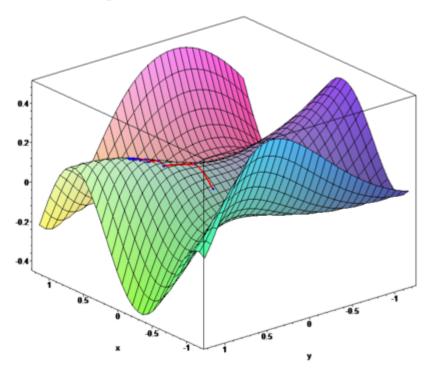
- Até que a variação entre |x_{n+1} x_n| atinja um erro predeterminado.
- Podemos variar em cada passo o parâmetro γ_n, que deve ser suficientemente pequeno



Exemplo: maximização de função

$$F(x,y) = \sin\left(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3\right)\cos(2x + 1 - e^y)$$



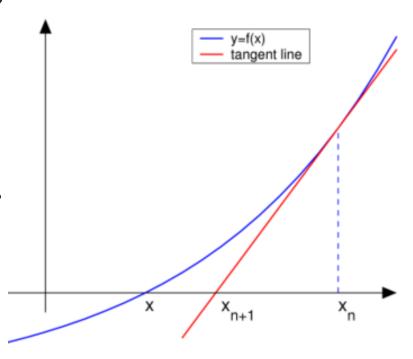


Método de Newton-Raphson

- O método de Newton-Raphson é utilizado para obter as raizes de f(x)=0.
- O método para funções reais corresponde a iterar

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 Para encontrar os extremos (máximos ou mínimos) tem de se resolver a equação f'(x) = 0



Optimização com método de Newton-Raphson

Para o caso de funções reais, iterar

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}, \ n \ge 0$$

 Para o caso de funções em Rⁿ, generaliza-se a fórmula de aproximação para

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma [Hf(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n).$$

• A matriz Hessiana H_f contém as derivadas parciais de segunda ordem de f, isto é $H_{ii} = \partial^2 f / \partial x_i \partial x_i$