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Foreword to the Original French edition

Jean-Touis Krivine

In France, the discipline of logic has traditionally been ignored in university-level
scientific studies. This follows, undoubtedly, from the recent history of mathe-
matics in our country which was dominated, for a long while, by the Bourbaki
. school for whom logic was not, as we know, a strong point. Indeed, logic origi-
nates from reflecting upon mathematical activity and the common gut-reaction of
the mathematician is to ask: “What is all that good for? We are not philosophers
and it is surely not by cracking our skulls over modus ponens or the excluded
middle that we will resolve the great conjectures, or even the tiny ones ...’ Not
so fast!

A new ingredient, of some substance, has come to settle this somewhat byzantine
debate over the importance of logic: the explosion of computing into all areas of
economic and scientific life, whose shock wave finally reached the mathematicians
themselves.

And, little by little, one fact dawns on us: the theoretical basis for this nascent

science is nothing other than the subject of all this debate, mathematical logic.

- It is true that certain areas of logic were put to use more quickly than others.
Boolean algebra, of course, for the notions and study of circuits; recursiveness,
which is the study of functions that are computable by machine; Herbrand’s theo-
rem, resolution and unification, which form the basis of ‘logic programming’ (the
language PROLOG); proof theory, and the diverse incarnations of the Complete-
ness theorem, which have proven themselves to be powerful analytical tools for
mature programming languages.

But, at the rate at which things are going, we can imagine that even those areas
that have remained completely ‘pure’, such as set theory, for example, will soon
see their turn arrive. |

As it ought to be, the interaction is not one-way, far from it; a flow of ideas and
new, deep intuitions, arising from computer science, has come to animate all these
sectors of logic. This discipline is now one of the liveliest there is in mathematics
and it is evolving very rapidly.

So there is no doubt about the utility and timeliness of a work devoted to a
general introduction to logic; this book meets its destiny. Derived from lectures
for the Dipléme d’Etudes Approfondies (DEA) of Logic and the Foundations
of Computing at the University of Paris VII, it covers a vast panorama: Boolean




vi FOREWORD TO THE ORIGINAL FRENCH EDITION

algebras, recursiveness, model theory, set theory, models of arithmetic and Godel’s.

theorems.

The concept of model is at the core of this book, and for a very good reason

since it occupies a central place in logic: despite (or thanks to) its simple, and even
elementary, character, it illuminates all areas, even those that seem farthest from
it. How, for example, can one understand a consistency proof in set theory without
first mastering the concept of being a model of this theory? How can one truly
grasp Godel’s theorems without having some notion of non-standard models of
Peano arithmetic? The acquisition of these semantic notions is, I believe, the mark

of a proper training for a logician, at whatever level. R. Cori and D. Lascar know

this well and their text proceeds from beginning to end in this direction. Moreover,
they have overcome the risky challenge of blending all the necessary rigour with
clarity, pedagogical concern and refreshing readability.

We have here at our disposal a remarkable tool for teaching mathematical logic
and, in view of the growth in demand for this subject area, it should meet with a
marked success. This is, naturally, everything I wish for it.



Foreword to the English edition

Wilfrid Hodges

School of Mathematical Sciences
Queen Mary and Westfield College
University of London

In the 1930s two young logicians, Kurt Godel and Alan Turing, proved theorems
that eventually gave both of them cult status among twentieth century thinkers. Both
theorems say, from different viewpoints, that there is no finite set of instructions
that mathematicians can write down, which will lead to the solution of all problems
in arithmetic (let alone all problems in mathematics).

The volume that you have in your hand, the second part of the text of René Cori
and Daniel Lascar, contains full and lucid proofs of both of these theorems. In
fact the two theorems are not as similar as my informal statement of them sug-
gests. Godel’s theorem is about proofs and Turing’s is about calculations. Cori and
Lascar make the difference very clear by putting the two theorems in their appro-
priate settings—Godel’s theorem in formal arithmetic (Chapter 6) and Turing’s in

recursion theory (the undecidability of the halting problem, in Chapter 5).

In spite of their breadth and depth, the theorems of Godel and Turing had little
direct influence on mathematical practice. One reason for this was that, by and
large, twentieth century mathematicians came to accept Zermelo—Fraenkel set
theory as a summary of the starting axioms that they were prepared to use, even
though many mathematical problems are known not to be settled by these axioms.
Chapter 7 introduces you to Zermelo—Fraenkel set theory, with.some examples of
how it is used in mathematics.

The book finishes with a chapter on model theory. It’s hard to say in a few
words what model theory does for us; but basically it is the framework within
which mathematical logicians study truth, definition and classification. It’s a lovely
branch of logic, with many applications.

For English students this book is probably best suited to Masters or fourth-year
undergraduate studies, or for students working largely on their own. As in the first
volume, the authors have included full solutions to the exercises. The first volume
contains all the background that you need, and more. But in fact you can read
this second volume with profit and pleasure if you have studied enough logic to
know what first-order logic is, say as far as a proof calculus and a statement of the
compactness theorem.
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It remains only for me to repeat my closing comment on the first part. This book
comes from the famous Equipe de Logique Mathématique at the University of
Paris, a research team that has had an enormous influence on the development of
mathematical logic and its links with other branches of mathematics. Read it with
confidence.




Preface

This book is based upon several years’ experience teaching logic at the UFR of
Mathematics of the University of Paris 7, at the beginning graduate level as well
as within the DEA of Logic and the Foundations of Computer Science.

As soon as we began to prepare our first lectures, we realized that it was going
to be very difficult to introduce our students to general works about logic written
in (or even translated into) French. We therefore decided to take advantage of this
opportunity to correct the situation. Thus the first versions of the eight chapters
that you are about to read were drafted at the same time that their content was being
taught. We insist on warmly thanking all the students who contributed thereby to
a tangible improvement of the initial presentation.

Our thanks also go to all our colleagues and logician friends, from Paris 7 and
elsewhere, who brought us much appreciated help in the form of many comments
and moral support of a rare quality. Nearly all of them are co-authors of this work
since, to assemble the lists of exercises that accompany each chapter, we have
borrowed unashamedly from the invaluable resource that comprises the hundreds
and hundreds of pages of written material that were handed out to students over
_the course of more than twenty-five years during which the University of Paris 7,

a pioneer in this matter, has organized courses in logic open to a wide public.

At this point, the reader generally expects a phrase of the following type: ‘they
are so numerous that we are obviously unable to name them all’. It is true, there
are very many to whom we extend our gratitude, but why shouldn’t we attempt to
name them all?

Thank you therefore to Josette Adda, Marouan Ajlani, Daniel Andler,
Gilles Amiot, Fred Appenzeller, Jean-Claude Archer, Jean-Pierre Azra, Jean-
Pierre Bénéjam, Chantal Berline, Claude-Laurent Bernard, Georges Blanc,
Elisabeth Bouscaren, Albert Burroni, Jean-Pierre Calais, Zoé Chatzidakis,

‘Peter Clote, Frangois Conduché, Jean Coret, Maryvonne Daguenet, Vincent
Danos, Max Dickmann, Patrick Dehornoy, Francoise Delon, Florence Duchéne,
Jean-Louis Duret, Marie-Christine Ferbus, Jean-Yves Girard, Dani¢le Gondard,
Catherine Gourion, Serge Grigorieff, Ursula Gropp, Philippe Ithier, Bernard Jaulin,
Ying Jiang, Anatole Khélif, Georg Kreisel, Jean-Louis Krivine, Ramez Labib-
Sami, Daniel Lacombe, Thierry Lacoste, Richard Lassaigne, Yves Legrandgérard,
Alain Louveau, Frangois Lucas, Kenneth MacAloon, Gilles Macario-Rat, Sophie
Malecki, Jean Malifaud, Pascal Manoury, Francois Métayer, Marie-Hélene
Mourgues, Catherine Muhlrad-Greif, Francis Oger, Michel Parigot, Donald
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Pelletier, Marie-Jeanne Perrin, Bruno Poizat, Jean Porte, Claude Précetti,
Christophe Raffalli, Laurent Régnier, J ean-Pierre Ressayre, Iégor Reznikoff,
Philippe Royer, Paul Roziére, Gabriel Sabbagh, Claire Santoni, Marianne Simonot,
Gerald Stahl, Jacques Stern, Anne Strauss, Claude Sureson, Jacques Van de Wiele,
Francoise Ville.

We also wish to pay homage to the administrative and technical work accom-
plished by Mesdames Sylviahe Barrier, Giséle Goeminne, and Claude Orieux.

May those whom we have forgotten forgive us. They are so numerous that we
are unable to name them all.

September 1993

The typographical errors in the first printing were so numerous that even Alain
Kapur was unable to locate them all. May he be assured of all our encouragement
for the onerous task that still awaits him.

We also thank Edouard Dorard and Thierry Joly for their very careful reading.
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Notes from the translator

In everyday mathematical language, the English word ‘contains’ is often used
indifferently, sometimes referring to membership of an element in a set, €, and
sometimes to the inclusion relation between sets, C. For a reader who is even
slightly familiar with the subject, this is not a serious issue since the meaning is
nearly always clear from the context. But because this distinction is precisely one
of the stumbling blocks encountered by beginning students of logic and set theory,
I have chosen to consistently use the word ‘contains’ when the meaning is € and
the word ‘includes’ when the meaning is C.

It is perhaps more common in mathematical English to use the phrases ‘one-to-
one’ and ‘onto’ in place of the more formal-sounding ‘injective’ and ‘surjective’.
1 have none the less retained ‘injective’ and ‘surjective’ as more in keeping with
the style of the original; even those who object must admit that ‘bijective’ has the
advantage over ‘one-to-one and onto’.

Where the original refers the reader to various standard texts in French for some
basic facts of algebra or topology, I have replaced these references with suitable
English-language equivalents.

- Itis useful to distinguish between bold zero and one (0 and 1) and plain zero and
one (0 and 1). The plain characters are part of the metalanguage and have their usual
denotations as integers. The bold characters are used, by convention, to denote the
truth values of two-valued logic; they are also used to denote the respective iden-
tity elements for the operations of addition and multiplication in a Boolean algebra.

April, 2000 Donald H. Pelletier




Notes to the reader

The book is divided into two parts. The first consists of Chapters 1 through 4;

Chapters 5 through 8 comprise the second. Concepts presented in a given chap--

ter presume knowledge from the preceding chapters (but Chapters 2 and 5 are
exceptions to this rule).

Each of the eight chapters is divided into sections, which, in turn, are composed
of several subsections that are numbered in an obvious way (see the Contents).

Each chapter concludes with a section devoted to exercises. The solutions to
these are grouped together at the end of the corresponding volume.

The solutions, especially for the first few chapters, are rather detailed.

Our reader is assumed to have acquired a certain practice of mathematics and
a level of knowledge corresponding, roughly, to classical mathematics as taught
in high school and in the first years of university. We will refer freely to what
we have called this ‘common foundation’, especially in the examples and the
exercises.

None the less, the course overall assumes no prior knowledge in particular.

Concerning the familiar set-theoretical (meta-)language, we will use the termi-

‘nology and notations that are most commonly encountered: operations on-sets;
relations, maps, etc., as well as N, Z, Z/nZ, Q, R for the sets we meet every day.
We will use N* to denote N — {0}.

If E and F are sets and if f is a map defined on a subset of E with values in F,
the domain of f is denoted by dom(f) (it is the set of elements in E for which
f is defined), and its image is denoted by Im(f) (it is the set of elements y in F'
for which y = f(x) is true for at least one element x in E). If A is a subset of
the domain of f, the restriction of f to A is the map from A into F, denoted by
f | A, which, with each element x in A, associates f (x). The image of the map
f | Ais also called the direct image of A under f andis denoted by f[A]. If B
is a subset of F, the inverse image of B under f, denoted by f ~1[B], consists of
those elements x in E such that f(x) € B. In fact, with any given map f from a
set E into a set F', we can associate, in a canonical way, a map from g (E) (the set
of subsets of E) into g (F): this is the ‘direct image’ map, denoted by f which,
with any subset A of E, associates f[A], which we could then just as well denote
by f(A). In the same way, with this given map f, we could associate a map from
e (F)into g (E), called the ‘inverse image’ map and denoted by f —1, which, with
any subset B of F, associates f‘1 [B], which we could then just as well denote

by f ~1(B). (See also Exercise 19 from Chapter 2.)



NOTES TO THE READER Xix

Perhaps it is also useful to present some details concerning the notion of word

.on an alphabet; this concept will be required at the outset.

Let E be a set, finite or infinite, which we will call the alphabet. A word, w,
on the alphabet E is a finite sequence of elements of E (i.e. a map from the set
{0,1,...,n — 1} (where n is an integer) into E); w = (ag,ay,...,ay—1), OF
even apai . ..day—1, represents the word whose domain is {0, 1,...,n — 1} and

which associates a; with i (for 0 < i < n — 1). The integer n is called the.

length of the word w and is denoted by Ig[w]. The set of words on FE is denoted
by W(E).

If n = 0, we obtain the empty word. We will adopt the abuse of language that
consists in simply writing a for the word (a) of length 1. The set W(E) can also

support a binary operation called concatenation: let w; = (ag, ai, ..., ay—1)
and wy = (bg, b1, ..., byy—1) be two words; we can form the new word w =
(ap, ay,...,an—1,b0,b1,...,bpy—1), ie. the map w defined on {0,1,...,

n +m — 1} as follows:

a; if O
bi_, ifn

i<n-—1;

w(i) = i <n-+m-—1.

A TA

This word is called the concatenation of w; with wy and is denoted by wyws. This
parenthesis-free notation is justified by the fact that the operation of concatenation
1s associative.

Given two words w and w1, we say that wy is an initial segment of w if there ex-

ists aword wy such thatw = wjws. To putitdifferently,ifw = (ag, ay, ..., a,—1),
the initial segments of w are the words of the form (ag, ay, .. ., ap—1) where pis
an integer less than or equal to n. We say that w; is a final segment of w if there
exists a word wo such that w = wowy; so the final segments of (ag, ai, ..., an-1)
are the words of the form (a,, apy1, ..., a,—1) where p is an integer less than or
equal to n. In particular, the empty word and w itself are both initial segments and
final segments of w. A segment (initial or final) of w is proper if it is different
from w and the empty word.

When an element b of the alphabet ‘appears’ in a word w = agay ...da,_1, we
say that it has an occurrence in w and the various ‘positions’ where it appears are
called the occurrences of b in w. We could, of course, be more precise and more
formal: we will say that b has an occurrence in w if b is equal to one of the g;
for i between 0 and n — 1 (i.e. if b belongs to the image of w). An occurrence of
b in w is an integer k, less than Ig[w], such that b = a. For example, the third
occurrence of b in w is the third element of the set {k : 0 < k < n—1 and a; = b)
in increasing order. This formalism will not be used explicitly in the text; the idea
sketched at the beginning of this paragraph will be more than adequate for what
we have to do.




2 INTRODUCTION

Faced with this apparent paradox, there are three possible attitudes. First, one
may regard it as so serious that to undertake the study of logic is condemned in
advance; second, one may deem that the supposed incompatibility between 1)
and (2) simply compels the denial of (1), or at least its modification, which leads
to the belief that one is not really doing mathematics when one studies logic; the
third attitude, finally, consists in dismantling the paradox, becoming convinced
that it is not one, and situating mathematical logic in its proper place, within the
core of mathematics.

We invite you to follow us in this third path.

Those for whom even the word paradox is too weak will say: ‘Wait a minute!
Aren’t you putting us on when you finally get around, in your Chapter 7, to provid-
ing definitions of concepts (intersection, pair, map, ordered set, . .. ) that you have
been continually using in the six previous chapters? This is certainly paradoxical.
You are surely leading us in a vicious circle’.

Well, in fact, no. There is neither a paradox nor a vicious circle.

This text is addressed to readers who have already ‘done’ some mathematics,
who have some prior experience with it, beginning with primary school. We do not
ask you to forget all that in order to rebuild everything from scratch. It is the oppo-
site that we ask of you. We wish to exploit the common background that is ours:
familiarity with mathematical reasoning (induction, proof by contradiction,. . .),
with everyday mathematical objects (sets (yes, even these!), relations, functions,
integers, real numbers, polynomials, continuous functions, ...), and with some
concepts that may be less well known (ring, vector space, topological space, . . . ).
That is what is done in any course in mathematics: we make use of our prior
knowledge in the acquisition of new knowledge. We will proceed in exactly
this way and we will learn about new objects, possibly about new techniques
of proof (but caution: the mathematical reasoning that we habitually employ will
never be called into question; on the contrary, this is the only kind contemplated
here).

If we simplify a bit, the approach of the mathematician is almost always the
same whether the subject matter under study is measure theory, vector spaces,
ordered sets, or any other area of so-called classical mathematics. It consists in
examining structures, i.e. sets on which relations and functions have been defined,
and correspondences among these structures. But, for each of these classical areas,
there was a particular motivation that gave birth to it and nurtured its development.
The purpose was to provide a mathematical model of some more or less ‘con-
crete’ situation, to respond to an expressed desire arising from the world outside
mathematics, to furnish a useful mathematical tool (as a banal illustration of this,
consider that vector spaces arose, originally, to represent the physical space in
which we live).

Logic, too, follows this same approach; its particularity is that the reality it
attempts to describe is not one from outside the world of mathematics, but rather
the reality that is mathematics itself.
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This should not be awkward, provided we remain aware of precisely what is in-
.volved. No student of mathematics confuses his physical environment with an
oriented three-dimensional Euclidean vector space, but the knowledge of this
environment assists one’s intuition when it comes to proving some property of
this mathematical structure. The same applies to logic: in a certain way, we are go-
ing to manufacture a copy, a prototype, we dare say a reduced model of the universe
of mathematics, with which we are already relatively familiar. More precisely, we
will build a whole collection of models, more or less successful (not every vector
space resembles our physical space). In addition to a specimen that is truly similar
to the original, we will inevitably have created others (at the close of Chapter 6,
we should be in a position to understand why), often rather different from what
we imagined at the outset. The study of this collection teaches us many lessons;
notably, it permits those who undertake this study to ask themselves interesting
questions about their perceptions and their intuitions of the mathematical world.
Be that as it may, we must understand that it is essential not to confuse the original
that inspired us with the copy or copies. But the original is indispensable for the
production of the copy: our familiarity with the world of mathematics guides usin
fabricating the representation of it that we will provide. But at the same time, our
undertaking is a mathematical one, within this universe that we are attempting to
better comprehend.

Sothere is no vicious circle. Rather than a circle, imagine a helix (nothing vicious
there!), a kind of spiral staircase: we are on the landing of the nth floor, where our
mathematical universe is located; call this the ‘intuitive level’. Our work takes us
down a level, to the (n — 1)st floor, where we find the prototype, the reduced model;
we will then be at the ‘formal’ level and our passage from one level to the other
will be called ‘formalization’. What is the value of n? This makes absolutely no
difference; there is no first nor last level. Indeed, if our model is well constructed,
if in reproducing the mathematical universe it has not omitted any detail, then
it will also contain the counterpart of our very own work on formalization; this
requires us to consider level n —2, and so on. At the beginning of this book, we find
ourselves at the intuitive level. The souls that inhabit it will also be called intuitive
objects; we will distinguish these from their formal replica by attaching the prefix
‘meta’ to their names (meta-integers, meta-relations, even meta-universe since the
word ‘universe’ will be given a precise technical meaning in Chapter 7). We will
go so far as to say that for any value of n, the nth level in our staircase is intuitive
relative to level n — 1 and is formal relative to level n + 1. As we descend, i.e. as
we progress in our formalization, we could stop for a rest at any moment, and take
the opportunity to verify that the formal model, or at least what we can see of it,
agrees with the intuitive original. This rest period concerns the meta-intuitive, i.e.
level n + 1.

So we must face the facts: it is no more feasible to build all of mathematics
‘ex nihilo’ than to write an English—-English dictionary that would be of use to
a Martian who knows nothing of our lovely language. We are faced here with
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a question that had considerable importance in the development of logic at the
beginning of the century and about which it is worth saying a few words.

Set theory (it matters little which theory: ZF, Z, or some other), by giving leg1t~
imacy to infinite objects and by allowing these to be manipulated just like ‘real’
objects (the integers, for example), with the same logical rules, spawned a fair
amount of resistance among certain mathematicians; all the more because the ini-
tial attempts turned out to be contradictory. The mathematical world was then split
into two clans. On the one hand, there were those who could not resist the freedom
that set theory provided, this ‘Cantorian paradise’ as Hilbert called it. On the other
hand were those for whom only finite objects (the integers, or anything that could
be obtained from the integers in a finite number of operations) had any meaning
and who, as a consequence, denied the validity of proofs that made use of set
theory.

To reconcile these points of view, Hilbert had imagined the following strategy
(the well-known ‘Hilbert programme’): first, proofs would be regarded as finite
sequences of symbols, hence, as finite objects (that is what is done in this book
in Chapters 4 and 6); second, an algorithm would be found that would transform
a proof that used set theory into a finitary proof, i.e. a proof that would be above
all suspicion. If this programme could be realized, we would be able to see, for
example, that set theory is consistent: for if not, set theory would permit a proof
of 0 = | which could then, with the help of the algorithm suggested above, be
transformed into a finitary proof, which is absurd.

This hope was dashed by the second incompleteness theorem of Godel: surely,
any set theory worthy of this name allows the construction of the set of natural
numbers and, consequently, its consistency would imply the consistency of Peano’s
axioms. Godel’s theorem asserts that this cannot be done in a finitary way.

The conclusion is that even finitary mathematics does not provide a foundation
for our mathematical edifice, as presently constructed.

The process of formalization involves two essential stages. First, we fix the
context (the structures) in which the objects evolve while providing a syntax to
express their properties (the languages and the formulas). Here, the important
concept is the notion of satisfaction which lies at the heart of the area known as
semantics. It would be possible to stop at this point but we can also go further and
formalize the reasoning itself; this is the second stage in the formalization: Here,
we treat deductions or formal proofs as mathematical objects in their own right.
We are then not far from proof theory, which is the branch of logic that specializes
in these questions.

This book deliberately assigns priority to the first stage. Despite this, we will
not ignore the second, which is where the most famous results from mathematical
logic (Godel’s theorems) are situated. Chapter 4 is devoted to the positive results
in this area: the equivalence between the syntactic and semantic points of view in
the context that we have selected. This equivalence is called ‘completeness’. There
are several versions of this simply because there are many possible choices for a
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formal system of deduction. One of these systems is in fashion these days because
of its use in computer science: this is the method of resolution. We have chosen to
introduce it after first presenting the traditional completeness theorem.

The negative results, the incompleteness theorems, will be treated in Chapter 6,
following the study of Peano’s arithmetic. This involves, as we explained above,
abandoning our possible illusions.

The formalization of reasoning will not occur outside the two chapters that we
have just mentioned.

Chapter 1 treats the basic operations on truth values, ‘true’ and ‘false’. The
syntax required is very simple (propositional formulas) and the semantics (well-
known truth tables) is not very complicated. We are interested in the truth value of
propositions, while carefully avoiding any discussion of the nature of the properties
expressed by means of these propositions. Our concern with what they express,
and with the ways they do it, is the purpose of Chapter 3. We see immediately that
the operators considered in the first chapter (the connectives ‘and’, ‘or’, ‘implies’,
and so on) do not suffice to express familiar mathematical properties. We have to
introduce the quantifiers and we must also provide a way of naming mathemati-
cal objects. This leads to formulas that are sequences of symbols obeying rather
complicated rules. Following the description of a syntax that is considerably more
complex than that for propositional calculus, we define the essential concept: sat-
isfaction of a formula in a structure. We will make extensive use of all this, which
is called predicate calculus, in Chapters 4 and 6, to which we referred earlier, as
well as in Chapters 7 and 8. You will have concluded that it is only Chapter 5 that
does not require prior knowledge of predicate calculus. Indeed, it is devoted to the
study of recursive functions, a notion that is absolutely fundamental for anyone
with even the slightest interest in computer science. We could perfectly well begin
with this chapter provided we refer to Chapter 1 for the process of inductive def-
inition, which is described there in detail and which is used as well for recursive
functions.

In Chapter 7 we present axiomatic set theory. It is certainly there that the sense
of paradox to which we referred will be most strongly felt since we purport to
construct mathematical universes as if we were defining a field or a commutative
group. But, once a possible moment of doubt has passed, one will find all that a
mathematician should know about the important notions of cardinals and ordinals,
the axiom of choice, whose status is generally poorly understood, and, naturally,
a list of the axioms of set theory.

Chapter 8 carries us a bit further into an area of which we have so far only caught
a glimpse: model theory. Its ambition is to give you a taste for this subject and to
stimulate your curiosity to learn more. In any case, it should lead you to suspect
that mathematical logic is a rich and varied terrain, where one can create beautiful
things, though this can also mean difficult things.

Have we forgotten Chapter 27 Not at all! It is just that it constitutes a singularity
in this book. To begin with, it is the only one in which we employ notions from
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classical mathematics that a student does not normally encounter prior to the upper-
level university curriculum (topological spaces, rings, and ideals). Moreover, the
reader could just as well skip it: the concepts developed there are used only in some
of the exercises and in one section of the last chapter. But we have included it for
at least three reasons: the first is that Boolean algebras are the ‘correct’ algebraic
structures for logic; the second is that it affords us an opportunity to display how
perfectly classical mathematics, of a not entirely elementary nature, could be linked
in a natural way with the study of logic; the third, finally, is that an exposure to
Boolean algebras is generally absent from the mathematical literature offered to
students, and is even more rarely proposed to students outside the technical schools.
So you should consider Chapter 2, if you will, as a little supplement that you may
consult or not, as you wish.

We will probably be criticized for not being fair, either in our choice of the
subjects we treat or in the relative importance we accord to each of them. The
domain of logic is now so vast that it would have been absolutely impossible to
introduce every one of its constituents. So we have made choices: as we have
already noted, proof theory is barely scratched; lambda calculus and algorithmic
complexity are absent despite the fact that they occupy an increasingly important
place in research in logic (because of their applications to the theory of comput-
ing which have been decisive). The following are also absent: non-classical logics
(intuitionist . . . ), second-order logic (in which quantifications range over relations
on a structure as well as over its elements), or so-called ‘infinitary’ logics (which
allow formulas of infinite length). These choices are dictated, first of all, by our
. desire to present a basic course. We do not believe that the apprentice logician
should commence anywhere else than with a detailed study of the first-order pred-
icate calculus; this is the context that we have set for ourselves (Chapter 3). Starting
from this, we wished to present the three areas (set theory, model theory, recursive
function theory and decidability) that seem to us to be the most important. Histor-
ically speaking, they certainly are. They also are because the ‘grand’ theorems of
logic are all found there. Finally, it is our opinion that familiarity with these three
areas is an indispensable prerequisite for anyone interested in any other area of
mathematical logic. Having chosen this outline, we still had the freedom to modify
the relative importance given to these three axes. In this matter, we cannot deny
that we allowed our personal preferences to guide us; it is clear that Chapter 8
could just as well have been devoted to something other than model theory.

These lines were drafted only after the book that you are about to read was
written. We think that they should be read only after it has been studied. As already
pointed out, we can only truly speak about an activity, describe it (formalize it!),
once we have acquired a certain familiarity with it.

Until then.




5 Recursion theory

Recursive functions are certain functions from NP (a Cartesian power of the set
of natural numbers) into N. They are functions that can, intuitively speaking, be
effectively computed or, if one prefers, those whose values can be calculated by
some algorithm or some machine. One should note that we are considering here
only the theoretical possibility of a mechanical calculation (the actual calculation
may well require far too much time to be reasonably undertaken).

In Section 5.1, we will define a class of functions, the primitive recursive func-
tions, which Manifesz‘ly satisfy the criterion in the previous paragraph. We will
attempt to convince the reader that this class is already extremely broad by show-
ing that all the functions that immediately come to mind are primitive recursive.
Unfortunately, the class of primitive recursive functions does not exhaust the class
that we wish to describe: in Section 5.2, we will construct a function, Ackerman’s
function, which is not primitive recursive although it is effectively computable. So
we will define a wider class, the class of recursive functions. But as it happens, for

reasons that will also appear in Section 5.4, we will have to define a class that is .

more complicated and, a priori, less natural: the class of partial recursive func-
tions. A partial function | of p variables is a map from a subset E of NP into N
and such a function is recursive if there exists an algorithm that computes. it in the
following sense: when the algorithm is applied to compute f(ny, na, ..., np), if
(n1,n2,...,np) does belong to E, then it will compute the function value; and
if (ni,n2,...,np) does not belong to E, the algorithm will never halt. There is
strong evidence that the notion of an effectively computable function has been
correctly circumscribed: no one has ever found an effectively computable function
that could not be proven to be either recursive or partial recursive. »
Section 5.3 presents the concept of a Turing machine; this is a mathematical
idealization of a calculating machine or computer. We will show that the functions
calculated by Turing machines are precisely the partial recursive functions. Many
other mathematical machines have been defined but we have preferred Turing
machines because they are interesting for several reasons: in the first instance,
historical, for these were the earliest mathematical models of machines to be
introduced; then, pedagogical, for we can see how they function in a practically
mechanical way; and finally, theoretical, for they allow us to prove the important
enumeration and fixed point theorems. This will be done in Section 5.4.
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5.1 Primitive recursive functions and sets

5.1.1 Some initial definitions

We will define the set of primitive recursive functions by induction using a process
analogous to the one we used to define the sets of formulas of propositional calculus
and of predicate calculus: it will be the smallest class that contains certain specific
functions and that is closed under certain operations. Before giving the definition,
we need to supply some notation and explanations.

e Let p be an integer. We will denote the set of mappings from N into N by ).
We will agree, by convention, that if p = O then the only element of N7 is the
empty sequence and that, consequently, the elements of Fy can be identified
with the elements of N. The set [ J pen Fp will be denoted by F.

e If i is an integer from 1 to p inclusive, the ith projection P;; is the function in
Fp defined by

P;)(xl,xg, coy Xp) = X

e In this chapter, we will make use of the following notation whose origin is in
lambda-calculus: with this notation, the function P, is written

PI’) = AX|X2...X.X;.

More generally, if 7 is an expression that involves the variables x1, xa, ..., Xp,
then Axjxp...xp. will denote the function that assigns the value
t(ny, ny, ..., np) to the arguments ny, na, ..., Np. This notation can also be

used for functions from NP to N?: for example, Axy.(x + y,3x + 2y) is
the function from N? into itself which, to the pair (m, n), assigns the pair
(m +n,3m + 2n).

e By definition, the successor function S is the function Ax.x +1, i.e. the function
in F1 whose value at an integer n is n + 1.

o If f1, f2, ..., fubelongtoF, and g belongs to F,;, then the composite function

or composition i = g(fi, f2, ..., fu) is the element of F), that is equal to
xixg . xp 8 (fi(xy, xa, .. xp), f2(x1, X2, s Xp)s s
fax, x2, .00, xp)).

Definition 5.1. (Definitions by recursion) This is a procedure for defining func-
tions which is justified by the following obvious fact: if g € F), and h € Fpy9,
then there is one and only one function f € Fpy1 that satisfies the following
conditions:

orall x1,x2,...,xpand yin N,
P Y

(1) f(xl,xz,...,xP,O):g(xl,XQ,...,Xp),
) fxi,x2, . xp,y+ D =hx1,x2, ..., %p, ¥, [(X1, %2, -0 Xp, ¥))-
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We say that f is the function defined by recursion from g (the initial condition)
.and & (the recursion step).

Remark We must convince ourselves that a function defined by recursion will
be effectively computable. More precisely, suppose that g and & are two func-
tions, as above, which, in addition, can be effectively computed by algorithms
A, and A, respectively. Then it is not difficult to imagine another algorithm
that will compute the function f that is defined by recursion from g and A
to compute f(ny,n,...,n,, m), one must first compute f(ny,n2,...,np,0)
(which is equal to g(n1, n2, ..., np) and is obtained using the algorithm A;), then
f(ni1,n2,...,np, 1) (using the definition of f and the algorithm .45), and so on
until the desired value is obtained.

Definition 5.2 The set of primiﬁve recursive functions is the smallest subset E
of F satisfying the following conditions:

(i) for every integer p, E contains all the constant functions from NP into N;

(ii) for all integers p and for all integers i such that 1 < i < p, E contains all
the projections P);

(iii) E contains the successor function S;
(iv) E is closed under composition, this means that if n and p are integers, if
f1> fa, .-+, [u are elements of F that belong to E and if g is an element

of Fy that also belongs to E, then the composite function g(fi, f2, ..., fn)
belongs to E;

(v) E is closed under recursion; this means that if p is an integer and if the
functions g in Fp and h in Fpyo are both in E, then the function f defined
by recursion from g and h is also in E.

Remark As we did for the sets of formulas of propositional calculus or predicate
calculus, we could have provided a definition ‘from below’ of the set of primitive
recursive functions. We set

Ro = {y : p € Nand y is a constant function from N? into N}
U {P):1<i<pluisy,

and for every n,

Ry+1 = R, U{ h : his obtained by recursion from two functions in R, }

U {h : h is obtained by composition from functions that are in R,};

the set of primitive recursive functions is then equal to |,y Rn-

To prove that a function is primitive recursive, it suffices to show how to obtain
it using clauses (iv) and (v) starting with functions described in (i)-(iii) or, more
generally, starting with functions that are already known to be primitive recursive.
We will see some examples very shortly.
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On the other hand, to prove that all primitive recursive functions possess some
property &, it suffices to show that the functions mentioned in (i)-(iii) have this
property and that the class of functions having this property is closed under
composition and recursion. ‘

We can also see that, for each primitive recursive function f, there exists an
algorithm that computes it: this is true for the functions in Rg and, if it is true for
the functions in R,,, then it is also true for those in R, 1.

Definition 5.3 A subset A C NP is called primitive recursive if its characteristic
function is primitive recursive.

Recall that the characteristic function x4 of the set A is defined by
1 if(ny,ng,...,np) € A,

xa(ny,na,...,np) = .
P 0 otherwise.

The characteristic function of the set A will be denoted by x 4 orby x (A) depending
on typographical requirements. If g (x1, x2, ..., xp) is a property applicable to
integers ni, na, ..., np (we will also use the phrase n-ary predicate), we will say
that g is primitive recursive if the set

{Cer, x2, 000, xp) 1 (X1, X2, ..., Xxp) satisfies p}
is primitive recursive.

5.1.2 Examples and closure properties

e Addition Axy.x + y is primitive recursive: indeed, it can be defined in the
following way by recursion:

x40 =x;
G =@+ 41,

For this example (and for this one only), let us be rigorously precise. Let us
denote the addition function by ad (i.e. ad = Axy.x + y). Then

ad(x,0) = Pll(x)§
ad(x,y+1) = S(P33(X, y,ad(x, y))).

e Multiplication is also primitive recursive. It can be defined by recursion from
addition:

x-0=0
X‘()’+1)=X~)’+X.
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e The function Axy.x” is also primitive recursive. It can be defined by

xO:I;

T =)y

e Letus agree that x—1 denotes the integer that is equal to x — 1 if x > 0 and
is equal to O otherwise. The function Ax.x—1 is primitive recursive. It can be
defined by recursion as follows:

0-1=0;
(x+1D=1=ux.

¢ More generally, let x—y denote the integer that isequaltox — yifx > y and
is equal to O otherwise. The function Axy.x—y is also primitive recursive:

x—0 = x;
x=(y+1)=@x—y)-1

e Letus define the function sg by setting sg(0) = 0 and sg(x) = 1 if x # 0. The
function sg is primitive recursive: indeed, sg(x) = 1—(1-x).

e The predicate x > y is primitive recursive (this means that the set
{(,y) 1 x> y)

is primitive recursive) To see this, note that the characteristic function of this
set is equal to sg(x— y) Similarly, the predicate x > y, whose chaIactensUc
function is sg ((x + 1)—y), is primitive recursive.

We will now show that the collections of primitive recursive functions and prim-
itive recursive predicates satisfy a certain number of closure properties.

e The set of primitive recursive functions is closed under substitution of variables:
if f € F), is primitive recursive and if o is any mapping of the set {1, 2, ..., p}
into itself, then the function

AxX1x2 . Xp [ (X (1), Xa(2)s -+ o5 Xa(p))
is also primitive recursive. In fact, this function is equal to
FPg®, e, Py,

o If A C N”" is primitive recursive and if f|, f2,..., fy belong to F, and are
primitive recursive, then the set

{(X],XZ, ~-'ax])) : (f‘l(‘xl’XZa ' ..,XP), . ~-af;1(xl’x25 . "vx]))) € A} -

is also primitive recursive [its characteristic function is x4 (f1, f2, ..., fu)l-
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e From the preceding, we can easily deduce that if f and g are two primitive
recursive functions in F,, then the sets :

{Geas X2y oy xp) (X1, X2, 000, xp) > g(x1, X2, - -5 Xp)}s
{(x1, %2, .o xp) 0 fx1, X2, .00, xp) = g(x1, X2, ..., xp)}, and
{(xl,x% ---,xp) : f(-x1$x2, --->xp) < g(xlax2) "'ax]))}

are primitive recursive. In particular, the set

{(x1, %2, ..., xp)  flxg, X2, ..., xp) > 0}

is primitive recursive.

e For every integer p, the set of primitive recursive subsets of N is closed under
Boolean operations: if A and B are primitive recursive subsets of N7, then so
are AN B, AU B, and NP — A. Indeed, the characteristic functions of these
new sets can be computed:

X(ANB) = x(A) - x(B),
X (AU B) = sg(x(A) + x(B));
x (NP — A) = 1—x(A).

In particular, note that A — B = A N (N? — B) is primitive recursive.

e The schema of definition by cases: let f and g be two primitive recursive
functions in ), and let A be a primitive recursive subset of N”; then the function
h defined by

fx,x2,.000,xp) if (x1,x2,...,xp) € A,

h(xi,x2,...,xp) = ‘ o
g(x1,x2,...,xp) otherwise,

is primitive recursive. It suffices to observe that
h=f x(A)+g xNF —A).

We can generalize this ability to define functions by cases: let fy, f2, ...,
fnt1 € F), be primitive recursive functions and let Ay, Az, ..., A, © N? be
primitive recursive sets; then the function g defined by

glxr, x2, ..., xp) = f1(xy, x2,...,Xxp)
if (e, x2,...,xp) € Ay,
g(XI’XQs ~-‘y-x‘l)) = f.Z('xl)x27 '-',-‘\.p)

if (x1,x2,...,xp) ¢ Ay and (x1,x2,...,xp) € Ag,
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g(xl9'x2, e 7xp) = fg(xla X2y o ,XP)
if (x1,x2,...,xp) € AyUAy and (x1,x2,...,xp) € A3,

glx1, X2, . Xp) = fu(x1, X2,y Xp)
if(xl,xz,...,xp) ¢ AfUA U UA,_| and (X1,X2,...,xp) € A,,
g(xl,x2,---,xp) = f;l—f—l(“\‘l:xZa"-axp)

if(xlax2s"-,xp) ¢Al UAZU"'UAII:
is a primitive recursive function. To see this, we may observe that
g=f x(AD+ fa- x(Aa—AD+ f3- x(A3 — (A1 UA) + -

+fn'X(An_(AlUAZU"'UAn—l))
+ futi 'X(N'D_(AIUAZU"'UA”))-

As a corollary, we see that the functions

AX1X2 ... Xp.Sup(xy, x2,...,%xp) and
Ax1xy...xp.inf(xy, x2, ..., xp)

are primitive recursive. For example, sup(xy, x2, ..., xp) can be defined as
follows:

sup(xy, X2, ..., Xp)

x; ifxy > xp and x; > x3 and ... and x| > xp;

xp ifnotandifxy > x3 and ... and x3 > xp, etc.

Bounded sums and products: if f € F,,1 is a primitive recursive function,
then the functions

1=y
g = AX1X2...XpY. fx1,x2,...,xp, 1) and
‘ =0
[:y
h :kxwz---xpy-Hf(m,X:)_,..-,xp,t)
t=0

are also primitive recursive. They are easily defined by recursion. The sum, for
example, is given by

glx1,x2,...,xp,0) = fxy,x2,...,xp, 0);
g(Xl,XQ, ces Xpy Y + 1) - g(xl,xz’ ceesXps }’) + f(-xbxzs‘-"xp’ y+ 1)

In particular, the factorial function Ax.x!, which can be defined as a bounded
product, is primitive recursive.
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The bounded zi-operator: let A be a primitive recursive subset of N P*1 Then
the function f in Fp41, whose definition follows, is primitive recursive:

flx1,x2,...,xp,2) =0 if there does not exist an integer f < 2
such that (x1, x2,...,Xp, 1) € A;
f(x1,x2,...,xp, 2) = the smallest integer 1 < z
such that (x1, x2, ..., Xp,t) € A otherwise.

The definition of f uses recursion, the schema of definition by cases and
bounded sums:

f(xl,x%---,xp,o):();
f(xl,x2,--~»xp»2+1)

f(xl,.XQ, -~.,xP,Z) lf Z;:Z(Z)XA(XI,X%- v ’xp’y) 2 1;
=13z+1 if not and if (x1, x2,...,xp, 2+ 1) € A;
0 in all other cases.

To denote this function, we will use the following notation:
fler,xa, .o xp,2) = pt <z[(xy,x2,...,%p, 1) € A

Read this as

‘f(xg,x2,...,%p, z) is the smallest integer ¢ less than or equal to z
such that (x, x2, ..., xp, 1) € Aif suchat exists;
otherwise f(xy, x2,...,%p,2) = 0’

When this scheme is used, the condition (x1, x2, ..., xp, 1) € A will often take
the form ‘g(xy, X2, ..., xp, ) = 0’, where g is a primitive recursive function,

The set of primitive recursive predicates is closed under bounded quantifi-
cation. This means that if A € NP*! is primitive recursive, then so are the
following sets:

B:{(xl,xz,...,xp,z):Ell'fz(xl,xz,...,xp,t) € A} and
C={(x1,%2,...,%p,2) 1Vt < z2(x1,X2,...,%p, 1) € A}.

To see this, observe that the characteristic function of B is given by the formula

1=z
XB(X‘I,X21 ...,XP,Z) :Sg<ZXA(xlax2s ...,XP,[)>

=0

and that of C by

=z
XC(XIaXZ, v )xpw Z) - HXA(-Xlax?,’ . .,x[), f)
=0
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Let. us take advantage of our newly acquired knowledge to prove that certain
. specific functions and sets are primitive recursive.

e N is primitive recursive: its characteristic function is the constant function in
F1 equal to 1;

e the set of even integers is also primitive recursive; its characteristic function is
defined by recursion:

x(©0)=1 and x(n+1) =1-xn);

e the function ¢g(x, y) that is equal to the integer part of x/y if y # 0 and
0 otherwise is primitive recursive; it is defined by

g, y)=pt <x[(t+1)-y>x]

e the set {(x, y) : y divides x} is primitive recursive; its characteristic function is
equal to

1-sg(x—y - q(x, »));

o the set {x : x is prime} is primitive recursive: indeed, x is prime if and only if
x> landVy < x(y <1ory=x ory does not divide x);

e the function m whose value at n is the (n 4 1)st prime number is primitive recur-
sive: itis defined by recursion using the bounded p.-scheme in the following way:

w{0) = 2;
an+1)=pz < (@' +1) [z > w(n) and z is prime].

(Here, we are invoking the well-known fact that there always exists a prime
number strictly between p and p! + 2.)

e The exercises contain many other examples of primitive recursive sets and
functions.

5.1.3 Coding of sequences

The notion of computability is not applicable only to functions from integers
to integers. The simplest and most useful generalization consists in considering
functions which, with each finite sequence of integers, associate some integer
or even some other finite sequence of integers. To be able to use the theory of
recursive functions in this context, we will code the finite sequences of integers.
To be precise, we are going to develop a mapping from the set of finite sequences of
integers into the integers. It is clearly necessary that this mapping be computable;
namely that we know how to calculate the integer that corresponds to a given finite
sequence and that, conversely, we know how to recover a finite sequence from its
code. There are many ways of doing this. Here, we will provide two such codings
that will be used in the rest of the chapter.
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Proposition 5.4 Forevery non-zero integer p, there exist primitive recursive func-
tions ey € Fp and ,8113, B2, ..., ,35 € F that have the following property: o is a
bijectionfrom NP onto Nwhose inverse mapping is \x .(8 }) (x), ,312, x), ..., ,85 (x)).

Proof We will begin by constructing a. To do this, we enumerate the set of pairs
of integers according to the diagram below:

(0,93) - —
N N
N N
N N

(0?2) - = (1,82) N
N N NN
N h N N
N NN h

O > > @D N @D N
NN N N RN
NN N N NN
NN NN N

0 1 3 6 i0
0,0) > - — (1,0) — = (2,0) — — (3,0) — — (4,0)

More precisely, we enumerate the pairs (x, y) by following the diagonals on
which x + y is constant, We start with the diagonal x + y = O [which contains
only the single pair (0, 0)], then we proceed to the diagonal x + y = 1 starting
from below, and so on. The value of a3 (x, y) is exactly the number of predecessors
of (x, y) in this enumeration. Thus, preceding the pair (p + n, 0), there are

142+ +@+p)=3n+p+Dn+p)

elements. The pair (p, n) is on the same diagonal as (p + n, 0) and lies exactly n
positions beyond it. Consequently,

ar(p,n)=3(m+p+ 1D+ p)+n

Note that o is clearly primitive recursive and is greater than or equal to both
n and p. Because a; is bijective, we can recover n and p from ay(p, n) by using
one of the following functions:

lgzl(x) =puz <x [ <xay(z,t) =x] and

ﬂ%(x) =pz <x [ <xor(t,2) =x].

Observe that 521 and ﬂg‘ are also primitive recursive.
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We can then define a3 by a3(x, v, z) = aa(x, aa(y, z)) and
Bi=8, Bi=PBoB, B=pop

and, more generally,

Q’p—}—l(xl’ X2, .00, xps xp—{—l) = ap(xl,x2a s ’xp—la O{Z(XP, xp+l));
1 __ pl 2 2 p—=1 __ ,p—1
ﬂp+] '_ﬁpv ﬁp.*—] "—ﬂpv ) ﬂp+] _ﬂp s
P _pl P p+l 2 p
ﬂp+l_ﬁ2013p> ’8P+1 —‘1820/31)‘

To conclude, we set o1 (x) = x and ,311 (x) = x.

Notation We/will use S to denote the set of finite sequences of integers

[S = M(N)].

e

In Exercise 3, we will show how to employ these functions to establish a single
coding of the set of all finite sequences.
And here is a different coding, a true classic, that will be used subsequently.

Definition 5.5 The function 2 is the map from S into N defined as follows:
Q((xo, x15 -y xp)) = (O - (1) - (p)*r

[recall that 7t is the function whose value at n is the (n + 1)st prime number].
We complete this definition by setting §2(s) = 1 if s is the empty sequence.
The function § is the function in F defined by '

8(i, x) = pz < x [x is not divisible by (i)

[8(i, x) is the exponent of w (i) in the decomposition of x into a product of
primes].

Observe that the function § is primitive recursive. It is also not difficuit to see that
the range of Q [i.e. {x : there exists s € & such that x = 2(s)}] is the set N — {0}.
We do not have a perfect coding since the function €2 is not injective [clearly, if s
and s’ are in S, then Q(s) = Q(s’) if and only if the longer of the two sequences
s or's’ is obtained from the other one by adjoining zeros at the end]. In fact, we
could make this injective by adding 1 to each exponent, but then we would lose
surjectivity. Also, the values assumed by €2 rapidly become enormous and thus it
is useless except for computations ‘in theory’. But this is of no consequence for
the purposes we have in mind for it.

Double recursion: We are given four functions, g, g’ € Fp and K, hoe Fpas.
With the help of these functions, we may define simultaneously two new functions
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f and f’ in Fpyq by the conditions

f(xlvx25 ...,.XP,O) :g(xlax2a-":xp);

Flxr, x2,000,xp,0) = g (x1,x2, ... , Xp);
fle,xa, oo xp, y+ 1) =h(x1, x2, .., xp, ¥, fx1, %2, ..., Xp, ¥),
i, x2, 000 Xp, 9));
Fl o, X2, xp, Y+ D =R &1, x2, 000 xp, Y, L X2, X, D),

f/(xl)xZ: L ’xpi )’))-

We will show that if all four of g, g’, h, b’ are primitive recursive, then so are f
and f’. To do this, let us introduce the function k = a2 (f, f’). This function is
definable by recursion as follows:

k(x1, %2, .., Xp, 0) = (g (x1, X2, ..., Xp), 8 (X1, X2, o, Xp));
k(xi,x2,...,xp, y + 1)
= ag(h(x1, X2, .., Xp, ¥, By (k(x1, X2, .., Xp, YD), BIK(xX1, X2, 5 X, YD),

h(x1, x2, .. S Xp, Y, ﬂzl(k(xl,xz, e Xp, YD), ﬂ%(k(xl,xz, S 992)))

Thus the function k is primitive recursive; hence f = /321 okand f' = ﬁ% ok are
as well,

5.2 Recursive functions

5.2.1 Ackerman’s function

Our aim in this subsection is to give an example of a function that is effectively
computable, in the intuitive sense of the word, but that is not primitive recursive.
This will justify all the extra work that we will demand of the reader in the future.
We define a function (which we call Ackerman’s function even though it is in

fact a slight variant of the one Ackerman defined originally) of two variables that

we will denote by & as follows:
(i) for every integer x, §(0, x) = 2%,
(i1) for every integer y, £(y,0) = 1;
(iii) for all integers x and y, E(y + 1, x + 1) = &(y, E(y + 1, x)).

For each integer n, let &, denote the function Ax.£ (n, x). Then §p(x) = 2* and,
by invoking clause (i), it is easy to show that for all positive n, §, is defined by
recursion from &,..1 by

£0)=1 and &G+ 1)= En—1(60(x)).

This shows, first of all, that there is a unique function & satisfying the given con-
ditions. Moreover, all the functions &, are primitive recursive (this is proved by
induction on n). On the contrary, nothing permits us to affirm that the function &
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itself is primitive recursive; this is fortunate since we are about to show that it is
~ not. However, we can effectively compute & (x, y) for any values of x and y, as the
reader should easily be convinced. We must next prove a few easy but annoying
lemmas concerning the function &.

Lemma 5.6 For every n and for every x, §,(x) > x.

Proof Our proof will involve two interleaved inductions. By induction on n, we
will show that for all x, &,(x) > x. This is clear for n = 0. Now fix an n > 0 and
assume that the assertion

for every integer x, &,_;(x) > x
is true. We must then prove the assertion-
for every integer x, &,(x) > x.

To do this, we will now argue by induction on x. For x = 0, this is clear since
&,(0) = 1. Next, assuming that §,(x) > x, we will prove that &, (x +1) > x + 1.
We know that &, (x + 1) = &,_1(&,(x)) and so, by the first induction hypothesis,
we see that

Ei(x + 1) > &,(x), or, equivalently, §,(x + 1) > &,(x) + 1.

Now, according to the second induction hypothesis, &,(x) > x; so the lemma is
proved.

Lemma 5.7 For every integer n, the function &, is strictly increasing.

Proof This is clear for n = 0. For positive n, it follows immediately from the
previous lemma and from the formula &, (x + 1) = §,-1(§,(x)).

Lemma 5.8 Foralln > | and for all x, &,(x) > &, (x).

‘Proof This is clear for x = 0. For x 4 1, since &,(x) > x + 1 and since &, is
increasing, &,—1(&,(x)) > &,—1(x + 1); it now suffices to apply the formula

En(x + 1) = &8 ().

If k is an integer, let £¥ denote the function &, iterated k times (i.e. £ = Ax.x,
£l = &, and g8 = &, 0 £5). The following lemma is now a collection of
trivialities.

Lemma 5.9 The functions Ef are all strictly increasing. Moreover, for all m, n,
k, and x,

ki kg iy = v ko gh _ gkt
Ey() < &), £, (x) = x, £y 08 =&,

and, if m < n, then cf,/,‘; x) < éllf(x).
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Next, let us give a definition.

Definition 5.10 Suppose that f € Fyand g € F). We say that f dominates g if
there exists an integer A such that, for all (x1, X2, ..., Xp),

glx1,x2, ..., xp) < fsup(xy, x2, ..., Xp, A)).

In particular, when f is strictly increasing, f dominates g if and only if
glxt, x2,...,xp) < f(sup(x1, x2, ..., xp)) holds forall but finitely many p-tuples
(x1,x2,...,.x1)). .

Let C,, denote the set of functions that are dominated by at least one iterate of £,

C, = {g : there exists a k such that £* dominates g}.

It is obvious that the following functions belong to Cy: the projection functions

P,’;, the constant functions, the successor function S, the function

AX1X2 ... Xp.sup(Xy, X2, ..., Xp),

the function Axy.x 4+ y, and the functions Ax.kx where k is an arbitrary inte-
ger. Also, the function &, belongs to C,,. Finally, if f and g both belong to F),,
if g € Cy, and if for all xi, x2,...,xp, f(x1, %2, ..., xp) < g(x1,x2,...,%p),
then f € C,.

We will now establish

Lemma 5.11 For every integer n, the set Cy, is closed under composition.

Proof Let f1, f2,..., fin be functions of p variables and let g be a function
of m variables and suppose all these functions are in C,. We need to prove
that g(f1, f2, ..., fm) 1s also in C,,. We know that there exist integers A, A1,
Ay, ..., An, k, ki, ko, ..., ky such that, for all yi, y2, ..., Y,

gy, y2, ..o, Ym) < é,/f(sup()q, Y2y oo os Ymy A)),
and for all x, xo, ..., x, and for all i between 1 and m inclusive,
fiGer, 0, .. xp) < (sup(xr, X2, ..., Xp, A)).

Set B = sup(A, Ay, Az, ..., Ay) and h = sup(ky, k2, ..., ky). By invoking
Lemma 5.9, we can now see that, for all xy, x2,..., xp,

gl x2, s xp), Sl xas s Xp)s e S (X1, X2, X))
S glll\ (gllll (Sup(xla X2, .00 xp, B))),
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and hence that

g(fl(«\'l,xb C )x‘p)a f2(«\'1,x2, .. ',xp), ey fm(XI,xz, e ,X)).
I .
< &8 (sup(xy, x2, ..., xp, B)). E
Lemma 5.12 For all integers n, k, and x,

£ < B (v 4.

Proof The proofis by induction on k. For k equal to O or 1, it is obvious. Assume
it is true for k; then it is also true for k + 1 because

EVT ) = &5 ()
< &,(Ep1(x + k)  (by the induction hypothesis)
= &pa1(x +k+1) (by the definition of §). B

Lemma 5.13 Suppose that g € F, that h € Fpo and that g and h both belong
to C, (n > 0). Then the function f defined by recursion from g and h belongs
to C,l_H.

Proof We begin by translating the hypotheses. First, the definition of f:

flri,xo, 000, xp,0) = g(xy, x2, ..o, Xp)s
flx,x2, oo xp, y+ D) =hx,x2, .00, xp, Y, (X1, X2, 00, Xp, 1))

next, the domination conditions;

there exist Ay, Az, ki, k2 such that, for all xi, x2, ..., xp, y,
g(x1, X2, ..., Xp) < EM(sup(x1, x2, ..., xp, AD) and

R(X1, X2, oo Xy ¥, 2) < ER(SUP(x1, X2, ..., Xp, ¥, 2, A2)).
We will now prove by induction on y that, for all xj, x2, ..., xp, ¥,
Fr,xo, o0 xp,y) < é,lfl+yk2(311p(x1, X2, .0, Xp, ¥, AL, A2)). ()
For y = 0, this is clear. If it is true for y, then it is also true for y + 1 becausé

Sy xo, .o xp, y+ D) =h(xp, x2, .00, xp, Y, f(xl,xz,...,xp,y));

f(xl’x2> '~-7-xp,y+ ]-) S S,lfz(sup(xl,x% --"xp:y’ f(x15x2’ ---,xp,}’),AZ))-

So, using the induction hypothesis (x) and Lemma 5.9,

- k )k
f(xlw‘CZ, ceey -xpa y + ]) _<.. 5111\2(&11]+> 2(Sup(xl,x25 e >~x[)’ )’, Al’ A2)))1
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which proves the assertion. Now, we invoke Lemma 5.12 to get

f(xl,XQa vy xpa )’) S §)1+1(Sup(xlyx2s L 5/\"})5 y: Ala AZ) + kl + yk?,)

Note that the function
Axixp .. -xp)’-~§n+1(sup(x1, X2, .., Xp, ¥y AL, A2) + k1 + yka)

is obtained by composition from functions belonging to C,,11; so it too belongs to
C,+1 and so does f.

We are now in a position to assert:

Corollary 5.14 The set \U, ey Cn contains all primitive recursive functions.

ne

Proof Indeed, this set contains the constant functions,-the projections, and the
successor function; also, it is closed under composition, and under definitions by
recursion. B

This brings us to the main theorem of this subsection.
Theorem 5.15 Ackerman’s function is not primitive recursive,

Proof Suppose, to the contrary, that Ackerman’s function is primitive recursive;
then so is the function Ax.£(x, 2x). So, there exist integers n, k, and A such that
forallx > A, &(x,2x) < é,f'(x). Thus, for all x > A, we have

E(x, 2x) S EF(X) < B (v 4 k)
(by Lemma 5.12), and, if x > sup(A, k,n + 1),

Enp1(x + k) < &1(2x) < §c(2x) = E(x, 2x)
(by Lemma 5.9), which is absurd.

In fact, we can see that the function Ax.£(x, x) dominates all the primitive
recursive functions.

5.2.2 The p-operator and the partial recursive functions

We must therefore define a larger class which we will call the class of recursive
functions. We will accomplish this by allowing a new definition scheme, the un-
bounded p-operator. The idea is as follows: given a subset A of N” +1 this scheme
permits us to define the function f € F, which, with the p-tuple (x3, x2, ..., X)),
associates the least integer z such that (xy, x2, ..., xp, z) € A. The problem with
this is immediately apparent: what happens if there does not exist an integer z such
that (x1, x2, ..., xp) € A?Observe thatitis not possible in this situation to do what
we did for the bounded pi-operator and simply set f(xy, x2, ..., xp) = 0. Indeed,
assuming, as we must, that we have an algorithm at our disposal which computes
the characteristic function x4 of A, the only way we can imagine for comput-
ing f(x1,x2,...,xp) is to calculate x(x1,x2,...,xp,0). If the result is 1, we
may stop; if not, then calculate x4 (x1, x2, ..., xp, 1), then xa(x1, x2, ..., xp, 2),
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and so on, until the value 1 is obtained. But if, for every integer z, (x1, X2, ...,
- xp,2) ¢ A, this process will never halt and we will never know the value of
f(x1, X2, ..., Xp). In other words, we do not have an algorithm for computing f,
so we may not allow this definition scheme. One possibility would be to restrict
the scheme to the case in which, for every (xj, x2, ..., x,), there exists a z such
that (x1, x2,...,xp,2) € A (we will call this the total sc-operator). We would
obtain in this way, as we will see in later sections, all the recursive functions. It is
preferable, however, to define the class of partial recursive functions; the reason
for this is that the enumeration and fixed point theorems (see Theorems 5.32 and
5.52), which are essential in this subject, are true only for this latter class (see
Exercise 22).
Our task now is to formalize this intuition. To begin with, here are some defini-
tions that pertain to partial functions.

Definition 5.16 A partial function from NP into Nisapair (A, f)where A C NP
and f is a mapping from A into N; A is called the domain of the function.

Notation The set of partial functions from N” into N will be denoted by F7 and
welet 7* = -0 F}.

If (a1,a2,...,ap) ¢ A, we will say that the function f is undefined at
(ai,a,...,ap) or that f(ay,az...,ap) is undefined. We will freely abuse
notation by identifying (A, f) and f. We must insist on the fact that two par-
tial functions f and g are equal if, first, they have the same domain and, second,
if they are identical on this domain. If the domain of a partial function f € j:;
is the whole of N”, we say that f is total. The word ‘function’, by itself, will be

“reserved to refer to functions that are total.

Definition 5.17 Suppose that fi, fa, ..., fu € f; and g € F}. The composite
function or composition h = g(f1, fa, ..., [u) is the element of ]:l*) defined as
follows:

e h(xy,x2,...,xp)isundefined if any one of the fix1, x2, ..., xp) is undefined,
oy, should all these be defined, if

g(f](XI’XZa"'axp)a fz(xlv-XZ)"'axp))-"»f\ll(x]»xz’--'wxp))
is undefined.
o Otherwise, h(xy, x2, ..., Xp) is defined and is equal to

g(fl(xth» -",x]))) fZ(X],XZ, "',xp)» AR f)l(xbx2, o ~;xp))-

Remark When working with partial functions, one must be wary of reflex actions.
For instance, take two functions f and g in F7'; itisnot always true that ( f +g) —g
and f are equal: if f is total and g is never defined, for example, then (f +g) —g is
never defined. In fact, an algorithm that attempted to calculate (f + g) — g would
begin by calculating f + g and would never succeed.
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Recursive definitions: Within the class of partial functions, we may define func-
tions by recursion, thanks to the following fact:

Proposition 5.18 Suppose g € ,7:1*, andh e F ; 4o Then there exists one and only
one function f € }"; 1 satisfying the following conditions:

o For all (xi1,x2,...,xp) € NP, flx1,x2,...,%p,0) = g(x1,x2,.:.,%p)
[which, to be precise, means that f(x1, X2, ..., xp,0) is defined if and only
if g(x1,x2, ..., xp) is defined and, in this case, is equal to it].

o Forall (x1,x2,...,%p,y) € NPtL

fOux, o xp, y+ D) =h(x, X2, .0, xp, ¥, f(x1, %2, 000, Xpy ¥))

[the same remark applies: f (X1, X2, ..., Xp,y + 1) is defined if and only if
h(x1,x2, ..., Xp, ¥, f(x1, X2, ..., Xp, y)) is defined].

We will say, in this context as well, that f is defined by recursion from g and /.

Definition 5.19 The p-operator (unbounded). Let f € .7:; 11+ Then we may
define the partial function

gy, xa, ..o, xp) = py [f(x1, %2, ..., xp, y) = 0]
in the following way:

e ifthere exists at least one integer z suchthat f(x1, x2, ..., xp, z) equals 0 and if,
foreveryz' <z, f(x1,x2,...,xp,2)isdefined, then g(xy, x2, ..., xp) equals
the least such z;

e in the opposite case, g§{(x1, X2, ..., Xp) IS undefined.
If A € NPYL then, by definition,

py LG, xa, .0 xp, y) € Al = py [1=xa(x1, %2, ..., xp, ¥) = 0].

One must take care that z = uy [ f(x1, x2, ..., xp, y) = 0] implies that for all y
less than z, f(x1, x2, ..., Xp, ) is defined and not equal to zero. First of all, this
is the definition that one must take to respect our intuition concerning effective
computability; second, Exercise 24 will show that to neglect this precaution would
lead to disaster.

We may now define the set of partial recursive functions:

Definition 5.20 The set of partial recursive functions is the smallest subset of
F* that

e contains all the (total) constant functions, the successor function S, the projec-
tions PI’) (for 1 <i < p),

e is closed under composition, definition by recursion and the (unbounded)
-operatot.

A subset A of N” is called recursive if its characteristic function is (total)
recursive.
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We see in particular that all primitive recursive functions are partial recursive

. (even total recursive). Also, it is not a problem to show that the closure properties
stated in Section 5.1 for the primitive recursive functions are true for the partial
recursive functions and the total recursive functions as well. We already know
that the Ackerman function is not primitive recursive. We will have to await the
end of this chapter (or do Exercise 11) to see that it is recursive; this will prove
that the class of recursive functions is strictly larger than the class of primitive
recursive functions. Also, it is easy to construct a partial recursive function that is
not total: for example, the partial function f(x) = uy (2y = x) is only defined
for the even integers. In Exercise 20, we will provide examples of partial recursive
functions whose ‘partial’ character is innate: there are some that are impossible to
extend to total recursive functions. ‘

The reader should be convinced that the partial recursive functions are effectively
computable in the sense mentioned in the introduction: for each of them, there
exists an algorithm that, if the function is defined at the given point, will halt after
a finite amount of time and yield the value of the function or, in the opposite case,
will never halt. The next section will show how to mechanically compute a partial
recursive function.

There remains the converse problem: is an intuitively computable function nec-
essarily recursive? In other words, have we succeeded in our attempt to formalize
the notion of an effectively computable function? The affirmative answer to this
question is known as Church’s thesis. It is clear that this affirmation is not sub-
ject to proof since we do not have a precise definition of what it means to be an
effectively computable function. Indeed, the failure of our initial attempt via the

_primitive recursive functions should make us cautious. But, in fact, no counter-
example to Church’s thesis is known and, moreover, experience has shown that
every time we have encountered a function that is intuitively effectively com-
putable, this same intuition has enabled us to provide a proof that it is recursive. In
this sense, the last theorems of this chapter (the fixed point theorems) are strong
arguments in favour of Church’s thesis.

5.3 Turing machines

Turing machines are theoretical machines that are able to compute, in a sense that
we will define, certain functions in F;. The important fact in this section is that
a partial function is computable by a Turing machine if and only if it is partial
recursive.

5.3.1 Description of Turing machines

A Turing machine is composed of

e a tape consisting of a finite number of parallel bands placed horizontally; the
tape is bounded to the left and infinite to the right; each band is divided into a
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number of cells with the leftmost cell of each band numbered 1, followed at the
right by cells numbered 2, and so on. Because the bands lie parallel on the tape,
the cells bearing the same number are aligned vertically.

cell number 1 | cell number 2 band number 1
cell number 1 | cell number 2 band number 2
cell number 1 | cell number 2 band number 3
/]\
[ read head l

e ahead that we will call the reading head or read head though it is also able to
write or erase symbols on the tape (limited to a single symbol per cell). The head
is able to move horizontally; at each instant, it is pointed at a single vertical,
i.e. to the sequence of cells bearing the same number n corresponding to the
different bands and it can perform these operations (read, write, erase) on all
these cells. There are three symbols that the head may be able to either read
or write or erase: d, which denotes the debut of the band, the stroke, |, and the
blank, b. We will use the notation S = {d, |, b}.

The above is common to all Turing machines. Individual machines are charac-
terized by the following data:

e the number n of its bands;

e a finite set of states, E; at each instant, the machine will be in some given
state. Every machine has two particular states: its initial state, ¢;, and its final
state, ey

e a table, M; this is a map from S” x E into §" x E x {—1,0, 41}. It is often
called the machine’s transition table.

The machine operates by changing its state, writing and erasing on the bands,
and moving its head at each instant according to the following rules:

e at the instant ¢t = 0, the head is situated on the leftmost cells (numbered 1), on
each of which is written the symbol d; there is a symbol written on every cell
of the tape; the machine is in the initial state ¢;;

e at each instant, ¢, the machine reads the symbols sy, 52, ..., s, written in the
cells on which the head is located; the table M indicates what it must do next:
if it is in state e and M (s, $2, ..., 8y, €) = (s{,s,_’z, cos 8y € e), where € €
{—1, 0, +1}, then the machine erases the symbols sy, s, ..., s, and writes the
symbols s7, 57, ..., s, in their place; it moves its head one cell to the right if
g = +1, to the left if ¢ = —1, and does not move its head if ¢ = 0; finally,
it changes to state ¢’. The instant f is then finished and, at instant ¢ + 1, the

machine repeats these same operations;

e when the machine reaches the final state e 7, it stops functioning.
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For the machine to operate properly, the table M must satisfy a certain number
of consfraints:

e the machine must halt as soon as it reaches the final state; this is reflected
by the fact that, forall sy, s2, ..., 5, € S", M (51,52, ...,8n, €f) = (51,82, ...,
Snyef, 0);

e it must not be possible for the machine to write or erase the symbol d that

marks the beginning of the tape; also, the head cannot move to the left if it reads
the symbol d. Thus, for any state e, M(d,d,...,d,e) = (d,d,...,d, €, &),

where ¢’ is a state and ¢ is equal to O or +1; if (s1, 52, ...,5,) # (d,d,...,d)
and M(s1,52,...,80,€) = (51,85, ...,8,,€,¢&), then none of the s/ is
equal to d.

We will always assume implicitly that these conditions are satisfied. We will
also assume that, at the instant t = 0, the symbol d is written at the beginning of
each band and nowhere else and that only a finite number of cells contain a symbol
other than the blank b. These hypotheses continue to remain valid at every instant.
We should note also that the operation of the machine is completely determined:
we can be certain of what will be written on the tape at any instant ¢ if we know
what is written on the tape at the initial instant r = 0.

We will now see how a Turing machine is able to compute a partial function and
will show that the partial functions that can be computed in this way are precisely
the partial recursive functions.

5.3.2 T-computable functions

For a machine to be able to compute the value of a function f at the point
(x1,Xx2,...,xp), it is obviously necessary to enter the values of the variables
(x1,x2,...,Xx,) in one way or another. This will be done in the initial config-
uration. To compute a function of p variables, we require a machine with at least
p + 1 bands: the values of the inputs are entered on the first p bands, the out-
put is coded on the (p 4 1)st band, and the remaining bands, if any, are used for
intermediate calculations. Let us begin by seeing how to code an integer on a band.

Definition 5.21 We will say that a band represents an integer x at a given instant
if the symbols written on it at that instant are

(d,‘,l,...,|,b,b,...);
X strokes
i.e. the symbol d is in the first cell, the stroke is in cells mtmbéred 2,3,...,x+1,

and the blank character is in all subsequent cells. A band which represents the
integer zero (so there is a d followed by blanks) will be called a clean band.

Definition 5.22 Let f be a partial function of p variables and let M be a Turing
machine with at least p + 1 bands. s that M computes f if for every sequence
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of integers (x1, X2, ..., Xp), if the machine is started in the initial configuration
(in which bands 1,2, ..., p represent X1, X2, . . ., X respectively, all other bands
being clean), then

o if f(x1,x2,...,%p)isundefined, then the machine never halts (i.e. never reaches
the final state);
o if f(x1,x2,...,xp) is defined, the machine will halt in a finite amount of time

and, at that instant, the first band will represent x1, the second band will repre-
sent xp, and so on through the pth band, and the (p + 1)st band will represent
fx1, x2, ..., xp). All other bands, if any, must be clean.

We say that f is T-computable (the T is for Turing) if there exists a machine M
that computes f. ‘

Remarks (1) We require that the machine cleans any bands used for calculations
before halting. This is not really necessary but it will simplify matters when we
wish to construct a machine that computes a function defined by composition or
by recursion.

(2) There are many other ways to define Turing machines: some have tapes with
only one band, others allow more symbols, etc. These ways are all equivalent in
the sense that they all compute the identical set of partial functions. The partic-
ular choice presented here was made because, in our opinion, it permits a less
complicated proof of the fundamental theorem of this section, namely that the
T-computable functions are precisely the partial recursive functions, while at the
same time keeping the necessary codings to a minimum.

We are now going to give some examples of T'-computable functions. To describe
the corresponding Turing machine, we must, for each, explicitly specify the number
of bands, the states, and the transition table. In fact, most often, it is only the
values assumed by M on some subset of $” x E that are relevant; some of these
values are imposed once and for all by the constraints described earlier while
others may never intervene. So we will limit ourselves to providing the essential
part of M.

Example 5.23 The successor function is 7T'-computable: it can be computed
by a machine with a set of two states, {e;, es}. Here is the relevant pait of
its table:

M(d,d,e)=(d,d,e,+1);
M(I» b, 6,‘) = (‘a l» €, +1)a
M, b,e;)=(b,]|, er,0).

Example 5.24 The function Ax.2x is 7-computable: this machine also has two
bands but has four states, {e;, ey, e|, e2}. Here is how it operates: it will read the
first band from left to right and each time it encounters a stroke it will write one
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below it on the second band as well as another stroke at the ‘end’ of the second
“band. Here is its table:

M{d,d,e;) =(d,d, e, +1) start;

MU, b,e)={(,], e, +1) add a first stroke to the second band
M(b,b,e;) = (b,b,er,0) unless, of course, x equals zero;

M}, b, e1) = (1, b, e1, +1) } move to the end of the word;

M(ba |5 61) ~ (b, [s €], +1)
M, b,er) =(b,|, e, —1) add a stroke to the second band,;

M(b, |, e2) =

(b, |, e2, —1) } return to the last stroke that
M(|, b, e) = (b, |, ez,

has just been doubled;

M(, |, e) = (l, [, i, +1) repeat, until all the strokes
M@, |, e) = (b,,ef,0) have been doubled.

In fact, we could have dispensed with the preceding example for we are
now going to present a general proof that all partial recursive functions are 7'-
computable. To do this, we need to show that the constant functions, the projections,
and the successor function are 7T-computable and that the set of T-computable
functions is closed under composition, definitions by recursion, and the j¢-operator.
The case of the successor function was already treated above.

e Letus begin with the projection function PI’;. We can easily describe a machine
that will compute this function; it has p + 1 bands, two states e; and ey, and
the following transition table, M:

M(d,d,...,d,e)=0(,d,...,d,e,-+1);
M(Sl,Sz,...,Sp,b, e) = (S},Sz,...,sp, [, ei, +1) ifs; =1;
M(sy, s2,...,8p,b,e;) = (s1,52,...,8p,b,er,0) ifs; =b.

e The constant functions are also 7-computable; here is a description of a machine
that will calculate the function of p variables whose constant value is k. This
machine has p + 1 bands and k - 2 states, e;,er, ey, ez, ..., e,. Here is its
table:

M(d,d, ....d,e)=1(d,d,..de,+1);

for all S1582, oy Sp
and for all n between
M(SI;SZ) very Spa b, ell) = (SI,SQ, ey Sp) !, e”+1i +]~) ] and k . ]

M(Sla S2a AARE Sp> b’ ek) = (Sla S2a [ERR] Sp» ‘) efa 0) for au Siy 52, Ty Sp-
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We must now show that the set of T-computable functions is closed under
composition, definitions by recursion, and the zi-operator. Let us begin with com-

position: assume that fi, f2, ..., fy arein }";, g € F,and that all these functions
are T -computable. We must construct a Turing machine M that will compute the
partial function i = g(f1, f2, ..., fa). We know that for i between 1 and n, there

is a Turing machine M; that computes f;; we may suppose that this machine has
p; bands (p; > p + 1) and that its set of states is E;. At the cost of renaming the
elements of the E;, we may assume that the sets E; are pairwise disjoint (so that
their initial and final states are all distinct). The function g is also computable by
a machine A this machine has n’ bands and its set of states is E; we will also
assume that E is disjoint from all the E;. The set of states of the machine M is
E U (Uj<;<, Ei); its initial state is the initial state of M and its final state is the

final state of /. The number of bands of M is p’ = p+ Zii’l’ (pi—p)+n' —n. We
will restrict ourselves to describing the operation of the machine M that computes
h and we leave it to the reader, if desired, to write down its exact table,

So assume that at the instant 7 = 0, the integers xj, x2, ..., x, are represented
on the first p bands and that all other bands are clean. The machine begins by
computing fi(xy, x2, ..., xp), behaving as M would, except that it does not use
band number p + 1; instead, it uses p; of the p’ bands which it has at its disposal
(specifically, the first p bands and p; — p of the others) and ignores the remainder.
When it finishes this computation (if it ever finishes), the integers x, xo, . .., X are
stillrepresented on the first p bands and the result, f (x1, x2, ..., xp),isrepresented
on another band which we label B;. The final state of the first machine returns the

“head to the beginning of the tape; when it then reads the sequence of ds, it places
M in the initial state of M. Using the first p bands and pp — p new bands it will
now compute f2(xy, X2, ..., Xp), which, at the end of this computation (if it does
end), will be represented on a band labelled By; after this, it will return its head to
the beginning of the tape and will calculate f3(x1, x2, ..., Xp), and so on. The only
precaution it needs to take is to avoid using band number p + | while computing
the intermediate results fj(x1, x2, ..., xp). When this is finished and the head is
back at the beginning of the tape, M moves into the initial state of A/ and works,
as N would, using Bj [which, as we recall, now represents f(x1, x2, ..., xp)] as
its first band, B> as its second band, and so on, this time using band p + 1 to write
the result h(xy, x2, ..., Xp). In the end, it remains only to erase the contents of
bands By, B», etc.

Now let us see how to compute a function defined by recursion. This involves
computing the partial function f € f; 1 Whose definition is

f(xler)‘-"xp?O) :g('x1$x2»"-,x1))s
f(x1>'x2>-">xpay+ 1) :h(xl»xb--->xp,)’,f(xl,x2,---»Xp,)’))>

where g € ]-"; and h € F["; 4 are partial functions that are computed by machines
M and M/, respectively. We assume that machines M and M’ have p + 1 + k
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and p -+ 3 -+ k’ bands, respectively, that their sets of states are E and E’, and that E
“and E’ are disjoint. The final state of M is ¢ and that of M’ is e’f. The machine

N that computes f has p + 4 + k + k' bands. Its set of states is
EUE"Ul{eg, er, e, €3, 4, €5, €5, €7},

where the ¢;, for { between 0 and 7, are new states that do not already belong
to E U E'; its initial state is the initial state of the machine M. The machine N
must be constructed so that if the integers x1, X2, ..., X, Xp41 are represented on
bands | through p + 1 at the instant r = 0, the integer f(xy, x2,..., Xp, Xpi1)
will be represented on band p + 2 at the end of the computation. Here is how it
operates.

To begin, it will behave as M does using bands 1,2, ..., p and p + 4 as well
as k additional bands for the calculations. So at the end of this first stage, band
p + 4 represents g(x1, x2, ..., Xp); then, the head returns to the beginning of the
tape and NV enters state eg.

In this way, the machine will compute f (x1, x2, ..., xp, 1), f(x1, %2, ..., Xp;, 2),
through f(x1, x2,...,xp, p + 1) in succession. In the process of computing
S, x2,...,xp,y + 1), the number y is coded on band p + 2 and the value
S(x1,x2,...,xp,y) is coded on band p + 3. When it finds itself in state e,
it transfers the contents of band p + 4 onto band p + 3 (while erasing band
number p + 4) and compares the contents of band p + 2 with those of band
p + 1 (which represents x,1); if it sees that these two numbers are equal, it
erases the contents of band p + 2 and halts; if not, it returns to the beginning of
the tape and enters the- initial state of the machine M’. It then operates as this
machine would, treating bands 1,2, ..., p, p + 2 and p + 3 as input, and writes
the result on band p + 4. When this computation is finished, the machine adds
a stroke to band p + 2, brings its head to the beginning of the tape and returns
to state eg. The reader who is amused by this sort of thing can write down the
transition table N of the machine A and assign precise roles to the states eg
through e7.

The p-operator: we now wish to construct a machine NV that will compute

g(xl)XZa"'axp):/’Ly[f(xliXZ)"-7xp,y):O]:

where f is itself a partial function that is computed by machine M. We will
suppose that M has p +2 +k bands and that its set of states is E. The machine A/
also has p + 2 + k bands and its set of states is E U {eg, e, €2, €3}, where e, ej,
e, and e3 are not already in E; the initial state of A is that of M and its final
state is e3.

Once again, we will content ourselves with a description of the behaviour of
N It begins to operate exactly as M would with the input xy, x7, . .. , Xp, 05 50
it will write the value f(xi, x3,..., xp, 0) (if this is defined, of course) on band
p -+ 2; it then returns its head to the beginning of the tape and enters state eq. It
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then moves one step to the right and reads the contents of the second cell on band
p +2; if this is a blank, b, then the computation is finished and the machine passes
into state e3. If not, it passes into state ej, whose effect is to have the machine
replace the first blank that it finds on band p + 1 by a stroke; it then passes to
state e, whose effect is to bring the head back to the beginning of the tape and
return the machine to the initial state of M. The machine will thereby successively
compute f(x1, X2, ..., %p, 0), f(x1, %2, ..., Xp, 1), and so on and will halt only
if and when the result produced is a 0.
We have thus concluded the proof of the following theorem:

Theorem 5.25 Every partial recursive function is T-computable.

Remark Itisimportant to realize that the machines we have described for comput-
ing partial functions defined by composition, by recursion, or with the z.-operator
do not just compute the values of these functions when they are defined; they also
have the property that they do not halt when the function in question is not defined
on the initial input.

5.3.3 T-computable partial functions are recursive

For this and the next three subsections, we fix a Turing machine M and assume
that M computes a partial function f* € 7. To prove that, under these conditions,
f is recursive, we will first code the status of the machine M at the instant # by
an integer and will show that this code is a primitive recursive function of ¢ and
the initial conditions. To do this, we will need to use the functions «,, introduced
in the earlier subsection on coding of sequences.

It is clear that actual names of the states is of no importance. At the cost of
renaming them, we may suppose that the set of states is {0,1,2,...,m} and, for
convenience, that the initial state is 0 and the terminal state is 1. Also, we will
identify the blank symbol & with 0, the symbol d that marks the beginning of a
band with 1, and the stroke symbol with 2.

Definition 5.26 Suppose that M has n bands. The infinite sequence C(t) =
(50, S1, -+ 8i,...), where for all n, u, and v (0 < v < n), sy4y is the symbol
written in cell number u-+1 of band number v+ 1, is called the configuration of M
at the instant t; note that, according to the convention above, s; is an integer equal
to 0 or 1 or 2. The situation of M at the instant t is the triple S(t) = (e, k, C(1)),
where e is the state the machine is in at the instant t, C(t) is the configuration of
the machine at the instant t, and k is the number of the cells above which the head
of the machine is positioned at the instant 1.

To put this another way, C(¢) is the sequence obtained by placing end to end the
sequences oy, 07, ..., 0j, ... where o; is the sequence (tl.l, tl.z, ...t and tl.] is
the symbol written in the ith cell of the jth band. We have already noted that this
infinite sequence has only a finite number of non-blank (or non-zero) terms. We
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will use the following method to code infinite sequences of symbols that contain

~only a finite number of non-zero terms: to the sequence C = (Sg, S1, «+«, Siy...)

will correspond the code
r(C)y=>y s 3.
i>0

We will use this same coding for finite sequences: to C = (g, St, ..., 5g) will

correspond the code
re)= y -3

O<i=q

If we know the code I'(C) of the configuration C, we can easily recover the symbol
that is written on any one of the bands. To do this, let g(x, y) and (x, y) denote
the quotient and remainder that result from division of x by y [if y = 0, we will
arbitrarily set ¢ (x, y) = r(x, y) = 0]. The symbol written on cell number i of
band number v is

I'(CI(F(C), 371(!(—1)-}—1)—1), 3)

We can just as easily recover the sequence o of n symbols written on the cells
numbered u of the different bands: set

e(x, y,z) = r(g(x,3°07D), 39,
Then the code I (o) of the sequence o is
I'o) = e(T(C), u, n).
The situation S = (e, k, C) of the machine will be coded by the integer
[(S) = az(e, k, I'(C)).

The next lemma expresses the fact that we can deduce the situation of the machine
at the instant r + 1 if we know its situation at the instant f.

Lemma 5.27 There is a primitive recursive function g € Fy such that if x is the
code of the situation of the machine at the instant t, then g(x) is the code of the
situation of the machine at the instant t + 1.

Proof The function g is defined by cases [precisely 3" - (m + 1) + 1 cases].
For each sequence o = (so, 51, ..., sy—1) of elements of {0, 1,2} and for every
Jj €10, 1,..., m}, we will describe what happens at the instant ¢ if the machine is
in state j and reads the sequence o.

The state the machine is in, the position of the cells being read, and the config-
uration of the bands are, respectively, /33] (x), ,8_% (x), and ,8; (x). The code of the
sequence that the head is in the process of reading is 8(ﬁ§’ (x), ,3% (x),n) =c.
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For every ¢ between 0 and 3" — I inclusive [these are the possible values
that '(o) can have if o is a sequence of length n] and for every j between
0 and m:

(2) If Bl(x) = Jj, if e(B3(x), B3(x), n) = ¢, if T'(s0, 51, ..., $u—1) = c [in other
words, for every i between 0 and n — 1 inclusive, set s; = r(g(c,3"),3) =
ele,i + 1, D), if M(sg, $1,...,8-1,J) = (o, 1, ..., th—1,h, w) (so that the
f; are all equal to O or 1 or 2, /1 is between 0 and m inclusive and o is equal to
—lorQor+1),andif I'(tg, t1, ..., th—1) = ¢, then
e the new state will be A;

e the new position of the head will be ﬂ% (x) + w;

e the new configuration will differ from the old one only in cells numbered
/332 (x), which correspond, in the configuration of M, to those indices between
n(ﬂ% (x)—Dandn (,3_% (x) — 1) +n — 1 inclusive at which the #; will replace
the s;. Its new code is therefore

B3 (x) + 3B — oy,

To recapitulate,
g(¥) = az(h, B2(x) + @, B3(x) + 3T EO-D (e — 7y,

(b) If ,631 (x) > m orif s(ﬂg(x), ,Bg‘(x), m) is strictly greater than 3" — 1 (this
case will never happen if x is really the code of a situation), we arbitrarily set
g(x) =0.

The function g we have just defined is certainly primitive recursive because
it is defined by cases using functions that are primitive recursive and sets that
are primitive recursive. The function M that occurs in the definition is totall
inoffensive.

Let us now prove the fact, which is intuitively clear, that if we know the initial
situation of the machine, we can deduce its situation at any instant. Define the
function Sit(t, x1, x2, .. ., xp) by induction. Set

Sit(0, x1, X3, ..., xp) = a3(0, 1, 1(C)),

where C is the configuration in which band 1 represents x1, band 2 represents x2,
and so on through the pth band representing x, all other bands being clean, and
set

Sit(t + 1, x1, x2, ..., xp) = g(Sit(t, x1, X2, ..., Xp)).
Lemma 5.28 The function Sit(t, x|, X2, ..., Xp) is primitive recursive. For all
tyX1, X2, ..o, Xp, SiH(t, X1, X2, ..., Xp) IS equal to the code I'(S) of the situation

of the machine at the instant {, assuming that, at t = 0, the integers xi, X3, ..., Xp
are represented on bands 1,2, ..., p and that all other bands are clean.
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Proof With what we have just seen, it is sufficient to prove that
- Sit(0, x1, X2, ..., Xp) is a primitive recursive function of xy, x2, ..., x,,. We have

Slf(O, xl» XZa R ,xp) = (X3(O’ 1, F(C)),

where C is the initial configuration of the bands. So it suffices to show that I"(C)
is a primitive recursive function of xp, x2, ..., x,. Let p(i, x) denote the function
thatis equalto 2 if i < x and equal to O otherwise. Now,if C = (s, S1, ..., Siy...)
is the initial configuration of the machine, then s; is the symbol written on band
number 7 (i, n) + 1 in cell number g (i, n). Thus we have ‘

1 fo<i<n-1,

/O((j(i,)’l), xr(i,n)+l) ifi > n;

hence the function Aixix2...Xp.s; is a primitive recursive function and so is the
function I'(C), which is equal to

i=(n-+1)-sup(xy,x2,....%p)
3 s
i=0

We may now complete the proof that f, the function computed by the machine
M, is a partial recursive function. If itis defined, f(x(, x2, ..., xp) is equal to the
number of strokes written on band number p + 1 when the machine finishes its
computation. We begin by finding the computation time (the first instant that the
machine is in its final state):

T (X1, X2, ..., %p) = pt [Ba(Sit(t, x1, X2, ..., %)) = 1],

which is defined if and only if f(x1, x2, ..., x) is also defined; and once we know
the situation of the machine at this instant 7' (x|, x2, ..., xp), it is not difficult to
count the number of strokes written on the (p + 1)st band. Let « be the function
defined by

a(x) = py [rg(B3(x), 3m0TITPY 3) = 0];
indeed, if x is the code of the situation of the machine,
F(q(B3(x), 3 OFTIEPY 3y =

means that the symbol in cell y + 2 is the blank. So we see that «(x) is truly
the number of consecutive strokes (recall that the first cell contains a ) at the
beginning of band number p 4 1.

We may now compute f:

‘f(xl? X25 e x])) = a(S”(T(X1,\2, ey x[))a xl)x?.’ L ,Xp))-
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To summarize, we have

Theorem 5.29 If f is apartial function thatis T -computable, then f is recursive.

We may observe that the only use of the unbounded p-operator is for the def--

inition of the function T. Indeed, to define the function «, it suffices to use the
bounded p-operator; this follows from the fact that if x is the code of the situa-
tion of the machine, then there are certainly no more than x strokes written on its
bands—so « is actually primitive recursive. Precisely,

a(x) = py < x[r(g(B3(x), 3" OTHTP) 3y = 0.

In later subsections, we will exploit more deeply the argument that was just
made. For the present, we will just make a few observations that follow from the
way that the function f was written above.

o If a function f € JF, is computable by a Turing machine in a time
T(xi,x2, ..., Xp) that is a primitive recursive function, then the function f
is itself primitive recursive.

e We also see that the set of partial recursive functions is at most equal to the
smallest subset A of F, that contains the primitive recursive functions and is
closed under composition and the p-operator (in other words, if we already have
all the primitive recursive functions, then definitions by recursion are no longer
necessary): for suppose that M is a machine that computes a partial function
f € F,; the partial function T we have just defined clearly belongs to A (the
function Sit is primitive recursive) as does f since it is obtained using 7" and
functions that are primitive recursive.

e Next, consider the smallest subset B of F that contains the primitive recursive
functions and is closed under composition and the total p-operator (i.e. the
p-operator can be used only if the function it defines is total). This set is exactly
equal to the set of total recursive functions: for if f is a total recursive function
computed by a machine M, the function T that corresponds to it belongs to 5,
so we see that f does also. '

5.3.4 Universal Taring machines

Thus far, we have constructed a Turing machine for each partial recursive function
that we wished to compute. We will now see that there is a single Turing machine
that is able to compute all the partial recursive functions (of a fixed number of
variables—but this is not a real restriction since we know how to code a partial
function in F by a partial function in 7 using the function «,). The idea is
to construct a machine whose input consists not only of the values of the vari-
ables but also includes the instructions that it should follow. We will begin instead
by constructing a universal (in a sense that will be clear by the end of this sec-
tion) recursive function. To do this, it is essential to establish a coding of Turing
machines.
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We have already said that a Turing machine is determined by

" e the number of its bands;

e the set I of its states, which we continue to assume is of the form {0, 1, ..., m}
with O as the initial state and 1 as the final state:

e itstransition table M, whichisamap from §” x E into S" x E x {—1, 0, +1}, 1.e.
from a finite set into a finite set. It is entirely possible, though a bit complicated,
to code this mapping by an integer. For each sequence o = (51, 52, ..., S, €)
in " x E, let us define, successively,

ry = aa(I'(sy, 82, ..., 8), e);
=030, 12, ..., 1), €, e+ 1),
where (t[,t,...,t,, ¢, &) = M(o);
n(o) = [n ()]

[Recall that 7 (i) is the (i 4+ 1)st prime number.]
The code of the table M will be the integer u defined by

— u= H n(p).

peES'XE

It is easy to recover M from its code: if we wish to know
(t1y 0y ooty € 8) = M(s, 82,..., 5, €),

we compute the code ¢ = I'(sy, 52, ..., 5,) and r = o (c, ¢). We then make use
of the function § introduced in Section 5.1: )

S(rou) =a3(c’ e, e+1), whered =Ty, f2, ..., 1),

and the decoding can be completed without difficulty.

Definition 5.30 The index of a machine M is the integer az(n, m, u), where n is
the number of bands of M, m + 1 is the number of its states, and u is the code
of its transition table. Clearly, the condition . . . is the index of a Turing machine’
is very restrictive and that the first integer that satisfies it is very large. For every
integer p, set

I, = {x : x is the index of a Turing machine that has at least p + 1 bands).

It would be terribly annoying, although very easy, to verify that these sets are
primitive recursive.
Next, let us define the function ST?(i, 1, x1, x2 ..., xp) as follows:

o Ifi € l,, STP(i,t,x1,x2,...,x,) = I'(S(1)) is the code at the instant  of the
situation of the machine with index i which began to operate at the instant r = 0
with the following configuration: the integers x1, xa, .. ., X, are represented on
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bands 1,2, ..., p and all other bands are clean (observe that this code is never
equal to zero).

e STP(i,t,x1,X2,...,%p) = 0 otherwise.

Theorem 5.31 For every integer p, the function STP(i,t,x1,X2,...,Xp) is

primitive recursive.

Proof The function ST? is defined by cases according as i € [, or not. If
i ¢ 1, STP(, t,x1,%2,...,xp) =0.1t is the other case that requires slightly more
work.

It is not hard to see that there exists a primitive recursive functicn
h(i, x1,x2, ..., xp) whose value, if / is the index of a Turing machine M with at
least p -+ 1 bands, is the code of the initial situation of M when xy, x, ..., xp are
represented on bands 1, 2, ..., p, the other bands being clean. It now suffices to
repeat the calculations made for Lemma 5.28, replacing n by /3_% (1) (which is the
number of bands of the machine whose index is ). We do not have to worry about
the values this function will take (it is primitive recursive, so is always defined) if
i is not the index of a Turing machine or if ,331 x)y<p+1.

We then have to prove that there exists a primitive recursive function g(i, x) such
that, if i is the index of a machine M and x is the code of the situation of M at
the instant ¢, then g(i, x) is the code of the situation of M at the instant 7 + 1. We
imitate the proof of Lemma 5.27; note that here we do not even need a definition
by cases. The sequence o of symbols that the head is in the process of reading has
c = 8(,3; (x), ﬁ% (x), ,331 () as its code. If ¢’ is the code of the sequence that will
be written in place of o, ¢’ is the new state of the machine and € [€ {~1, 0, +1}]
is the movement of its head, we have : :

as(c’, ¢ e +1) = 8(cale, B3(x)), B3(0)).
To simplify the notation, set § (a2 (c, /331 (x)), ,8; (i)) = §; then
g, x) = a3, k', T(CY),
where
e = B38);
I 2. 3 .
k' = B5x) + B30 — 1,

Finally, we prove by induction (as for Lemma 5.28) that the situation of a Turing

machine at the instant ¢ is a primitive recursive function ST? (i, t, Xy, x2, ..., Xp)
of its index, its initial situation, and . For each strictly positive integer p, let us
define the partial function ¢” (i, x1, x2, ..., xp) as follows:

o ifi ¢ I, ¢P(i,x1,x2,...,xp)1s undefined,

o if i € Ip, then we put the machine with index i into operation with xy,
X2,..., xp represented on bands 1,2,..., p, other bands being clean and
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declare that:
— P, x1,x2, ..., X p) 1s undefined if this machine never halts;
— P (i, x1, X2, ..., xp) is equal to the number of consecutive strokes at the

beginning of band number p + 1 if this machine does halt.

Theorem 5.32. (The enumeration theorem) For every integer p, ¢P is a partial
recursive function. Moreover, if f is a partial recursive function of p variables,
there exists an integer i such that

F=dxxa . xp0P (Gxy, X2, ., Xp).

Proof Once again, the proof imitates that of Lemma 5.28. We introduce a partial
recursive function 77 and primitive recursive predicates B and CP that will be
of use later. TP (i, x1, x2, ..., x p) 1s the computation time of the machine whose
index is i on the input xy, xo, ..., x p if i € I,; itis undefined if this computation
does not halt.

TP (i, x1, %2, ..., Xp) = ut [B3(STP (i, t, X1, X2, - -, Xp)) = 11.

Observe that if i ¢ 1, TP(, x1, x2, . .., Xp) is undefined. For each integer p,
we set
BP = {(i,t,x1,x2,...,xp) : STP(i, 1, x(, %2, ..., Xp) =1}, and

Bp(i) = {(raxliXZa--',xp) : (i»f,xl,xz,---,xp),e Bp}‘

These sets are primitive recursive and (7, x1, X2, . . . Xp) € BP(i) means

(assuming that i is the index of a Turing machine) that this machine, when run with

input x1, X2, ..., X, on its first p bands, with all other bands clean, completes its
computation at the instant ¢. Continuing with our definitions, we set

CP={(i,y,t,x1,%2,...,xp) 11 €1p, (i, 1,%],%2, ..., Xp) € BY
and the number of strokes at the instant ¢ on band p + | of
the machine with index i which started with xj, x, ..., x p on
its first p bands, with all other bands clean, is exactly y},

and
CP@) = {(y,f,xl,xz,.-,,xp) s, y, t, x1, X2, .-, Xp) € CP

Once again, it is easy to see that these sets are primitive recursive. This allows us
to define the partial function ¢? as follows:

¢)p(i,x1,x2, e ,Xp) —_— /JLy[(l, y, Tp(i,.xl,xz, e ,.l’p),xl)xz’ s ,Xp) € Cp],

this shows clearly that ¢ is recursive.

We could, as before, slightly improve the presentation to emphasize the fact
that the only place the unbounded p-operator is needed is in the definition of 77
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indeed, the number of strokes on the band of a Turing machine at any instant must
be less than the code of the situation of the machine. Setting

w(i,f,x1,x2, "'ﬁ'xp)
=py < STPG,t,x1, %2, ..., xp)[(, ¥, 1, x1, %2, ..., Xp) € CP],

we note that ¥ is a primitive recursive function and that

¢p(iax1ax27 o 'axp) - 1/f(i’ T(i)xl!x2> e 7xp)7x1ax2» < ,XP).

Since the partial function ¢? is itself recursive, it is computable by some Turing
machine M this machine can therefore compute all the partial recursive functions
of p variables.

For each integer i, let

gbf = Ax1x2 .. Xp.pP (I, x1, %2, ..., Xp).

We may then observe that the set {¢IP . i € N} is equal to the set of all partial
recursive functions of p variables.

Definition 5.33 Ler f € F ; be a partial recursive function. We say thati € N is
anindex of f if f = qﬁip.

In particular, if i is the index of a Turing machine that computes f, it is also an
index of f; but it is clear, for example, that every integer that does not belong to
I, is an index of the partial function in 7 whose domain is empty. It can also
happen that j is the index of a machine M that has at least p + 1 bands but that
this machine does not compute a partial function in 77, for the simple reason that,
when it halts, its bands are not in a configuration required by Definition 5.22;
so we again have an example of an integer i that is the index of a function f
although the machine whose index is i does not compute f in the strict sense of
the term.

5.4 Recursively enumerable sets

5.4.1 Recursive and recursively enumerable sets

Definition 5.34 Let A € NP; we say that A is recursive if its characteristic
functions x4 is (total) recursive. We say that A is recursively enumerable if it is
the domain of a partial recursive function.

The domain of the partial function whose index is x (i.e. P will be denoted
by WP . 1t is clear that the set (WF : x e N} is the set of all recursively enume-
rable subsets of NP, If A = W/, we will say that x is an index of A. In this
section, we will prove a few simple facts about recursive and recursively enume-
rable sets.
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Lemma 5.35 Every recursive set is recursively enumerable.

"Proof The partial functions f = puy [y + 1 = x] is recursive, undefined at O
and defined for all other values. If x4 is the characteristic function of a recursive
set A, then f o x4 is a partial recursive function whose domain is A. :

Lemma 5.36 For every integer p, the set of recursive subsets of NP is closed
under Boolean operations.

Proof The proof is the same as for the set of primitive recursive functions. H

Lemma 5.37 The union and the intersection of two recursively enumerable sub-
sets of NP are both recursively enumerable.

Proof Let Ay and A; be recursively enumerable subsets of NP and suppose that
they are, respectively, the domains of the partial functions f| and f, computed by
machines whose indices are {1 and i;.

To begin with, it is clear that A} N A, is the domain of the function f1 + f,. On
the other hand, A1 U A5 is the domain of the partial function

pt [(t, x1, X2, ..., xp) € BP (i) U BP(i2)],

which is recursive since the sets BP(i) are primitive recursive, as we saw in the
proof of the enumeration theorem.

The three properties that follow are so important that they deserve to be labelled
theorems.

Theorem 5.38 Let A € NP, A is recursive if and only if A and NP — A are both
recursively enumerable.

Proof In one direction, this is clear: if A is recursive, then so is N” — A by
Lemma 5.36, so these two sets are recursively enumerable by Lemma 5.35.
Let i be the index of a machine that computes a partial function whose domain

is A and let i’ be the index of a machine that computes a partial function whose
domain is N” — A. Then

h(xy, x2, ..., xp) = wt [(t, x1, %2, ..., xp) € BP()) U BP(i")]
is a total recursive function and
(x1, X2, ..., xp) € Aifand only if (h(x1, x2,..., Xp), X1, X2, ..., Xp) € BP(i).

Therefore, if x (, x1, x2, .., xp) is the characteristic function of BP (i), then the
characteristic function of A is

X(h«(xl,.XQ, e 'axp)axl:x:Za L 7xp)a
which shows that A is recursive.

Theorem 5.39 The projection of a recursively enumerable set is recursively
enumerable.
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This means that if A € NPT is recursively enumerable, then the set
= {(x1, x2, ..., Xp) 1 there exists an xq such that (xo, x, X2, . .. , Xp) € A}

is also recursively enumerable.

Proof Let i be the index of a Turing machine that computes a function whose
domain is A. So we see that

(x0, X1, %2, ..., Xp) € A
if and only if
there exists an integer ¢ such that (¢, xg, X1, X2, .., Xp) € BP ().
Also,
(x0, X1, %2, ..., Xp) € B
if and only if
there exist integers ¢ and xp such that (¢, xo, x1, x2, ..., Xp) € B.
This shows that B is the domain of the partial recursive function
gx1, 32, ... xp) = 1z [(By (@), B3 (@), %1, %2, .. xp) € BP (D).

Theorem 5.40 Every recursively enumerable subset of NP is the projection of a
primitive recursive subset of NP +

Proof This means that if A € NP is recursively enumerable, there ex1sts a
primitive recursive subset B € NP+1 such that

(x0, X1, X2, .., Xp) € A
if and only if
there exists an xg such that (xo, x1, x2, ..., xp) € B.

It suffices to take for B the set BP (i), where i is the index of a Turing machine that
computes a function whose domain is A.

Here are a few corollaries of these theorems.

Corollary 5.41 The graph of a partial recursive function is a recursively
enumerable set.

Proof Let f € F*, we have to show that the set

= {(x1,x2, ..., Xp, ¥) 1y = fx1,x2,...,%p)}

is recursively enumerable.
If i is the index of a machine that computes f, weseethat (xy,x2,...,xp,y) € G

if and only if there exists an integer ¢ such that (y, #, x1, x2,...,xp) € CP(i);
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this shows that G is the projection of a primitive recursive set and is therefore
recursively enumerable. |

The converse is true. If the graph G of a partial function f is recursively enumer-
able, then f is partial recursive: there exists a primitive recursive set A such that
(X1, X2, ..., xp, ) € Gifandonly if 37 (xy, x2, ..., x,, ¥, 1) € A; consequently,

G xa, o xp) = Bt [(x1, %2, ..., xp, Ba D), BE(E)) € A]).

The range of f, i.e. the set of values assumed by f, is itself a projection of the
graph of f; hence '

Corollary 5.42 The range of a partial recursive function is recursively
enumerable.

The converse is true; in fact, we have more:

Corollary 5.43 Every non-empty recursively enumerable subset of N is the range
of a primitive recursive function in Fy.

Proof Let A be anon-empty recursively enumerable subset of N; choose an integer
n € A and let i be an index of A. We then have

x € A if and only if there exists a f such that (¢, x) € B! (i).

It is easy to verify that A is the range of the primitive recursive function g defi-
ned by

n if (8,(2), B3(2)) ¢ B (i)

o) [ﬂ%(z) if (83 (2), 2(2)) € B' (i)

We proceed next to arather subtle point that generalizes the principle of definition
by cases to the context of partial recursive functions.

Theorem 5.44 Let g(xy,x2,...,%p) and g'(x1,x2,...,xp) be two partial

recursive functions and let A be a recursive set. Then the function f defined by

g(x1, x2, ..., xp) if (x1,x2,...,%p) €A,
g (x1,x2,... ,Xp) otherwise

f(xl,xz,...,xp):{

is a partial recursive function.

[It is important to understand the exact meaning of this definition: if
(x1,x2,...,xp) € A, then f(x1,x2,... ,Xp) is defined if and only if
g(x1, x2, ..., xp)is defined, and if this is the case, they are equal; the same remark
applies to g"if (x1, x2, ..., xp) ¢ A.Oneshould be convinced that f is not equal to

g - x(A)+g  x(N—A)

in general.]
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Proof Let i and i’ be indices for g and g’. Consider the following subset C
of NP+2; .

C={(y,t,x1,%2,...,Xp):
[(y, t, x1, %2, ..., Xp) € CP(i) and (x1, x2, ..., xp) € A], or
[(y,t,X1,X2,...,Xp) € CP(i') and (x1, X2, ..., xp) & Al}.

This set is recursive. The meaning of (y,t, x1,x2,...,xp) € C is that either
(x1, X2, ..., Xp) € A and the machine whose index is i finished its computation at
the instant ¢ with the value y, or else (x1, x2, ..., xp) ¢ A and the machine whose
index is i’ finished its computation at the instant f with the value y. So we see
that f(x1, x2, ..., Xxp) is equal to the least y such that there exists a ¢t for which
(y,t, X1, %2, ..., xp) € C. This implies that

FOL, X0y xp) = Bz [(By (2), B3 @), X1, %2, ..., Xp) € C),

which shows that f is partial recursive. &

5.4.2 The halting problem

Thus far, we have carefully avoided a problem that simply must be dealt with: do
there exist recursively enumerable sets that are not recursive? With what we already
know, this question amounts to asking if there exists a recursively enumerable set
whose complement is not recursively enumerable.

The answer is yes. Let us reconsider the function dL(i, x); set g(x) = ol (x, x)
and let A be the domain of g. This set is certainly recursively enumerable. But its
complement is not. In fact, for every integer x, x € Aifandonly if x € Wl Tosee
this, suppose, to the contrary, that there exists an integer n such that N— A = Wnl,
i.e. it is such that, for every integer x,

x¢ A ifandonlyif xe W),
Setting x equal to n in these two equivalences leads to

neA ifandonlyif ne w! and

o

n¢ A ifandonlyif ne w!

n?

which is manifestly absurd.

This form of reasoning, very popular among logicians, is known as a diagonal
argument. Let us give a more precise analysis of this argument which will justify
the word ‘diagonal’; below, we have displayed a two-way table of Os and 1s whose
entries are indexed by integers in such a way that the sequence written on the first
row 18 the characteristic function of Wl, on the second row is the characteristic
function of Wll, and so on.

In this table, ¢, , isequal to 1 if n € WII, and to 0 if not. We may then observe
that the characteristic function of the set A constructed above is the diagonal of
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this table and that the sequence corresponding to the characteristic function of the
~complement of A is

1—e€00, 1—-€11, ..., 1—¢€un
0 1 2 o 1
WO1 €0,0 | €0,1 | €0,2 | ... €0,n
Willeno et |e2| o |ein
Wy lle20 €21 €22 -0 |€2m
W,l €n0 | €n1|€n2 s En,n

If N — A were equal, for a certain n, to W,}, then the (n + 1)st row of this table
would be

]-“80,()’ 1_81,1a ey 1—811,)'1’

But at the intersection of this row with the (n 4 1)st column (corresponding to the
integer n), which is also on the diagonal, one would simultaneously find &, , and
1 — &, ,,, which is absurd.

Corollary 5.45 The set {(m, x) : ¢\ (m, x) is defined) is not recursive.

Proof Indeed, if this set were recursive, then the set
{(x, x) : $1(x, x) is defined)

would also be recursive and we have just seen that this is not the case. |

Our intuition is that a subset A € N is recursive if there exists an algorithm
which allows us to decide whether an integer belongs to A or not. It is recursively
enumerable if there is an algorithm A that enumerates A. If A is recursively
enumerable and we ask whether a given integer n belongs to A or not, we can set
the algorithm A to work. If, at some point, the integer n appears in the sequence
enumerated by A, then we are certain that n € A. On the other hand, as long as
the integer n has not appeared, we may not conclude anything.

The preceding corollary expresses the fact that when we are given the index
of a Turing machine (which intuitively represents its instructions) and its initial
configuration, we have no effective way to know whether this machine will stop or
not. We rephrase this fact by saying that the halting problem for Turing machines
is undecidable.
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For a great number of problems, it is of interest to know whether they are
decidable or not. For example, is there an algorithm for deciding whether a given
integer p is prime or not? We have long known (at least since Eratosthenes and
his sieve) that the answer is yes. When we wish to be formal about this, we say
that the set {p € N: p is prime} is recursive. This is an opportune moment to give
a precise definition.

Definition 5.46 Let B(x1, x2,...,xp) be a property that applies fo integers
X1,X2,...,Xp. The problem ‘does the sequence (x1,x2,...,xp) satisfy B?" is
called decidable if the set of sequences (x1, X2, . . ., Xp) forwhich B(xy, x2, .. ., xp')
is true is a recursive set.

We need not be restricted to properties that apply (directly) to integers; as was the
case for Turing machines, we may use the integers to code other things. The next
chapter is full of examples of this type. As employed here, the word ‘decidable’ is
intended to reflect the intuitive notion of decidability, in other words, decidability
by mechanical means; it is entirely justified if we accept the validity of Church’s
thesis.

5.4.3 The smn theorem

The bizarre name of this theorem hides an extremely important result whose mean-
ing is the following: if we consider the partial function f € F);,,, of index i and
we fix values, say aj, ag, .. ., a,, for the first n variables, we are left with a partial
function g € F,; given by

m
g - )\'))1))2 . -)’m-f(al,ab L] an, )’l’ )’2, sy y))l)7

and that is clearly recursive. The point is that an index for this function g is
effectively computable from i and aj, ap, ..., an.

Theorem 5.47. (The smn theorem) Forevery pair of integers m and n, there exists
a primitive recursive function s\ of n+ 1 variables such that, for all i, x1, x2, . . .,
Xns Y15 Y25 - -+ » Ym, We have

@ (i X1, X2,y Xy Y, Y2, s V)
= qy”(s)’ln(i, X1y X2, 00y xn), Yis Y2, 0ves )’m)-

Proof The value of s"(i, x|, x2,...,%,) is defined by cases according as
i € I,ym (which is the set of indices of Turing machines which have at least
n + m + 1 bands and which is, as we recall, a primitive recursive set) or not. Let
io be an integer that is not the index of a Turing machine (0, for example, will do

perfectly well).

(1) i ¢ Lyym,wesetsi'(i, x1, X2, ..., X,) = lo; inthis case, neither " 7" (i, x,,

X2y oy Xy Y15 Y25 001y Ym) DOr d)m(s,’,”(i, X1, X2, oy X)), Y1s Y25 0o v Yin) 18
defined.
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(2) Theinteresting case is wheni € I,;1,. Let M be the machine whose index is

i andletay, as, ..., a, be fixed integers. It is not difficult to imagine another
machine M’ that has the same number of bands as M and that behaves as
follows: ‘

(a) it begins by writing a; strokes on band number m + 2, a» strokes on band
number m + 3, etc., and q, strokes on band number m +n + 1;

(b) it then behaves as M would, but with the roles of the different bands per-
muted: it treats band number m + 2 (which represents «)) as its first band,
and, in general for k between 1 and n, treats band number m + & + 1 (which
represents day) as its kth band; moreover, for k& between 1 and m1, the kth band
should be considered as band number n + k; as for band number m + 1, it
plays the role of band number n 4 m + 1 (so it is on this band that the final
result will be written);

(c) finally, it erases the contents of bands numberm +2,m +3,...,m +n.

Two facts are now more or less clear.

First, the description of M’ is completely explicit and effective based on M
and the given ay, az, . . ., a,; it would be horribly boring, though very easy, to find
a primitive recursive function of n + 1 variables, that we will call s, with the
property that s7' (i, ay, az, . . ., an) is the index of the machine M’ wheni € I 4,.

Second, if we set machines M and M’ in operation with the following initial

configuration;

e for k from 1 to n inclusive, the contents of the kth band of M’ is equal to the
contents of band number n + k of M;

e all other bands of M’ are clean;

e for k from 1 to n, ay is represented on band number k of M,

then, up to permutation of the bands, these two machines will operate exactly the

same way; in particular, one will halt if and only if the other does also, and, in this

case, the contents of band number m + 1 of M’ will equal the contents of band
number n +m + 1 of M. Consequently, referring to the definition of the functions

¢P, we see that, for all X1, X2, ..., X0, Y1, Y2, -+ - » Yms
¢n+m(l’, X1, X2, v X Y1, Y20 o0 ey ym)
— ¢m(s)’1n(i7-Xl:XZ) e ,xll)’ Y1y Y25+ e )’m)- E

We will now present some applications of this theorem.

Example 5.48 There exists a primitive recursive function pl(i, j) such that if
f= ¢i1 and g = qb}, then pl(i, j) is an index for the partial function f + g.

Proof Consider the partial function

Aijx. (', x) + o', x)).
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It is obviously recursive, so there exists an integer k such that this function is equal
to qb,?. Now, for all i, j, and x,

GG, J,x) = ¢k, i, j, %) = ¢ shk, iy ), X) = @1, 1) + ' (J, %)
So it suffices to take pl = )ufj.szl k,i, J). [ |

We could do exactly the same thing for multiplication or for any other partial
recursive function.

Example 5.49 Letn and p beintegers. There exists a primitive recursive function
Comp(iy, ia, ..., In, j) such thatif, for k from 1 ton, fr € f;‘ is the partial func-
tion whose index is iy and if g € F;' is the partial function whose index is j, then
Comp(iy, iz, ..., Iy, j) is anindex for the partial function # = g(f1, f2, ..., fa)-

Proof The proof is completely analogous to the one just above. Consider the
partial function

Aiyin .. ipjx1xy .. .xp.d)”(j, dP (i1, x1, X2, . s Xp),

¢p(12a xl) x?_’ ey -Xp)a ey ¢p(in, xl» XZ’ e ,XP)).
It is recursive, so there exists an integer k such that this partial function is equal to
1
¢Z+p+ . So we have
n+p+1 L .
¢k P (k7ll5l2)--'alnv]axlvx2’-‘-axp)
- ¢p(sf+1(ks ils i2’ ) illa j)a xl, x27 AR XP),

and we may take

Comp = Aitin...inj.sy ki1, in, ..oy in, ).
The theorem that we will prove next is known as Rice’s theorem and is another

example of an application of the smn theorem. It will allow us to show that certain
sets of integers are not recursive.

Theorem 5.50. (Rice’s theorem) Let X be a set of partial recursive functions of
one variable that we will assume is not empty and is not equal to the set of all
partial recursive functions. Then the set A = {x : d)i € X} is not recursive.

Proof Itis equivalent to show that either A or its complement is not recursive; so
by interchanging these two sets, if necessary, and by replacing X by its complement
in the set of partial recursive functions of one variable, we may assume that the
partial function 8y whose domain is empty is an element of X'

Fix an integer b that does not belong to A and define the following partial
recursive function ¢ € 773

Yy, 2) = ¢ (b, 2) + ¢ (x,y) — ¢ (x, ).
Also, set
I/fx,y - )\Z~W(x’ }’, Z)‘
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If ¢! (x, y) is not defined, the partial function ¥, y is never defined (so is equal
~ to fp), hence it is in &'; if not, then v/ y is equal to qﬁg, soitisnotin &', Thus, ¥
belongs to X if and only if ¢! (x, y) is undefined. Now we apply the smn theorem:
there exists an integer k such that

W(x,y,2) = ¢k, x,y,2) = ¢ (54 (k, x, y), 2).

The function ~ = }\xy.szl (k, x,y) is primitive recursive and A(x, y) is an index
of Y, y.

We will now use the fact that the set W = {(x, ¥) : ¢! (x, y) is undefined) is not
recursive (we showed in Corollary 5.45 that its complement is not recursive) and
we observe that (x, y) € W if and only if A(x, y) € A. This shows that A cannot
be recursive, otherwise W would also be, |

Remark The hypothesis ‘A" is not empty and is not equal to the set of all
partial recursive functions’ is obviously indispensable, otherwise A is equal to
either the empty set or the whole of N and the conclusion of the theorem would
be false. This hypothesis was used when we chose an integer b that is not an
element of A.

Here are some corollaries of Rice’s theorem.

o If f € f;’j is a partial recursive function, the set of indices of f is not recursive
(just take X' = { f} in Rice’s theorem); in particular, it is not finite,

Intuitively, if a partial function is computable, there are infinitely many machines
that will compute it. And in fact, we have more: there is no effective description
for the set of all the machines that compute f.

e The problem of deciding whether two machines compute the same partial
function is undecidable: for every integer p, the set

X ={G.)): ¢ =¢")
18 not recursive.

Indeed, if this set were recursive, then the set
(i:G,0) e X) =i : ¢f = ¢})
would also be recursive but we have just seen that this is not the case.

o Also, for example, the set {n : ¢! is total} is not recursive.

It suffices to take X to be the set of all total recursive functions.

According to the first corollary, if a partial function has an index i, it has another
index that is greater than i. The next theorem is a more precise statement of
this fact.
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Theorem 5.51 For every integer p, there exists a primitive recursive function o
of two variables such that '

e foralliandn, ¢ip = d)g(,-’n);
o forall i, the function An.a(i, n) is strictly increasing.
Proof It suffices to construct a primitive recursive function g of one variable
such that for all i, (i) > i and (i)g(l.) = qbl.p ; o will then be defined by recursion:
a(i,0) =1i;
a(i,n+1) = plal,n)).

Without going into details, we will explain how f(i) is computed. If  is not the
index of a Turing machine, we set B(i) equal to an integer that is greater than i
and is also not the index of a Turing machine (this can easily be found). If 7 is
the index of a Turing machine M, we arbitrarily produce a more complicated
machine M’ (e.g. by adding a new state that will never be used). The index of
this new machine, if we have done things carefully, is strictly greater than i and

is a primitive recursive function of i; obviously, these two machines will behave
exactly the same way and will compute the same function. E

Exercise 26 presents a proof of this theorem based on the smn theorem and the
fixed point theorem (see below).

5.4.4 The fixed point theorems

" These theorems are also very important and are due to S. Kleene. They are some-
times called the recursion theorems (this name will be justified by the examples
that follow).

Theorem 5.52. (The fixed point theorem, first version) Let p be a positive infe-
ger and let o be a (total) recursive function of one variable; then there exists an
integer i such that

P _ 4P
P = Pagy-
Proof Consider the partial function
Ayx1xo .. Xp. P (s (v, ), X1, X2, -, Xp).

It is recursive, so it has an index a and we have, for all x{, x2, ..., xp and y,

¢P+1(a, Yo XLy X2, . "xp) = ¢p(05(sf()’, ), X1, X2, . . »xp)

= ¢P(S{7(a, )’),xl, XQ, e ,xp)-

By setting y = « in the preceding equalities and setting i = sf’ (a, a), we obtain

P _ 4P
b = (i)
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Remark 5.53 There is a primitive recursive way to find the integer i from an
_index of . Suppose that o = (ﬁf . We must first compute an index a of the partial
function

Ayx10, o Xp P (s (0, 90)s X1, X2, xp).

This is another application of the smn theorem: let b be an index for the partial
function '

Myxixg . xp. P @Gyt (3, 9D, XL X2, XY
we then have, for all x1, x2,...,x, and y,
PP (s (3, Y)), %1, 20 ., xp) = $P (B, s (0, D), X1, X2, -, xp)

:¢p+2(b3jsyaxlax2)---,-xp)

1 ,
= qprrl(str (b, J)y ¥y, X1, X2, ..., Xp).

So we may take a = sf“(b, J) and we again set i = sf(a,a). This remark
constitutes a proof of the following theorem.

Theorem 5.54. (The fixed point theorem, second version) For every positive
integer p, there is a primitive recursive function h, of one variable such that,
forall j, if a = ¢ is a total function, then

P _ P
Pipi = Patin, (1))
Here is one last version of the fixed point theorem.
Theorem 5.55. (The fixed point theorem, third version) Leta be atotal recursive
Sfunction of p + 1 variables and let n and p be integers, with n greater than zero.

Then there exists a primitive recursive function h of p variables such that, for all
X1, X2, ..., Xp, we have ' |

¢n _ ¢p
o (xy,xg, X p, (X1, X7, Xp)) T T h(x,X2,.,Xp)"
Proof ILeta be an index for the partial function
AZX1X2 . . XpY1Y2 .« Y v ‘
" (e (xr, X2, o Xp, 874 (Z, 2, X1, X200, Xp)), VI V2, -, V). ‘
Soforall x1,x2,...,%p, ¥1,¥2,..., ¥, and z, we have
¢n<a(xl3 x2a e ,Xp, S;;_}_](Za 2 X1 x27 v 'xp))a )’l, )’21 v }’n)

I . .
:¢11+P+ (aa valy-XZ)-'-a“\])’yla)Q)- ~,)’n)

= ¢”(S;+] ((l,, Z, X1, X2, 00y -xp)a Y1y Y25 vns y)l)'
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By letting z = a, we obtain

(p”(a(xl,xz, <o Aps S’;;-H(Z’ 2, X1, X2, - ,Xp)), Y1y Y25 -0y Yn)
::_ QS”(S:;_}_I(CZ’G»XIaxz, BN 3 XP), ))1, }’2, vy )’n)
and we may take h(xy, x2,...,Xp) = sg+1(a, Ay X1, X2, .5 Xp).

Remark 5.56 Here too, there is a primitive recursive way to compute an index
for h from an index for a.

We will now give some examples of how these theorems can be applied. These
examples illustrate how the fixed point theorems allow us to generalize the proce-
dure of definition by recursion.

Example 5.57 Consider the partial function f of two variables, to be specific
(we would do the same thing if it were a function of p + 1 variables) that is defined
by recursion using

fx,0) = g(x),
f,y+ 1D =hx,y, f(x,¥),

where g and / are partial recursive functions. Then we may compute, in a primitive
recursive manner, an index for f from an index for g and an index for h.

Proof Consider the mapping from F; into F; which assigns to i the partial
function ¥* whose definition is

ey (59 ity =0,
T by — L g(x, y — 1)) otherwise,

First, we note that f is the only fixed point of this mapping: it is the only partial
function that satisfies f = f*. Moreover, if ¥ is recursive, so is ¢* and we can
also compute an index for * from the respective indices i1, i, and i3 for g, A,
and 1. This last claim is another application of the smn theorem like the ones we
have seen previously: we consider the partial recursive function k (i1, iz, i3, X, y)
defined by

¢! @1, %) if y =0,

k(ii,i2,i3,x,y) =
( b y) l¢3(i2, X, y - 17 ¢2(i3,x’ y - 1)) Otherwise'

The partial function y* is precisely equal to Axy .k (i1, i2, i3, X, ¥). If a is an index
for k, we have

L 5 T S 20,2 L
k(ll’l2’l3>x’y) :¢ (a’lla12,13,la}’):¢’ (S3(a,11,12,13),x, y)

If we set a(iy, ip, i3) = s%(a, iy, ip,i3), then « is a primitive recursive function
that computes an index for ¥*, as promised:

(67)" = b inin)-
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Now we apply the third version of the fixed point theorem: there exists a primitive
. recursive function j € JF, such that, for all z and ¢,

2 42
Paten,in = Pjry
which shows that

2 * 42 .
($6100) " = B,y
hence, because of the uniqueness mentioned above, ¢2 i) = = f. |

Example 5.58 We conclude this chapter by proving that Ackerman’s function is
recursive. We could have done this earlier by constructing a Turing machine that
computes it, but the argument that follows is much more elegant. The definition of
this function certainly involved a recursive procedure; but this procedure did not
respect the scheme for defining functions by recursion that was described at the
very beginning of this chapter. We will see how the fixed point theorems allow us
to prove that functions defined using this procedure are nonetheless recursive.

Proof Consider the mapping from 5 into F; which assigns to ¢ the partial
function ¥* whose definition is

2% ify=0;
Yy, x) = {1 if x = 0;
Y(y — 1, ¥ (y,x — 1)) in all other cases.

When we refer to the definition of Ackerman’s function, we realize that it is
the unique fixed point of this mapping. Thus, if we can prove that there exists
a partial recursive function ¢ such that ¢ = ¢*, then ¢ is necessarily equal to
Ackerman’s function, which is consequently recursive. Our argument is similar to
the one above. If ¥ is a partial recursive function, then so is ¥* and here is how
we compute, in a primitive recursive fashion, an index for ¥* from an index for
¥ define 6 € F5 by

2% ify=0;
9(1., )’,x) - 1 lfx :O;
$*G,y —1,¢%G, y,x — 1)) in all other cases.

The partial recursive function 6 was defined in such a way that Axy.0(i, x, y) is
equal to ¥* if o = ¢i2' Let a be an index of 6. Then

0G,x,y) = ¢, i, x,y) = ¢*(s}(a, ), x, y).

Set a(i) = s12(a, i); o« is a primitive recursive function which associates an index
of ¢* with an index of . When we then apply the first version of the fixed
pomt theorem, we obtain an integer j such that ¢>2 P> () and, hence, such that
(¢> Y= ¢2 This proves that Ackerman’s funct1on 1S recursive. H
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EXERCISES FOR CHAPTER 5

1.
2.

3.

Show that every finite subset of N is primitive recursive.
Show that the function f defined by

fO=fr0=1
fr+2)=f)+ fn+1)

is primitive recursive.
(This series is known as the Fibonacci series).

Set §* = |J,..o N? and define a map « from S* into N as follows: if o is a
sequence of integers of length p, then a(o) = a2(p, ap (o).

(a) Show that the function « is injective and that its range is a primitive
recursive set.

(b) Show that there exists a primitive recursive function g such that if o =
(a1, az, ..., a,) andif b = sup(n, ay, az, . .., an), then a(s) < g(b).

(c) Show that the function ¢ defined by

BL(x) ifl<i=<np,
0 otherwise,

¢(p.i,x) =

is primitive recursive.
(d) We now define another coding: let y be the function which, with every
(ag, ay, az, ..., ap) € S*, associates the integer

V((Clo, Aty .. ap)) = 7[(0)a0+1 . ﬂ(l)ar}—l C .T[(p)ap+1;

it is understood that the value of y on the empty sequence is 1. Show that
y is an injective map and that its range is a primitive recursive set.

(e) Show that the two codings can be obtained from one another in a primitive

recursive way; more precisely, show that there exist two primitive recursive
functions f and h of one variable such that
(i) for all x in the range of o, f(x) = y(0), where o is the non-empty
sequence satisfying a (o) = x;
(ii) for all x in the range of ¥, h(x) = a(0), where o is the non-empty
sequence satisfying y (o) = x.

. Show that the function whose value at n is the nth digit in the decimal expan-

sion of e (the real number that is the basis for natural logarithms) is primitive
recursive.
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. (a) Let p be a positive integer. Show that the set

E = {(ao,a1,...,ap) € NP1,

the polynomial ag + a1 X + - - + a, X? has aroot in Z}

1s primitive recursive.
(b) Repeat question (a) replacing Z by Q.
(c) Show that the set

F = {Q(0o) : pisaninteger, o = (ag, a1, .. ., ap) and the polynomial
ag+ a1 X + -+ a,X? has aroot in Z}

is primitive recursive. (€2 is defined in the section on codings of sequences.)

. Let L be a language whose only symbol R represents a binary predicate and
let F be a closed formula of L. The spectrum of F, which we will denote by
Sp(F), is defined to be the set

{n € N : F has a model of cardinality n}.

(See Exercise 10 of Chapter 3.)
Show that Sp(F') is a primitive recursive set,

. For each of the following functions, construct a Turing machine that computes
it: (a) Ax.x?, (b) Axy.xy, (c) Ax.x—1, (d) Axy.x—y

. Construct a Turing machine that halts if and only if the integer represented on
its first band at the initial instant is even.

. (a) Show that if a partial function f € J} is T-computable, then it is com-
putable by a Turing machine that has exactly three bands.

(b) Consider the set M,, of Turing machines that have three bands and n states.
Set these machines in operation with an initial configuration in which all
bands are clean. If machine M halts, we let 0 (M) be the number of
strokes written on its second band at the instant it halts; otherwise, we
set o (M) — 0. Show that the set

{fo(M) : M e M,}

is bounded. We will denote the upper bound of this set by X (n).

(c) Let f be a partial function of one variable that is computable by a machine
M in M,,. For every integer p, construct a machine NV, with three bands
which, when started in an initial configuration in which all bands are clean,
begins by writing p strokes on its first band, then returns its head to the
beginning of the tape, and continues to behave exactly as M would.

How many states does AV, have?

(d) Show that the function ¥ is not T'-computable.
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10. Let f € Fy. Show that f is recursive if and only if its graph
G={xyeN:y=f)

is recursive.

11. Thepurpose of this exercise is to provide a direct proof of the fact that Ackerman’s
function is recursive.
Define the following binary relation < on N3 (a,b,c) < (@,b,c)ifand
only if

sup(a, b, c) < sup(a/, b, ¢, or
sup(a, b, ¢) = sup(a’, b, ¢’) and a < a’, or
sup(a, b, ¢) =sup(d’,b’,¢’) and a = a and b <bd', or

sup(a, b, ¢) = sup(a’,b', ¢’) and a = @ and b=»b" and ¢ <.

(a) Show that « is a total ordering.

If o and B belong to N3, we will say that « is less than or equal (respec-
tively, greater than or equal) to B if @ < B (respectively, f < a). We
will say that « is strictly less (respectively, strictly greater) than g if, in
addition, « # B.

Show that for all (a, b, ¢) € N3, the set

((,y,2) €N 2 (x,9,2) L (a,b, )}

has at most (sup(a, b, ¢)+ 1)3 elements. Show that every element (a, b, ¢) €
N3 has an immediate successor [i.e. there exists an element that is strictly
greater than (a, b, ¢) and is less than or equal to all elements that are strictly
greater than (a, b, ¢)]. We will explicitly describe this immediate successor.

(b) Show that there exist three primitive recursive functions y1, 2, and y3 from
N into N such that

(i) the function I' from N into N3 defined by

L'(n) = (), y2(n), y3(n))
is a bijection;
(ii) for all integers n and m, n < m if and only if I'(n) K I'(m).

(¢) Let H be the subset of N defined recursively by the following condition:
n € H if and only if

)/2(11) =0 'dl'ld Y1 (n) f—t 2)/3("); or
)/3 (n) == 0 and )/] (n) e 1; or
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y2(n) #0 and y3(n) #0

and there exist integers p and ¢ strictly less thann suchthat p € H,q € H,
v2(p) = ya(), v3(p) = y3(n) — 1, v2(q) = y2(n) — 1, ya(q) = y1(p) and
y1(n) = v1(g).

Show that H is primitive recursive,

As in the body of Chapter 5, let ¢ denote Ackerman’s function. Show
that, for every integer n, n € H if and only if y;(n) = ¢ (y2(n), y3(n)).

(d) Show that the graph

G={0,x2) 2=, x))

of Ackerman’s function is primitive recursive. Show that Ackerman’s function
is recursive.

Show thatif f is a function of one variable that is recursive and increasing, then
its range is a recursive set. Conversely, show that every infinite recursive set is
the range of a strictly increasing recursive function.

Supposethat f € F] is arecursive function and assume thatits image is infinite.
Show that there exists a recursive function g € 7 thatis recursive and injective
and satisfies Im(f) = Im(g). Conclude from this that there exists an injective
recursive function whose image is not recursive.

Show that every infinite recursively enumerable set includes an infinite
recursive set.

Let o be a recursive function that is injective. We set

A = Ran(w);

B = {x : there exists y > x such that a(y) < a(x))}.

(a) Show that B is recursively enumerable and that its complement is infinite.

(b) Assume that there exists an infinite recursively enumerable subset C C N
that is disjoint from B. Show that A is recursive. ‘

(c) Show that there exists a recursively enumerable set which has (1) a non-
empty intersection with every infinite recursively enumerable set, and (2) an
infinite complement.

(a) Show that the set of recursive bijections from N onto N is a subgroup of the
group of permutations of N.
The remainder of this exercise is devoted to showing that this assertion is
false if we replace recursive by primitive recursive.

(b) Let ¢ be a (total) function of one variable that is recursive but not primitive
recursive; let e be an index for a machine M that computes ¢. Consider the
function 7" which associates, with x, the time required by M to compute
¢ (x); more precisely, T'(x) = ut [(e, 1, x) € BY)].
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Show that if f is a function that satisfies f (x) = T(x) forall x € N, then
f is not primitive recursive; also show that the graph G of T is primitive
recursive.

(c) We set
g() =sup{T(y) : y = x}+2x.

Show that g is a strictly increasing recursive function and that it is not
primitive recursive. Show that the graph G and the range I of g are primitive
recursive sets. ,

(d) Show that there is a unique strictly increasing primitive recursive function g
whose range is the complement of 7.

(e) Define the function i by

h(2x) = g(x),
hQ2x +1) = g'(x),

where g and g’ are the functions defined in (c) and (d) above. Show that i
is a bijective recursive function that is not primitive recursive. Show that its
inverse, ™1, is primitive recursive.

Exhibit a recursive set A C N2 such that the set

B={x:forally e N, (x,y) € A}

is not recursively enumerable.

Show that there exists a primitive recursive function & of one variable that has
the following property: for every integer x, if ¢} is a bijection from N onto N,
then o (x) is an index for the inverse bijection.

Let g, a, and h be partial recursive functions with g and « in ]7;“ and h € fé".
Show that there exists one and only one function f € F3 such that, for all x
and y,

f0,y) =g,
fx+1,y)=h(flx, o),y x),

and f is partial recursive.

Let A C Nbe arecursively enumerable set that is not recursive; let f be a partial
recursive function whose domain is A and leti be an index for a Turing machine
that computes f. Show that the function Ax.T1(i, x) cannot be extended to a
total recursive function [here, T is the function defined in the proof of the
enumeration theorem whose value is the time required to compute f (x)].

The purpose of this exercise is to prove the following fact:

(x) There exists a (total) recursive function W (x, y) such that if we set Yy =
Ay (x, y), then the set {Yx:x € N} is precisely the set of all primitive
recursive functions of one variable.
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(a) Show that if f € F),, then the following two conditions are equivalent:
(1) f is primitive recursive,
(i1) there exists an index 7 and a primitive recursive function g € 7, such
that the machine whose index is i computes f and the computation
time 7 (i, x, X2, ..., Xp) is less than or equal to g(x1, X2, ..., Xp).

(b) We will make use of Ackerman’s function ¢ and of the functions ¢, =
Ax.¢(n, x). Show thatif f is a primitive recursive function of one variable,
then there exist two integers # and A such that, for all x, we have

S (x) < sup(4, £, (x)).
(c) Let g be the function of four variables defined by

g, A, n, x) = py < sup(A, {(n, x))
[3r < sup(A, £(n, x)) (i, t,x, ) € C'];
frecall that (i,f,x,y) € C ! means that when the machine whose index
1s i is set in operation with x on its first band, it will halt at the instant ¢
with output y]. Show that, for all i, A, and n, the function Ax.g(i, A, n, x)
is primitive recursive and that, conversely, if f is any primitive recursive

function of one variable, then there exist integers i, A, and n such that
=X x.g(, A, n,x).

(d) Use these results to prove (x).
(e) Show that there exists a recursive set that is not primitive recursive.
22. Let 7 be a set of partial recursive functions of one variable. We say that 7 has

a recursive listing if there exists a partial recursive function F of two variables
such that, if we set Fy = Ay.F{(x, y), then

T ={F,: x e N}.
Exercise 21 showed that the set of primitive recursive functions has a recursive
listing. ’

(a) Show that the set of total recursive functions does not have a recursive
listing.

(b) Show that the set of strictly increasing primitive recursive functions has a
recursive listing.

(c) Show that the set of injective primitive recursive functions has a recursive
listing.

(d) Let F € F, be arecursive function and assume that, for all x € N, the set
Ax={Fx,y): yeN}

is infinite. Show that there exists an infinite recursive set, B, which is distinct
from all the sets A,. Conclude from this that the set of strictly increasing
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recursive functions does not have a recursive listing, nor does the set.of
injective recursive functions. :

Let A and B be two subsets of N. We say that A is reducible to B and write
A < B if there exists a (total) recursive function f such that

x € A ifandonlyif f(x) € B.

(a) Show that the relation < is reflexive and transitive.

(b) Assume that A is reducible to B. Show that if B is recursively enumerable,
then A is recursively enumerable; show also that if B is recursive, then
so is A.
Set

X ={x: q’)l(x,x) is defined};
Y = {aa(x, y) 1 ¢l(x,y) is defined).

(c) Show that a set A € N is recursively enumerable ifandonlyif A < Y.
(d) Let A and B be two subsets of N, Let

C={2n: ne AyU{2n+1: ne B}

Show that A and B are reducible to C and that if D is a subset of N such
that A and B are both reducible to D, then C is reducible to D.

(e) We will say that A is self-dual if A < N — A. Show that forevery B € N,
there exists a C C N that is self-dual and is such that B < C.

(f) Let 7 be a set of partial recursive functions of one variable that is not
empty and is not equal to the set of all partial recursive functions of one
variable. Set

A={x: ¢l eT)

(i) Show that if the partial function whose domain is empty belongs to 7,
then X < N— A,
(ii) Show that, in the opposite case, X < A.
(iii) Show that A is not self-dual.

(g) Show thatY < X.

The goal of this exercis'e is to show that the precautions which we took in
defining the unbounded j-operator (see Definition 5.19) are necessary.
Show that the partial function ¥ (x, y) defined by

_ Plx,y) —ptx,y) ify=0,
0 otherwise;

Y(x, y)

is partial recursive.
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Define the function g by
g(x) = the least integer y such that ¥ (x,y) = 0.

Show that g is a total function that is not recursive.

Consider the following sets:

A={x: ¢1(0)is defined};

B={x: (/)} is a total function}.

(a) Show that the complement of A is not recursively enumerable.

(b) Show that there exists a primitive recursive function f € F| such that
foralli,i € A if and only if @(i) € B. Show that the complement of B is
not recursively enumerable.

(c) Let F be the following partial function:
1 ifforallz <y, =Bl(e, z, x),

F(x,y) =
(. ) undefined otherwise,

where B! is the predicate defined in the proof of the enumeration theorem
and e is the index of a partial function whose domain is A.

Show that the partial function Ay.F(x, y) is total if and only if x ¢ A.
Conclude from this that B is not recursively enumerable.

(d) By generalizing the results from (b) and (c), prove the following:

Proposition Let f be a partial recursive function of one variable whose do-
main is infinite; then neither the set {x : (/bj, = f} nor its complement is
recursively enumerable.

In this exercise, we will give an alternate proof of the fact that there exists a
primitive recursive function B of one variable such that, for all i,

¢ =¢pqy, and BG) > i.
(See Theorem 5.51.) This proof is based only on the fixed point theorems and

no longer involves Turing machines.

a) Show that there exists a primitive recursive function § such that, for all »,
p
(1551(,2) is the constant function equal to #.

(b) Define the function y (n, t, z) by

S(n) ifz <t

y(n,t,z) = .
t otherwise.

By applying the third version of the fixed point theorem (see Theorem 5.55)
to this function, show that there exists a primitive recursive function A (1, )
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such that

By RO =1,

o5 o =
h(n,t 1 .
o, otherwise.

(c) Show that, forallz,theset A, = {n: h(n, t) < t}hasatmostf+1 elements.
Use this to conclude that the desired function B exists.

When we constructed the functions ¢, we used a certain number of codings
and, for this purpose, we had to make some completely arbitrary choices. In
this exercise, our concern is to know what sort of functions would have been
obtained instead of the ¢7 if our choices had been different. The only assumption
we will make is that these choices are reasonable and sufficient for proving the
enumeration theorem and the fixed point theorems. )

Let W = {¥P : p > 1} be a family of partial recursive functions such that,
for all p, ¥? € T;H. We set

wE = Ay1y2. . yp WP (X, Y1, Y2 o, Yp)-

Consider the following conditions on the family W:

e (enu) Forevery p > 0, the set {wip . i € N}is equal to the set of all partial
recursive functions of p variables.

e (stnn) For every pair of integers m and n, there exists a total recursive func-
tiono of n +1 variables such that for all i, x1, X2, - - -5 Xus Y1y Y25 - < -5 Y
we have

w'1+’”(i, x17 x2’ ey xn, )’l, ))2 LIS | }’m)
= 1/[”1(0/'7171 (i, x17 XZ, MR xll)? yls y27 rey })m)»
(a) Letd be a partial recursive function of two variables. For every integer x, we
set Oy = Ay.0(x, y). Show that the following two conditions are equivalent:

(i) there exists a family W = {¢7 : p = 1) that satisfies conditions (enu)
and (smn) and is such that vl =0, '
(ii) there exists a recursive function such that, for all x, ¢>’£ = 0g(x)-

(b) Assume once more that the family W satisfies the conditions (enu) and
(smn). Show that the fixed point theorems are valid for the family W.

(c) Assume that the function ¢ satisfies conditions (i) or (ii) from (a). Show that
there exist two injective recursive functions o and B such that, for all x,

¢1 =0g) and Oy = (Z)é(x).

(d) (Difficult!) Under these same hypotheses, show that there exists a recursive
function & that is total and bijective and is such that, for all x, qbi. = Os(x)-




6 Formalization of arithmetic,
Godel’s theorems

Of all the branches of mathematics that we could choose to formalize, arithmetic is
no doubt the most natural choice. This is what we undertake in the present chapter.
In Section 6.1, we describe the language of arithmetic and present the set of its
axioms, commonly known as Peano’s axioms, which we denote by PP. The purpose
of some of these axioms (A] through A7) is to force addition and multiplication
to behave correctly; the others (the axiom scheme IS) are to sanction the well-
known proofs by induction. Superficially, these are very simple axioms and we
could even ask ourselves whether they are not too simple. Also, a question which
comes immediately to mind is whether we have forgotten to include anything that
mathematicians commonly use. The answer is no, but we will not attempt to con-
vince the reader about this. We will be satisfied to derive some easy consequences
of these axioms, for example, the commutativity and associativity of addition and
multiplication. Nothing stops the reader from deriving, from Peano’s axioms alone,
theorems such as those of Gauss or Bezout. Even far more complicated theorems,
such as those concerning the distribution of primes, can not only be expressed as
first-order formulas but can also be proved from these axioms.

There are then two natural questions that arise. The first concerns the complete-
ness of P: is it true that every closed formula of the language of arithmetic is either
provable or refutable (i.e. its negation is provable) in P? The second concerns its
decidability: is there an algorithm that allows us to determine whether a closed
formula of the language of arithmetic is derivable from P? The answer to both
these questions is negative and the concluding part of this chapter is devoted to a
proof of these facts, the famous theorems of Gédel.

To answer the second of these questions requires a coding of formulas by integers.
This dirty work is done in Section 6.3; in Section 6.2, we proceed in a different
direction. We will show that recursive functions can be represented, in a very
strong sense, by first-order formulas. To answer the questions we have raised,
we will use a ‘diagonal’ argument of the type we used in Chapter 5 for showing
that there exist recursively enumerable sets that are not recursive. As it applies to
answering the second question, this argument reminds us of the famous paradox of
Epimenides, the Cretan, who claimed that all Cretans are liars (see Exercise 15).
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In our situation, this amounts to constructing a formula which asserts that it is
itself unprovable. We will see that this formula is true in N, that it is unprovable in
P, and that it is equivalent (modulo P) to a formula asserting'that P is a consistent
theory. |

In this chapter; we deal simultaneously with the set N of ‘true integers’ and with
arbitrary models of Peano’s axioms. As pointed out in the introduction, we must
adopt two different attitudes: we will not hesitate to use all the known properties
of N; but those properties that are true in all other models of P must be derived,
sometimes laboriously, directly from P, at least in principle.

This chapter contains some rather indigestible codings. The reader who is con-
vinced that such codings are possible and do in fact permit us to obtain the expected
results may, of course, pass up a detailed reading.

6.1 Peano’s axioms
6.1.1 The axioms

The language Lo that will allow us to describe arithmetic is a finite language with
four symbols:

e a constant symbol: 0;
e aunary function symbol: S;

e two binary function symbols: + and X.

(Caution! The symbol + is an underlined plus symbol, to distinguish it from the
operation +. It has nothing to do with the sign meaning ‘plus or minus’.)’

We will agree to break the rules for writing terms of the language Lg so as to
recover the more familiar notations, vg 4+ v1 and vp X V1 instead of +wvgvy and
Xugui, respectively. This clearly necessitates the use of parentheses (as explained
in Chapter 3) for writing terms. If a problem ever arises relating to the syntax of
formulas of arithmetic, it is always possible to insist on the standard way of writing
formulas, which is the only legitimate way.

From now on, when we speak of N, we mean the Lo-structure whose base set is
the set of natural numbers and in which 0 is interpreted by the integer 0, S by the
successor function S = An.n + 1, -+ by addition and x by multiplication.

Definition 6.1 The set P of Peano’s axioms consists of the seven axioms Al
through A7 below, together with an infinite number of axioms which we will call
the induction scheme and denote by IS.

A1 Yvg—Svo =0

Ag : Yupduy (v = 0 = Sy = vo)
A3 YugVYvuy(Svo =~ Svi = vo = 1)
Ag Vvovoig’: V0
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As 1 YuoVuivg + Svp =~ _S_(voivl)
Ag: Yoguo x0 =0
A7 1 YugVuivg X Svy = (v X v1) + vo.
Finally, the induction scheme IS is the set of all formulas of Lo which are of
the form
VUI L] 'an((F[Qa U], oy Un] /\ VUO(F[U()’ Ulv LRI | Ull] é F[_SvOa Ul, ey Un]))
= YuoF[vo, v1, ..., Unl)

where 7 is an integer and F[vg, v1, ..., Us] is any formula of Ly whose only free
variables are vg, vy, ..., Uy.
Remark When we wish to prove, using IS, that a formula Flvp, vy, ..., v,] 18

provable from P, it will suffice to establish the following two facts:

@ 73 }— VUOF[Q’ U17 UZ, vy Un];
(This is called the basis step or initial step of the induction, which consists
in ‘letting vo = 0’ in F.)
e P YuVvy...Vu, (Flvo, v1, v2, ..., Unl = F[Svo, vi, v2,..., Ual);
(This is called the induction step.)

It is clear that N, viewed as an Lg-structure, is a model of P. We usually call this
the standard model of 7. We will immediately show that it is not the only one.

Theorem 6.2 There exist models of P that are not isomorphic to N.

Proof For each integer n, we let n denote the term SS... S0 consisting of n
occurrences of the symbol S followed by the symbol 0. Thus,n = §§...S0. Let
us say that an element of an Ly-structure is standard if it is the interpretation of
a term of the form n, where n € N. We see that in the standard model (and in any
model that is isomorphic to it), every element is standard. Now consider a new
language £ which is obtained by adding a new constant symbol ¢ to Lo and let T
be the following theory: '

T={-c~n: neNJUP.

Every finite subset of 7' has a model; indeed, if Tj is such a set, it is included in a
set of the form

(e ~n:nel}UP,

where [ is a finite subset of N; we can obtain a model of Ty by taking N as the base
set for an L-structure and interpreting ¢ by any integer that does not belong to /.
Then, by applying the compactness theorem (see Theorem 3.78), we conclude that
there exists a model M of T'. The model M is also, obviously, a model of P and it
contains a point, namely, the interpretation of ¢, that is not standard. The reduct of
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M to Lo (which, we recall, is the Lo-structure obtained in a natural way from M
by ignoring the interpretation of ¢) is therefore a non-standard model of P.

Nearly all the theorems of arithmetic that are expressible as first-order formulas
of L can, in fact, be proved from P (despite the fact that their ‘classical’ proofs may
use notions that do not belong to arithmetic). To illustrate how these axioms operate,
the induction scheme in particular, we will show that in models of P, addition and
multiplication are associative and commutative, as well as other properties of a
similar nature. We will observe that, in P, the derivation of these simple facts can
be rather lengthy.

Theorem 6.3 In every model M of P, addition and multiplication are asso-
ciative and commutative, and multiplication distributes over addition; moreover,
we have

o the cancellation law for addition:
M E YugVu Yua((vo +v1 = vo+v2) = V1 = v2);
e the cancellation law for multiplication:
M E YooV Yoo ((mvg =2 0 A v X v = v X V) = U1 X U);

o the formula vy (vy + vo = v1) defines a total ordering on M and this ordering
is compatible with addition and multiplication.

Proof This theorem is a consequence of the following twenty-four (1) facts.
(1) P+ Yup(0+ vo = vo).
Using A4 and As we see that

P=0 OZQ/\VU()(Qj:vo’ZUO:>Qi§vo’_\_’§vo).

If we then use the particular case of the IS where the formula F is the formula
0+ vo = vo, we may conclude that

P Yuo(0+vg =~ vg).

2) P+ VuVurS(ur +vo) = Svi -+ vo.

First of all, using A4 (twice), we have
Pt Sy +0) = Svy +0.
On the other hand, using As,

Pt S(ug + Svo) = S S(v1 £ vo) A Svi +Svo S (Svy + vo),
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and hence

P = S 4+ o) = Svi +vo = S(v1 £+ Svo) = (Svi + Svo),

and the conclusion now follows from IS.
(3) PFVu(l+v = Sv).

(Recall that 1 is an abbreviation for the term S 0.)
It is an obvious consequence of (2) that

Pt SO+ wvo) > 1+ vo;
the conclusion then follows using (1).
4) P YuoVuivg 4 v1 = v + vo.
For vy = 0, this is true by A4 and (1). On the other hand, using As,

P+ vo~+ Svi = S(vo +v1),

and from (2), we have
P Svi 4+ vo = S(vy 4 vo).

So it suffices to invoke IS.

(5) P Yug¥uYupvg + (v1 + v2) 2 (o + 1) + vy,

Once again, it is the induction scheme that will provide our proof. For the ini-
tial step (v, = 0), this equality is easily obtained from A4. We also have, from

As, that
P = g+ (01 + Su2) = v + S(v1 +v2) = S(v + (01 +12)
and
P+ (vo+v1) £ Sv2 = S((vo +vy) +v2).
Let us now turn to multiplication.
©) P I Yug(0x vp = 0).
Indeed, using Ag,

and, by A7,

so (6) follows, once again using A4 and IS.
(7 P+ Vug(vo x 1 = vp).
Invoke A7, Ag, and (1).
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(8) Vuo(l x vo = vp).
By IS: the case ‘vg = 0’ comes from Ag; also, using A7, As, and A4, we see that
PH1xSvp >~ S(1xuvo).

(9) P F YugYuiVuup X (v1 4 v2) = (v X v1) + (Vo X v2).

Use IS once again: the initial step with v2 = 0 is a consequence of Ag and Ag;
on the other hand, from As and A7, we have

P v x (v1 + Sv2) = (vo X (V1 £ v2)) & vo;
and if
P F (v x (v1 +v2)) 10 = ((vo X v1) £ (Vo X 12)) + Vo
(the induction hypothesis), then, by (5),
P ((vo X v1) = (Vo X v2)) + vo 2 (vo X v1) + (Vo X V2) +v0);
and finally, by A7,

P+ (vo X v1) + ((vo X v2) £ v0) = (vo X V1) 4 (vo X Sv2).

(10) P YugVviYua((vg X v1) X V2 = vo X (v X 12)).

Use IS once again: for the initial step with vy 22 0, invoke Ag; then, using A7,
we have -

Pt (vo x v1) X Svg > ((vo X v1) X v2) + (Vo X V1),
and, using A7 and (9),

P g x (v X Svp) = vo x (v X v2) 1)
>~ (vp x (v1 X v2)) + (vo X V1);
the conclusion now follows from (4).
(11) PE VUQVUl(voévl >~ V1 Z(_Uo).
Begin, using the same type of proof as above with IS, by showing that
P I YuoVvr (Sup X v1 = (V1 X Vo) £ v1);
then, use IS once again.

(12) P VYuoVuiVu(vo + vy = v+ v2 = Yo ~ v1).
We use IS: Ag4 for the case vy ~ 0; then As and A3,
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(13) P VYyVvi(—v; =0 = —vp+v; ~0).

Indeed, from A, and As, we obtain
P —v =0 = 3u(vy = Sva Avg+v1 = S(vg +v2)),

and, from A1,
P =S(vo+uv) =0

(14) PEVYuVui(vo+vi =0 = (vog = 0A v ~0)).
Use (13) and A4.
(15) P+ Vvo\fvl(voivl ~yg = vy = 0).

Use (12), Aq4, and (4).
To be continued in the next issue . . .

6.1.2 The Ordering on the integers

Notation Henceforth, vy < vy will be an abbreviation for the formula

Jua (va+v = vyp)
and vy < v an abbreviation for (vp < v A —vg 22 vy); the expressions vg > vy
and vy > vy will be synonyms of v; < vp and vy < v, respectively.

We will show that, in every model of P, the relation < is a total order relation
and, moreover, that it is compatible with addition and multiplication. Obviously,
in the standard model, < is the natural ordering of the integers. Note that we are’
abusing language here by using the same symbol < to denote both the abbreviation
in the language Lg and the binary relation defined in a given model by the formula
Vo < vy, L.e. the set of pairs of elements of the model that satisfy this formula. We
will use, thanks to (4), the fact that

P = VYuVur(vg < vy & Jva(vg + v 2 vp)).

(16) P+ Yuo(vg < vg).
Because P = 0 4 vg == wp.

17y PEVYyVu Yuullvp <viAv <) = v < v2).
By (5).

(18) P E VuVui((vo < vi Avy <vp) = Vo = vp).
This follows from (5), (15) and (4), and (14).

(19) P EVYuVu Yo (vg +v2 < vy +v2 & vg < vyp).
By (5) and (12).
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(20) P VYygVYui(vp < v1 V v1 < vp).
Here, we will have to use IS again. The result is clear for vg ~ 0, by (1). On the
other hand, we have, in succession,
P+ Yug(vg < Svg) (by As, taking vy = 0, and Ay);
P+ YuVvy (v < vg = v1 < Svg)  (by (1) (%)
P YugVv ((vg < v1 A V1 =2 V)
= Jua(—vp = 0 A v = vot2))  (by A4);
P YooY ((vg < vy A —vp = vg) = vz vp = vp + Svs)  (by A2);
P+ YugVYui ((vg < v1 A~V 22 vg)
= vz vy = Svotv3) (by As and (2));
P F YooV ((vg < vy A =1 2 vg) = Sug < v1). (%)

We may now deduce, from (x) and (k:), that
P b Voo(Yo1 (vg < v1 V v1 < ) = Y1 (Svg < v V up < Svp));

this completes the induction step.
(21) P VYuVuiYur(vg < vy = Vo XV = V1 X V7).
By (9) and (11).
(22) PE VYoV (—v1 0= v X v = vg).
Apply Az and A7.
(23) Pk Yug¥ur((—vo =~ 0 A =vp = 0) = —voxvy = 0).
After observing that

P - Yoo Yu3Svp X Sug = S((Svz x v3) +v2)  (by A7 and As),

we may apply A2 and Aj.
(24) P YuoVuiVYur(vgxvp X v XV = (vog = vy Vup = 0)).

Let M = (M, 0, S, +, ) be amodel of P and let a, b, and ¢ be elements of M
such that @ - ¢ = b - ¢. According to (20), we have a < b or b < a; in the first
case, for example, there exists a d such that d +a = b; hence [by (11) and (9)],
b-c=(d c¢)+(a-c). By @) and (15),d -c = 0, so the conclusion follows
from (23).

This concludes the proof of Theorem 6.3. B

Notation We will let Py denote the theory consisting of axioms A; through
A7. We will observe that this theory is extremely weak; we cannot even prove
from these axioms that addition is commutative (see Exercise 1). Nonetheless, we
will show that every model of Pg (and hence every model of P also) ‘begins’
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with a structure that is isomorphic to N. First, let us specify what we mean by
‘begin’.

Definition 6.4 Ler M and N be two models of Py and assume that N is a
substructure of M. We say that N is an inifial segiment of M, or, equivalently,
that M is an end-extension of N, if for every a belonging to N and every b
belonging to M,

(1y if M E b < a, then b belongs to N;
(2) ifbg N, then M Ea <b.

We must use caution, because Py does not prove that the relation < is an order
relation (see Exercise 1). However:

Theorem 6.5 Let M be a model of Py; then the following subset of M,
{a : there exists an integer n such that a is the interpretation of n in M},
is a substructure of M that is an initial segment of M and is isomorphic to N,

Proof Facts (25)—(29) which follow show that the map ¢, from N into M, that
sends an integer n € N into the interpretation in M of the term # is an injective
homomorphism. Properties (30) and (31) show that the image of this homomor-
phism is an initial segment of M. Before starting the proof, we offer a brief remark:
these statements involve the integers (the ‘true’ integers!), and the fact that IS is
not part of Py does not prevent us in any way from using proofs by induction on
these integers.

(25) For every integer n, we have
PobFn+1>~S8n.

In fact, there is nothing to prove: n + 1 and S n represent the same term, con-
sisting of n + 1 occurrences of the symbol S, followed by a single occurrence of
the symbol 0.

(26) For all integers m and n, we have
Porm+n~m+n.
This is proved by induction on . For n = 0, we certainly have
PoFm+0~m (by Ay).
For n + 1, under the assumption that Pp b= m +n >~ m + n, we have

PoFn+1>~Sn and Pobm+n+1>Sm+n (by (25)),

and

Pobm+Sn~Sm+n) (by As);
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putting all this together yields

Pobm+n+1lm+n+l

(27) For all integers m and n, we have
Pormxn>~m:n.

The argument is again by induction on n, For n = 0, this is Ag. On the other
hand, by the induction hypothesis, we have

Potmxn>~m-n,
and, by (26),
Pof‘ﬂl-lli_@:ln'(n—Fl).

(28) For every non-zero inieger n, we have
Po b —(n = 0).
Let m = n — 1. From (25), we obtain
Pobn~8m;
the conclusion now follows from Aj.
(29) For all distinct integers m and n, we have
Po b= —(m ~n).

By induction on inf(m, n). If one of the integers m or n is zero, the precedihg
fact applies. If not, then, by (25),

Porm>~n=Sm—-1~8n—1,

and so, using A3, we have

Pobrm>~n=m-~—1

[2

n—1;

the result now follows from the induction hypothesis.

(30) For every integer n, we have
Po b Voglug <n=> (vo 20V =1V Vg n)).
By induction on n. Let us first deal with n = 0. We must show that
Po F YueYvy(v) +vo 0 = vo = 0).

We may invoke (14) [whose proof, incidentally, did not use IS, nor did the proof
of (13); so the replacement of P by Py is legitimate]. Consequently,

Po = YooVYui (v -+ vo ~0=v~0Av ~0).
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Next, assuming the property is true for n, we will prove it for n + 1: so let M be a
- model of Py and a be a point of M such that M F a < n 4 1. It suffices to show
that there exists a p € Nsuchthat p <n+land M EFa = p.

There exists a point b of M such that M F b+a =~ Sn. Ifa = 0, we are
done; if not, by Aj, there exists a point ¢ of M such that M F a = Sc; by As
and A3z, we see that M F b+c¢ >~ n, hence M F ¢ < n and we may use the
induction hypothesis to conclude that there exists m < n such that M F ¢ = m;
thus M E Sc >~ Sm,ie. MFa=m+1.

(31) For every integer n, we have
Po = VYug(ug < nvn <uvp).

By induction on n. For n = 0, this is obvious from A4 and the definition of <.
Suppose the property is true for n. Consider a model M of Pp and a point a of
M. We have to show that MFa <n+lorMFEn+1 <a.Ifa =0, this is
obvious. If not, there exists a b € M such that M F a = Sb; so it follows by the
induction hypothesis that either M F b < n or M E n < b. In the first case, there
existsac € M such that M F c+b ~n,soby Asand 25), MFc+a=n+1
and so M F a < n+ 1. In the second case, there exists a d € M such that
MEd+n>bsoMEd+n+1~aandso MEn+1<a. B

Some additional properties of models of P will be found in Exercise 2.

6.2 Representable functions
‘Recall that F p denotes the set of total functions from N” into N.

Definition 6.6 Let f € F), and let Fluvg, vy, ..., vp] be a formula of Lo with no
freevariables other than vy, vy, .. ., vp. Wesaythat Flvg, vy, ..., vplrepresents f
if, for every p-tuple of integers (n1, na, ..., ny), we have

Po b= Yuo(Flvo, nysng, ... npl < vo = f(n1, 12, ..., 1np)).

The function f is said to be representable if there exists a formula that
represents it

Therefore, to say that a formula F represents f means that, for every model M
of Py and for every sequence of integers (n1,n2,...,np), there exists
one and only one element x of M satisfying Flx,ny,n,,...,n,] and this
element is the (standard) element of M that interprets the term f(ny, na,...,n »)
which, we recall, consists of the symbol S repeated f (11, na, ..., np) times, fol-
lowed by 0.

This definition can be adapted to subsets:

Definition 6.7 Let A C N” and let Flug, v, . . ., vpl be a formula of Lo with no
freevariables otherthan vy, vy, . . ., vp. Wesay that Flvo, vi, . .., vp]lrepresents A
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if, for every p-tuple of integers (ni,na, ..., np), we have

@ lf(nl)n2a '-‘)np) € Athen 7)0 i_ F[Q1522> -~-9llp];

o if(n1,n2,...,p) ¢ AthenPy I—%F[Ql,y_z,‘..,gp].

We say that the set A is representable if there exists a formula that represents it.

Remark A subset A C NP is representable if and only if its characteristic
function is representable: it is easy to verify that, if F* represents A, then the
formula

(Flvy, ..., vp) Avo = DV (<F i, ., ] Ao = 0)
represents the characteristic function of A; conversely, if Glvp, v1, ..., vp] repre-
sents the characteristic function of A, then G[1, vy, ..., vp] represents A.

Let us give a few examples of representable functions with their corresponding
formulas:

o The successor function is represented by the formula vo =~ Sv; [see item (25)
of the previous subsection].

o Addition Axy.x -+ y is represented by the formula vy =~ v1 4 v2 [item (26)].
e Multiplication Axy.x -y is represented by the formula vy 2 vy X vy [item (27)].

o The projection functions are also representable: the function PI’; is represented
by the formula vy = v;.

o The constant function equal to n is represented by the formula vg > n.
In fact, every recursive function is representable.

Theorem 6.8. (The representation theorem) Every ( fotal) recursive function is
representable.

Proof With what we have seen, it suffices to show that the set of representable
functions is closed under composition, the (total) p-operator and recursion (see the
remark that followed Theorem 5.29). This is the purpose of the following
lemmas.

Lemma 6.9 The set of representable functions is closed under composition.

Proof Let fi, f2, ... f,} € Fpand g € F, and suppose that, for every i

from 1 to n inclusive, f; is represented by Fj [vo, v, ..., Up] and that g is rep-
resented by Glug, vy, ..., vpl. It is immediate to verify that g(fi, f2, ..., fa) 18
represented by

3w13w2 v -Hwn<G[UO, wl»w2, e wn] A /\ Fl[wH Ula UZ’ ] Up])

1<i<n
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Lemma 6,10 Let A € NPt be a representable set such that the function
fGnxa, oo xp) = uy(y, x1,x2, ..., %, € A)
is total; then f is representable.

Proof Let Fluvg, v1,...,vp] be a formula that represents A. We will show that
the formula

G = Flvg, v1, ..., vpl AVw < vo—Flw, ULy v Upl
represents f. Indeed, let M be a model of Py and let ny, 1, ..., n, be integers.
We must show that the interpretation, b, of f(ni,n2,...,n,) in M is the only
element of M that satisfies the formula Glvg, 1,1y, ..., 1 p]. First of all, since

F represents A, we have

Pot Flb,ni,ng, ... npl,

and, since M is a model of Py, b satisfies Flvg, ny, na, ..., npl in M. Also, if
c is an element of M that is less than b, then, according to Theorem 6.5, ¢ is a
standard element; so, by definition of f, it does not satisfy F[uvg, n1, A, ..., Apl.

Hence, b satisfies G[vo, n1, na, ..., npl. Moreover, suppose d is an element of M
that satisfies Glvg, n1, na, ..., n,]; neither d < b nor b < d can hold in M; but,

since b is standard, Theorem 6.5 guarantees that d < b or b < d. The conclusio
is that b = d.

We have now arrived at the most delicate point in the argument: it involves
definition by recursion. To deal with this, we have to introduce a clever func-
tion, Godel’s function, f, whose role is to code the finite sequences of
integers,

Lemma 6.11 There exists a function B of three variables which is recursive and
representable and which has the property that, for all p € N and for every sequence
(n1,n2,...,np) € NP, there exist integers a and b such that, for all i between 1
and p inclusive, we have B(i, a, b) = n;.

Before we prove this lemma, let us use it to conclude the proof of the represen-
tation theorem. The next lemma supplies what remains to be proved.

Lemma 6.12 Let g € Fp, and h € Fpqo be two representable functions. Then
the function f € F 1.1 defined by recursion from g and h by

f(xl,xz’ "-,x[)’ 0) :g(x17x2» -"axp)

f(xl) xza e 7xp’-xp+l + 1) - h’(xl,XZa . ~a~xp7 .XP+], ‘f(XI, x2, e ,XP, xp-l—l))

is also representable.
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Proof To express that y = f(x1,x2,...,Xp, Xp+1), we state that there exists a
finite sequence of integers (z(0), z(1), ..., z(xp+1)) such that ‘

Z(O):g(xl,x2a---’xp): Z(xp-i-l):y’

and, for all i between 0 and xp41 — 1 inclusive,
2+ 1) =h(x1,x2, ..., %p, 1, 2(i)).

Obviously, to express ‘there exists a sequence ... ", we say that there exist two
integers that code this sequence by means of the function B.
Let g and & be represented by the formulas

G[UOaUla'--’vp] and H[UO’UI, -‘-avp—i-Z],

respectively. For the function B, we must be slightly more cautious: let
B[vg, v1, v2, v3] be a formula that represents B. This function will also be rep-
resented by the following formula:

B'[vo, v1, v2, v3] = Blvo, v1, v2, 3] A Yug < vo—Blvs, v1, v2, v3].

The advantage of B’ over B is that if M is any model of Py, if x is a standard
element of M (the interpretation in M of p for some intuitive integer n), and if
a, b, and c are three elements of M such that

ME B'[x,a,b,c],

then there is no other point in M, standard or not, that satisfies B'[vg, a, b, c].
We are going to verify that the formula F[vo, vi, V2, ..., Up, ¥ p+1] that follows
represents the function f: '

Jw; Iwy Gwo(B'[wo, 1, wi, w2l A Glwo, v1, v2, ..., Vpl)

AYw3 < VptFwadws(B'[wg, Sw, wi, w2] A B'{ws, S Sw3, wi, wal

A H[va Ul) U2, MR} vp7 U)3, w4]))'

[First, a note that explains how to read this formula: the variables w; and w;
represent integers a and b such that, for alli from 0 to x 41 inclusive, f(x1, x2, ...,
Xp, 1) is equal to B(i + 1,a,b), wy should assume the value g(x1,x2, ..., Xp),
and if 0 < w3 < npy1, then wy should be equal to f(xj, x2, ..., Xp, w3) and ws
to f(x1,x2, ..., xp, w3 + 1).]

So, let ny, ny, ..., npyi be integers, M a model of Py, and ¢ a point in M.
First, it is clear that if

MEc> f(ni,n2,...,np31),

then

M t: F[Caﬂlaﬂzs --"Qp+]]'
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The values that must be assigned to the variables w; and w; to witness that this
_ formula is true are precisely the interpretations of ¢ and b, where a and b are
integers that code the sequence

(f(nl,nz,..‘,np,O),f(nl,nz,...,np, 1),..,,f(711,112,...,np,np+1))

by means of the function 8 and whose existence is guaranteed by Lemma 6.11.
Conversely, suppose that

ME Fle,ni,ng, .. nppl;

we have to show that ¢ is the standard element that is the interpretation of
fy,na, oo nppr).

Because Flc,ny,ny, ..., npy1]is true in M, we know that there exist elements
a, b, and d in M such that

ME B'ld,1,a,b] AGld,ny,ny, ... ,nplV B'lc,np41,a,b]

and, for every integer i satisfying 0 < i < n,41, there are elements r; and s; in
M such that

ME B'[r;, Si,a,b) A B'[si, S Si,a, bl A Hlsi,n1,n2, ..., np,i,ril.

Because G represents g, M F d =~ g(ny, ny, ..., np). Since the formula B" was
chosen so that, for all x, y, and z in M, there is at most one point satisfying
B’[vg, x, y, z], we conclude that d = rg, that ¢ = Snpe1—1 and that, for all / with
0 <i <npyy, rip1 = s;. By using the definition of H, we can then conclude, by
induction oni < nyyq, that

Mi:rigf(nlsnzy-‘-anp:i)

and hence that M F ¢ >~ f(ny, n2, ..., np41).

We should note that, in Lemma 6.11, it is the representability of 8 that is dif-
ficult to guarantee; otherwise, the function & that was introduced in Chapter 5
would do perfectly well. This function is primitive recursive and we could con-
clude, in the end, that it is representable; but at the moment, we cannot make this
assertion.

Let us now return to the proof of Lemma 6.11.

Proof To define this function, 8, we mustuse some elementary facts of arithmetic,
in particular, the following classical result that is known as the Chinese remainder
theorem.
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Theorem 6.13 Let (bo, b1, ..., by) be a sequence of elements of N that are
pairwise relatively prime and ler (o, 1, ..., 0n) be a sequence of the samé
length of elements of N. Then there exists a € N such that, for all i from 0 to n
inclusive,

a is congruent to o; modulo b;.

(The proof of this theorem is given in Exercise 3.)
By definition, B(i, a, b) is the remainder of the (Buclidean) division of b by
a(i + 1) + 1. First of all, it is easy to see that f is represented by the formula

Blvo, v1, v2, v3) = Fua(vz = (vax S(v2x Sv1))+vo)
A vy < S(v2Xx Sv1).

Also, it has the desired property. To see this, let (ao, o1, .. , o) be a se-
quence of integers. Choose an integer m greater than n + 1 such that, if we set
a = m), then a is greater than or equal to all the ;. For i from 0 to n inclu-
sive, the integers a(i + 1) + 1 are pairwise relatively prime: for suppose that
0 <i < j < n and that ¢ is a common prime divisor of a(i + 1) + 1 and
a(j + 1) + 1; then ¢ must also divide the difference a(i — j) = ml({i — j) and
is hence less than or equal to 7; but this is impossible since it must also divide
m!i(i+1)+1.

So by the Chinese remainder theorem, there exists an integer b such that, for all
i from 0 to n inclusive, we have

b is congruent to o; modulo a(i + 1) + 1,

and, since o; < a < a(i + 1) + 1, we do have (i, a, b) = o;. [ |
This concludes the proof of the representation theorem. B

It clearly follows from this that every recursive set is representable. Moreover,
let P’ be any theory that includes Py (P, for example). It is clear that if f € 7
is represented by the formula F, and if (ny, no, ..., np) is a sequence of integers,
then P’ + Yug(F[vo, ni, 2, -« ip) € Vo = f(r1, A2, ... Hp)).

6.3 Arithmetization of syntax
6.3.1 The coding of formulas

In this section, we will code terms and formulas of a finite language by integers.

We could do this for any finite language, and even for certain infinite languages;
but to avoid overly complicated notation, we will be content to treat L. Our goal,
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above all, is to prove that the set of universally valid formulas of this language
is recursively enumerable. The coding will make use of the functions ¢; and ﬂij
introduced in Chapter 5 in the subsection on coding of sequences. We will also
need the following little lemma.

Lemma 6.14 Assume that p and n are integers, that kiko, ... ky € Fy,
g € Fp,h € Fuypy1, andthat, forally > Oandi from 1 to n inclusive, ki (y) < y.
Then the unique function determined by the following conditions

FO,x1,...,xp) = glx1, ..., xp);
f(y:xh"'axp) :h()’, f(kl()’)»xl, ---axp)7f(k2(y)’x17 ---’xp)a AR
f(kn(y)vxh---;xI)),XI,...,xP) l_fy>0,

is primitive recursive.

Proof 'We have here a definition by recursion that does not quite fit the framework
of Definition 5.1. To justify it, we will make use of

e the function Q2 from Definition 5.5, which will serve to code the sequence of
values of (i, x1,x2,..., xp) for i from 0 to y;
e the function 7 [ (n) is the (n + 1)st prime number]; and

e the function § from Definition 5.5 (which allows us to decode Q).

Define the function ¢ by

(0, x1, 32, xp) = 2802 e)

GO+ 1Lx,x2, .00, xp) =0y, x1, X2, ..., xp) (Y + 1),
where

y =h(y+1,

Stki(y+ 1), (v, x1, x2, ..., xp)),

Ska(y + 1), ¢y, x1, X2, ..., Xp)), .. -,

S(ky(y + 1), ¢(y, x1, %2, .., Xp)), X1, X2, -+, Xp).

So the function ¢ is primitive recursive and, as a consequence, so is f since

f()’, X1 X250 axp) = 8()’5¢(y7x]’x2’ s ’XP))'

We can now proceed to the coding of terms. The idea is to code a term ¢ by
a triple of integers (a, b, ¢) whose third coordinate, ¢, will distinguish whether
! is an elementary term, or a term of the form Sty, or of the form £ + 1 or of
the form #; X 2. Depending on the situation, coordinates a and b will code the
elementary term that is equal to ¢ or to the terms ¢; and #; from which ¢ is built.
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Obviously, the triple (a, b, ¢) can be viewed as a single integer with the help of the
function «3. :

Definition 6.15 By induction on the term t, we will define an integer, denoted by
#t, that we will call the Godel number of t.

Ift =0, then #t = «3(0, 0, 0);

ift = vy, then #t = as(n + 1, 0, 0);

ift = Sty, then #t = a3 (#11,0, 1);

ift =ti4t, then#t = az(#t, #12,2);

ift =t xt), then#t = az(#,#1,3).

Lemma 6.16 The set Term = {#t : t is a term of Lo} is primitive recursive.

Proof Indeed, the characteristic function g of the set Term can be defined in the
following way:

g(0) =1 g(l) =1;
and for x > 1,

if‘ﬂ?(x) =0 and B%(x) =0, theng(x)=1;

if 3(x) =0 and B2(x) #0, theng(x) =0

if f2(x) =1 and B2(x) £0 theng(x) = 0;

if B300) = 1 and B3(x) =0, then g(x) = g(B}(x));

if B3(x) =2, then g (x) = g (B3 (x)) - (B3(x));
if B3(x) =3, then g(x) = g(B53(x)) - g(BF(x));
if B3 (x) > 3, then g(x) = 0.

When we refer to the definitions in the subsection from Chapter 5 on codings
of sequences, we see that, if x > 1, then ﬂ31 (x), ,832 (x), and ,B;’ (x) are strictly less
than x; so Lemma 6.14 can be applied. |

This coding is injective: for if #f = #t/, then t = t’. The reader who is not
convinced can prove this by induction on the term ¢.

Next, we proceed to the coding of formulas. We employ the same principle.
Atomic formulas will be recognized by having the third coordinate equal to 0; for
a negation, the third coordinate will be equal to 1, for a conjunction to 2, and so
on. The code of a formula F will, by analogy with the above, be denoted by #F
and will be called the Godel number of F.

HF =1t >t then#F = a3(#t, #t, 0);
if F=—Fy, then #F = a3 (#Fy, 0, 1);
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if F=(FiAF), then#F = q3#F,,#F,2);

if F = (F| v F), then#F = as(#F,, #F,,3);

if F = (F| = F»), then #F = a3 (#Fy, #F5, 4);

if F = (F) & F»), then#F = a3(#F,, #F,, 5);

if F=VYuv,Fy, then #F = a3 (#Fy, n, 6); |
if F = 3u, Fy, then #F = a3 (#Fy, n, 7). |

We have the analogous lemma.

Lemma 6.17 The set Form = {#F: F is a formula of Lo} is primitive recursive.

Proof The same type of proof is always involved. If g is the characteristic
function of Term, then the characteristic function # of Form can be defined as
follows:

if B3(x) =0, then h(x) = g(B3(x)) - g(B5 (x));
if B3(x) =1 and B2(x) #0, then h(x) = 0;
if 3(x) =1 and B3(x) =0, thenh(x) = h(Bi(x));

if B3(x) =2,3,40r5, then i (x) = h(BL(x)) - h(B3(x));
if B3(x) = 6 or7, then 1 (x) = h(BL(x));
if B3(x) > 7, then 2 (x) = 0. B

We observe, as for terms, that the coding is injective.
~+ We must also prove that the operations that are performed on formulas (e.g.
substitutions, the recognition of free or bound variables, etc.) can be coded by
primitive recursive functions of Godel numbers.

Lemma 6.18 The following sets are all primitive recursive:

(#t,n) 1 tis aterm in which v, does not occur};

ll

(#t,n) : tis a term in which v, does occur};

(#F,n) : Fisaformula in which v, does not occur},

I

i

Ch
Gl
0
@y
Dy #F,n) : Fis aformula with no bound occurrence of v, };
Dy

{
{
{
{#F,n): Fis aformula with no free occurrence of v,};
{
{

I

#I . F isaclosed formula};
®y = ((#F,n) . Fisaformula that contains a free occurrence of v,};

D5 = ((#F,n) : Fisaformula that contains a bound occurrence of v,).

Proof We will be content to treat ®g and ®;. We will again denote the
characteristic functions of Term and Form by g and h, respectively. The char-
acteristic function of ®g, which we will denote by go, can be defined by the
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following conditions:
if B3(x) =0, then go(x, y) = 1
if and only if B7(x) = 0 and Bi(x) #y + ;
if 3(x) =1 and BZ(x) #£0, then go(x, y) = 0;
if B3 (x) =1 and B5(x) =0, then go(x, y) = go(Bs(x),y);

if B3(x) =2 or 3, then go(x, y) = go(Bi (), )
-g0(B2(x), y);
if /333(x) > 3, then go(x, y) = 0.
Now let & be the characteristic function of ®. Then
if B3 (x) = 0, then 11 (x, y) = go(Bl(x), y)
-80(B3(x), ¥);
it B3(x) =1 and B2(x) #0, then A1 (x, y) = 0;
if B3(x) =1 and B2(x) =0, then 1 (x, y) = h1 (B} (x), );
if B3(x) = 2,3,4,0r5, then 1 (x, y) = h1 (B (x), )

h1(B3(x), ¥);
if B3(x) =60r7 and B2(x) #y, thenhy(x,y) = h1(B(x), y);
if B3(x) =60r7 and B2(x) =y, thenh(x,y) = h1(B3 (x));
if B3(x) > 7, then A1 (x, y) = 0.

Itis obviously Lemma 6.14 which allows us to conclude that these sets are primitive
recursive, o

Let us now move on to substitutions. It is not surprising that we have

Lemma 6.19 There exist two primitive recursive functions Subs; and Subs rof
three variables such that if t and u are terms and if F is a formula, then for every
integer n,
Subs(n, #t, #u) = #u,),,;
Subsyg(n, #t, #F) =#F/,,.
(The notations u; /y, and Fy/,, were defined in Chapter 3.)

Proof Once again, we will use Lemma 6.14. First, we will define Subs; by the
following conditions:

if B3(x) =0, then
x ifx#£a3(n+1,0,0),
y if not;
if ﬂg’(x) =1 and ,832(x) =0, then
Subs;(n, y, x) = a3(Subs,(n, y, f3(x)), 0, 1);

Subs;(n, y, x) =
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if 3(x) =2o0r3, then

Subsi(n, y, x) = a3 (Subs, (n, y, B3 (x)), Subs; (n, y, B3(x)), B3(x));
in all other cases, we arbitrarily set Subs;(n, y, x) = x.

Next, for the function Subs ¢, the situation is slightly more complicated because
the substitution can only take place at free occurrences of the variable:
if B3(x) =0, then
Subsyg(n,y, x) = az(Subs;(n, y, ,831 (x)), Subs¢(n, y, ,332(x)), 0);
if 5(x) =1 and B2(x) =0, then
Subsy{n,y, x) = az(Subsy(n,y, ,BB} (x)),0,1);
ifﬁ;’(x) =2,3,4, or5, then
Subsg(n, y, x) = az(Subsg(n, y, ﬂ%(x)), Subs¢(n, y, ,Bgz(x)), ﬁg(x));
if B3(x) =6o0r7, then
Subsg(n, y, x)
X if B2(x) = n,
as(Subsy(n, y, B3 (x)), B5(x), B53(x))  otherwise;

in all other cases, we arbitrarily set Subs¢(n, y, x) = x.

6.3.2 The coding of proofs

We must, at this point, deal with the slightly more difficult question of the decid-
ability of propositional calculus. We will return to this calculus momentarily. Thus
we have, in addition to the propositional connectives, an infinite set of proposi-
tional variables Ay, A, ... . We begin by establishing a coding of propositional
formulas analogous to the ones that have preceded. Corresponding to a formula
P, we will have its Godel number, # P, defined as follows:

if P = A,, then #P = «as3(n, 0, 0);

if P =—Py, then #P = a3(#P1,0, 1);
ifP=(PLAP), then#P = as(#Py,#P,,2),
if P=(PVP), then#P = az@#P,#P,3),
it P=(P = P), then#P = as(#Py,#P, 4);
it P=(P) & P), then#P = as(#Py,#P,,5).

As is now our habit, we observe that the set
Prop = {(#P : P is a proposition}

is primitive recursive.
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Theorem 6.20. (The decidability of propositional calculus) The set
T = {#P : P is atautology)
is primitive recursive.
Proof With each integer k, we associate the assignment of truth values Ay, which

is defined by

1 if w(n) [the (n + 1)st prime number] divides k;

A (Ay) =
k(An) 0 otherwise.

Now let ¢ be an integer and let A be any assignment of truth values. We can
easily find an integer k such that, for all i < ¢, A¢(A;) = A(A;). It suffices to take

k= H JT(i))”(Ai),
0<i<c

and we observe that k can be chosen to be less than or equal to 7 (c)!.

Let P be a propositional formula. We wish to determine whether P is a tautology
or not. First of all, it is clear that if A, is a propositional variable that oceurs in P,
thenn < #P. From all that we have said, it follows that P is a tautology if and only
if, for every integer k < w(#P)!, Ay (P) = 1. So we will begin by proving that

Lemma 6.21 The function E defined by
E(k,x) =0 ifx is not the Godel number of a proposition;
E(k,x) = M (P) if x is the Gddel number of a proposition;
is primitive recursive.

Proof Again,itis Lemma 6.14 that comes to the rescue. Indeed, E can be defined
in the following way:

if x ¢ Prop, then E(k, x) = 0;
if x € Prop, then
if B3(x) =0, then
if 7t(,831 (x)) divides k, E(k,x) =1,
ifft(,331 (x)) does not divide k, E(k,x) = 0;
if B3(x) =1, then E(k,x) =1 — E(k, B3 (x));
if B3(x) =2, then E(k,x) = E(k, B(x)) - E(k, B2(x));
if B3(x) =3, then E(k, x) = sg(E(k, 5(x)) + E(k, B3 (x)));
if B3(x) =4, then E(k,x) = sg(E(k, B3(x)) + | — E(k, BL(x)));

1 if E(k, B3 (x) = E(k, B2(x));

if B3(x) =5, then E(k, x) =
Fs) (%) 0 otherwise. |
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So to conclude the proof of the theorem, it is sufficient to observe that
xeT ifandonlyif Vk<mOG)EEKk, x)=1.
Theorem 6.22 The set
Taut = (#F : F is a formula and is a tautology of the predicate calculus)
is primitive recursive.

Proof With each formula ¥, we will associate a proposition P that is obtained as
follows: write F in the form P[Fy, F,, ..., Fi], where P is a proposition whose
propositional variables are Ay, Ay, ..., Ay and where the formulas Fy, Fy, . ..,
F} cannot be further decomposed using propositional connectives; in other words,
each formula F; is either an atomic formula or a formula that begins with a quan-
tifier. (See Chapter 3 for a definition of the formula P[Fy, F», ..., F;].) For each
iI,set#F; = ¢(i) and

Prp = P[Acy, Ac), - - - Ac -

Then F is a tautology of the predicate calculus if and only if P is a tautology: in
one direction, from left to right, this is just Lemma 3.49. In the other direction, from
right to left, suppose that F = J[Gy, G3, ..., G,,] where the G, are formulas of
the language Lo and where J[B1, By, ..., By,] is a propositional formula that is a
tautology; it is then important to note that there is an obvious relation between the
propositional formula J and Pp: precisely, P is obtained from J by substituting,
for the propositional variables By, By, ..., B,,, appropriate propositional formulas

~constructed from the variables Acq1y, Ace), ..., Acy. Without providing a real
proof of this assertion, we are satisfied to note that the formula P represents, in a
certain way, the maximal decomposition of F into propositions, that this maximal
decomposition is unique up to the names of the propositional variables, and that
the formula J represents an intermediate stage of the decomposition. It is then a
consequence of Corollary 1.23 thatif J is a tautology of the propositional calculus,
then so is Pr. As aresult, it suffices to construct a primitive recursive function y
such that, for every formula F, y (#F) = #Pr. We will then have

x e Taut ifandonlyif x € Form and y(x) € 7.

As usual, we invoke Lemma 6.14 and define y as follows:

if ﬁg(x) =0,6,o0r7, then y (x) = a3(x, 0, 0);

if p3(x) =1, then y (x) = a3(y (B3 (x)), 0, 1);
if B3(x) =2,3,4,0r5, theny(x)=as(y (B3 (), ¥ (B3 (x)), B3(x));
if ,Bg (x) > 17, then we arbitrarily set y (x) = 0. B

We have now accumulated all we need to prove that the set of logical axioms is
a primitive recursive set.
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Theorem 6.23 The set AX = {#F . F is a logical axiom} is primitive recursive.
Proof (a) The set |
AX] = [#(@vF & —=Vu—F): Fis a formula and v is a variable}

is primitive recursive.
To see this, perform the easy calculation which shows that

#(FvF & —Vu-F)
=a3(ea(#F,n,7), a3(a3(3(#F, 0, 1), 1, 6),0,1), 5).

Hence x € Axj if and only if there exists y < x andn < x such that y € Formand
x =as(es(y,n,7), ez(az(ea(y, 0, 1),7,6),0,1),5).
(b) The set

Axy = [#NMVv(F = G) = (F = YvG)) : F and G are formulas

and v is a variable that has no free occurrence in F'}

is primitive recursive.
The argument is the same: x € AXy if and only if there exists y, z, and n less
than x such that (y, n) € ®1, z € Form and

x = az(as(as3(y, z2,4),n,6), a3(y, a3(z,n,6),4),4).
(c) The set

Axy = {# (YoF = F;y) i visavariable, F isajformula, t is aterm
and any free occurrence of v in F does not lie within
the scope of a quantifier that binds a variable of t}

is primitive recursive.
One must first be persuaded that the set

B ={(#F,n, m) . any free occurrence of vy, in F does not

lie in the scope of a quantifier Yv, or 3v,}

is primitive recursive. As usual, this is done using Lemma 6.14. The characteristic
function g of B can be defined as follows:
if x ¢ Form, then g(x,n,m) =0,
if x € Form, then
if B3(x) =0, theng(x,n,m)=1;
if B3(x) =1, then g(x,n,m) = g(B3(x), n, m);
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Cif B3 (x) €{2,3,4,5), then
glx,n,m) = g(ﬂ31 (x),n,m) . g(,B32(x), 1, m);
if B3(x) € (6,7}, then
if ﬂ31 (x) =n and (/33] (x),m) € &4, then g{x,n,m)=0;

otherwise, g(x, n, m) = g(ﬁg (x), n, m).
To conclude, observe that

x € Axz if and only if there exist y, z, and m less than x such that
y € Form, z € Term, foralln < z, ((z,n) € ®g or (y,n, m) € B)
and x = a3(a3(y, m, 6), Subss(m, z, y), 4). &

Definition 6.24 (1) Let T be a theory; we say that T is recursive if the set
#T = #F . F € T}

is recursive.

(2) Let Th(T') = (#F : F is a closed formula and T + F}
[Th(T) is the set of Gddel numbers of theorems of T1.

(3) We say that T is decidable if Th(T) is recursive. An undecidable theory is
a theory that is not decidable.

Remark To be recursive is a reasonable requirement for a theory; we might
even say that non-recursive theories are artificial: how could we hope to deal with
derivations if we do not have effective knowledge of the axioms? By contrast, we
will see many natural and interesting theories that are undecidable.

Example The empty theory is recursive; the set of its theorems is simply the set
of closed valid formulas. Finite theories such as Py are also recursive. It is not
difficult to see that P is recursive.

Notation Letd = (Fp, Fy, ..., Fy) be a sequence of formulas of the language
Lo; ##d is the integer defined by

#d = Q(HFo, #F, ..., #F))),

where €2 is the function introduced in Definition 5.5. We will again refer to ##d
as the Godel number of d .

Proposition 6.25 Let T be a recursive theory; then the set

Drv(T) = {(n,m) :n =#F, m = ##d, F is aformula

and d is a derivation of F in T}

is primitive recursive.
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Proof Tt suffices to refer to the definition of a derivation (see Definition 4.3) and
to realize that the procedure for recognizing whether a sequence of formulas is a
derivation is an effective one;

(n,m) € Drv(T) if and only if the following three conditions are satisfied
[below, Ig(m) denotes the length of the word coded by m]:

(1) foralli <lg(m), 8@, m) € Form;
(@) 8(g(m) —1,m) =n;

(3) foralli < Ig(m), (i, m) € AXU#T, or there exist j < i and p < m such
that §(i, m) = «3(8(j, m), p, 6), or there exist j < i and k < i such that
8(j,m) = a3(6(k, m), 80, m), 4).

Clause (3) expresses that each formula in the derivation is either an axiom
[if 8(i,m) € AxXx U #T], or a formula derived by generalization from a for-
mula already proved [if there exist j < i and p < m such that §(i, m) =
a3(8(j, m), p,6)], or a formula derived by modus ponens from two formulas
that are already proved [if there exist j < i and k < i such that §(j, m) =
a3 (6(k, m), (i, m), 4)]. |

Corollary 6.26 Let T be a recursive theory; then Th(T) is recursively enumer-
able. In particulay, the following sets are recursively enumerable:

{#F : F is a valid closed formula};

(#F : F is a theorem of Po};

{#F : F is a theorem of P}.
Proof Indeed,n € Th(T)ifandonlyifn € @3 and there exists an integer m such
that (n, m) € Drv(T); thus Th(T) is the intersection of a recursive set with the

projection of a recursive set, so it is recursively enumerable (see Theorem 5.39).
[ |

We end this section with another corollary. »
Corollary 6.27 If the theory T is complete and recursive, then it is decidable.

Proof We already know that Th(7') is recursively enumerable; if we show that its
complement is also recursively enumerable, the result follows from Theorem 5.38.
Because T is complete, if F is a closed formula that is not a theorem of 7', then
—F is a theorem of T'; this fact is equivalent to

m ¢ Th(T) ifandonlyif m ¢ ®3 or a3(m,0,1) e Th(T).

6.4 Incompleteness and undecidability theorems

6.4.1 Undecidability of arithmetic and predicate calculus

The last corollaries of the preceding section leave the following questions wide
open: Is the empty theory decidable? Is Py decidable? What about P? In this
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section, we will answer no to each of these three questions and prove the most
~ famous theorems of mathematical logic.

In this entire section, the theories under consideration are expressed in a finite
language that includes Lo (see the introductory remarks at the beginning of the
previous section).

Theorem 6.28 LetT be a consistent theory that extends Po; then T is undecidable.

Proof We will assume that T is a decidable theory that includes Py and construct

aclosed formula F of Lg such that 7' = F and T + —F. To do this, we will employ

the results from Section 6.2 on the representation of recursive functions.
Consider the set

® = {(m, n) : m is the Godel number of a formula F[vg]
whose only free variable, if any, is vy and T + F[n}}.

It is clear, first of all, that because T is decidable, ® is recursive: indeed, the set A
of Godel numbers of formulas whose only free variable, if any, is vg is recursive
since m € A if and only if, for all p from 1 to n inclusive, (m, p) € ©4 (see
Lemma 6.18). The function An #n is also recursive; it can be defined by recursion:

#0 = «3(0,0, 0);
#(n+ 1) = a3(#n, 0, 1).

So we see that
(m,n) € ©® ifandonlyif m € A and Subsy¢(0,#n,m) € Th(T). .
It follows that the set
B={neN:(nn)d¢ 06}

is also recursive, so by the representation theorem (Theorem 6.8), there exists a
formula G[vg] which represents it. Consequently, we have that, for all n,

n € B implies Po = G[n], andhence T+ G[n]; (%)
n ¢ B implies Po - —G[n], andhence T F —G[n]. (k)

Moreover, #G[vg] is an integer that belongs to A; we will call it . Observe first
that @ cannot belong to B: by definition of B, this would imply that (@, a) ¢ ® and,
by definition of ®, that T + G[a] is false; this contradicts assertion (%) above.
So we must conclude that a ¢ B and that (a, a) € ®. On the one hand, we have
T = G[a] by definition of ®; on the other hand, (xx) implies that T - —G[a ].
So T is inconsistent. &

The following corollary is Church’s theorem. It establishes the undecidability
of predicate calculus.
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Corollary 6.29 The set
To = {F : F is a universally valid closed formula of L}

s not recursive.

Proof Let G be the conjunction of all the axioms of Pg (this is where we con-
gratulate ourselves for having worked with a finite theory!). It is then clear that,
for every closed formula F of L,

Pob F ifandonlyif (G = F)eTp.

So if T were recursive, Py would be decidable; but this is false according to the
previous theorem. |

Remarks The statement of this last corollary makes sense only if we have arith-
metized the syntax of £; but its proof is independent of this arithmetization as long
as it extends the one we have provided for Lo.

The undecidability of predicate calculus has been proved here only for languages
that include the language of arithmetic; we will see in Exercise 11 that it suffices
to assume that the language contains at least one binary predicate symbol. But
the theorem is false for very weak languages that only contain unary predicate
symbols.

6.4.2 Godel’s incompleteness theorems

Here is the first incompleteness theorem (of Godel-Rosser).

Theorem 6.30 Let T be a consistent recursive theory that includes Py; then T is
not complete. In particular, P is incomplete.

Proof With what we have so far (Theorem 6.28), we need only recall that a
complete recursive theory is decidable (Corollary 6.27). Bl

There are, therefore, closed formulas of Lg that are neither derivable nor refu-
table from Peano’s axioms. By following the proof of the incompleteness theo-
rem, we could, if we wished, succeed in constructing such a formula. But this
would not tell us whether this formula has a meaning, or, if it does, what this
meaning is.

Godel’s second incompleteness theorem provides a striking response to this
question: it presents a formula which expresses that the axioms of Peano are
consistent. This formula is true in the standard model, but, since it is not derivable,
there are, by the completeness theorem of Chapter 4, models of Peano’s axioms in
which it is false.

The statement itself of the second incompleteness theorem requires some nota-
tion and a bit of work. Let T be a recursive theory that includes P; consider the
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following two recursive sets, Drv and Drvy, defined by:

Drv = {(a, b) : a is the Godel number of a closed formula F and
b is the Godel number of a derivation of F in T'};

Drvg = {(a, b) : a is the Godel number of a closed formula F and
b is the Godel number of a derivation of F in Pg}.

According to the representation theorem, there are two formulas, each with two
free variables, of the language of arithmetic that represent these sets. We will
choose two such formulas and denote them by Drv and Drvg, respectively (we
will return later to the question of how this choice is to be made). The consis-
tency of the theory T then becomes expressible by a formula of L. It suffices
to say that it is impossible to derive both a formula and its negation. For this
purpose, we will define the primitive recursive function ng from N into N as
follows:

e ifn is the Godel number of a closed formula F, then ng(n) is the Godel number
of —F; in other words, ng(n) = a3(n, 0, 1);

o ng(n) = 0, otherwise.

Now, let Neglvg, v1] be a formula that represents this function. The formula
Con(T) is then, by definition, equal to the formula

—3voIvyJvaTvz (Drvvg, v2] A Drv[vy, v3] A Neglvg, vi]).

The formula Con(T') well deserves its name: suppose thata theory T is inconsistent;
then there exists a closed formula F and two derivations from 7, say dg and dy,
of F' and of —F, respectively. If ng, ny, mg, and m; are the Godel numbers of F,
—F, dp, and dy, respectively, then we see that

N E Drvlng, mo] A Diviny, mqi] A Neglng, n1],
thus
NE =Con(T).
Conversely, if
N E =Con(T),
then we can find integers ng, ny, mg, and m; such that
N E Drvlng, mo] A Drv[ni, mi] A Neglng, nyl,

and hence (ng, mg) € Drv, (ny, my) € Drv and ng(ng) = ny: i.e. ng is the Godel
number of a formula such that both it and its negation are derivable.

We will see that, nonetheless, it is possible to have a model M of P in which
the formula ~Con(T') is satisfied despite the fact that the theory T is consistent.
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This simply means that there exist elements ag, a1, a2, and a3 in M such that -
M E Drvlag, az] A Drvlay, as] A Neglag, atl;

the fact that ag, aj, az, and as need not be standard integers prevents us from going
further and concluding, as was the case for N, that 7 is inconsistent.

However, in every model of P, the formulas Drv and Neg do continue to have
certain properties to which we are accustomed. Here, for example, is a fact that is
a formal consequence of the way in which Con(T") was defined (a fact which we
will exploit later on): suppose that b € N is the Godel number of a closed formula
F and that ¢ is the Godel number of = F [in other words, ¢ = a3(b, 0, 1)]; then

Po = BugDrvlb, vo]l A v Drvic, vi]) = —Con(T).
We are now in a position to state Godel’s second incompleteness theorem:

Theorem 6.31 Let T be a consistent, recursive theory that extends P. Then
Con(T) is not derivable in T.

We must, at the same time, be a bit prudent. Indeed, although the sets Drv and
Drvg are perfectly well-defined, we have already observed that this is not the
case for the formulas Drv and Drvg or, consequently, for the formula Con(T').
The only thing we know, a priori, about these formulas is that they represent the
sets Drv and Drvg; we know exactly which integers satisfy them but we do not
know very much about their behaviour as it relates to non-standard elements; as a
matter of fact, we can find (see Exercise 8) two formulas D{vp, v;] and D'[vg, v11,
~both of which represent Drvg, but which are not equivalent in the sense that the
formula |

YooY (Dlvo, v1] & D'[vo, v11)

is not derivable in P.

Since we require the formula Drv in the statement of the second incompleteness
theorem [to write Con(T')], we need to know which one we are dealing with.

To summarize, the incompleteness theorem stated above is only true if we have
made the right choice for the formula Drv and it seems that we may have to
resign ourselves to writing it down effectively. We could actually do this, con-
structing it step by step, following the proof of the representation theorem and
the proof that the set Drv is recursive. In this way, we would obtain a formula
Drv that is more or less canonical in the following approximate sense: if two
people were to conscientiously make this construction, they would surely, in the
end, arrive at two formulas that are equivalent modulo 7. But this is not what we
will do, for this would require a process of writing and verifying, which is far
too lengthy and boring. It is easier to isolate those properties that these formulas
must satisfy (there are not very many, in fact) in order to allow a proof of the sec-
ond incompleteness theorem. Then, later, we will see how to manage with these
properties,
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To do this, we require a definition.
Definition 6.32 The set ¥ is the smallest set of formulas of the language Lo that

(i) contains all formulas without quantifiers;

(i) is closed under conjunction and disjunction (if F and G are in X, then so
are FAGand F v G);

(i) is closed under existential quantification;

(iv) is closed under bounded universal quantification [if F is in X, then so is
Yug(vg < v1 = F), which we will rewrite as (Yvg < vy)F].

We will say that F is a & formula (and will write ‘F is %) if I belongs to Z.

Remark This set belongs to a well-known family of sets and is generally denoted
by E(l) (read as ‘sigma zero one’). However, since this is the only member of the
family under consideration here, we will not encumber ourselves with indices.
For example, it is not difficult to see that the relations ‘n divides m’ and ‘n is
prime’ are expressible by ¥ formulas. We must beware, however, of the fact that
the set 3 isnot closed under negation.
Here are the properties which we will require of the formulas Drv and Drvg:

(P1) = YugVvi(Drvolvo, vi] = Drvlvg, v1]);
(P2) Drv and Drvg are 2 formulas;
(P3) if Fisaclosed ¥ formula, then P = F = Jv) Drvo[#F, v ].

The first of these is not difficult to justify. It could hardly be more natural since
T includes Pq. In any case, if property (P;) were not satisfied, we could replace
Drv[vg, v1] by Drv[vo, vi] Vv Drvolvp, vy ].

For the second property, if we re-examine the proof of the representation theo-
rem, we realize that, in fact, this same proof establishes a second representation
theorem:

Theorem 6.33 Every total recursive function can be represented by a ¥ formula.

As a consequence, we will assume that the formulas Drv and Drvg and all the
formulas that we may need to represent a recursive set or a recursive function are
Y, formulas. o

Here is another result that illustrates the importance of ¥ formulas and begins
to justify (P3).

Proposition 6.34 I]"F is a closed ¥ formula of Lo, then
NF F = 3v1Drv[#F, vi].

(In other words, if F is a closed X formula, then N £ F if and only if Py = F.)
Proof If F is false in N, then the formula F = JuDrpl# L, v1] is obviously
true in N, If F is true in N, we will show that itis derivable in Py and, to do this, we
will invoke the completeness theorem: it suffices to prove that F is true in every
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model of Pp. The next lemma concludes the proof once we recall that every model
of Py is an end-extension of N (see Theorem 6.5).

Lemma 6.35 Let N be an Ly-structure and M an end-extension of N, let
Flvy, va, ..., vp]l be a % formula and let ay, az, . . ., ap be elements of N. Then

N E Flay, az, ..., ap) implies M E Flai, ay, ..., apl.

Proof We argue by induction. Consider the set of those formulas G such that,
forallay,az,...,apin N (where p is the number of free variables in G),

N EGlai, ay,...,ap] implies M E Glaj, ay. ..., ap).

We easily see that this set contains all formulas without quantifiers and is closed
under conjunction and disjunction; it is also closed under existential quantification
since NV is a substructure of M; finally, it is closed under bounded quantification
since M is an end-extension of AV. So this set contains all ¥ formulas. [

Let us set
P ="PoU{F = Ju Drul#F, v1] : Fisaclosed ¥ formula}.

We have just seen that N is a model of ;. It is also an easy consequence of all the
lemmas in Section 6.3 that P; is a recursive theory. The second incompleteness
theorem is therefore a consequence of the next two lemmas.

Lemma 6.36 Every formula of P is derivable from P.

Lemma 6.37 Let T be a consistent recursive theory in which all the formulas of
‘P1 are derivable, Then Con(T) is not derivable in T,

Note that the second of these lemmas immediately implies that a consistent
recursive theory that includes P U P; cannot prove its own consistency; this is
already a good approximation to the second incompleteness theorem. (It can be
shown that Py, which is much simpler syntactically than P, is in fact much weaker
than P; consequently, this lemma, together with this last fact, provides a strong
version of the second incompleteness theorem.) The proof of the second lemma, as
we shall see, is not too difficult. The proof of the first lemma is also not very difficult,
but it is long and annoying; it requires a great number of fussy verifications. So
we will leave the choice to the reader: if he wishes to have a complete argument,

he will have to prove the first lemma on his own; we will restrict ourselves here

to presenting some hints concerning this proof. If not, either because the reader
accepts the first lemma as is, or else is content to have a slightly weakened form
of the theorem, we offer to rejoin the reader some lines further down for the proof
of the second lemma.
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Hints for the proof of Lemma 6.36

" Proof A word of caution to begin with: here is a precise statement of Lemma 6.36.
There exists a formula Drvg[vg, vy] of L which is a ¥ formula, which represents
the set Drvg and is such that, for every ¥ formula F of Ly, we have

P F = duvDrwl#F, vi].

The idea which will guide us is simple: we take the argument which allowed us to
assert that, for every closed ¥ formula F,

NE F = 3uDrvol#F, v1l,

and we formalize it in P.

Before setting down this path, we recall some facts and make some comments.
Letn € Nand let M be a model of P. Let M be the underlying set of M. A subset
X of M" is definable if there exists a formula Flvg, v1, ..., vy—1] of L such that

= {(ag, a1, ..., an-1) € M" : M F Flag, ay, ..., a,_11}.

A map from M" into M is definable if its graph is definable. An element a is
definable if {a} is definable.

If Flvg, vy, ..., v,]is a formula of Lg, the fact that the set defined by F is, in
every model of P, the graph of a map from M" into M can be expressed by

PEvYuYuy ... Yy, Flug, v1, ..., Unl

The formula Yu1Yv, ... Y, 3lvgFlug, vy, ..., v,] will be designated by writing
‘F defines a map from M" into M’. One can also do the same for other
properties that can be expressed by formulas of Lg: to assert the property expressed
within quotation marks will stand for the (or a) formula that expresses it.
Arguments by induction are allowed since the scheme IS is included in P. One
can also define mappings by recursion. To be precise: ‘
Let F and G be formulas of Ly, let n be an integer, and suppose that

Pt ‘F defines amap from M" into M’
A ‘G defines amap from M"2 into M’.
Then for every model M of P, if we let f and g denote the functions defined in

M by F and G, respectively, there exists one and only one definable function h
from Mt into M such that

o forall elements ag,ay,...,anof M,h(0,ay,az,...,an) = flay,as,...,a,);

o forall elements ag, ay, ...,a, of M,

h(aO + 1, al7 a25 ceey a”) - 8(00, al, e an, h(003 (l], [1'2’ vty all))'
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This function is defined by a formula H that depends recursively on F and G
(but not on M). Moreover, if F and G are T formulas, then H can also be chosen
to be a ¥ formula. . '

To prove this result, one begins by proving, in 77, certain simple facts of arithmetic
in order to generalize Lemma 6.12.

One is then able to construct X formulas such as: ‘vg is the code of
a closed formula of Ly', ‘vg is the code of a formula of
Lo that has only one free variable’, ‘vg is the code of a
closed formula of Ly and v; is the code of a derivation
of thig formula’, and so on. The advantage of these formulas over the ones
that we would obtain by applying the representation theorem is that certain facts
pertaining to the property enclosed in quotation marks become theorems of P, e.g.
the deduction theorem (Theorem 4.18) and Proposition 4.25.

What remains is the most difficult: the completeness theorem. Let us restrict
ourselves to the language Ly. Given a sequence of five formulas

H = (Ho[vo], Hi[vol, Ha[vo, v1], Ha[vo, v1, v2], Hy[vo, v1, v2]),

we can easily find a closed formula G (which depends recursively on H) which
expresses that, in every model of P, the set X¢ defined by Hp is not empty, the
set defined by H; consists of a single element a that belongs to Xg, H, defines a
function from Xg into itself, and H3 and Hy4 define functions from Xg x Xg into
Xo. If H satisfies these conditions and if M is a model of P, then we will let
M(H) denote the Lg-structure whose base set is {a € M: M E Hyla]}, where
the interpretation of 0 is the unique element of M that satisfies Hj, and where
the interpretations of S, 4, and x are the functions defined in M by Hy, Hs,
and Hy. Given a sequence H as above and a formula F{vg, vy, ..., vr] of Ly, it
is possible, by ordinary induction on the height of H (also see Exercise 11), to
construct a formula of Ly that we will denote by ‘(vg, vy, ..., V) satisfies
the formula F in M(H)’. This formula will be such that, for every model
M of P and for all elements ag, ay, ..., ax of M that satisfy Hy, we have

MH) F Flap, ai, ..., a]

if and only if
ME “(ag,a, ...,a;) satisfies the formula F in M(H)’.
The formula ‘(vg, vi,..., V) satisfieg the formula F in M(H)

depends recursively on F and on H.
We can now state the version of the completeness theorem in Peano arithmetic:

Theorem 6.38 Foreveryclosedformula F, there exists a sequence of five formulas

H = (Holvol, Hilvo], Halvo, vil, H3[vo, v, v2], Halvo, v1, v2])
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that depends recursively on F and is such that
Pt Con(F)= ‘Fis satisfied in M(H) .
Here, Con(F') is the formula
—3ug(‘vp: 1s the code of a derivation of —F’)
and ‘F is satisfied in M ()’ is the formula
‘the empty sequence satisfies the formula F in M(H)’.

The proof of this theorem imitates the proof of the completeness theorem (see
Theorem 4.29). We will not insist on this point.

We can now complete the proof of Lemma 6.36. The formula Drvo[vo, v1] is
the formula ‘vg is the code of aclosed formula of Lpandvy is
the code of a derivation of this formula in’Py’.Toprovethe
fact that if F is a closed ¥ formula, then P - F = Av;Drvg[#F, v1], we make
use of the ordinary completeness theorem; we show that the formula

F = v Drwy[#F, vi]

is true in every model of P. Consider a model M = (M, 0, S, +, x) of P. If
v Drvo[#F, vy] is true in M, then so is the formula. F = Jv Drvg[#F, vi]. If
it is false in M, let G denote the conjunction of the formulas of Py and —F. The
formula —3v; Drvo[#F, v1] is equivalent to Con(G), and hence

M E Con(G).

One then applies the completeness theorem in Peano arithmetic to conclude that
there exists a sequence H of five formulas as above that define an Lo-structure

MMH) = (X,0, 5,4+, x')
such that
ME ‘G is satisfied in M(H)
and hence
M(H) E G.
In M, one can define by induction a definable map k from M into X by setting
k() =0 andforalla € M, k(S(a)) = S (k(a)).

One shows that k is a monomorphism from M into M () and that the image of k
is an initial segment of M (H) [to do this, one needs to use the induction scheme
in M and the fact that M(H) is a model of Py]. So the structure M(H) is an
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end-extension of a structure that is isomorphic to M. Now M (H) does not satisfy
F and, according to Lemma 6.35, since F is a & formula, M does not satisfy F; so

MEF = JuviDrvg[#F, vy]. B

Remark This proof uses the completeness theorem (here, we are speaking of the
real completeness theorem, from Chapter 4, not the one that was proved in P)
which required the notion of infinite set and even the axiom of choice. Syntactic
proofs of this lemma (there are some) have the advantage of appealing only to
finite notions (integers, finite sequences, etc.).

Proof of Lemma6.37
Proof Consider the function g from Ninto N defined by the following conditions:

e if n is the Godel number of a formula Flvg] with one free variable, then g(n)
is the Godel number of the formula F [n];

e otherwise, g(n) = 0.

This function is clearly primitive recursive; let Glvo, vi] be a formula that rep-
resents it. So for every integer 1, we have

Po FVuo(Glvo, nl & vo = g(n)). ()
Let e[vp] denote the formula
Fv13va (Drvva, v1] A Gluy, vp]).
Observe that if n is the Godel number of a formula F [vo] of one free variable, then -
NFg[n] ifandonlyif F[n]is derivable.

Let a be the Godel number of the formula —¢[up] and let b = g(a) be the Godel
number of —&[a]. From the definition of ¢ and from (x), we conclude that

Po b ¢la) < v Db, v;]. | (se3)

First we will show that —&[a] is not derivable in T'. We will assume the contrary
and deduce that T is inconsistent. So there exists an integer ¢ which is the code of
a derivation of —¢[a] in T, and hence

Po = Drv[b, c],

which, together with (%), shows that Py - elal. As T includes Py, T + e[al;
thus T is inconsistent.

Next, we show that T + Con(T') = —¢la]. Infact, we will do better by showing
that Py - e[a]l = —=Con(T). Set T} = P; U {e[a]l}. It follows from (s%) that

71 = 3uiDrvlb, v1].
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But ¢[a]is a closed ¥ formula. Let d be the Godel number of e[a]. Then

elal = FvuDrvold, ve]
is an element of P} and

T1 = JvaDrvglb, va].
But, we had assumed that - YvgVui (Drvglvo, v1] = Drv{vg, vi]), and hence
Ty & v Drv[b, v} A JuaDrvld, va],
which, when we refer to the definition of Con(T), shows that
71 = —Con(T).

Finally, thanks to the deduction theorem,

P b ela] = —Con(T). B

Remark 1 By assuming that the formula Drv satisfies certain properties that are
wholly innocent and natural, essentially that

P = QuoDrv[#F, vo]l A FuiDv[#(F = G), v1]) = JuuDm[#G, 1],
we see that the formula Con(T") is equivalent to ~JvgDrv[#(0 ~ 1), vo].

Remark 2 The formula ¢[a] asserts that its negation is derivable. It is obviously
false in N,

Remark 3 Gaodel’s theorem asserts that a theory which is consistent and recursive

" cannot prove its own consistency; by contrast, it may very well prove its own
inconsistency, as is the case for the theory P U {—Con(P)}, for example. However,
this is not the case for the theory P itself: there is a model of P U {Con(P)},
namely N. This generalizes to any recursive theory that has N as a model.
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EXERCISES FOR CHAPTE R 6

1. Let X be a non-empty set'and let f be a function from X x X into X. Consider
the Log-structure M whose base set is M = N U (X x Z) and in which the
symbols S, 4, and X are interpreted by the functions S, +, and x that are
defined by the following conditions:

e M is an extension of N;

e ifa=(x,n) e M —N, then S{a) = (x,n + 1);

eifa=x,n)eM—Nandm e N, thena+m=m+a=(x,n+m);

e ifa = (x,n)and b = (y, m) are elements of M — N, then (x, n) + (y, m) =
(x,n+m);

e ifa =(x,n) e M—Nandm e N, then (x,n) xm = (x,n x m)if m £ 0
and (x,n) x 0 =0;

o ifa=(x,n)e M —Nandm € N, thenm x (x,n) = (x, m x n);

e ifa = (x,n)and b = (y, m) are elements of M — N, then (x, n) X (y, m) =
(f(x,y),nxm).
(a) Show that M is a model of Pg.
(b) Show that none of the following formulas is a consequence of Py:
(1) YvgYvvp+vy 22 vy +vo;

(i1) YupVv1 Vv ug X (V1 X v2) =2 (Vo X v1) X V2;

(ii1) VgV ((vg < v1 A vy < 1g) = vg =2 U1);

(iv) Yvo0 xvg =~ 0.
(c) Construct a model of Py in which addition is not associative.

2. Let M be a model of P and suppose that N is a proper substructure of M. On
the base set, M, of M, define the following relation ~: x ~ y if and only if
there exist two elements n and m of N such that

MExt+n~y+tm

(a) Show that the relation ~ is an equivalence relation.

(b) Leta, a’, b, and b’ be elements of M that satisfy ¢ ~ a’ and b = b’. Show
thata +b~a +b'.

(c) Let E be the set of equivalence classes of M relative to the relation ~.
Define the relation R on E as follows:

if x and y are in E, then x Ry if and only if there exista € x and b € y
such that M F a < b,
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Show that the relation R is a total ordering. Show that E, with respect to this
ordering, has a least element but does not have a greatest element. Show that R
is a dense ordering of E.

. Prove the Chinese remainder theorem (Theorem 6.13).

. Prove the converse of the representation theorem (Theorem 6.8): if a function
from N” into N is representable, then it is recursive.

. Let T be a theory in a finite language. Assume that T is recursively enumerable,
i.e. that the set

(#F . FeT)

is recursively enumerable. Show that there exists a recursive theory 7’ that is
equivalent to T in the sense that, for every formula G, G is derivable in T 'if
and only if G is derivable in 7',

. Show that if Fermat’s last theorem,
—=@3x > 0)3y > 0)(Fz > 003t > (" + y' ~ 71,

is not refutable in Py, then it is true in N,
(At the time this text was first written, Fermat’s last theorem was still a
conjecture; it has since been proved by Andrew Wiles.)

. In this exercise, Drv[vg, v1] is a formula that represents the set

Drv = {(a, b) : b is the Godel number of a derivation in P of

the formula whose Godel number is a}.
Among the following assertions, which are true for any closed formula F'?

() NEF du1 Drv[#F, vl = F; (YNFE F = Ju Druv[#F, v,
Oy P = 3uvDru[#F, v1] = F; ()P F = dvDro[#F, vi].

. Show that there exists a formula F[vg] of Lg such that N F —=3Jvg Flvg] and
—Jvg Flug] is not derivable in P. Conclude from this that, for every formula
Glvg, v1, ..., v,], there exists a formula H[vg, v1, ..., vy ] such that

YooYy ... Yu(Glug, v1, ..., va]l & Hlvg, vy, ..., vn])

is true in N but is not derivable in P.

. Show that if F is a closed formula and if
P vy Dro[#F, vo} = F,
then

P F.
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(See Exercise 7, we could apply the second incompleteness theorem to the

theory P U {—F}.) ‘
10. This exercise uses the notion of elementary extension, which will be introduced

in Chapter 8 on model] theory. |

Let M be a non-standard model of P, and let A be a subset of the underlying

set, M, of M. We say that a function f from M? into M is definable with

parameters from A if there exists a formula F[vg, vy, ...,V pl of Lo with

parameters in A such that, for all ay, az, ..., a, belonging to M, we have

M t:V‘UO(F‘[(IO:[ZI’'--’ap} <V :f(aOaal, ---aap))-

(a) Let A be a substructure of M whose underlying set, N, is closed under
functions that are definable with parameters from N; in other words, it
is such that for all p € N, for every function f from M? into M that
is definable with parameters from N, and for all ai, a2, ..., a, belong-
ingto N, '

flar,...,ap) €N.

Show that AV is an elementary substructure of M (and is therefore a
model of P).

(b) Next, we say that a subset X of M7 is definable with parameters from
A if there exists a formula Glvy, ..., v,] of Lo with parameters in A such
that, for all ay, ay, . .., ap belonging to M,

(ag,ai,...,ap) € X ifandonlyif MEGlay,...,ap]. -

Show that the collection of subsets of M that are definable with
parameters from A forms a Boolean subalgebra of the algebra of all sub-
sets of M.

Show that if f and g are functions from M into M that are definable with
parameters from A, then the set {a € M: f(a) = g(a)} is definable with
parameters from A.

(¢) Let F and G be two maps from M into M. Define the maps Sf, f + g, and
f x g from M into M by

Sfx) = fx)+1;
(f +9) &) = fx) +g(x);
(f xg)x) = fx) x g(x).
Show that the set of functions definable with parameters from A is closed
under these operations.

(d) Let B be the Boolean algebra of subsets of M that are definable with
parameters from A, let I/ be an ultrafilter on this algebra, and let F be



(e)

®

(&)

(h)
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- the set of functions from M into M that are definable with parameters

from M.
Show that the relation =~ on F defined by

f~g ifandonlyif f{aeM: fla)=gla)}eld
is an equivalence relation and thatif f ~ f’ and g =~ g’, then
Sf =~ Sf', f+e~f+4, fxgrflxg.

If f € F, we let f/U denote the equivalence class of f relative to =
and we let /U denote the set of equivalence classes relative to ~. We
then observe that it is possible to define the operations S, +, and X on
F/U. The zero element, 0, of F/U will be, by definition, the equivalence
class of the constant function equal to 0. This allows us to treat F/U as an
Lo-structure.

For every element a € M, let a denote the element of F/U that is the
equivalence class relative to ~ of the constant function equal to a.

Show that the map from M into F/U that sends a € M into a € F/U is
a homomorphism of Lg-structures.

Show that for every p € N, for every formula F[vy, ..., vp} of Lo, and for
all f1, f2,..., fpin JF, we have

FIUE FLAU, /U, ..., fp/U]

if and only if

{aeM: MFEF[fi(a), f2(a), ..., fp@)]} €U.

Conclude that the map from M into F/Uf that sends a € M intoa € F/U
is elementary (see Chapter 8).

Suppose that N is an elementary substructure of M. Show that if f is a
function from M into M that is definable with parameters from M and if
a € M, then there exists b € M such that

MEYu(vg < a = f(v) < b).

Let M be a proper elementary extension of N. Show that there exists
a proper elementary extension N of M, with base set N, which
satisfies

foralla € N, thereexists b € M such that N E a < b.

11. Let £ be a finite language and let M be an L-structure whose underlying set is

M. We say that M is strongly undecidable if every theory in the language £
that has M as a model is undecidable.
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(a) Show that N is strongly undecidable.

(b) Let Golvol, G1lvol, Galvo, v1], G3lvo, v1, v2l. Galvo, vi, v2] be five fixed
formulas of £ and consider the theory Tp that has the following formulas
as axioms:

(1) Yug(Gilvo] = Golwol);
(2) YuoVu1 (Galvo, v1] = (Golvol A Golvil));
(3) YuoYu1 Y2 (Gslvo, v1, v2] = (Golvol A Golvi] A Golv2D);
(4) YuoYu1Yv2(G4lvo, v1, v2] = (Golvol A Golvi] A GofvaD));
(5) AlvpGilwol;
(6) Yv1(Golvi] = 3lwoGalvo, v1]);
() Yu1Yu2 ((Golvil A Golv2]) = 3luoGslue, vy, v2]);
(&) Yu1Yu2 ((Golv1l A Golva]) = FlveGalvo, v, v2)).
If M is amodel of Ty, we define the Ly-structure N in the following way:
o the base setof N istheset N = {a € M : M E Gylal};
e the constant symbol 0 is interpreted by the unique element a of M that
satisfies Gla]; '
e the symbol S is interpreted by the function that associates with each
a € N the unique element b such that M E G1[b, al;
e the symbol + is interpreted by the function that associates, with two
elements a and b of N, the unique element ¢ such that M F Gi|[c, a, b];

e the symbol X is interpreted by the function that associates, with two
elements a and b of N, the unique element c such that M F Gylc, a, b].

We will say that V' is definable in M (one must take care not to confuse
this with the notion of a definable subset).

Show that, for every formula F[vi, v, ..., vp] of Lo, there exists a
formula F*[vy, vg, ..., v,] of £ such that if M is a model of 7p and NV is
the Lo-structure defined in M and if a1, ay, . . ., a, are elements of N, then

N E Flag, ai, ...,ap] if and only if ME F*ap, ai, ..., apl.

Show that F* can be determined from F in an effective way [which means
that there exists a primitive recursive function « such that if n = #F, then
a(n) = #F*].

(¢) Let T be a theory of £ that includes Tp. Set

T~ = {F: Fisaclosed formula of Lo and T + F*}.

Show that if G is a closed formula of Lo, the following three conditions are
equivalent:

HGeT—,

QT+ G,

3T+ G*.
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(d). Show that if N is definable in M, then M is strongly undecidable.

(e) Show that the structure Z in the language £ = {0, 4, x} of ring theory is
strongly undecidable. (Use Lagrange’s theorem that every positive integer is
the sum of four squares.) Show that the following theories are undecidable:
the theory of rings, the theory of commutative rings, the theory of integral
domains.

(f) Let £ be the language that contains only the binary predicate symbol R.
Consider the L-structure M whose underlying set is ¥ = NU (N x N)
and in which RM is equal to

{(a,(@,b)): aeN, beN}U{((a,b),b): aeN, beN}
U{((a,b),(@a+b,a-b)): aeN,beN}

Show that N is interpretable in M. Show that the set of universally valid
formulas of the language L is not recursive.
(g) This time, L is the language that contains a binary predicate symbol D and
a binary function symbol +. Let M be the L-structure whose underlying
set is N and in which + is interpreted by addition and D by the relation
‘divides’ (Dxy is true if and only if x divides y).
Show that the element 1 and the relation x = y - (y + 1) are definable
in M. Show that M is strongly undecidable.
12. Let f be a total recursive function from N into N and let Flvg, vi] be a &
formula that represents it and is such that

P+ Yudug Flug, v1].

The purpose of this exercise is to show that there exist total recursive functions
that are not provably total.
(a) Let Flvg, v1, ..., vr] be a X2 formula. Show that the set

{(no,ny1,...,ng): NE Flng,ny, ..., ngl}

is recursively enumerable.
(b) Let f be a total function from N into N. Show that the following two
conditions are equivalent:
(1) f isrecursive;
(ii) there exists a ¥ formula that represents f.
(c) Show that there exists a partial recursive function A of two variables such
that, for every integer n,

e if @ is the Godel number of % formula, say F{vg, v1], and if there exists
an integer m such that P = F[m, n], then

PE Flh(a,n),nl;
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e if a is the Godel number of the formula F'[vg, v1] and if there does not
exist an integer m such that P = F[m, n}, then h(a, n)-is not defined;
e h{a,n) = 0 otherwise.
(d) We now define a function g from N? into N in the following way: for every
integer 71,

o if a is the Godel number of a ¥ formula Flvg, vi] and if b is the Godel
number of a derivation in P of the formula

Yv13vg Flug, vi],

then g(a, b, n) = h(a, n);
e g(a, b, n) = 0 otherwise.
Show that g is a total recursive function.
(e) Show that there exist total recursive functions that are not provably total.

13. This exercise should be worked after reading Chapter 7 on set theory. In particular,
one needs to know what the cardinal number 2%0 is.
(a) Show thatif T is a consistent theory obtained by adjoining a finite number
of formulas to P, then T is not complete.

(b) For every integer n and every sequence
§ = (50), 5(1), ..., 50— 1) € {0, 1",

construct a closed formula F; such that, for all s,

) Fis0),5(1),...,s(i—1), 1) = " F(50),5(1),...5(1—1),0) o
(i) P U {Fg, F0), Fs0),5(1))s + -+ » F(s(0),5(1)....s(n—1))} 1S @ consistent
theory.
(c) Show that there exist 2% theories that include P and that are pairwise
inequivalent.

14. Some notions from set theory are required for this exercise as well. Knowledge
of a certain amount of model theory is also required (elementary extensions and
the method of diagrams).

Let M be an elementary extension of N and let X be a subset of N. Recall
(Chapter 3, Definition 3.96 that X is definable in M if there exists a for-
mula F of Lg with one free variable and with parameters from M such that,
foralln e N,

neX ifandonlyif MFE F[n].

(a) Show that if M is countable, then the set of subsets of N that are definable
in M is countable.

(b) Show that for every subset X of N, there exists a countable elementary
extension M of N in which X is definable,
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(c) Show that there exist 2™ countable elementary extensions of N that are
pairwise non-isomorphic.

15. (a) What is there that is paradoxical in the statement of Epimenides (see the
introduction to this chapter). '

(b) In a Carpathian village, there lives a barber who shaves all the men who do
not shave themselves and only these. What can you say about this barber?



7 Set theory

The purpose of set theory, a subject created by G. Cantor at the beginning of the
twentieth century, is to allow one to construct the whole of mathematics based,
exclusively, on the concept of membership.

In this chapter, we present the axioms of Zermelo—-Fraenkel (ZF) for a first-order
theory in a language that involves only two binary relation symbols, equality and
membership. Except for the axiom of extensionality, which plays a special role,
the axioms of ZF assert the existence of sets. No one will be surprised by some
of these, such as the axiom of pairs or the axiom of unions, but other axioms
may seem less natural. One must realize that they are the fruits of a compromise;
they must, on the one hand, allow for the construction of all the sets required by
mathematical practice while, on the other hand, they must not be contradictory,
as may happen (indeed, as did happen, historically) if the axioms are introduced
haphazardly.

As for the axiom of choice, it is utterly incomprehensible at first glance. In

fact, it appears to be so obvious that it seems superfluous to mention it. Con- -

cerning this point, one must clearly understand that our development is axiomatic
and that, since this axiom is not derivable from the other axioms, it has to be
added. Besides, it has some consequences that are altogether surprising, even
paradoxical, such as the Banach—Tarski theorem, which permits one to decompose
a sphere S into two subsets that are each hamebmorphic to S. In any case, what-
ever value one places on this axiom, it must be said that mathematicians commonly
use if.

At the beginning of this chapter, we will undertake the task of translating
Sfamiliar mathematical concepts into the language of set theory. We will quickly
see how to define relations and mappings; we will show how to define objects
that will (pretend to) play the role of integers and the reader will be able to con-
vince himself that it is possible to construct R, C, and any other structure he
may need. '

Set theory provides a certain number of tools that are used in mathematics.
First of all, there is Zorn's lemma. In Chapter 5, we saw how the integers can be
used to enumerate sets that are apparently more complicated, such as N x N, or
the set of finite sequences of integers, or even the set of recursive functions. The
ordinals, which are a kind of generalization of the integers, can be used, provided




THE THEORIES Z AND ZF 109

we admit the axiom of choice, to enuwmerate any set. Cardinality is also an important
_concept; it permits us to count the number of elements in a set. Two sets have the
same number of elements (we say ‘have the same cardinality’) if there exists a
bijection from one onto the other. This entails distinguishing several ‘orders of
infinity’: for example, there is no bijection between R and N. This concept also
produces some surprises: a set can have the same number of elements as one of
its proper subsets. _
Finally, leaving classical mathematics behind, we will also undertake a brief
study of models of the theory of sets. Here, the essential tool is the hierarchy of
the Vg, which will justify introducing a new axiom, the axiom of foundation. In
particular, this axiom provides us with a negative answer to a natural question
~ (does there exist a set that is an element of itself?) that the axioms of ZF alone are
unable to answer. This will lead to some relative consistency results; for example,
if the theory ZF is consistent, then so is the theory consisting of ZF plus the axiom
of foundation.

7.1 'The theories Z and ZF
7.1.1 The axioms

We will present set theory as a first-order theory. In addition to the usual symbol
for equality, ~, the language L of this theory involves a symbol, €, for a binary
predicate called membership. As a matter of fact, we will introduce axioms for
several set theories, of varying strengths. In the whole of this chapter, unless
mentioned otherwise, I/ will denote a model of the theory ZF (see below) (prior
to Definition 7.30, where the last axiom of ZF will be introduced, ¢/ will denote a
model of those axioms that will have been introduced up to that point). The base
set of U will be denoted by U and will be called the universe. When we say that
a formula is true, it should be understood that we always mean true ‘inf’.

We must cope with a complication that we have already encountered several
times: in mathematical texts, the words ‘set’, ‘belongs’, ‘contains’, etc., are in
constant use with their intuitive meanings. However, the purpose of this chapter
is to formalize these notions. So we see that we will need two levels of language
and reasoning: on the one hand, for the formal language L in which we produce
derivations that could, at least theoretically, be formalized in the sense of Chapter 4;
on the other hand, for the metalanguage in which we will speak about L, about
interpretations in U/ of the symbols of L, about theories that are expressed in L,
and about models of these theories. For example, the formula JugYv;—v; € vg is
part of the formal language; however, when we refer to the length of this formula
or of the fact that it is derivable in ZF, we are using the metalanguage. In fact,
these two languages apply to two different universes: the first, to ¢/, the second,
to the meta-universe, the universe that is familiar to all mathematicians and that
involves, among others, the notions of integer, of finite sequence, and (even) of
set. It is essential to avoid all confusion.
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With this in mind, a certain number of words and symbols will be strictly reserved
for use in the formal language. Thus, first of all, the symbol € will always denote
the membership relation between points of U (we will nonetheless permit the
identification of € with what we would, in Chapter 3, have written éu)‘ The word
set will always mean a point in U (consequently, we forbid ourselves to speak of
the set U). When we say that x is an element of y, this will always mean that x
and y are sets (i.e. points in U) and that

UExey.

But things do not stop here. We also wish to use set theory to formalize the whole of
mathematics. We will be led to formally define the concepts of relation, mapping

(or function), and even natural number. As soon as these definitions are given, the

corresponding words will be reserved for use by the formal language.

It will happen that we must use objects from the meta-universe: for example, the
integers will be used to perform an induction on the length of formulas of L; in
such circumstances, the adjective ‘intuitive’ or the prefix ‘meta’ will be employed
(intuitive integers, meta-relation, etc.).

With the exception of those in the last section, all theorems stated in this chapter
are theorems of ZF or, when specified, of ZFC (ZF plus the axiom of choice).
Accordingly this chapter is an axiomatic development of set theory. However, we
will, naturally, adopt the usual attitude of mathematicians: our concern will be
to convince the reader of the correctness of the theorems rather than to provide
formal derivations for them. To avoid adding a complication related to language,
we will, as we have already mentioned, dispense with the distinction between the
symbol € and its interpretation in U or in other models that we will have occasion
to deal with.

We will write x ¢ y as an abbreviation for the formula —x € y. We will also
freely use the following abbreviations:

VxeyF forVx(xey=F)
IxeyF fordx(xeyAF)

(here, x and y are symbols for variables and F' is a formula).

The following is a list of axioms that we will shortly introduce and discuss: the
axiom of extensionality, the axiom of pairs, the axiom of unions, the power set
axiom (the axiom of subsets), the axioms of comprehension, and the axjoms of
replacement. The axiom of choice (AC) and the axiom of infinity (Inf) will be
introduced slightly later,

The axioms of extensionality, pairs, unions, subsets, comprehension, and infin-
ity constitute what is commonly known as Zermelo set theory, denoted by Z; the
axioms of extensionality, pairs, unions, subsets, replacement, and infinity consti-
tute a stronger theory called Zermelo-Fraenkel set theory and denoted by ZE.
Each of the axioms of Z or of ZF, with the exception of extensionality, permits
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the construction of some set from some other sets; the axiom of extensionality

. guarantees the uniqueness of the result.

The theories obtained from Z and ZF by deleting the axiom of infinity will be
denoted by Z~ and ZF~, respectively. Finally, ZFC denotes the theory consisting
of ZF plus the axiom of choice.

e The axiom of extensionality asserts that two sets which have the same elements
are equal:

YugVur (Vo (v € vg & v2 € v1) = vg = vy).

Let a and b be two sets. We say that ¢ is a subset of b (or that a is included
in b) if every element of a is an element of b. In other words, if, in U4, a and b
satisfy

Yup(vg € a = vg € b).
This formula will be abbreviated by a € b while a C b is the formula
aCbAa#b.

When we wish to prove that two sets are equal, we typically show thata C b
and b € a and invoke the axiom of extensionality.

The axiom of pairs:
YugVuidvaVuz(v3 € vy & (V3 =2 vg V v3 = v1)).

Given two sets a and b, there exists a set whose only elements are a and b.
According to the axiom of extensionality, there is only one such set; we denote
it by {a, b} and call it the pair a, b.

Tt can happen that a and b are the same. In this case, we obtain a set that has
only one element; we denote it by {a} instead of {a, a} and call it singleton a.

We should remark that

{a,b} ={a’, b’} ifandonly if
(a=a"andb=0") or (a =b and b =d),

and that

{a} ={d'} ifandonlyif a=4d"

The axiom of unions:
YogdviVua(vy € v1 < Jus(vz € vg A v € v3)).

Given a set a, this axiom asserts the existence of a set whose elements are the
elements of elements of a; in other words, this set is the union of all the sets
that are elements of a. As always, the axiom of extensionality guarantees the
uniqueness of such a set; we will denote it by | J, ., x or, more simply, by | ] a.
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Before proceeding further, we should discuss a few consequences of these first .
three axioms. Let a and b be two sets. Thanks to the axiom of pairs, we can form
the set ¢ = {a, b}, then, with the axiom of unions, | J c. This set is called the union
of a and b and is denoted by a U b. It satisfies

Yog(vp € aUb < (vg € aV vg € b)).

Next consider three sets a, b, and ¢. We can form the sets {a, b} and {c}, then the
union of these last two sets {a, b} U {c}, which we will denote by {a, b, c}. We may
then observe that

Yug(vo € {a, b, c} & (vg~aVuvg=bVuv ~c)

is true. This process can be iterated: if n is a positive integer (in the intuitive sense)
and if a;, ay, ..., a, are sets, then there exists a set, denoted by {ai, a2, ..., an},
that satisfies

Yug(vg € {ag, ap, ...,an} & (Vo= ay Vg X ay V.-V ay)).

We can also form | J{aj, a2, ..., @y}, which we will denote by ¢ Uay U --- U g,
and which satisfies

Yug{vg eayUapU---Uag, & (vp€a Vv €apV--- Vg € ay)).

e The axiom of subsets (the power set axiom) asserts that, for every set a,
there exists a set b, unique by the axiom of extensionality, whose elements are
precisely the subsets of a:

VvgduiVua(vp € v] < Yus(vy € vy = v3 € 1g)).
We denote this set by g (a).

e The axiom scheme of comprehension (the comprehension scheme). In this
instance, we are dealing not with a single axiom but with an infinity of axioms.
Specifically, this scheme comprises all formulas that can be written in the form

‘v’v1Vv2 .. .VU,,+13U,,+2VU()

(Vo € Unt2 & (V0 € Vg1 A Flog, v, ...y 0nl)),
where n is an integer and F[vg, v1, ..., v,] is a formula of L.

What this scheme means, then, is that for any set a and for any formula H [vg]
with one free variable and with parameters in U/, there exists a set, unique by the
axiom of extensionality, whose elements are precisely those elements of a that
satisfy H. We denote this set by {x € a : H[x]}.

It is reasonable to ask why we burden ourselves with the set a. It would seem
easier and more natural to consider the following scheme: for every formula F[vg]
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with one free variable and with parameters from o, there exists a set whose
elements are the sets that satisfy F;

YuiYuy ... Y, 3up+1Yvo(vo € vpg1 & Flug, v1, ..., vl),

where n is an integer and F[vg, vy, ..., vy] is a formula of L.
There is in fact a good reason for not allowing this scheme: the resulting theory
will be inconsistent. Indeed, if F is the formula vy ¢ vg, we would have

Jv1Vuo(vo € v1 & vo € vo)
as an axiom. So there would exist a set a such that, for every set b,
bea&sbé¢b.
In particular, for b = a, we would have
a€a<satéa,

which is clearly contradictory.

Thereader will undoubtedly have recognized the diagonal argument that logicians
love. The unmistakable contradiction that results is known as Russell’s paradox.
This argument can be employed to prove that ‘the set of all sets” does not exist.
Specifically, we have

Theorem 7.1 If U is amodel of Z~, then
U E —JugYui(v; € vp).
Proof Suppose the contrary, let a be a set that satisfies
Vug(vg € a),

and invoke the comprehension scheme withn = 0, v; = a and with F' = vy ¢ vp.
As above, this produces a set b such that

Yug(vg € b & v ¢ vp)

and this leads, once more, to a contradiction when vg assumes the value b. [ |

We have said that we would reserve the word ‘set’ for points of I/. Nevertheless,
it is sometimes convenient to speak of the collection (i.e. subset in the intuitive
sense) of points in I{ that satisfy this or that first-order property. We will use the
word ‘class’ for this purpose: if F[vg] is any formula of L with one free variable
and with parameters in J/, we may refer to the class of sets a that satisfy Fla].
Thus, classes are nothing more than ‘intuitive subsets’ of the structure I/ that are
definable with parameters from U (see Definition 3.96). As a matter of fact, we
could avoid introducing the notion of class but at the cost of considerably encum-
bering the exposition. To avoid misunderstandings, we will use upper case script
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letters (U4, V, etc.) to denote classes. If F[vg] is a formula and \A is the class of
sets @ that satisfy F[a], we will say that a set b belongs to A, or that A contains
b, to mean that b satisfies . We will accept the abuse of language that consists in
identifying a set @ with the class of sets b that belong to a. Except for the axiom of
extensionality, all the axioms that we have stated thus far (and this will also be the
case for the axioms of replacement) are declarations that certain classes are sets.

We will now introduce some consequences of the comprehension axioms. To
begin with, when F is the formula —vg = vg, we obtain

Yvi13vYug(vg € v2 & (Vg € v1 A —ug 2 vp)).
Now, whatever the set a is, there is no set vg that satisfies
(vg € a AN —vg = vg).

As a result, there is a set that contains no elements (because the universe is not
empty). By extensionality, there is a unique such set, which consequently does not
depend on a. This set is called the empty set and is denoted by @.

Next, consider two sets a and b. The comprehension axiom with Flvg, vi] =
Vg € vy, with v = a, and with v; = b, allows us to derive the existence of a set ¢
such that

Yug(vg € ¢ & (Vg € a A vy € b)).
Uniqueness is, as usual, assured by the axiom of extensionality. This set ¢, whose

elements are precisely those sets that are elements of both a and b, is called the
intersection of ¢ and b and is denoted by a N .

Let a be a non-empty set. Then there exists a unique set b whose elements are -

those sets that belong to each element of a:
Yuo(vg € b & Yuz(vz3 €a = v € v3)).

To prove the existence of such a set (uniqueness follows from extensionality), we
choose an element ¢ of a (a is non-empty) and observe that the formula

Yuz(vs € a = vg € v3)
is equivalent to the formula
vy € c AVYu3(vz € a = vy € v3).
We may then invoke the comprehension axiom
with F = VYus(v3 € a = vg € v3), with vy =¢, and withv; =a.

We will denote this set by ()
we should note that

veq X o1, more simply, by () a. With this notation,

ﬂ{a} =a, ﬂ{a, by =anb,
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and, for any intuitive integer n,
m{al,az,...,an} =aNapN---Nay,.
Observe that the restriction ‘a is non-empty’ is essential; indeed, the formula
Yua(vy € = v € 1)

is satisfied by every set (because vy € @ is always false) but we have seen that the
set of all sets does not exist.

If g and b are sets, we will let @ — b denote the set of elements of a that are not
elements of b:

a—b={xeca:x¢b}.

If b is a subset of a, then a — b is called the complement of » in a.
We will also define the symmetric difference of two sets a and b:

alAb={a—-b)U(—a).

Remark The fact that the connectives A and V satisfy certain associative, com-
mutative, and distributive properties implies that the corresponding properties hold
for N and U. For example,
anNb=>bhNa, (anb)yNc=an{dNnc)
alUb=>bUuq; (aUb)Uc=aU(BUc);
an®BUc)=(anb)U(@anc); albnNe)=@uUb)N{aUc).

(See Exercise 2 from Chapter 2.)

o The axiom scheme of replacement. This comprises all formulas of the follow-
ing form:
YugVvp ... Y,
NVwoYw Ywo ((Flwo, wy, vy, ..., up] A Flwg, wa, vy, ..., vyl)
= wi = wy) = Ay41YUu42(Un42 € Unt1 & Jwo(wo € v
A Flwo, V42, V1, -« .5 va]))),

where n is an integer and F{wg, wy, vy, v2, ..., v,] is a formula of L.
These formulas deserve some explanation. To begin with, here is a definition.

Definition 7.2 A formula Flwg, wy, a1, az, .. ., ay) of L with two free variables
and with parameters from U is called functional in wq in U if the following
Sformula is satisfied:

Vwovwlva((F[w01 wla a‘]aaz’ Pt an] A F[w07 w2) ala az’ L) all])
= W) X wy). "
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Most of the time, we will not bother to specify ‘inif’. If the formula Flwo, w]
is functional in wy, it allows us to define an (intuitive) partial function from U into
U, which we will call ¢, in the following way: if b is a set and if there does not
exist a set ¢ such that F[b, c], then ¢ is not defined at b; if such a ¢ does exist,
then it is unique and ¢ () is, by definition, equal to this set.

So the axiom schema of replacement asserts that if the formula F'[wg, w] is
functional in wg (while the variables vy v, ..., v, are replaced by parameters
from U{) and if a is a set, then the class consisting of the values assumed by ¢ on
the elements of ¢ is in fact a set. We denote this set by {x : Jvg € aF[vg, x]}.

It is not difficult to see that the replacement scheme implies the comprehen-
sion scheme. Let Flvg, a1, az, ... ay} be a formula of L with parameters from
U and b be a set. Using the axiom scheme of replacement, we will prove that
there exists a set ¢ whose elements are precisely those elements of b that satisfy
Flvg, ay, az, ...,ay]). Let H{wg, wy, ai, az, ..., a,] denote the formula

wo >~ wi A Flwg, a1, a2, ..., aul.

This formula is obviously functional in wg and the set of values assumed by ¢g
on the elements of b is the desired set.
The remaining axioms will be presented further on.

7.1.2 Ordered pairs, relations, and maps
Definition 7.3 Let a and b be two sets. The set

{{a}, {a, b}}

is called the ordered pair a, b and is denoted by (a, b).

The fact that (a, b) is a set can be justified by invoking the axiom of pairs three
times. The rationale for this somewhat complicated definition and for the name
given to (a, b) is in the following proposition (incidentally, any other definition
that leads to this same property would serve just as well):

Proposition 7.4 Suppose a, b, a’, and b’ are sets and that (a, b) = (a’, b’); then
a=a andb =10 ‘

Proof By hypothesis, we have

{{a}, (a, b}} = {{a'}, {a", D)}

We distinguish two cases. |
(1) a = b: then {{a'}, {d’, b'}} = (a, b) = {{a}} and, consequently, {a’, b’} €
{{a}}.
We may then conclude a = a’ = b’ using the remark that follows the statement
of the axiom of pairs.
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(2) a # b: then {a’} # {a, b} (otherwise, as in (1), we would have a = a’ = b);
- thus {@’} = {a} and @ = a’ (again, invoking that same remark). Also, {a, b} =
{a',b'yand b = D', B

This proposition justifies the name ‘ordered pair’. If (a, b) is an ordered pair,
then a is, by definition, its first projection (we also say first coordinate) and b is

its second projection.

Definition 7.5 Ler a and b be sets. The set
{(x,0) :x €a}U{(y,{9}):y € b}

is called the disjoint union of a and b and will be denoted by a W b.

So the disjoint union of @ and b is the union of the two sets
{(x,0) :x €a} and {(y,{0]):ye€b})

We should view these sets, intuitively, as copies of a and b respectively. The main
feature of these copies is that they are necessarily disjoint (i.e. their intersection is
empty); this is not always the case for a and b.

Notation We will write 0 in place of § and 1 in place of {(J}. This notation will
be justified in due course.

Proposition 7.6 Let a and b be two sets. Then there exists a set ¢ such that
Yug(vg € ¢ & dvi3np(vy € a Avy € b Avg = (v, 12))).

In other words, given two sets @ and b, there exists a set ¢ whose elements
are the ordered pairs whose first coordinate is an element of @ and whose second
coordinate is an element of b, This set is called the Cartesian product of a and b
and is denoted by a x b.

Proof It is sufficient to observe that
c={u € p(paUb)):dvgdvi(vg € a Avy € b Au == (vg, v1))}.

So the proof uses the axiom of unions, the axiom of subsets, and an instance of
the axiom of comprehension. |

If a, b, and c¢ are sets, the triple (a, b, ¢) is, by definition, the set (a, (b, ¢)).
More generally, if n is an (intuitive) positive integer, we can define the concept of
n-tuple by induction: if a‘l, as, ..., a, are sets, the n-tuple (ay, az, ..., a,) is the
set (ay, (az, as, ..., ay)). ay is the first coordinate of this n-tuple, a; is its second
coordinate, etc. Just as above, we can see that if by, by, ..., b, are sets, there
exists a set whose elements are the n-tuples whose first coordinate is an element
of by, whose second coordinate is an element of by, etc., and this set is denoted by
by x by x -+ x by If, for i from 1 to n inclusive, all the b; are equal to b, we will
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write b" instead of b x b X -+ - x b and will refer to this as the Cartesian power
rather than the Cartesian product.

Definition 7.7 (1) Let a be a set and let n be an (intuitive) positive integer; an
n-ary relation on a is a subset of a”.

(2) If n is an integer and R is an n-ary relation on a and b is a subset of a, the
restriction of R to b is the set R N b"; it is also denoted by R | b.

(3) A mapping (or map) is a set all of whose elements are ordered pairs and
which satisfies the following formula:

Map(vp) = Yo Yo Yoz (((v, v2) € vo A (V1, 13) € vg) = v = v3).

If [ is amapping, the set consisting of those sets that satisfy the formula Flvg)] =
vy (vg, v1) € f is called the domain of [ and is denoted by dom(f). The image
(or range) of [ is the set consisting of those sets that satisfy the formula Glvg] =
Jv1(v1, vo) € f. It is denoted by Im (f). A mapping from a into b is a mapping
whose domain is a and whose image is included in b. If, in particular; its image
is equal to b, the mapping is called surjective from a onto b. It is called injective
if, for every d belonging to the image of f, there is a unique element ¢ such that

(c,d) e f.

We do need a slight justification for the definition of the domain and image of f’;
we should prove that they are sets. For example, the domain of f is the set

{x eUUf:Hvl(x,vl)e f}.

Let us insist on this point: a mapping is therefore a set of ordered pairs. By

contrast, we will continue to use the word ‘function’ with its intuitive meaning and
will speak, for example, of functions from the universe I{ into {{/. We can continue
to translate all the usual notions concerning mappings into the language of set
theory. We will be content with the following definitions:

e If f is a mapping and ¢ belongs to the domain of f, then the unique set d such
that (¢, d) € f is called the image of ¢ under f and is denoted by f(c).

e The empty set is a mapping whose domain and image are both equal to the
empty set. Thus, for every set b, ¥ is a mapping from ¥ into b. We will call this
the empty mapping.

e If f is a mapping from a into b and g is a mapping from b into ¢, then the
composition mapping g o f is the set

{u € a x ¢:3vgAv vy = (vg, v2) A (vo, V1) € f A (vy, 12) € g}

It is a mapping from a into c.

e A bijection from a onto b is a surjective mapping from a onto b that is
also injective. If f is a bijection from a onto b, the inverse mapping f -1
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defined by

f“1 = {(vo,v1) € bxa: (vy,vg) € [},

is a bijection from b onto a.

e If f is a mapping from a into b and if c is a subset of a, we will write
flo)={xeb:3yecf(y) =x);

f(c) is called the direct image of ¢ under f, though we will usually shorten
this and speak of the image of c under f (not to be confused with the image of
f, which is the image of @ under f). If there is no danger of confusion, we will
simply write f(c) instead of f(c).

In these same circumstances, if d is a subset of b, we define the inverse
image of d under f to be the set

fld={xea: fx)ed).

In this way, with any mapping from a into b, we can associate a mapping
from g (a) into g (b) and a mapping from g (b) into g (a).

e Let a and b be two sets. The exponentiation of a by b, denoted by a® (this is
to be read as ‘a to the power b’), is the set of all mappings from b into a. This
definition needs to be justified; we must show that this is a set. We will once
more use the axiom of comprehension: a® is the set of elements of g (b X a)
that satisfy the following formula:

Yui(v; € b = Fuvy(vy, v2) € vg).

e Let I be a set. A mapping whose domain is / is also called a family of sets
indexed by /.

This notion, which is in common use, is introduced only because the vocabulary
and notation that it permits are more practical. If a is a family indexed by I and if
i € I, we generally write g; rather than a(i); the family a itself can be written as
(a;i : i € I) or, preferably, (a;)ier.

e Leta = (a;);es be afamily of sets; the union of this family, denoted by | J,; ai,
is the union of the elements of the image of a. In other words, for every set b,
b € |J;¢; @i if and only if there exists i € I such that b € a;.

If I is non-empty (as we noted in our discussion of the comprehension scheme,
this restriction is essential), we can similarly define the intersection of the family
(ai)ier, which will be denoted by ();c; ;. For every set b, b € [);; a; if and
only if, forevery i € I, b € a;.

e Again let a = (a;);es be a family of sets. The product of this family, denoted
by [1;¢; ai, is the set of mappings f from I into {_J;; @; which are such that,
foralli € I, f(i) € a;. :
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We are now in a position to state the axiom of choice: the product of a family
of non-empty sets is non-empty. In other words,
(AC) Let (a;);es be a family of sets and assume that, for every i € I, g; is
not empty; then I—[,-E, a; is not empty.

- 'We will not discuss the question of whether this axiom is justified or not. What
is certain (though it will not be proved in this text) is that it cannot be derived in the
theory ZF (nor, indeed, can’its negation), assuming that ZF is consistent (see the
section on inaccessible cardinals). Besides, this axiom is required to prove certain
important theorems of mathematics [examples: for the fact that every vector space
has a basis, for the Hahn—-Banach theorem, for Krull’s theorem (see Chapter 2)]. -

7.2 Ordinal numbers and integers
7.2.1 Well-ordered sets

In this section, we introduce the notion of ordinal; this is a particularly important
toolin set theory and in mathematics, generally. It can be viewed as a generalization
of the notion of integer. We begin with some definitions.

Definition 7.8 Suppose that X is a set and that R is a binary relation on X. We
say that R is an order relation (or ordering) on X (or that X is ordered by R) if

e R istransitive: if (x,y) € Rand (y,z) € R, then (x,z) € R;

e R isirreflexive: for every x, (x, x) ¢ R.

We say that R is a total order relation (or total ordering) (or that X is totally

ordered by R) if, in addition,

e forall x and y belonging to X, if x and y are distinct, then either (x,y) € R
or(y,x) € R.

A (totally) ordered set is a pair (X, R) where R is a (total) order relation on X.

Thus, the order relations considered in this chapter are strict (in the rest of this
text, the opposite is generally the case). Antisymmetry [for every x and y belonging
to X, (x,y) ¢ Ror(y,x) ¢ R]isaconsequence of being irreflexive and transitive;
to see this, note that if (x, y) and (y, x) both belong to R, then, by transitivity,
(x, x) would belong to R, violating irreflexiveness. We will follow standard prac-
tice: if R is an order relation on X and if x and y are points in X, we will say that
x is less than y in R to mean that (x, y) € R and we will write x <g y; we will
also use the notations x > y, x <g y, and x >g y. We will omit mentioning
R if the context is unambiguous. If (X, R) and (Y, S) are ordered sets, an iso-
morphism from (X, R) onto (Y, §) is a bijective mapping f from X onto Y that
satisfies

forall x and y in X, x <p y ifandonlyif f(x) <g f(y).
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If R is an order relation on X and if Y is a subset of X, then a minimum element
~ (or least element) of Y (for R) is an element of Y that is less than or equal to every
element of ¥'; a minimal element of Y (for R) is an element of ¥ that is not greater
than any element of ¥ (if R is a total ordering, there is no difference between these
two notions). The definitions of maximum (or greatest) element and maximal
element are analogous. There can be at most one minimum (or maximum) element
but there can be several minimal (or maximal) elements. A lower bound for Y
is an element of X that is less than or equal to every element of Y'; a greatest
lower bound for Y is a maximal element of the set of lower bounds for Y. When
the ordering is total, there is at most one greatest lower bound. The definitions of
upper bound for Y and least upper bound for Y are analogous.

Now suppose that X is totally ordered by R. An initial segment of X is a subset
Y of X with the following property: ' b

ifyeY and x <g y, thenx €Y.

For example, X itself is an initial segment of X. A proper initial segment of X
is an initial segment of X that is neither empty nor equal to X. If x € X and if x
is not the minimum element of X, the set

Sk ={yeX:y<gx
is a proper initial segment of X.

Remarks (1) If Y is an initial segment of X and if x is an element of X, we have
Sy CY(@Afx eY)orY C S, (if x ¢ Y ); indeed, if x € Y, then it is obvious that

=

Sy C Y;if x ¢ Y, then for every element y € Y, it is never the case that x < y
(for this would imply x € Y), hence Y C S;. Moreover, if x and y are elements
of X such that S, = Sy, then x = y; indeed, x ¢ Sy and y ¢ Sy, 1.e. x ¢ Sy and
y ¢ Sy, hence y <g x and x <p y (since <p is a total ordering of X).

(2) If x and y are elements of X such that S; = Sy, thenx = y; indeed, x ¢ S,
andy ¢ Sy,sox ¢ Sy and y ¢ Sy, which implies that y <z x and x <g y (since
R is a total ordering of X).

(3) The set of initial segments of X is totally ordered by the relation C; indeed,
if Y and Z are two initial segments of X and if there exists an element x of Z such
that x ¢ Y, then, according to (1),

YCS, CZ

and hence Y C Z; in the opposite case, Z C Y.
(4) The set of initial segments of X with this ordering has a least element
(the empty set) and a greatest element (X itself).

Definition 7.9 Let X be a set and let R be a binary relation on X. We say that R is
a well-order relation, or that R is a well-ordering of X, or that X is well-ordered
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by R, if both the following hold:
(1) R is atotal ordering of X;
(2) every non-empty subset of X has a least element.

[Notice that in the presence of (2), (1) can be replaced by the statement that R is
an ordering of X, for if x and y are distinct elements of X, then either x < y or
y <g x according as the least element of {x, y} is x or y.] As intuitive examples
of well-orderings, there are all the finite totally ordered sets as well as the set of
integers with its usual order relation. We will see that there are many others.

Let X be a set that is well-ordered by a relation R. First, observe that if Y is a
subset of X, then R | Y is a well-ordering of Y. If X is not empty, it has a least
element xg (which we will call its ‘first element’). If X is not equal to {xo}. then
the set X — {xq)} of elements of X different from x¢ also has a least element xj,
which we will call the ‘second element’ of X; this process can be continued.

Another property of well-ordered sets is given in the following proposition.

Proposition 7.10 Let X be a well-ordered set and let Y be an initial segment of
X. Then either Y = X or there exists a (unique) element x of X such that Y = S,.

Proof Assume Y # X and consider the least element of X — ¥; call it x. We
claim that ¥ = S,. To see this, note that if y € Y, then y < x (otherwise x <y
andx € Y)so Y C S,;if z € Sy, then z < x and, because x is the least element
of X—-Y,ze?. a8

Definition 7.11 Let X be a set. We say that X is transitive if every element of a
~ set that belongs to X also belongs to X (in other words, if the following formula
is satisfied): o

YuoVvi((vg € X A vy € 1g) = v1 € X).

So a set X is transitive if and only if every element of X is also a subset of X.
This condition is also equivalent to the inclusion UxcX.

7.2.2 The ordinals

Definition 7.12 Let « be a set. We say that « is an ordinal if the following
properties are satisfied:

(1) « is transitive;

(2) the membership relation on « is a well-ordering
[i.e. the set {(x,y) € @ X « : x € y} is a well-ordering of «].

It is obvious that these properties can be expressed by formulas of L. We will
write On[vg] to denote the formula of L expressing that vg is an ordinal. If «
and B are ordinals, we will indifferently write @ € p or o < B (this latter notation,
which we will justify shortly, leads naturally to the notations ¢ < B, @ > f,
and @ > ).
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Remark 7.13 If « is an ordinal, then « ¢ «; the reason is that membership is a
_ (strict) order relation on the elements of «: if we assume that a belongs to a, we
conclude from this that « does not belong to «.

Remark 7.14 If « is an ordinal and if 8 € «, then B is an ordinal. Since « is
transitive, 8 C «, so the membership relation on g, which is equal to the restriction
to B of the membership relation on «, is a well-ordering. It remains to show that
B is transitive; so suppose that ¥ € B and that § € y; then §, y, and § are
elements of « (since « is a transitive set) and, because € is a transitive relation on
o, € B.

Remark 7.15 If « is an ordinal and if 8 € «, then 8 = Sg. This follows from
the axiom of extensionality since the statements x € § and x € Sg are equivalent.

Remark 7.16 Let « and B be two ordinals. Then « € B if and only if ¢ < B.
Indeed, if «r is included in $, then, since « is transitive, « is an initial segment of B.
Thus, either o« = B, or there exists y € f such that« = S, (Proposition 7.10) and
(Remark 7.15) @ = y, hence o < B. Conversely, if « < B (i.e. either o € 8 or
o = fB), and if y € «, then by the transitivity of 8, y € B; this shows that @ C 8.

Proposition 7.17 Let X be a transitive set of ordinals such that, for all distinct
elements x and y of X, x € y ory € x; then X is an ordinal.

[We will see subsequently (Corollary 7.22) that the condition ‘x € yor y € x’
is superfluous since it is always satisfied.]

Proof It suffices to verify the second condition from Definition 7.12. If ¢ € X,
then o ¢ o by Remark 7.13. If «, B, and y are elements of X and if @ € B and
B € y, then the transitivity of y implies that o € y. So the membership relation
does define an order relation on X and this ordering is total by hypothesis.

Let us prove that it is a well-ordering. Suppose Y is a non-empty subset of X;
we will show that Y has a least element (for €). Let« € Y

—IfaeNY = @, then « is the least element of Y: for if § € Y, itis false that
Bea(sinceaNY =), hencexx € Bora = B.

— Ifa NY s @, then, because « is an ordinal, « N Y has a least element 8. If
y € B, then y € « (since « is an ordinal) and y ¢ o NY (because B is a least
element of this set). Consequently, y ¢ Y and thus no element of ¥ can be less
than 8. Since the ordering is total, this implies that 8 is the least element of Y.

Corollary 7.18 If o is an ordinal and if B is an initial segment of o, then B is an
ordinal. If, in addition, B is distinct from «, then 8 € a.

Proof The first part of the corollary follows from the above proposition; g is tran-
sitive because it is an initial segment of &, and B is totally ordered by € since « is.
If we assume, in addition, that 8 is not equal to «, then by Proposition 7.10,

there exists y € « such that 8 = §, and by Remark 7.15,y = §,so e . B
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It is clear that the empty set is an ordinal. It is even the least of all the ordinals.
If o is a non-empty ordinal, we claim that # € «. For « contains a least element
that we will call 8. Every element of f also belongs to « (since « is transitive) and
is strictly less than B; but this contradicts the minimality of 8. So f = 4.

The set {#J} is also an ordinal; this is easy to verify from the definition. The
following sets are also ordinals:

{6,{9}} and {4, {0}, {2, {4}})

More generally, we have the following corollary.
Corollary 7.19 If « is an ordinal, then p = o U {«a} is also an ordinal.

Proof We will once more use the preceding proposition. First, we will show that
B is a transitive set. Assume y € f and § € y; theneither y € ¢ and § € «
because « is transitive; or else ¥ = « and § € « is then obvious. Also, if x and
y are two distinct elements of §, then either they both belong to o« (in which case
we do have x € y or y € x since « is an ordinal) or else one of the two is equal to

« and the other belongs to o (in which case we obtain the same conclusion). H

The ordinal & U {a} will be denoted by ot and will be called the successor of .
An ordinal is called a limit ordinal if it is not equal to ¥ and is not the successor
of some other ordinal. ,

We have now arrived at a theorem which is slightly more difficult and whose
corollaries are extremely important. Our argument will involve, without explicit
mention, definitions and proofs by induction. We will analyse these more precisely

- and systematically in the section that follows this one.

Theorem 7.20 Let X and Y be two sets that are well-ordered by the relations R
and S, respectively. Then at least one of the following two situations holds:

(a) there exists one and only one initial segment Yy of Y and one and only one
isomorphism f from (X, R) onto (Y1, S | Y1);

(b) there exists one and only one initial segment X1 of X and one and only one
isomorphism g from (Y, S) onto (X1, R | X1).

Moreover, if both (a) and (b) hold, then X| = X and Yy = Y and the mappings
f and g are inverses of one another.

Proof In this proof, we will consider initial segments of X and Y. We will always
consider these as sets that are ordered by the restrictions of R or S. When we speak
of isomorphisms between such sets, we always mean isomorphisms of ordered sets.

We will first prove uniqueness. Suppose, for example, that Y| and Y, are two
initial segments of ¥ and that f) and f> are isomorphisms from X onto Y7 and Y>,
respectively. Consider the set

Z={xeX: fitx)# f2(x)}.
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We will prove that Z is empty. The argument is by contradiction. If Z is not empty,
. there is a least element xo (for R) in Z. Assume, for example, that fi (x0) <s
f2(x0). As Y is an initial segment of Y, fi(xg) € Y2 and there exists x; € X
such that

fa(x1) = filxo) <s f2(x0).

Since f7 is anisomorphism,.v; <pg xo. But xg was chosen as the least elementin Z;
thus f1(x1) = fa(x1); it follows from this that f1(x1) = fi(xg), contradicting the
fact that fj is injective.

The uniqueness for situation (b) is proved in a similar fashion. Suppose next
that (a) and (b) both hold simultaneously. We can easily see that g(Y7) is an initial
segment of X and hence that g o f is an isomorphism from X onto one of its initial
segments. But the identity mapping on X is also an isomorphism from X onto one
of its initial segments (namely X itself), so by applying the uniqueness that has
already been established, we see that g o f is equal to the identity mapping on X.
Since f is injective, it follows that f and g are inverses of each other.

What remains is to prove the existence. Consider the sets

A = {(x,y) € X x Y : there exists an isomorphism from S, onto S}

and
A* = {(y,x) € Y x X : there exists an isomorphism from Sy onto Sy}

Suppose that (x, y) and (x, z) both belong to A, so that there exist two isomor-
phisms from S onto S, and S;, respectively, which are initial segments of ¥, We
have just seen that this implies S, = S, and hence y = z. In other words, A is
a mapping whose domain, which we call Ay, is included in X and whose image,
which we call Ay, is included in Y. In the same way, we prove that A* is a mapping
and, since (x, y) € A if and only if (y, x) € A*, it follows that the domain of A*
is A and that its image is Ay; thus A and A™ are inverses of one another. So they
are both bijections. :

We will need the following observation: suppose that 4 is an isomorphism from
a totally ordered set U onto a totally ordered set V; then it is very easy to verify
that, for all u € U, the image under & of the set {t € U : t < u} is equal to
{veV:v<h@)). Inother words, h(S,) = Shu)-

This allows us to prove that A; is an initial segment of X. For if x € A; and
7 <pg X, then there exists y € Y and an isomorphism f from S, onto Sy. The
restriction of f to S, is an isomorphism from S, onto an initial segment of S,
which is also an initial segment of Y distinct from Y, and hence equal to some S,
with 'y € ¥ (Proposition 7.10). This shows that (z, y’) € A, and therefore z € A;.
Similarly, A is an initial segment of ¥

We also see that A, not content to be bijective, is an isomorphism. Indeed,
suppose that (x, y) and (z, 1) belong to A and that z < x; so there exists an
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isomorphism f from Sy onto Sy and f [ S, is an isomorphism from S, onto an
initial segment of ¥ which, by the uniqueness that has already been proved, must
equal S;. Hence, t <g y. '

If A = X, the conclusion of the theorem is true because (a) holds; if A, =Y,
then it is (b) that holds. Finally, let us prove by contradiction that the situation in
which both A; # X and A, # Y cannot arise. If it did, then by Proposition 7.10,
there would exist x € X and y € Y such that A| = Sy and Ay = §y. But then,
A is an isomorphism from Sy onto Sy, which proves that (x, y) € A and that
x € A = Sy, which is absurd.

We will now apply this theorem specifically to the ordinals. We have already
observed that an initial segment of an ordinal is an ordinal (see Corollary 7.18). In
addition, we have the following:

Proposition 7.21 Suppose that o and p are ordinals and that f is an isomorphism
from a onto B. Then oo = B and f is the identity on a.

Proof Consider the set X = {x € @ : f(x) # x}. If this set is not empty, it has
a least element xg. Let us examine f (xp).

If y € xg, then y € o (« is transitive) and f(y) € f(xo) (f is an isomorphism);
so by the minimality of xo, y = f (). It follows that xo € f(x0).

Conversely, if y € f(xo), then y € f (B is transitive) and there exists z € « such
that y = f(z) (f is surjective onto B). Since f is an isomorphism, z € xo and,
by the minimality of xo, z = f(z) = y. Thus f (x0) € xp and, by extensionality,
xo = f(x0). So we have arrived at a contradiction; our conclusion is that X is
empty. This proves the proposition. ]

Corollary 7.22 Suppose that « and f8 are ordinals. Then exactly one of the
Sollowing holds:

(1) aep;
(2) pew;
3) a=8
Proof It is impossible that two of these properties could hold simultaneously;
this is an easy consequence of Remark 7.13 and of the fact that ordinals are

transitive sets.
Next, apply Theorem 7.20. Assume, for example, that there exists an isomor-

phism f from o onto an initial segment S of . If this initial segment is dis- .

tinct from B, then, according to Corollary 7.18, S is itself an ordinal and belongs
to B. From Proposition 7.21, we conclude that § = «, so o € B. If the ini-
tial segment S is equal to B, then f is an isomorphism from « onto f and we
may apply Proposition 7.21 directly to conclude that @ = f. The argument is
analogous in the case where there exists an isomorphism from B onto an initial
segment of «. ||
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Remark 7.23 Proposition 7.17 can now be rephrased; it asserts that every
~ transitive set of ordinals is an ordinal.

We will now consider the class of ordinals (i.e. the class of sets that satisfy the
formula Onfvgl). We will shortly prove that this class is not a set. Nonetheless,
the membership relation on this class has all the properties of a well-ordering.

o (transitive)Ife, B, and y are ordinalsand« € fand 8 € y,thena € y because
y 1s a transitive set.
o (irreflexive) If « is an ordinal, then o ¢ o« by Remark 7.13.

e (tofal) If @ and B are ordinals, then either « € Bor 8 € @ or @ = B by
Corollary 7.22.

‘e Let Flvp] be a formula with parameters from U and assume that there exist’

ordinals that satisfy F[vg]. We must prove that there is a least such ordinal;
more precisely, we require an ordinal « such that Fl«] is true and, for every
ordinal 8, F[B] implies « € 8 or « = B. To prove this, let y be an ordinal that
satisfies F[y] (by hypothesis, such a y exists). Then the set

Beyt:FIBY

is not empty since it contains y. So it contains a least element since y is an
ordinal. This least element is the desired ordinal «.

We will say that the membership relation on the class of ordinals is a meta-well-
ordering. In particular,

Remark 7.24 Every non-empty class of ordinals contains a least element.
Proposition 7.25 The class of ordinals is not a set.

Proof Suppose the contrary and let X denote the set of all ordinals. If @ € X
and B € o, then B € X by Remark 7.14. Together with Remark 7.23, this allows
us to apply Proposition 7.17 to conclude that X € X since X is an ordinal. This
contradicts Remark 7.13. B

Proposition 7.26 If A is a set of ordinals, then

=«

aeA

is an ordinal. Moreover, B is the least upper bound of A.

Proof The fact that any union of transitive sets is a transitive set is more or less
obvious; thus g is a transitive set of ordinals. So it follows from Remark 7.23 that
B 1s an ordinal.

It we assume that o € A, then, by the definition of A and of 8, « C B and, by
Remark 7.16, @ < . This proves that § is greater than or equal to every element
of A. We can even prove that f is the least such ordinal; for if y is greater than or
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equal to every element of A, then, forevery o € A, o S ¥ this shows that 8 € y
and hence that 8 < y.
So we have established that 8 is the least upper bound of A. We wﬂl write

B=Uyecs@ =supA. |

Proposition 7.27 Suppose that a set X is well-ordered by a relation R; then there
exists one and only one ordinal o that is isomorphic to (X, R). Moreover, there is
_a unique isomorphism from a onto (X, R).

Proof Both uniqueness properties were already proved in Theorem 7.20.
Our argument now proceeds by contradiction. By applying Theorem 7.20, we
see that every ordinal is isomorphic to an initial segment of X. Consider the set

= {x € p(X) : x is an initial segment of X and

x is isomorphic to an ordinal}
and the formula

Flvg, vi] = vo € T A Onlvi] A there exists an isomorphism

from vg into vy.

Again by Theorem 7.20, this formula is functional in vo (Definition 7.2). So the
replacement scheme guarantees the existence of the set

= {a : g € T F[vg, o]}

But, by hypothesis, there exists, for every ordinal o, an isomorphism from « onto
an initial segment of X; as a result, ug(vg € T A Flvo, a]). In other words, O is
the set of all ordinals; but this contradicts Proposition 7.25. B

Remark 7.28 Suppose that « is an ordinal and that X is a subset of o; we have
seen that X is well-ordered by €. Consequently, there exists an ordinal  and an
isomorphism f from B onto X. We claim that § < «. This will follow from the
next lemma.

Lemma 7.29 Let f be a strictly increasing mapping from an ordinal § into an
ordinal a; then for every ordinal y € B, f(y) = ¥.

Proof We will argue by contradiction. Let y be the least ordinal such that
f(y) < y. For every § € y, 8 < f(8) and, moreover, () < f(y) since f
is strictly increasing; thus § € f(y). It follows that y € f(y) and, from Remark
7.16,that y < f(y). |

We will now introduce the last axiom of ZF, the axiom of infinity.

Definition 7.30 Let « be an ordinal. We say that « is finite if neither it nor any
of its elements is a limit ordinal. An ordinal is infinite if it is not finite.

Observe that if « is a finite ordinal and 8 € «, then g is also a finite ordinal. For
example, &, {#}, {9, {(#)} are finite ordinals. More generally, if  is a finite ordinal,
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then so is ™. In fact, the existence of an infinite ordinal requires the introduction

_of a new axiom called, naturally, the axiom of infinity.

(Inf) There exists an infinite ordinal.
This is clearly equivalent to ‘there exists a limit ordinal’; this is the formula

Avg(Onfvg] A —vg = @ A Yvi—vg = vy U {v1}).

In keeping with what was said at the beginning of this chapter, we assume from
now on that this axiom is satisfied in .

In the final section of this chapter, we will see that this axiom cannot be derived
from the ones introduced earlier.

Notation The least infinite ordinal will be denoted by w.

Such an ordinal exists since, as we have observed, the class of ordinals is a
well-ordered class. Note that  is also equal to the set of finite ordinals; for if o
is a finite ordinal, then no ordinal less than « is infinite, so « € w; conversely, if
« € w, then, by the minimality of w, « is finite.

7.2.3 Operations on ordinal numbers

We are now going to define a few operations on ordered sets and ordinals.

Leta = (a, R)and b = (b, S) be two ordered sets. We are going to define a new
ordered set called the direct sum of a and b and denoted by a & b. The base set
of a® bis a Wb, the disjoint union of a and b (see Definition 7.5). Setc = a W b.
We define a binary relation 7" on ¢ as follows:

forall (xo, o) and (x1,yp)inc, ((x0, yo), (x1, y1)) €T
if and only if

yo=0 and y =1
oryy=y; =0 and x¢ <p xy;
oryy=y; =1 and xg <g x].

Intuitively, the set a W b consists of a copy of @ and a copy of b. In the relation we
have just defined, the elements of the copy of a are ordered among themselves as
they already are in o and are less than the elements from the copy of b, which are
in turn, among themselves, ordered as they already are in b.

We need to prove that the relation T is an order relation. First, consider transi-
tivity. Let (xg, yo), (x1, y1), and (x2, y2) be three elements of ¢ and assume that
((x0, ¥0), (x1, y1)) and ((x1, y1), (x2, y2)) both belong to 7. Several cases are
possible:

e y, = 0. The definition of T' then implies that yo = y; = 0, xg < xy,
and x; <pg x7. Since R is transitive, it follows that xo <g xp and hence that
((x0, y0), (x2,2)) € T.
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o y; = 1and yo = 0. Then ((xo, Yo), (x2, ¥2)) € T derives from the defini-
tion of T'. ‘

e yo =y, =1 Theny; = 1, xp <s x1, and x; <g x2. Since S is transitive, it
follows that xg <s x> and hence that ((xo, yo), (x2, ¥2)) € T.

We leave to the reader the verifications that 7 is irreflexive and that 7' is total if
both R and S are total.

Suppose that a and b are both well-orderings. We will show that this is also the
case for a @ b. Let d be a non-empty subset of ¢; we must show that it contains a
least element. Exactly one of the following must happen: either d contains some

elements of the form (x, 0) where x € a or it does not. In the first case, if xg is
 the least such x, then (xp, 0) is the least element of d; in the second case, all the
elements of d are of the form (y, 1) where y € b, and if y is the least y such that
(v, 1) € d, then (yp, 1) is the least element of c.

Thus, if @ and B are ordinals, o @ 8 is a well-ordering and, by Proposition 7.27, it
is isomorphic to a unique ordinal. This discussion justifies the following definition.

Definition 7.31 Let « and B be ordinals. The unique ordinal that is isomorphic
to o @ B is called the ordinal sum of « and f and is denoted by o + B.

We next turn to the product. Again, leta = (a, R) and b = (b, S) be two ordered
sets. We define a relation T on ¢ = a x b as follows:

for all (xg, yo) and (x1, y1)inec, ((x0,yo), x1,yD)) €T

if and only if one of the following two conditions holds:

Yo<g§ yl,’ or
yo=1y; and Xxo <pg X1.

Once again, we need to prove that 7' is an order relation. First, consider transi-
tivity. Let (xo, Yo), (x1, y1), and (x2, y2) be three elements of ¢ and assume that
((x0, ¥0), (x1, ¥1)) and ((x1, ¥1), (x2, y2)) both belong to T'. It follows from this
that yg <5 y; <s »2. So there are two possible cases: either yo <s y2, in which
case ((x0, o), (x2, ¥2)) € T derives from the definition of T'; orelse yo = y1 = y»
and, in this case, xg <gr x1 <p X2 and, once again, ((xo, yo), (x2,y2)) € T.

As above, we leave to the reader the verifications that T is irreflexive and that
T is total if both R and S are total. The set @ x b, ordered by T', will be denoted
by a ® b.

Also as above, let us prove that if R and S are both well-orderings, then sois 7.
Let d be a non-empty subset of a x b; then the set

{y € b : there exists x € a such that (x, y) € d}
is non-empty. Let yg be its least element and let xg be the least element of the set

{x e b:(x,y) €d}.



ORDINAL NUMBERS AND INTEGERS 131

It is easy to see that (xg, yo) is the least element of d. This justifies the following
_definition.

Definition 7.32 Let o and B be ordinals. The unique ordinal that is isomorphic
to o @ B is called the ordinal product of a« and 8 and is denoted by o x B.

Theorem 7.33 Let «, B, and y be ordinals. Then

W a+@B+y)=(@@+8)+y,
) ax (B xy)=(xxp)xy;
(i) ax (B+y)=(xp)+ (@ xy)
iv) a +0=a =0+ q;
V) ax0=0xa=0
(vi) a x1=1X o =«;
(vii) et =a +1;
(viil) if o and B are finite, then so are o« + 8 and o x B;
(ix) ifat = BT, thena = B;
(x) ifa and B are finite ordinals, then ov < B if and only if there exists a non-zero

ordinal y such that o« + y = B.

Proof The proofs of (i), (ii), and (iii) are all based on the same principle. For
example, for (i), we prove that if « = (a, R), b = (b, §), and ¢ = (¢, T) are three
ordered sets, then a @ (b @ ¢) is isomorphic to (a b) @ c. Here is the isomorphism
ffroma® (bebc)onto (aPb) P ifx € alw (bWc), then

e either x = (y, 0) with y € g; in this case, set f(x) = ((y, 0), 0);

e orx = ((y,0),1) with y € b; in this case, set f(x) = ((y, 1), 0);

e orx = ((y, 1), 1) with y € c; in this case, set f(x) = (y, 1).

For (i1), with a, b, and ¢ as above, we prove that a ® (b ® ¢) is isomorphic to
(0 ® b) ® c. The isomorphism f is defined as follows:

forallx ea, yeb, andz ec, f((x,(y 2)) = ((x,),2).

Fof (iii), we need to define an isomorphism f from a® (b@¢) onto (aRb)D(a®c).
It is as follows:

o if x = (y, (z,0)) with y € a and z € b, then f(x) = ((y, z), 0);
o ifx =(y,(z,1)) withy e aand z € ¢, then f(x) = ((y, 2), 1).
Properties (iv) and (v) are more or less obvious.

Property (vi) results from the isomorphism f from « onto a ® 1 defined, for

B €a,by f(B) = (8,0).
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Property (vii) results from the isomorphism f from at onto o @ 1 defined as
follows:

o if pea, f(B)=(8,0);
o f(a)=(®,1).

To justify (viii), suppose that o and g are finite ordinals and, for a proof by
contradiction, suppose that « + B is infinite. Then consider the set

A = {x € o : « + x is infinite}.

This set is not empty (it contains 8) so it has a least element that we will call X9.
We see that xg # 0 since @ + 0 = « and « is finite. Since xo is finite, it is
not a limit ordinal so there exists an ordinal yg such that y('f = yo+ 1= xg.
Then o + xp = (« + yo) + 1 = (@ + yo) T [using (i) and (vii)]; & + yo is finite
(because xg is the least element of A) and we have seen, in the comments that
follow Definition 7.30, that the successor of a finite ordinal is finite; thus & + xg
is finite. But this contradicts the fact that xg € A.

This proves that the sum of two finite ordinals is a finite ordinal. Let us now,
again with a proof by contradiction, establish that the product of two finite ordinals
is a finite ordinal. Suppose that the set

B = {x € w: a x x is infinite}

is not empty and consider its least element, xg. By (v), we know that xo # ¥, so
there exists an ordinal yo such that xg = yg + 1. From (iii) and (vi), we see that
o X xp = (& X yo) +o. Now & X y is finite because xg is the least element of B;
also, by hypothesis, « is finite so the sum (& x yp) + « is finite by what we just
proved. But this contradicts the fact that xp € B.

For (ix), it is more or less clear that « is the greatest element of a™ (and B is the
greatest element of 1), Thus, if @™ = %, then o = B.

We are left with the proof of (x). It should be clear that if y is a non-zero ordinal,
o +y > a+1=a" > « This proves the implication from right to left. In the
other direction, we argue by contradiction: let 8 be the least finite ordinal such
that 8 > o and for which there does not exist an ordinal y satisfying o + y = .
Since B > a, B is not zero and, since it is finite, there exists an ordinal § such that
B = 8 + 1. We now distinguish two cases: ‘

§ > «: By the minimality of f3, there exists an ordinal y’ such that § = & + y/;
from (i), we then have 8 = § +1 = « + (¥’ + 1), which is a contradiction.

§ < «: Itis easy to see that in this case, § = o, so f = « + 1, which is again a
contradiction. |

Remark 7.34 The proofs of properties (i) through (vi) depended only on the fact
that o« and 8 are ordered sets.

Remark 7.35 1t is easy to see that the ordinal sum and ordinal product are not
commutative operations. For example, 1+ = @ < w+land2xw =w < wx2.
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This example also illustrates that we must pay attention to directions in the dis-
tributivity property (iii): we have 2 x v = (1 + 1) X w # w + w. It can also be
seen that property (x) is true for all ordinals.

Remark 7.36 From now on, we will abandon the notation «* and replace it with
o + 1 as (vii) authorizes us to do.

7.2.4 The integers

We now know enough to construct the integers. Consider the set w and define

e the mapping S from w into w whose value, atn € o, isn + 1;

e the mapping + from @ X @ into @ whose value at (n, p)isn + p
(we will call this mapping ‘addition’);

e the mapping X from @ X w into w whose value at (n, p)isn x p
(we will call this mapping ‘multiplication’).

The structure so defined has the following properties:

(a) The element 0 is an identity element for addition [part (iv) of Theorem 7. 33]
and 1 is an identity element for multiplication [part (vi) of Theorem 7.33].

(b) If n € w and n is not equal to 0, then there exists a unique element p of w
such that n = S(p); this is a consequence of the definition of the finite ordinals
and of part (ix) of Theorem 7.33.

(c) There does not exist an element p € w such that 0 = S(p) (this is a direct
consequence of the definitions).

(d) Addition and multiplication are associative [parts (i) and (ii) of Theorem 7.33].
. (e) There is a distributive relationship between addition and multiplication

[part (iii) of Theorem 7.33].

(f) Forall n and p inw, n < p if and only if there exists a non-zero finite ordinal
q such that n 4+ ¢ = p [part (x) of Theorem 7.33].

The structure (w, 0, S, 4, x) will be denoted by N and the elements of w will
be called integers. This name is justified by properties (a)—(f) and by the fact that
every non-empty set of ordinals (of integers, in particular) has a least element. All
the theorems of arithmetic can be proved using only these properties. For example,
the reader, inspired by the proof found in Chapter 6, can confirm that addition and
multiplication are commutative operations.

From this point on, the word ‘integer’ will mean ‘element of w’. We have already
agreed to write 0 instead of ¢ and 1 instead of {{J}, and this convention is justified
by Theorem 7.33. We must continue to carefully distinguish the integers (element
of w) from what we have called the intuitive integers and which we have already
frequently used. As a general rule, we need the intuitive integers when we wish
to speak about the formal language, for example, about the length of a formula or
about the number of free variables it contains.

We should also point out that, from the point of view of the meta-universe, we can
associate an element of w with each intuitive integer by iterating the construction
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0=0,1={7},2=1{0,1}, and so on. But there can very well be other elements
of w than these (known as ‘non-standard’ integers). :

This process can be continued and we can define, in ¢/, all the usual mathemati-
cal structures: the positive and negative integers Z, the rationals, the real numbers,
etc. This process can be observed, for example, in Number Systems and the Foun-
dations of Analysis, by Elliott Mendelson, Academic Press, 1973. It is important
to retain, from all this, that the structures obtained in this way (the base sets and
the operations) are sets, i.e. elements of /.

Nothing prevents us from defining, in {, the notions of finite sequence, of first-
order formula, of structure and of satisfaction of a formula in a structure. We could
then express Peano’s axioms and observe that N is a model of these axioms. But
we will only exceptionally transcend this stage: unless otherwise mentioned, the
words ‘formula’, ‘model’, etc. will retain their intuitive meanings.

7.3 Inductive proofs and definitions
7.3.1 Induction

The ordinals appear as a generalization of the integers. One of the interesting
features of this intuition is that proof by induction on the ordinals becomes possible.
In fact, we have already used this kind of proof several times without mentioning
it. Here is an explanation of the principle.

Let F[vg] be a formula of L with one free variable and with parameters from U;
suppose that, as part of a proof, we wish to show that F'[«] is true for every ordinal .
‘We fix an ordinal 8 and assume (the induction hypothesis) that F'[y] is true for
every ordinal y < B. From this hypothesis, and from others that we may have
at our disposal, we conclude that F[B] is true. The conclusion, from all of this,
is that for every ordinal o, Fle] is true. We may express this by the following
formula:

Va(Onla] = (VB(B € o = FIB]) = Flal)) = Va(Onla] = Fla]). ()
The following argument by contradiction justifies this principle. Suppose that
Va(Onla] = (VB(B € a = F[B]) = Fla]))

is true. If there is an ordinal for which F[«] is false, then, by Remark 7.24, there
is a least such ordinal which we will call «g. Precisely because it is the least, we
know that for every 8, (8 € ag-=> F[B]) is true, so by hypothesis, Flag] is also
true; but this contradicts our choice of ay.

When we wish to invoke (*), we have to prove F[o] under the assumption that
F[B]is true for all B € «. It often happens that such a proof splits into three cases
according as « is equal to 0, or is a successor, or is a limit. The fact that we need
to consider the case where « is a limit constitutes a novelty compared with proofs
by induction on the integers.
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We next proceed to definitions by induction and, to explain what we will be
_doing, let us reconsider the example of definitions by induction of functions from
the integers into the integers. To define such a function f by induction, we have
to define f(0) and provide a way to determine f(n + 1) from f(n). If we try
to generalize this type of definition for the ordinals, we see that there will be a
problem for limit ordinals: how, for example, to define f(w)? In Exercise 13 from

Chapter 5, we noted that in definitions by induction, we could, in the definition of

f(n 4+ 1), permit the use of all the values f(i) for 0 < i < n that were already
determined. We will take our inspiration from this kind of induction. To define
a function ¢ on the ordinals, it will suffice to know how, for every ordinal «, to
define ¢ (o) from the values ¢ (8) for 8 € «, i.e. from the mapping whose domain
is & and which, for every B € «, maps B to ¢(f).

" The function ¢ that we seek to define is not a mapping since its domain is the
class of all ordinals, which is not a set (see the remarks that follow Definition 7.7;
also see Remark 7.38 below). It will be defined by a formula G{vg, v1] such that

Yug(Onlvo] = 3w Glug, v1])

and, if @ is an ordinal, ¢ (@) will be the unique set x that satisfies G[«, x]. By
contrast, the restriction of this function to an ordinal « is a mapping. To see this,
note that the axiom of replacement can be used to define the set

A = {x :there exists an ordinal 8 < « such that G[8, x]}
and the restriction of ¢ to ¢, which we will denote by ¢ | «, is equal to

{(B,x) ex x A G[B, x]}.

We should now explain what we mean by ‘¢ () can be defined from the values

¢ (B) for B € «’. This means that we can set down conditions on the function ¢ that

link ¢ (@) to the values ¢ (8) for B < « (exactly as in the case for recursive func-

tions) and that are sufficiently restrictive that ¢ (&) is completely determinedif ¢ |

is known. These conditions will be expressed by a formula F[vg, v, v2] such that
YugYu1 ((On[vg] A vy is a mapping whose domain is vg)

= Alvy Flug, v1, v2]). (%)

We then want a function ¢ that will satisfy

for every ordinal «, ¢ (a) is the unique set x
such that Flo, ¢ | o, x]. (k)

Theorem 7.37 Let Flvg, vi, v2] be aformula (possibly with parameters from U )
such that

YugYui1 ((Onlvo] A vy is a mapping whose domain is vg)
= vy Flvg, v1, v21); (%)
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then there exists one and only one function ¢ whose domain is the class of ordinals
and is such that '

for every ordinal o, ¢ (a) is the unique set x
such that Fla, ¢ | o, x]. (%)

Proof Consider the following condition on a mapping f

the domain of f is an ordinal and,
for every p € dom(f), FIB, f [ B, f(B)]. (1)

It is entirely obvious that if f satisfies (1) and if 8 € dom(f), then f | B
also satisfies (T). Also, for every ordinal , there can be at most one mapping f
with domain o that satisfies this condition; to see this, we argue by contradiction.
Suppose that f and f” are two different mappings, each with domain o, that satisfy
(1). Let B be the least ordinal such that f(8) # f'(8). Then, by the minimality of
B, f 1B =f"1pandwehaveboth F[B, f | B, f(B)land F[B, f | B, f'(B)];
this contradicts (k).

The uniqueness asserted in the theorem follows from this; if ¢ and ¢’ are func-
tions whose domain is the class of ordinals and that both satisfy (x#x) and if « is
an ordinal, then ¢ | (e + 1) and ¢’ | (@ + 1) each satisfy (1); so they are equal
and ¢ (a) = ¢’ ().

Let G[vg, v1] be the following formula:

Onl[vgl A3f(f isamap Adom(f) =vp + 1
A f satisfies (1) A vg = f(vo)).

From the uniqueness that we have just proved, it is clear that this formula is
functional in vg. Let ¢ denote the partial function that this formula defines.

Suppose for a moment that « is an ordinal and that ¢¢ is defined on «; i.e. for
every B < «, there exists a set x such that G[8, x]. By the axiom of replacement,
the image of « under ¢ is a set, A:

A = {y: there exists an ordinal B € « such that G[B, y]}
and the set -

g={B, Y eaxA:G[B,y]}

is a mapping whose domain is «. Let us prove that this mapping satisfies (T); we
have to show that

for every ordinal 8, B < « implies F[B, g | B, g(B)].

We will once again argue by contradiction: consider the least ordinal 8 < « for

which F[8, g | B8, g(B)] is false. By the minimality of 8, g | B satisfies (). Since
g(B) satisfies G[B, g(B)] (by definition of g), we know that there exists a mapping
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f whose domain is B + 1, which satisfies (1), and is such that f(8) = g(B). It
follows, on the one hand, that f | 8 = g | B [because both satisfy ()] and, on
the other hand, that F[8, f | B, f(B)] [because f satisfies (1)]. This proves that
F[B, g | B, g(B)], which contradicts our original assumption.

We are now in a position to prove by induction that, for every ordinal c, there
exists a set x satisfying Glw, x]. Suppose that this is true for every f < «. We
have just seen that ¢ = ¢ | o satisfies (1). Moreover, by (xx), there exists a set a
such that Fl«, g, al. Let

f=gU{(a,a)}.

Itis clear that f is a mapping whose domain is o + 1, which still satisfies (1), and
such that G[e, al. | '

So the formula G defines a function ¢ whose domain is the class of all ordinals
and it follows from what has been said that ¢ satisfies (xx%), [ |

Remark 7.38 At some point, we will need to define by induction a mapping
whose domain is a fixed ordinal ¢ (for example, w for the recursive functions). In
this case, condition (*x) is replaced by the following weaker condition:

YugVvy ((Onfvg] A vo < o A vy is a mapping whose domain is vg)
= Ay Flug, vy, v2]).

We can then show that there exists one and only one mapping f whose domain
is o and is such that, for every ordinal B < «, f(f) is the unique set x such that

F{B, f | B, x]. We may choose to adapt the previous proof or we may apply the.

previous theorem using the formula
F'lvg, v1, v2] = (vo < & = Flvo, v1, 12]) A (vo = @ = vy > ).

Remark 7.39 In many instances where the above theorem is to be applied, the
situation is in fact more complicated. Let us keep the notations from the previous
proof. While defining the function ¢ (&) by induction, we also prove by induction
that the mapping ¢ | « satisfies a certain formula, say P[vg]. The subtle point is
that ¢ («) can be defined only if ¢ | o satisfies P; in other words, we are no longer
guaranteed that the condition (%) is satisfied, but only that

YugVu1 ((Onlvg] A vg < « A v1 is a mapping whose domain is vg A P[v1])
= vy Flvo, vi, v2]).

Once more, we may reduce this situation to that of the preceding theorem by a
pirouette: replace the formula F by

F' = (P[vi] = Flvg, v, 12]) A (=P[v1] = vy >~ ).
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7.3.2 The axiom of choice

First, let us recall the statement of this axiom. .
(AC) If (a;)ies is a family of non-empty sets, then [ [;.; a; is non-empty.
The axiom of choice is equivalent, in the presence of the axioms of ZF, to other
statements that are easier to exploit; we present these now.

Definition 7.40 An ordered set (X, R) is called inductive if for every subset Y of
X, if Y is totally ordered by R, then Y has an upper bound in X.

It follows from this definition that if (X, R) is inductive, then X is not empty;
for the empty set, which is a subset of X that is totally ordered by R, must have
an upper bound and this furnishes us with an element of X. In practice, when we
wish to show that (X, R) is inductive, it is generally more transparent to show that
X is non-empty and that every non-empty subset Y of X that is totally ordered by
R has an upper bound in X.

Theorem 7.41 The following three statements are equivalent:

1) (AC);

(ii) ifthe ordered set (X, R) is inductive, then it has at least one maximal element,
(iii) for every set X, there exists a well-ordering of X.

Properties (ii) and (iii) are therefore theorems of ZFC. Property (ii) is commonly
known as Zorn’s lemma and (iii) as Zermelo’s theorem.

Proof (i) implies (ii): The argument is by contradiction, so we assume the axiom
of choice, on the one hand, and on the other hand that thebe exists an inductive set
(X, R) that does not have a maximal element. Consider the set

T ={Y € p(X):7 is totally ordered by R}.
For every element ¥ of T, there exists an element a in X that is an upper bound
for Y; since a is not maximal in X, there exists b € X such thata <g b. Thus, for
every ¥ € T, the set

{be X: foreveryyeY, y <gr b}

is not empty. So by the axiom of choice, there exists a mapping k from 7 into X
such that

forevery Y € T and forevery y € ¥, y <g k(Y¥).

We can now define by induction on the class of ordinals a function f with values
in X such that if ¢ and B are ordinals and ¢ < 8, then f(a) < f(B). Since this
is the first occasion we have to use this induction principle, we will proceed with
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particular care. Let F[vg, vy, v3] be the formula

Onfv1] A v3 is a mapping whose domain is v;
AImv3) € T) = vy = k(Im(v3)) A ((IM(v3) & T) = vg =~ @)).

This formula is functional and the conditions required by Theorem 7.37 are
satisfied. So we may conclude that there exists a function & which is such that for
every ordinal o, F[h(w), or, i | e}, At the same time, we can prove by induction
that for every ordinal «, the following condition (1), is satisfied:

h(e) € X and (B €« implies (B) <g h(a)). ((Dea)

Suppose that (1)g is true forevery 8 < «; then hla] = {A(B): B € o} isincluded
in X and is totally ordered by R. In other words, h[«] € T and hence, according
to the inductive definition of &, h(a) € X and h(B) < h(a) for every 8 € «.

The contradiction in then easy to obtain; let H[vg, v{] denote the formula

On[vp] Avy € T A there exists an isomorphism from vg onto vj.

We have seen (Proposition 7.27) that an ordered set cannot be isomorphic to two
different ordinals. Thus the formula H is functional in vp. By the axiom of replace-
ment, the image of T under the function that this formula defines is a set. But we
have just seen that every ordinal is isomorphic to an element of 7', so this image
would be equal to the set of all ordinals. This contradicts Proposition 7.25.

(i) implies (iii): The proof that follows is characteristic of the way in which
Zorn’s lemma is generally used.

Let X be a set; we must show that there exists a well-ordering of X.

Consider the set

a={(A,R) e p(X) x p(X x X): Ris awell-ordering of A}
and the following binary relation s on a:
{((Ao, Ro), (A1, R1)) € a x a: _
Ap € Ay, Agis an initial segment of (A}, Ry) and Ry = R | Ao).

The verification that s is an order relation on a is immediate. Let us prove that
this relation is inductive. First of all, a is not empty since it contains (4, @). Let b
be a non-empty subset of a that is totally ordered by s. Set

C = {x € X : thereexists (A, R) € b such that x € A}, and
T = {(x,y) € X x X : there exists (A, R) € b such that (x, y) € R}.
Let us prove that 7' is a well-ordering of C. We begin by verifying that T C
C x C. Suppose that (x, y) € T; then there exists (A, R) belonging to b such that

(x,y) € R. Since (A, R) must also belong to a, R is a relation on A so x and y
belong to A. From the definition of C, it now follows that they also belong to C.
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To prove the transitivity of 7', suppose that (x, y) and (y, z) belong to 7. We
must show that (x, z) also belongs to T. There exist (Ao, Rp) and (Ay, Ry) in b
suchthatx <pg, yandy <g, z.Butbis totally ordered by s; suppose, for example,
that (Ag, Rg) <s (A1, Ry) (the opposite case is treated exactly the same way).
This means that Ag € A and that Ry = Ry [ Ap, which implies that x <g, .
Since R; is an order relation, x <g, z.

The fact that T is irreflexive is easy to see. [f x € C, then for every (A, R) € b,
(x, x) does not belong to R, and hence (x, x) does not belong to 7.

It remains to show that C is well-ordered by T (we have already observed that this
implies C is totally ordered by C). Let D be anon-empty subset of C; choose a point
din D. There exists (A, R) € bsuchthatd € A;thus AN D is not empty. So it has
a least element for R; we will call it ¢. We will show that a is the least element of D
for T'. So suppose x is another element of D and that (B, §) € bissuchthatx € B.
Again, we use the fact that b is totally ordered by s. If (B, S) <s (A, R), then
B C A, x € AN D,and, by definition of @, a <g x;thusa <7 x. If (A, R) <g
(B, S), then there are two cases: if x € A,thenx € A N Danda <pg x;if x ¢ A,
then since A is an initial segment of B for §, a <g x. In both cases, a <7 x.

All this establishes that the set a ordered by s is inductive; so, according to (ii),
it has a maximal element. Let (D, W) be such a maximal element. Our proof will
conclude by showing that D is equal to the whole of X.

The argument is by contradiction. Choose a pointa in X — D. Set D' = D U{a]}
and extend the relation W to a relation W’ an D’ by declaring that a is greater
than all the elements of D. Then D’ is well-ordered by W’ (the proof is the
same as that for Corollary 7.19) and has D as an initial segment. This shows
that (D', W') >4 (D, W), which contradicts the maximality of (D, W).

(iii) implies (i): Let (a;);c7 be a family of non-empty sets. Set

a=Ja

iel
By property (iii), there exists a well-ordering, say <, of a. Then

b = {(i,x) € I x a: xis the least element of ; for the relation <}

is an element of [ [;; a;.

7.4 Cardinality

7.4.1 Cardinal equivalence classes

Definition 7.42 Let x and y be two sets. We say that x is subpotent to y if there
exists an injection from x into y. We say that x and y are equipotent if there exists
a bijection from x onto y.

Consider the formula

Flvo, v} = 3f(f is an injection from vg into vy).
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We may not speak of the relation defined by F because, a priori, the class of sets
" (x, y) that satisfy F[x, y] is not a set (we will see, after the fact, that indeed it is
not).We may nonetheless observe that the meta-relation defined by this formula is
reflexive and transitive, i.e. that the formulas

YuoFlvo, vo] and  YuoYuiYua((Flvo, vi] A Fluy, v2]) = Flug, v2])
are satisfied. In the same way, if we consider the formula
Glvg,vi]1=3f(fisa bijection from vg into vy),

then the meta-relation defined by G is reflexive, symmetric, and transitive. So it has
all the properties of an equivalence relation (but it is not a relation). In particular,
if x is a set, we may consider the class of elements that are equipotent with x. This
will be called the cardinal class of x and will be denoted by card(x). If x is a set
and if A is a cardinal class, we will say that x has cardinality A to mean that x
belongs to A. We can verify that when x is not the empty set, the cardinal class of
X is not a set.
We do have the important theorem of Cantor-Bernstein.

Theorem 7.43 If x is subpotent to y and y is subpotent to x, then x and y are
equipotent.

Proof Weare giventwo sets x and y, an injection f from x into y, and an injection
g from y into x. Our task is to construct a bijection & from x onto y.
Since f and g are injections, every element of x has at most one preimage in y

under g and each element of y has at most one preimage in x under f. Starting with -

an arbitrary element 7y € x, we build a ‘chain’ 19, #1, 1o, ..., whose elements are
alternately in x and in y, in such a way that each element in the chain is followed
by its unique preimage (under g or f, as the case may be) if this exists. We see
that there are three possibilities: either the chain never ends, or it ends with an
element of x that does not have a preimage under g (this happens, for example, if
to itself does not belong to the image of g; #1 remains undefined), or it ends with an
element of y that does not have a preimage under f. From these three possibilities,
there results a partition of x into (at most) three subsets, which we will label xo,
Xx, and xy, respectively. '

If we start with an element 1o € y, we can construct, in exactly the same way,
a chain ug,uy,u7,... such that, for every n, i, is the unique preimage of u,,
(under f or g, according to the parity of n) if it exists and is undefined otherwise.
We let yo denote the set of elements of y that generate a chain that does not end,
let y, denote the set of those whose chain ends with an element of x that does not
have a preimage under g, and let y, denote the set of those whose chain ends with
an element of y that does not have a predecessor under f.

To do all this formally, we must first define, for every set a and for every map ¢
from a into a, the mapping ¢” from a into a by induction on the integer n € w.
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#° is the identity mapping on a and, for every k € o, ¢*T1 is the composition
¢ o ¢*. We then set | | |
Xy = {t € x : there exists k € w andu € x —Im(g)
such that 1 = (g o /)*(w)};
xy = {t € x : there exists k € w andv € y —Im(f)
such that t = g((f o g)*(v))}
Xoo = X — (xx Uxy);
ye = {1 € y : there exists k € w and t € x — Im(g)
such that u = f((g o /X))
yy = {u € y : there exists k € w and v € y — Im(f)
such that u = (f o g)*(v)};
Yoo =¥ — (¥x Upy)-

N SV

Tnt1 fh—1 Ig

The following facts are then clear; the image under f of every element of x,
belongs to y,; the image under f of every element of xoo belongs to yoo; every
‘element of y, has a preimage under f that belongs to x,; every element of Yoo
has a preimage under f that belongs to xeo; Xy is included in the image of g and
the preimage under g of every element of x, belongs to yy. It follows from these
remarks that the restriction of f to the set xoo U Xy is a bijection from xeo U Xy
onto yeo U yx (denote it by ¢) and that the restriction of g to yy is a bijection from
Yy onto x, (denote it by /). The map & from x into y defined by h = ¢ Uy~ is
then a bijection from x onto y. : B

We should point out that any of the sets oo, Xy, and x, may be empty (at the
same time as, respectively, Yoo, Yx, and yy), but that this in no way affects the
preceding construction.

Observe that if x, x’, y, and y’ are sets, if x and x’ are equipotent, and if y and
y' are equipotent, and if x is subpotent to y, then x” is subpotent to y’ (because the
composition of two injections is an injection). This allows us to define an order on
cardinal classes: if A and p are cardinal classes, then we say that A is less than or
equal to 1, and will write A < p, if there exist sets x and y in the classes A and p,
respectively, such that x is subpotent to y. If A, i, and v are cardinal classes, then

o A <A
o A< pandp < Aimplies that & = p (this is the Cantor-Bernstein theorem);
e A< and @ < vimplies that A < v,
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We can prove that (Exercise 3) the fact that this ordering is total is equivalent to
- the axiom of choice.

7.4.2 Operations on cardinal equivalence classes

We now wish to define a certain number of operations on cardinal classes. To do
this, we will require the following proposition.

Proposition 7.44 (1) If x is equipotent with y and if 7 is equipotent with t, then
x Wz is equipotent with y Wi, x X z is equipotent with y X t, and x* is equipotent
with y'.

(2) Let x, y, z, and t be sets and suppose that x is subpotent to y and that 7 is
subpotent to t. Then x W z is subpotent to y Wt, x X z is subpotent to y X t, and,
if y is not empty, x* is subpotent to y'.

Proof Let us begin by proving (2). Let f be an injection from x into y and let
g be an injection from z into ¢. It is easy to verify that the map k, which we will
define in a moment, is an injection from x W z into y W¢. If a € x W z, then either
there exists b € x such thata = (b, 0) or there exists ¢ € z such thata = (¢, 1). In
the first case, we set k(a) = (f(b), 0); in the second case, we set k(a) = (g(b), 1).
This shows that x & z is subpotent to y & 7.

The proof that x x z is subpotent to y x ¢ is analogous; it suffices to verify
(this is easy) that the map & from x X z into y x  defined by

h((a,b)) = (f(a),g(®)) foralla € x and forallb e ¢

is injective.

The case of exponentiation is slightly more delicate. We will begin by proving’
a special case; suppose that z is equipotent with ¢ and that g is a bijection from z
onto f. Recall that x* is the set of all mappings from z into x and that y’ is the set
of all mappings from ¢ into y. If h € x%, seti, = f oh o g~!; i is therefore a
map from ¢ into y. We will show that the map from x* into y’ whose value at h
is ip, is injective. To do this, we suppose that 4 and k are two distinct elements of
x* and show that iy, is different from i. There exists an element @ € z such that
h{a) # k(a). Set b = g(a). Then iy (b) = f(h(a)) and ix(b) = f(k(a)). Since f
is injective and since h(a) # k(a), we have iy (b) # ir(b).

Let us now turn to the general case and suppose that g is only an injection. Let
u denote the image of z under g. Then g is a bijection from z onto # and we have
just seen that this implies that x? is subpotent to y“. Let us next prove that y* is
subpotent to y'; choose an element ¢ in y (y is not empty). If / is a mapping from
u into y, we can define a mapping jj from ¢ into y as follows:

ifa e u, then j,(a) = hia);

ifaet—u, then j,(a)=c.

Itis clear that if j, = ji, then h = k so we do have an injective map from y*
into y'.




144 SET THEORY

Note that with our definitions, 00 = 1 whereas 0! = 0; so the hypothesis that ‘.y
is not empty is essential.

(1) We could repeat the previous proofs, taking into consideration that if the
maps f and g are bijective, then the various maps from x Wz into yWs, fromx X z
into y x t, and from x” into y' are also bijective. Lazy readers could also deduce
from (2) that x W z is subpotent to y W and that y W is subpotent to x W z and then
invoke the Cantor—Bernstein theorem. [This same reasoning would also apply for
the product and for exponentiation, though for exponentlatlon the (trivial) case in
which y is empty would have to be treated separately.] B

All of the above justifies the following definition.

Definition 7.45 Let A and p be two cardinal classes; then A + (1, A x 1, and A
are, respectively, the cardinal classes of x &'y, x X y, and x”, where x is a set of
cardinality A and y is a set of cardinality .

The next brief remark will make our life much simpler.

Remark 7.46 Let x and y be two sets. We can define an injection f from x Uy
intox Wy;leta e xUy. Ifa € x, set f(a) = (a, 0); otherwise, a € y and we set
f(a) = (a, 1). This shows that

card(x U y) < card(x) + card(y).
If x and y are disjoint, then £ is a bijection from x U y onto x & y and
card(x U y) = card(x) + card(y).
The reader can have fun proving that, in the general case,
card(x U y) + card(x N y) = card(x) + card(y).
Here is another consequence of Proposition 7.44.

Corollary 7.47 Let A, 1, v, and « be cardinal classes and assume that A <
andthatv < ik. Then A +v < i+ K, A X v < p X k and, if uis not equal to 0,
A< pk

Caution: This becomes false if we replace < by the strict inequality < (see
Remark 7.73 below and Exercise 14).
Proposition 7.48 Let A, p, and v be cardinal classes. Then

D A+@p+v)y=Q+upu +v;

@) At+p=p+r

B) Ax(uxv)y=@AxXpn xXv,;

A AXpu=puxAi;

(5) Ax(p+v)=Gxp)+Qxv);
6) AV x u’ = xp;
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(7) AFFY = AH x AV,
: (8) ()\‘/l)v — /\'/,txv'

Proof Let x, y, and z be sets whose respective cardinalities are A, &, and v and
assume that these three sets are pairwise disjoint.

(1) We have seen that x U (y Uz) = (x U y) U z. Now the cardinality of the first
of these sets is A + (i + v) and that of the second set is (A + 1) + v (according
to Remark 7.46 since the sets x, y, and z are pairwise disjoint).

(2) Similarly, xUy, whose cardinality is A+, is equal to yUx, whose cardinality
is w4 A.

(3)If, foralla € x, b € y, and ¢ € z, we define f((a, (b, ¢))) = ((a, b), ¢),
then f is a bijection from x x (y X z) onto (x X y) X 7.

- (@ If,foralla € x and b € y, we define f((a, b)) — (b, a), then f is a bijection
fromx x y onto y x x.

(5) One first checks that x x y and x X z are disjoint sets; then one verifies that the
setx X (yUz) [whose cardinality is A X (i +v)] is equal to the set (x x y) U (x X z)
[whose cardinality is (A x @) + (A x v)].

(6) Let /1 be a map from z into x and let k be a map from z into y. Define the
map ip x from z into x X y by setting i), x(¢) = (h(c), k(c)) forall ¢ € z. Itis easy
to check that the map that sends (i, k) € x% X y? to ij, 4 is a bijection from x? x y*
onto (x x y)2.

(7) Let h be a mapping from y into x and let k be a mapping from z into x. Since
y and z are disjoint, # U k is a map from y U z into x and it is easy to see that the
mapping that sends (k, k) to h U k is a bijection from x¥ x z” onto x?YZ,

(8) Let h be a map from y x z into x. For every element ¢ of z, we can define

a map h. from y into x by setting h.(b) = h(b, ¢) for all b € y; this allows us to

define a map i, from z into x” by setting ij, (c) = k. for all ¢ € z. Finally, one can
verify that the map that sends % to iy is a bijection from x¥*% onto (x”)?. A

Before going further, we should observe that, for every set x, g (x) is equipotent
with 2*. To see this, we introduce the notion of characteristic function of a subset
of x:if y is a subset of x, the characteristic function x, of y is the map from x
into 2 defined for all a € x by

1 ifa € y;
xy@) = {0 ifa ¢y

The map whose value at y is x, is then a bijection from g (x) onto 2*.
The next theorem, known as Cantor’s theorem, is important for it proves that
there does not exist a greatest cardinality.

Theorem 7.49 For every cardinal class A, we have 2* > X,

Proof Let x be a set of cardinality A. It is easy to define an injection from x into
& (x); for every a € x, set f(a) = {a}. This shows that A < 2%, We will use a
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diagonal argument to show that there does not exist a surjection from x onto g (x).
Let 2 be a map from x into g (x). Consider ‘

y={a€k:a¢h(a)}.

Then y is an element of g (x) and we will show that / is not surjective by showing.

that y does not belong to the image of h. The argument will be by contradiction;
assume that y = h(b) where b € x.If b € y, then, by definition of y, b ¢ h(b); but
this is not possible since h(b) = y. If, on the other hand, b ¢ Yy, then, still by
definition of y, b € h(b) = y, which is also a contradiction. |

7.4.3 The finite cardinals

Definition 7.50 A set is called finite if it is equipotent with an integer. An infinite
set is one that is not finite.

Recall that an integer # is equal to the set of integers that are less than n. We
have previously introduced the notion of finite ordinal (in Definition 7.30). Before
doing anything else, we should verify that these two definitions agree. Itis obvious
that a finite ordinal (i.e. an integer) is equipotent with itself; so it is finite in the
sense of the definition just given. The converse (i.e. that an infinite ordinal in the
sense of Definition 7.30 is an infinite set in the sense of the definition just given)
will follow from Corollary 7.52 below.

Theorem 7.51 Let n be an integer and let f be a mapping from n into n. Then
(1) if f is injective, then f is bijective;
(2) if f is surjective, then f is bijective.

Proof (1) By induction on n. If n = 0, this is clear since the only mapping from
n into n is surjective. We suppose next that the result is true for n and we prove it
for n + 1. Let f be an injection from n + 1 into n + 1. Consider the bijection i
from n + 1 into n + 1 defined by ’

h(p)=p ifp#n and if p # f(n);
h(n) = f(n);
h(f(n)) =n.

[This definition makes sense even if f () isequal ton.] Theng = ho f is also an
injection from n + 1 into n 4 1; moreover, g(n) = n and, consequently, g | n is
an injection from»n into n. By the induction hypothesis, g [ n is a bijection from
n onto n. Thus, every integer less than n is in the image of g, as is » itself [since
g(n) = n]. Thus g is a bijection from n + 1 onto n + 1; so f, which is equal to
h~lo g, is a bijection.

(2) Let f be a surjective map from n onto n. Let & be the map defined for all
p € n by setting h(p) equal to the least integer k such that f (k) = p. Then fohis
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the identity mapping on n; this implies‘ that £ is injective. So by (1), & is a bijection
- from n onto n. Therefore, f = fohoh™ ' =h~1 so f is also a bijection,

Remark In ihe section on cardinals, we will see a generalization of the argument
used above for (2).

Corollary 7.52 Let o be an ordinal, let n be an integer, and suppose that o > n;
then there does not exist an injective map from « into n.

Proof We argue by contradiction. Assume that f is an injective map from «
into n. Then f [ n is also injective, so by the theorem, f is surjective onto n. Now
if B belongs to o but not to n (such an element exists since & > n), f(B) belongs
“to the image of n under f; this contradicts the fact that f is injective. H

Corollary 7.53 If x is a finite set, then every injective (or surjective) map from x
into x is bijective,

Proof Because x is finite, there exists a finite ordinal & and a bijection f from x
onto . Let i be an injective map from x into x. Thenk = foho f~!isan
injective mdp from « into «; so by Theorem 7.51, it is a bijection. So also is %,
which is equal to f~! o k o f. The case in which  is surjective is treated the
same way. |

Proposition 7.54 If x is finite, there exists one and only one integer that is equi-
potent with x.

Proof There exists at least one such integer by definition. If x is equipotent to two

integers m and n, then m and n are equipotent with each other and Corollary 7.52
shows that both m > n and m < n are impossible. So m and n must be equal.
[ |

Proposition 7.55 If x is finite and if y is subpotent to x, then y is finite.

Proof Let g be an injection from y into x and let f be a bijection from x onto an
integer n. Let z denote the image of y under f o g. Then f o g is a bijection from
y onto z, so it suffices to show that z is finite. The set z, with the order relation
induced on it by the order on n (1 is an ordinal), is well-ordered, so it is isomorphic
to an ordinal « (Proposition 7.27) that is necessarily less than or equal to n (This
can be deduced from Lemma 7.29); so it is finite. [ |

Proposition 7.56 If there exists a surjective map | from a finite set x onto a set
y, then y is finite.

Proof There exists an integer n and a bijection & from n onto x;s0 fohis a
surjective map from n onto y. We can then define an injective map k from y into n:
fora € y, k(a) is the least integer m < n such that (f o h)(m) = a. Now apply
Proposition 7.55.
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Proposition 7.57

(1) The union of two finite sets is a finite sef.

(2) The product of two finite sets is a finife sel.

(3) The union and the product of a finite family of finite sets are finite sets.

(4) Ifa and b are finite sets, then ab is a finite set.

(5) If A is a finite set of finite ordinals (i.e. of integers), then sup A is a finite
ordinal (i.e. an integer).

Proof Assume that the finite sets a and b are equipotent with the integers n and
m, respectively.

(1) We have seen (Remark 7.46) that card(a U b) < card(a & b) and
(Proposition 7.44) that card(a W b) = card(n) + card(m) = card(n Wm). Also,
according to item (viii) from Theorem 7.33, n W m is equipotent with an integer.
Now apply Proposition 7.55.

(2) The situation for the product is even simpler; card(a x b) = card(n x m)
(Proposition 7.44) and n x m is finite by Theorem 7.33.

(3) Let I be a finite set of cardinality p and, for every i € I, let a; be a finite
set of cardinality n;. We will prove by induction on p that | J;¢; a; and [licsai
are finite sets. This is obvious if p = 0.If p 5 0, let j be an element of I and set
J = I —{j}. The cardinality of J is p— 1 (this is easy to check), so by the induction
hypothesis | J;; a; and [];¢; a; are finite sets. The conclusion now follows from
(1) and (2) once we have observed that

Uai = (Ua,-) Ua; and Card(Hai) = card(Ha,-) X Card(qj).

iel ied iel ied

(4) When we refer to Definition 7.7, we see that ab = [ Liep @; s0 (4) follows
- immediately from (3).
(5) follows from (3) and Remark 7.28. [ |

If ) is the cardinal class of a finite set, then A contains a canonical representative:
the unique integer that belongs to A. We will allow the abuse of language that
identifies n and card(n). This can sometimes be inconvenient (for example, does
n x m denote the product of sets or the product of cardinals?), but, in principle, it
will be clear from the context.

Later, for an arbitrary cardinal class, we will need to determine a canonical
representative.

7.4.4 Countable sets

Definition 7.58 A set is called denumerable if it is equipotent with w. A set will
be called countable if it is either finite or denumerable.

The cardinal class of w (and hence of every denumerable set) will be denoted
by R¢ (read as ‘aleph-zero’; aleph is the first letter of the Hebrew alphabet). So
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Ro is strictly greater than every finite cardinal. Note that if « is an ordinal, then its
cardinality is either finite or greater than or equal to Rg. This property extends, of
course, to every well-ordered set.

Proposition 7.59 Ifx is denumerable and if y is subpotent to x, then'y is countable.

Proof We imitate the proof of Proposition 7.55. y is equipotent to a subset z of
w. Because it is naturally well-ordered, z is itself equipotent to an ordinal & which,
by Remark 7.28, is less than or equal to w. If « is an integer, then y is finite. If not,
then « is equal to w and y is denumerable. E

Remark 7.60 The analogue of Corollary 7.52 is false for denumerable sets; the
mapping f from w into w defined by f(n) = n+1isinjective, butitis not bijective
since its image does not contain 9. This is the case for any infinite ordinal o; by
defining f(B) = B forall B > w, we can extend f to a map from o into itself that
is injective but not surjective. The next theorem illustrates that situation is in fact
much worse.

Theorem 7.61

(1) The union of two countable sets is countable.
(2) The product of two countable sets is countable.
(3) If X is countable, then S = | ), .., X" is countable.

Note: (3) Asserts that the set of finite sequences of elements from a countable
set is countable. -

hew

Proof (1) Let X and Y be two countable sets. So there exist injections f and
g from X and Y, respectively, into @. To show that X U Y is countable, we will
construct an injection & from X U Y into w. Let z € X UY;if z € X, we set
h(z) = 2 f(z);if not, then z € ¥ and we set h(z) = 2g(z) + 1.

(2) Once again, let X and Y be two countable sets and let f and g be injections
from X and Y, respectively, into w. Here is an injection A from X x Y into w: if
(x,y) € X x Y, then h((x, y)) = aa(f(x), g(¥)), where a; is the bijection from
Definition 5.5.

(3) Let X be a countable set and let f be an injection from X into w. We define a
map 4 from S into | J,,.,, @" as follows: ifa € S, there is an integer n such thata is
a map from n into X; so we set h(a) = f o a [intuitively, if a = (x1, x2, ..., x,),
then h(a) = (f(x1), f(x2), ..., f(xx))]. It is easy to verify that / is an injection
from § into | J,,c,, @". In addition, the map €2 from Definition 5.5 is an injection
from | J, ., @" into w. So the composition €2 o & is an injection from S into w.

new

Remark The proof that we have just given uses some elementary facts of arithmetic.
With all that we know about N, these facts are easily proved.

Proposition 7.56 generalizes, with the same proof.

Proposition 7.62 If there exists a surjective map from a denumerable set x onto
a set y, then y is countable.
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Corollary 7.63 We have

(1) Ro+Ro = Ry;
(2) Ro x Rg = Ry,
(3) for every integer n different from zero, Ry = Ry.

Proof We have just seen that Rg 4 8o, Rg X Ro, and Rf are at most denumerable.
So it suffices to note that these are not finite cardinals (which is rather obvious).
|

As an example of how the notion of cardinality can be applied, we will prove
that there are real numbers that are not algebraic. There are, incidentally, purely
algebraic proofs of this fact, but the proof that follows will show that ‘most’ real
numbers are not algebraic. (As a consequence, for example, the set of algebraic
numbers has Lebesgue measure zero.) Recall that a number is algebraic if it is the
root of a non-zero polynomial whose coefficients are from 7Z. The strategy of the
proof is simple: we first show that the cardinality of the set R of real numbers is
280 and, second, that the set of algebraic numbers is denumerable.

Proposition 7.64 card(R) = 2™,
Proof Consider the following function ¢« from 2% into R defined for h € 2% by
.\ h(n)

ah) ="

n+1-°
n=0 2

. In other words, the real number 0.2(0)h(1) ... h(n)... is the binary expansion
of a(h). The image of « is the interval [0, 1], but « is not injective because, for
example, 0.1000 ... and 0.0111 ... represent the same real number. Nonetheless,
this phenomenon is rather limited. Let us say that an element 2 € 2 is eventually
zero if there exists an integer n such that 4(p) = 0 for all p > n. Set

S=1{he2 h is not eventually zero}.

We will assume the reader knows the fact that @ | S is a bijection from $ onto
(0, 1]. Let us define a new map S from 2% into R by setting

Blh) = 14+a(h) ifhels;

a(h) otherwise

It is not difficult to see that 8 is injective; this shows that card(R) > 280 Also,
the map f defined by

fx)= lArctan(x) -+ }»
- 7 2

is a bijection from R onto (0,1). So we have
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card(R) = card((0, 1)) < card((0, 1]) = card(s) < 20,
It then follows from the Cantor—Bernstein theorem that card (R) = 2%, |

The fact that card(IR) = 2™ is often expressed by saying that ‘R has the power
of the continuum’.

Proposition 7.65 The set A of real numbers that are algebraic is denumerable.

Proof The set Z is the union of two denumerable sets (the non-negative integers
and the negative integers) so it is denumerable. The set S of finite sequences
of elements of Z is also denumerable [item (3) from Theorem 7.61]. For every
s = (ag, ay,...,an) €S, set

Z(s) = @ if for all i from O to n inclusive, a; = 0;
T lxeR:ap+aix + -+ ayx" = 0} otherwise.

There exists a surjective map from S onto the set {Z(s): s € S}, so this set is
denumerable by Proposition 7.62. Moreover, for every s € S, the set Z(s) is finite;
also, A is the union of the family (Z(s): s € S). Let f be a bijection from w onto §.
We define a map g from w X w into A as follows:

o if p # 0 and Z(f(n)) has at least p elements, then g(n, p) is the pth element
of Z(f (n)) (under the ordering induced by that of R),
e otherwise, g(n, p) = 0.

We then observe that g is surjective. Because w X w is denumerable, it follows
from Proposition 7.62 that A is denumerable. &

Exercise 23 also proves that R is not denumerable using a direct diagonal
argument.

7.4.5 The cardinal numbers

From here on, certain theorems will require the axiom of choice. We will indicate
this by placing (AC) at the beginning of the statement.

Definition 7.66 An ordinal that is not equipotent to a strictly smaller ordinal will
be called a cardinal. Such an ordinal is sometimes also called an initial ordinal.

For example, the finite ordinals are cardinals (Corollary 7.52); wis also a cardinal.
By contrast, w+ 1, w + o, and @ x w are not cardinals (Corollary 7.63). An infinite
cardinal must be a limit ordinal; for if « is an infinite ordinal, then the map f,
defined as follows, is a bijection from o + 1 onto «: ]

fBy=B+1 ifpcw;
fB)y=5 fo<pf<a
f(@) =0.
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Let o be an ordinal; it is clear that the class of ordinals 8 such that & is subpotent
to B is not empty (it contains ) and that the least element of this class is a cardinal.
More generally, let x be a set and suppose that there exists an ordinal o such that
x is subpotent to . Then there exists one and only one cardinal « such that x
is equipotent to . Uniquenessis obvious since two distinct cardinals cannot be
equipotent. Now let & be the least ordinal such that x is subpotent to «. We see that
this ordinal is necessarily a cardinal; we call this the cardinality of x. It follows
from these definitions that the cardinality of an ordinal « is an ordinal that is less
than or equal to «.

If o and B are cardinals, then @ > B is equivalent to card(a) > card(f). This
is no longer true if « and B are arbitrary ordinals (for example, take @ = @ +1
and f = w).

Using Proposition 7.27, we can rephrase Zermelo’s theorem in the follow-
ing way:

Theorem 7.67 (AC) Every set is equipotent with some ordinal.

For the remainder of this paragraph, we assume that the axiom of choice is
satisfied. Under this assumption, we see that every set is equipotent with a cardinal,
i.e. that every set has a cardinality. This implies, incidentally, that the relation < on
cardinal classes is total (see Exercise 4, in which the converse of this is also proved).
We see that for the cardinal class of a set x, we can advantageously substitute the
cardinality of the set, which is, in a way, a canonical representative of this class.
We will allow the abuse of language that consists in not clearly distinguishing the
cardinal class of a set X (which, we recall, is not a set) from the cardinality of the
- set X (which is an ordinal). This does present some inconveniences (the same ones
that result from identifying the finite cardinals and the finite ordinals, as explained
in the last paragraph of the earlier section devoted to the finite cardinals). Any
_ ambiguities that might appear are generally resolved by the context: when we are
computing a cardinality, then it is cardinal arithmetic that should be used; if it is a
calculation with ordinals (this happens more rarely), ordinal arithmetic should be
used. In any case, we will always be precise if there is the slightest chance of doubt.

Since we are dealing here with consequences of the axiom of choice, we offer a
very useful proposition.

Proposition 7.68 (AC) Suppose there exists a surjective mapping f from a set

a onto a set b. Then card(b) < card(a).

Proof Invoke Zermelo’s theorem to produce a well-ordering R of a. We can then

define an injection & from b into a by setting 2 (x) = the least element (with respect

to R) of the set {y € a: f(y) = x}; this definition is legitimate because the fact

that, f is surjective implies that, for every x € b, this set is non-empty. &
The class of cardinals does not have a greatest element.

Theorem 7.69 For every cardinal o, there exists an ordinal B such that
card(g) > «.
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Proof First observe that with the axiom of choice, this theorem is obvious; it
~ suffices to consider the cardinality of 2%, which we already know is strictly greater
than ¢ (Theorem 7.49).

Without the axiom of choice, the proof is a bit more difficult. We will prove that
the class of ordinals subpotent to « is a set. Consider the set

R={X,r) epl) xplaexa): X Caandr isawell-ordering of X}.

We have seen (Proposition 7.27) that, for every (X, r) € R, there exists one and
only one ordinal B such that (8, €) is isomorphic to (X, r). By the axiom of
replacement, the image of R under the function whose value for (X, r) € R is the
ordinal B such that (8, €) isisomorphicto (X, r) is aset. This image is precisely the
class of ordinals that are subpotent to «; for if (8, €) is isomorphic to (X, r) € R,
there is certainly a bijection from f onto X, which is an injection from f into «;
conversely, if f is an injection from g into «, then f is a bijection from B onto its
image that we will call X, and

r={x,)eXxX:f ety

isa well-ofdering of X that is isomorphic (via f) to (B, €).

It is clear that the set {8 : B is an ordinal that is subpotent to «} is transitive;
it is therefore an ordinal, y (Proposition 7.17). Observe, however, that y is not
subpotent to « (otherwise it would be an element of itself, which is not possible).
It is consequently the least ordinal whose cardinality is strictly greater than that of
a, i.e. y is a cardinal that is strictly greater than . B

If o is a cardinal, the least cardinal greater than « will be called the cardinal
successor of « and will be denoted by at. (We used a similar notation earlier but
have abandoned it: the successor of an ordinal « is now denoted by o -+ 1.)

Also, as shown in the proposition that follows, the least upper bound of a set of
cardinals is a cardinal.

Proposition 7.70 If A is a set of cardinals, then sup A is a cardinal.

Proof Seta = sup A. If A = O or A = {0}, then supA = 0, which is a
cardinal. In all other cases, let 8 be a cardinal that is strictly less than «. By the
definition of least upper bound, 8 is not an upper bound of A, so there exists an
ordinal y in A such that y > B. Since y belongs to A, we have o > y and
card(a) > card(y) = y > B. The cardinality of « is therefore strictly greater
than every ordinal that is strictly less than «; this shows that « is a cardinal. &

In particular, this proves that the class of cardinals is not a set; otherwise its least
upper bound would be a maximum element, contradicting Theorem 7.69.

Next, we will define a strictly increasing function from the class of ordinals into
the class of infinite cardinals. The Hebrew letter aleph, R, is generally used to
denote this function.

e Rg = w (the smallest infinite cardinal).



154 SET THEORY

e If o is a successor ordinal, say & = g + 1, then Ry = &ﬁ

e If o is a limit ordinal, then R, = sup{Rg : f < «} (this is a cardinal accordmg
to Proposition 7.70).

The fact that R is strictly increasing (hence injective) is obvious from the defini-
tion. In particular, this implies that, for every ordinal , Ry > « (see Lemma 7.29).
It is clear that, for every ordinal o, R, is an infinite cardinal.

We can also prove that for every infinite cardinal A, there exists an ordinal «
such that 8, = X, i.e. that the function R is surjective. To do this, observe that
because ¥; 11 > A, there exists a least ordinal « such that 8, > A. Note that o
cannot equal 0; nor can « be a limit ordinal, otherwise, by definition of &, there
would exist an ordinal y < « such that X, > A, contradicting the minimality of c.
So there must exist an ordinal 8 such thate = g + 1 and

Rg < A < Rpp1 = Ra.

The cardinality of A is therefore at most Rg and, since it is a cardinal, A = Rg.
So we see that the function R is a strictly increasing bijection from the class of
ordinals onto the class of infinite cardinals.

Suppose temporarily that the axiom of choice is satisfied and let us re-examine
the proofs of Theorem 7.69. Given a cardinal A, each of the two proofs supplied a
cardinal that is strictly greater: from the first proof we have the cardinality of 2
(which is abusively denoted by 2*), and from the second proof we have the cardinal
successor of A, denoted by A+, It is clear that AT < 2%, But are these two cardinals
equal? This question remains undecided by the axioms of ZF alone (this phrase
may seem cryptic but it will be clarified later in this chapter). The following prop-
erty is known as the generalized continuum hypothesis (abbreviated as GCH).

For every ordinal v, Rgy41 = e, (GCH)

The adjective ‘generalized’ refers to the fact that the special case in which o = 0
is of particular importance and is known as the continuum hypothesis (CH).

2N — Ry, (CH)

The continuum hypothesis is equivalent to the following assertion: every infinite
subset of R is either equipotent to N or equipotent to R. Recall that the word
‘continuum’ usually refers to R or to its cardinality.

We will now show that in the presence of the axiom of choice, the operations of
addition and multiplication of infinite cardinals are not very interesting.

Theorem 7.71 (AC) For every infinite cardinal A,

(1) AW A isequipotent with A;
(2) A x A is equipotent with A.
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Proof There is an obvious bijection between A W A and A x 2. Also,
card(A x A) > card(: x 2)

(Corollary 7.47). So if we have card(x x A) = card()), we must also have
card(d W A) = card(A). Thus, it suffices to prove (2).

The proof is by induction; assume that, for every i < A, o x u is equipotent
with w. Define an order relation <g on A x A as follows: if B, ¥, B1, and y; are
elements of A, then

B, v) <r (B1, 1)

sup(B, y) < sup(B1, y1), or
if and only il { sup(B, y) = sup(B1, y1) and B < B, or
sup(B, y) = sup(Bi, y1)and B = By and y < y).

We leave it for the reader to verify that <p is indeed an order relation. Let us
prove that it is a well-ordering. Let X be a non-empty subset of A x A. Consider

X, ={(B,y) e X: forall (B1,y1) € X, sup(B, ¥) =< sup(Bi1, y1)},

i.e. the set of elements (B, y) of X such that sup(g, y) is a minimum. X is not
empty and we consider, in succession,

Xy ={(B,y) € Xy : forevery (B1,1) € Xy, B < pi}, and
X3 ={(B,y) € Xp: forevery (1,y1) € X2, ¥ < ¥}

Then X3 has only a single element which is the least element of X. ‘

According to Proposition 7.27, there exists an ordinal ¢ and an isomorphism f
from («, €) onto (A x A, <g). We will show that this ordinal « cannot be greater
than A. If we assume the contrary, then A € «. Set f(A) = (Bo, ¥0); so o and yg are
ordinals belonging to A and the restriction f [ A of f to A is a bijection from A onto
theset Y = {(B,v) : (B,¥) <r (Bo, v0)}. Let o = sup(Bo, yu). The cardinality
of 8p is strictly less than that of A (because X is a cardinal) and therefore, by the
induction hypothesis, so is the cardinality of 8o x §g. Also, Y is included in 8¢ X 8o;
consequently card(Y) < card(). This is the desired contradiction since f is a
bijection from A onto Y.

This shows that f is a bijection from a subset of A onto A x A; so

card(A x A) < card()).

The inequality in the other direction is obvious. [

Corollary 7.72 (AC) (1) If X and Y are non-empty sets and at least one of them
is infinite, then

card(X x Y) = card(X UY) = sup(card(X), card(¥)).
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() If (X; 1 i € I)is afamily of sets and if one of the X; is infinite, then

card (U X,-> < sup(sup{card(X;) : i € I}, card(])).

iel
(3) A denumerable union of denumerable sets is denumerable.

Proof (1) Set
) = sup(card(X), card(Y)).

1t is clear that the identity map from X into itself is an injection from X into X U ¥;

thus card(X) < card(XUY). For the analogous reason, card(Y) < card (X UY),

socard(XUY) > A. Also, letting y be an arbitrary point of Y (which is non-empty),

the map that, with each x € X, associates (x, y) is an injection from X into X x Y.

It follows that card(X) < card(X x Y) and, just as before, card(X x ¥) > A.
In the opposite direction, according to Corollary 7.47, we have

card(X x Y) <A XA

and, from the preceding theorem, A x A = A. Thus, card(X x Y) = A There is
also an injection f from X UY into X W Y obtained by defining f(x) = (x, 0) if
x € X and f(x) = (x, 1) otherwise. This shows that

card(XUY) <card(XWY) <A+ A=A,

(2) Set X = |J;¢; Xi and 1 = sup(supf{card(X;) : i € I}, card(l)). By
hypothesis, A is infinite. For every x € X, the set I, = {i € I : x € X;} is not
~empty, so by AC, there exists a mapping f from X into I such that, for every
x € X,x € Xy Also, foreveryi € I, theset {g: g is an injective map from X;
into A} is not empty [since card(X;) < Al, so, again using the axiom of choice,
we can find a family (g; : i € I') such that, forevery i € I, g; is an injective map
from X; into A. It is then easy to verify that the map from X into I x A which, with
x € X, associates (f (x), g f(x)(x)) is injective. This shows that the cardinality of
X is less than or equal to A x A, which is itself equal to A. ’

(3) This is a more or less obvious consequence of (2). We emphasize it, first,
because it is important, but also to insist on the fact that its proof uses the axiom
of choice. - H

Remark 7.73 A consequence of all the above is that if A and p are two infinite
cardinals with A > p, then A+ = A+ A and X X p = A x X (see the comment
that follows Corollary 7.47).

Here is a little fact that is very useful.
Proposition 7.74 (AC) Let A be a subset of an infinite set B and suppose that
card(A) < card(B).
Then card(B) = card(B — A).
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Proof Indeed, B = A W (B — A). So by Corollary 7.72, because it equals
- sup(card(A), card(B — A)), card(B) is equal either to card(A) or to card(B — A)
But by hypothesis, the possibility that card(A) = card(B) is excluded.

So we have seen that it is easy to control the cardinality of the union of an
infinite family of sets. The situation is altogether different for the infinite product
of a family of sets. The following theorem, due to Kénig, is suggestive.

Theorem 7.75 (AC) Let (X; :i € INand (Y; : i € I) be two families of sets and
assume that, for every i € I, card(X;) < card(Y;). Then

card(U X,-) < card(ﬂ Yl).
iel iel

(Caution: These inequalities are strict!)
Proof SetX =|J;.; XiandY = [],., Y;and let f be a mapping from X into Y.
We will prove that f is not surjective. For every x € X, we can write f(x) in the
form (f(x); : i € I) where, forevery i € I, f(x); € Y;. This allows us to define,

forevery i € I, a mapping f; from X; into ¥; by setting f;(x) = f(x); for every
x € X;. Since card(X;) < card(Y;), the map f; cannot be surjective, so the set

Bi ={yel;: foreveryx € X;, fi(x) # y}
is not empty. Using the axiom of choice, we produce an element
b:(bi:ie])eHB,-.
iel
Then b cannot belong to the image of f, for if we suppose that b = f(x) for

some x € X, then there exists an7 € [ such that x € X; and f,(\) = b;, which
contradicts the fact that b; € B;. [ |

In fact, Konig’s theorem is equivalent to the axiom of choice: if (¥; :i € I)isa
given family of non-empty sets and if we let (X; i € I) be the family in which
each X; = @, the hypotheses of Theorem 7.75 are satisfied; consequently,

card <1—[ Y,‘) > 0,

iel
which means that [ [,.; ¥; # 9.
We will see applications of Konig’s theorem in Exercise 16.

7.5 The axiom of foundation and
the reflection schemes
7.5.1 The axiom of foundation

There is still at least one natural and important question that we have not discussed:
does there exist a set x that is an element of itself?”
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Widespread intuition suggests a negative answet, but we wish to guard against
approaching the problem from this angle. As usual, we will adopt an axiomatic
point of view. We will introduce, and then exploit, a new axiom, the axiom of
foundation denoted by AF, one of whose consequences is that there indeed does
not exist a set that is an element of itself. We will use this axiom to illustrate certain
relative consistency results,

The axiom of foundation: Yvg(—vp =~ @ = Jv (v € vo AV NV = 7)),

First, a remark.

Remark 7.76 AF implies
Yug(vo ¢ Vo).

Proof Let x be a set. Then {x} is not empty so, by AF, there exists a set y € {x}
such that y N {x} is empty. But y can only be equal to x; consequently, x N {x} is
empty, which clearly implies that x ¢ x. [ |

The next proposition will not be used in the remainder of the text. But perhaps
it will help explain the significance of the axiom of foundation. Its proof uses the
axiom of choice.

Proposition 7.77 (AC) The axiom of foundation is equivalent to the folloWing
property:
There does not exist a family (a;)icw such that,

foreveryi € w,aj+1 € a;. (%)

Proof We first show (without using the axiom of choice) that AF implies (;1<). Let
(q; : i € w)beafamily of sets indexed by w and considerthe set A = {a; : i € w}.
- According to AF, there exists an element of A, say a,,, such that a, N A = @. Thus
ap+1 ¢ ay.

Conversely, suppose that AF is false. So there exists a non-empty set x such that,
for every y € x, y N x is not empty. Using the axiom of choice, we see that there
exists a mapping f from x into itself such that, for every y € x, f() e ynx. Let
ag be an element of x. We define the sequence (a; : i € w) by induction on i; for

every i € , a1 = f(a;). Itis then clear that, foreveryi € o, aj+1 €a;. B

We will present another propety that is equivalent to AF, but it requires slightly
more work. By induction on the ordinal &, we define a set Vi by

Vo= 0 (Vp).

B<o

Thus Vp, which is the union of the empty family, is equal to . We may also
compute

vi={8), Va=1{0,{0}), Vs = (@, {0}, ({0}, {6, {B}}),  ete.
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We see that if B and « are ordinals with 8 < «, then Vg € Vq. Also,

if & is a limit ordinal, then V, = U Vg,

B<o

ifaisequalto B +1, thenV, = p (Vp).

Let V denote the class of sets x such that, for some ordinal o, x € V. For every set
x in V, the rank of x is the least ordinal « such that x € V,; it is denoted by rk(x).
Note that the rank of x is always a successor ordinal because, if « is a limit ordinal,
Vo = g<o Vp- The reader can also prove by induction that, for every ordinal «,
a belongs to V41 but does not belong to V,; in other words, rk(¢) = « + 1.

Remark 7.78 Recall that a set x is transitive if, for every y € x and for every
Z€y,7€ x. For every ordinal, V, is a transitive set; forif x € V, and y € x, then
there exists B < « such that x C Vg, so y € Vg. Note that, in passing, we have
proved that if x and y are in V and if x € y, then rk(x) < rk(y).

Remark 7.79 Every set x is included in a transitive set.

Proof By induction on the integer n, define a set x,, as follows:
Xp = X;

for every integer n, x4 = x, U ( U t).

tex,

Set cl(x) = U, ., Xn- To begin with, it is clear that x < cl(x). Also, cl(x) is a
transitive set; for if y € cl(x) and z € y, then there exists an integer n such that
Y € Xy, 80 Z € Xyl :

Moreover, cl(x) is the smallest transitive set that includes x; forif ¢ is a transitive
set and x C ¢, then by induction on n € w, one can see that x,, C ¢ and thus that
cl(x) C ¢. The set cl(x) is called the transitive closure of x.

Theorem 7.80 The axiom of foundation is equivalent to the Jollowing property:

For every set x, there exists an ordinal o such that x € V.

(In other words, the class V is equal to the whole universe.) (%)

Proof We will first show that (xx) implies the axiom of foundation. Let x be a
non-empty set; we must find an element y in x such that yNx = . By hypothesis,
every set has a rank; choose an element y in x whose rank is minimal. If 1 € y,
then rk(t) < rk(y) (see Remark 7.78) and, by the minimality of rk(y), ¢ ¢ x.

We will now prove the converse. We begin with an observation: if every element
of a set x belongs to V), then x itself belongs to V. Indeed, by the axiom of
replacement, the image of x under the function rk is a set,

Y = {B : thereexists y € x such that rk(y) = B}.
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Letor = supY. Thenx € V, and, consequently, x € Vyi1.
Let x be an arbitrary set. Set y = ¢l(x) and consider

z=1{t:teyandfisnotin V}.

We will show that z is empty; this will imply that every element of x isin ¥V and
hence, by the observation just made, that x is in V. If z is not empty, then by
AF there exists an element ¢ in z such that Nz = @. Let u € r. First, u ¢ z
since t N z = @; next, because y is transitive, u € y 80, by the definition of z, u is
in V. In other words, every element of £ isin V, so itself is in V. This contradicts
the fact that ¢ € z. H

7.5.2 Some relative consistency results

Relative consistency theorems have the following form: given two theories 77 and
T, (very often, T3 includes 71),1f T is consistent, then so is T». In the examples that
we will give, T} will be ZF. The principle underlying the proofs of these theorems
is simple: starting with a model of Ty, we construct a model of T

We begin with a parenthetical remark. One may prefer to prove relative consis-
tency theorems that are expressed in the following form: if a contradiction cannot
be derived from 77, then a contradiction cannot be derived from T». Obviously,
the completeness theorem implies that there is no difference between these two
formulations. However, this second formulation has an advantage, a compelling
one, when we wish to deal with the foundations of mathematics: specifically, it lets
us express the results using notions from finitistic mathematics (formulas are finite
sequences of symbols, proofs are finite sequences of formulas, etc.). As a matter of
fact, the proofs that we will be giving, though this is not obvious, will nonetheless
provide algorithms for converting any formal derivation of a contradiction F (for
example, 0 = 1) in 7> into a formal derivation of F in T}. We will not insist further
~ on this point.

We may observe that the set of integers, with the appropriate functions, is a
model of Peano’s axioms; we have thereby proved that

if ZF is consistent, then so is Peano arithmetic, PA.

This result establishes, in passing, that we cannot hope, due to Godel’s second
incompleteness theorem (Chapter 6), to have an absolute consistency theorem; for
example, that ZF is consistent. To put this relationship between ZF and PA behind
us, let us simply state that ZF is much stronger than PA. The consistency of PA can
be expressed by a formula of set theory, and, moreover, this formula is derivable
in ZF (because the structure N is a point in I/ and the fact that N is a model of
PA is a theorem of ZF). The consistency of ZF can be expressed by a formula of
arithmetic (since, obviously, ZF is a recursive theory) but, by contrast, this formula
is not derivable in PA (otherwise, in view of the consistency theorem displayed
above, we would conclude that PA can prove its own consistency, in violation of
Godel’s theorem).
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If A is a class (or a set, considered as the class of its elements), we will
-consider the substructure (A, €) of U whose universe is 4. The models of
thevarious theories whose consistency will be discussed will be structures of this
kind.

Definition 7.81 Let D[vg] be aformula and let A be the class of sets x that satisfy
DI[x]. Given a formula F, we define the formula F A called F relativized to A,
by (intuitive) induction on the complexity of F.

If F is atomic, then F A= F.
If F is equal to =G, then FA = =G4

If F is equal to (GaH), where o is a binary propositional connective, then
FA = (GAaHHY).
If F is equal to 3vG, where v is a symbol for a variable, then
FA = 3u(Dv] A GY).
IfFis eqital to YuvG, where v is a symbol for a variable, then
FA = vu[D[v] = GA.

Itis then no trouble to prove, always by an (intuitive) induction on the height of F,
that, for every formula F[vy, v, ..., v,] and for all xq, x2, ..., x, in A,

UE FAx, xo, ..., x,] ifandonlyif (A, €) F Flx1, X2, ..., x).
On several occasions, we will need to invoke some of the following remarks,

Remark 7.82 (i) If A is a transitive class, then (A, €) satisfies the axiom of
extensionality. To see this, let x and y be distinct elements of A. By the axiom of
" extensionality in I/, there exists a set z that belongs to one and not the other; let us
say z € x. Since z € x and x € A and A is transitive, z belongs to A; thus there
exists an element of A, namely z, that belongs to x but not to y. This proves the
axiom of extensionality for (A, €).

(ii) If « is an ordinal and x and y belong to Vy, then {x, y} belongs to V1. If
d is a limit ordinal and x and y belong to Vj, then there exists an ordinal « < §
such that x and y belong to V,, so {x, y} belongs to Vs. This proves that if § is a
limit ordinal, then (Vs, €) satisfies the axiom of pairs. A similar argument shows
that (), €) satisfies the axiom of pairs.

(iii) If x € Vg, then g (x) € Vyy1 and g (x) € Vyy2; this proves that if § is a
limit ordinal, then (Vs, €) satisfies the power set axiom.

(iv) For every «, (Vy, €) satisfies the axiom of unions. To see this, suppose
x € V,: then the rank of x is a successor ordinal, hence of the form B+ 1, if
y € |J x, then there exists z € x such that y € z. We have seen (Remark 7.78) that
rk(z) < p and rk(y) < B. This implies that |_jx € Vg and | Jx € V.
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(v) For every ordinal o and for every a € Vi, we have
(Vy, €) E Onfa] if and only if Ak Onlal.

The proof presents no problems. We see that an element a of V,, is transitive if and
only if it is transitive in ( V¢, €), because the various properties expressing that the
" membership relation is a well-ordering are true in if and only if they are true in
(Vy, €). The proof that

(V,e) E Onla] ifandonlyif AF Onla]
is similar,

There are many other properties that are inherited in this fashion. For example,
the reader can just as easily show that if o is a limit ordinal and @ € Vg, then the
following three assertions are equivalent:

U ¥ a is a cardinal;
(Vy, €) F a is a cardinal,

(V, €) E ais a cardinal.

Theorem 7.83 If ZF is consistent, then ZI' + AF is consistent.

Proof Let I be a model of ZF and let ) be the class of sets x that satisfy the
formula

F[x] = there exists an ordinal @ such thatx € Vq.

We will show that (V, €) is a model of ZF + AF.
o The axioms of extensionality, pairs, unions, and subsets were proved in the
previous remark.

e The axioms of replacement. Let x be an element of V and let Glvg, v;] be a
formula that, in (V, €), is functional in vp; in other words,

(V, €) E YugVur Yo ((Gluo, v1] A Glup, v2]) = v1 =~ 12).

Then H = Flvg]l A Flui]l A GV is functional in vg (in U). Let b be the image
of x under the function that this formula defines, i.e.

b={z:(3yex)Hly,zl}.

Then b belongs to V since all its elements belong to V; this is what we needed
to prove since b is also the image of x under the function defined by the formula
Gin V.

o The axiom of infinity. We have seen that o is an ordinal in V and it is easy to
see that it is neither empty nor a successor. We can see that it is, in V, the least
infinite ordinal.
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e The axiom of foundation. Let x be a set that belongs to V; then all the elements
of x are also in V. Let y be an element of x whose rank « is minimum; then, if
u is an element of y, its rank is strictly less than « (Remark 7.78) so u does not
belong to x; i.e. x N y is empty. |

Remark 7.84 Inthe preceding proof, one might think that the axiom of foundation
is obviously satisfied in V. This is not quite true; the class V is defined by a formula
which we have called Flug]. It needs to be verified that F has the same meaning
in U and in V; in other words, that

U E Yo (Flul < FY[ug)).

If, in V, we define the sets W, by induction on « by setting

Wo = @,
Wo = U @(Wa),
B<u .

then it is easy to verify that, for every ordinal «, V,, = W,,. This, together with
Theorem 7.80 (and the fact that the ordinals are the same in U and in V), provides
another proof that (V, €) satisfies the axiom of foundation.

Remark 7.85 If we assume that f is a model of ZFC, then (V, €) is a model of
ZFC + AF. Indeed, if X = (x; : i € I) is a family of non-empty sets in ), then /
itself is in V (it is the domain of X considered as a mapping); thus 7 is included in
U X. Similarly, each x; is in V. This shows that all elements of [ |, _; x; arein V.

iel

The second relative consistency theorem which we will see shows that we cannot

dispense with the axiom of infinity.
Theorem 7.86 [f ZF is consistent, then ZF~ + —Inf is also consistent.

Proof We will prove that V,, is a model of ZF~ 4 —Inf. The axioms of exten-
sionality, pairs, unions, and subsets have already been treated. Consider the axioms
of replacement. Note that, for every integer n, V,, is a finite set (there is an obvious
proof of this by induction on n). Thus every element of V,, is a finite set. Con-
versely, if x is a finite set and all of its elements belong to V,,, then x belongs to
Vi, this is because X = {rk(y) : y € x} = the image of x under the function rk
is a set (by the axiom of replacement in {{) and is finite (Proposition 7.56); also,
by hypothesis, it is a subset of w. If we let n = sup X, we see that x € V1.

Let x be an element of V,, and F[vg, v1] be a formula that, in (V,,, €), is func-
tional in vg. Specifically,

(Vo, €) F YugVuYua ((Flug, vi] A Flug, v2]) = vy = vp).

Then G = vy € V, Av; € V,, A FY is functional in v (in I). Let b be the image
of x under the function that this formula defines in I/, i.e.

b={z: 3y e€x)Gly,zl}.
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Then b is a finite set (since there is a surjection from a subset of x onto b), all of
whose elements belong to V,,. Finally, as in the proof of Theorem 7.83, b is the
image of x under the function defined by the formula ¥ inV,andb € V,.

It is easy to show that V,, does not satisfy the axiom of infinity; if x is an ele-
ment of V,, it is finite-and there does not exist, either in U or, a fortiori, in V,, a
mapping from x into x that is injective without being bijective [in contrast to what
can happen in an arbitrary model of ZF (see Remark 7.60)].

Remark It is very easy to show that the axiom of foundation is true in Vo, The
axiom of choice is also true there (even when it is not true in L{), but the proof of
this is rather delicate.

7.5.3 Inaccessible caijdinals :

In this section, we will work in ZFC.

Definition 7.87 Let A be a cardinal:

() A is a strong limit if, for every cardinal p strictly less than A, the cardinality
of 2% is also strictly less than A.
(ii) A is regular if, for every subset X of A of cardinality strictly less than A,
sup(X) < A
(iii) A isinaccessible if ). is a regular, strong limit cardinal strictly greater than Ry.

Let us see some examples. For every ordinal «, define the cardinal Jy by
induction:

Jo = Ro;
Top1 = 23a§
35 =|J3e if & is alimit ordinal.
aed

(The symbol J is ‘beth’, the second letter of the Hebrew alphabet.)

It is easily proved by induction on o that, for every ordinal «, Ry < Tw, and if
the generalized continuum hypothesis is assumed, then 8y = T

It is clear that 3, is a strong limit cardinal. However, it is not regular; for if
we set

X ={3,: new}
then X is countable, so its cardinality is strictly less than -, but
sup(X) = Jp.

Also, for every ordinal &, Ry 1 is a regular cardinal (to prove this requires the
axiom of choice; it can be shown that this fact is not a consequence of ZF). Let X be
a subset of Ry.1 of cardinality at most R¢. The elements of X all have cardinality
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at most Ry; consequently, |, cx ¥, which is equal to sup(X), has cardinality at
- most Ry [item (2) from Corollary 7.72].

Ry 11 is obviously not a strong limit cardinal since 28« > R,41. So we do not
yet have any examples of inaccessible cardinals; this is not surprising, in view of
the next theorem.

Theorem 7.88 IfZFC is consistent, then ZFC + ‘there does not exist an inacces-
sible cardinal’ is also consistent.

Proof Let{ be a model of ZFC. We wish to produce a model of ZFC in which
there does not exist an inaccessible cardinal. We will assume that there does exist
an inaccessible cardinal « in 2/ (otherwise there is nothing to prove). We will show
that (Vy, €) is a model of ZFC; thus if « is the least inaccessible cardinal in U4,
then there is no inaccessible cardinal in V.

The axioms of extensionality, pairs, unions, and subsets are proved in the usual
fashion,

For the replacement scheme, we will first show thatif x € V,, thencard(x) < «.
If x € V,, there exists an ordinal @ < « such that x is included in V; so it will
suffice to show thatif ¢ < «, then card(V,) < «. This is done by induction on .
It is obvious if & = 0. If @ = B + 1, then card(V,) = 2¢44(V8); by the induction
hypothesis, card(Vg) < « so, because  is a strong limit cardinal, card(Vy) < «.
If o is a limit ordinal, then Vo = (g, Vp and

card(V,) = sup(sup{card(Vg) : B < a}, @).

The fact that « is regular together with the induction hypothesis permit us to
“conclude that card(V,) < «. S

Suppose now that x is a set of cardinality strictly less than « and that all its
elements belong to V.. Then x belongs to V,; to see this, consider

X = {a € « : there exists y € x such that « is the rank of y}.

The set X is the image of x under the rank function, so its cardinality is strictly
less than « (Proposition 7.68). By the regularity of «, § = sup(X) is also strictly
less than « and x is included in V. This shows that x € Vg1.

To show that the axioms of replacement are true in Vi, it suffices to adapt the proof
‘that we used for V,, (replace V,, by V, and ‘finite’ by ‘of cardinality less than «”).

The axiom of infinity is satisfied in (V,, €) since w is an infinite ordinal in
(Vi, €).

To prove that (V,, €) satisfies the axiom of choice, we will show that the formula

‘for every set x, there exists an ordinal «
and a bijection j : o — x’

is satisfied in V. So let x € V, and let 8 (< «) be the rank of x; thus, x € Vg.
Because U F AC, there exists, in I/, an ordinal @ and a bijection j : « — x. In
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particular, j is aninjection from o into Vg, which implies that card(«) < card(Vg).

Since « is inaccessible, card(Vg) < «, so it follows that o < « and & € V. Thus
j € @ x x. This means that j € g (@ x x) and, since V. is amodel of ZF, j € V.
To conclude, it suffices to observe that the formula

‘j .« — x is a bijection’,

which is true in U/, is then also true in V.
It remains to verify that if « is the least inaccessible cardinal, then

(V,, €) E there does not exist an inaccessible cardinal.

Recall, at this point, that the cardinals of V, are the same as those of U{ that are
less than x. Because « is the least inaccessible cardinal, we already know that

U E there does not exist an inaccessible cardinal that belongs to V;
so it is sufficient to prove that, for every x € Vg,
U E x is an inaccessible cardinal
if and only if
(V,, €) E x is an inaccessible cardinal.
It is not hard to check that, for every element x € V,, if x is a cardinal, then
U F xisregular ifandonly if (V,, €) F x is regular,
~and

U E x is astrong limit  if and only if (Vj, €) F x is a strong limit. B
There are many other relative consistency theorems. The most famous ones are
if ZF is consistent, then so is ZFC,
if ZF is consistent, then so is ZFC + GCH;
if ZF is consistent, then so is ZF +—AC;
if ZF is consistent, then so is ZF + —CH.

The first two are due to Godel; the third and fourth are due to P. Cohen. For defails,
see the textbook by T. Jech mentioned in the bibliography. '

7.5.4 'The reflection scheme

In this section, we work in ZF + AE.
The reflection scheme is the collection of formulas of the following form:

YugVvr ... Vv, 3a(Onfa] Avg € Vg AvL € Vg A Avy € Vy
A (F[Ug, U1, - - Un] € FY[vg, v1, ..., va]),

where 7 is an intuitive integer and F[vg, vy, ..., v,] is a formula of L.
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Definition 7.89 Let Fvg, vi, . .., n] be a formula of L and let A be a set. We
say that F reflects in A if

UEVugYur .. Vo, ((vpe AAvie AN~ AV, € A)

:> (F[UO, U15 LB ] Ull] ¢> FA[UO’ vla vy Un]))-
In other words, F[vg, v1,..., vyl reflects in A if and only if for all elements
aO’ als AL ] an OfA7

Uk Flag,ay,...,a,] ifandonlyif (A, e€)F Flap,a1,...,anl.

Thus, the axiom scheme of reflection asserts that, for every formula F, there
exists an ordinal o such that F reflects in V.

It follows trivially from the definition that if Fy and 7, both reflect in A, then so
do—F|, '\ NFp, F{V I, Fi = Fh,and Fi & F).

Theorem 7.90 For every formula Flvg, vy, ..., vy] of L,

U E NV .. Vo, 3a(Onla] Avg € Vg Avp € Vg Ao Ay € Vy
A (F[UO, U], ey vll] @ Fva[vo’vls evey Un]))-

(In other words, the reflection scheme is a consequence of ZF + AF.)

More precisely, what we have here is a ‘theorem scheme’, i.e. a distinct theorem
of ZF + AF for each formula F. As the theorem is expressed above (for every
formula F ...), itis not a formula of L.

Proof We are going to prove that if F is a formula and if § is an ordinal, then
there exists an ordinal @ > 8 such that F reflects in V,,. This suffices to prove the
theorem, for if ao, aj, ..., a, are fixed, then we need only choose g so that Vg
contains all these points.

We will first need the following lemma.

Lemma 7.91 Let F be a formula and let (X, : n € w) be a sequence of sets that
is increasing with respect to inclusion. We assume that, for every n € w and for
every sub-formula G of F, G reflects in X,,. Then F reflects in X = Unew X,

Proof The argument is by (intuitive) induction on the height of F. If F is atomic,
this is obvious since F then reflects in any set. Now suppose F' = Fi A Fy.
Since Fy and F, are sub-formulas of F, they both reflect in X, for every n € w
(by hypothesis). Now, by the induction hypothesis, F; and F, both reflect in X. As
remarked above, this implies that Fy A F; reflects in X. The other propositional
connectives are treated similarly.

It remains to deal with the quantifiers. As an example, we will consider the

case where F is of the form JvgGlug, vy, ..., vt]. As G is a sub-formula of F, G
reflects in each of the X, so by the induction hypothesis, G reflects in X. Suppose,
to begin, that ay, ay, ..., ai are elements of X and that

(X, €) F 3uGlvy, ay,an, ..., axl.
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So there exists an element ag of X such that
(X, €) F Glag, ay, az, .. ., agl,
and, since G reflects in X, ‘

UkE Glag, a1, az,...,ar] and U F JugGlvo, ai, an, ..., akl.

Conversely, suppose that ai, as, ..., ag are elements of X and that

Uk HvoG[vo, a,az, ..., ak].

Then there exists an element n €  such that X,, contains ay, as, . .., a; (here, we
should note that & is an intuitive integer while » is an integer in the sense of Uf).
From the fact that F reflects in X,,, we conclude that

(X,, €) E vGlvg, a1, az, ..., axl,
so there exists ag in X, such that
(Xn, €) F Glag, a1, a2, . .., ag].
Now we invoke that fact that G reflects in X, to deduce that
UFE Glag,ay,az, ..., ak],
the fact that G reflects in X to deduce that
(X, €) F Glap, ay,a2, ..., al,

and, finally, that

(X, €) F JuGluvg, ay, aa, ..., arl.
To finish the proof of the theorem, it is sufficient to prove the following property:

for every formula F and for every ordinal 8,
there exists an ordinal « greater than S
such that F and all its sub-formulas reflect in V. *)

This will be done by an (intuitive) induction on the height of F. If F is atomic, this

is obvious (just take @ = f) and, for F = —G, it is clear that a formula reflects in

a set if and only if its negation reflects in this set. As an example, we will treat the

case in which F = F; A F,, since the other binary propositional connectives are

treated in exactly the same way. By induction on n € w, we define an increasing

sequence of ordinals «;, as follows:

e op = p.

e If n is different from O and is even, then o, is the least ordinal greater than «,, |
such that F; and all its sub-formulas reflect in Vg, (such an ordinal exists by
the induction hypothesis).

e If nis odd, then «, is the least ordinal greater than «,,_1 such that F, and all its
sub-formulas reflect in Vg, (same remark).
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Observe that in order to define the sequence («, : n € w) by induction, we must
be convinced in advance that if F is a fixed formula of L, there exists a formula
Glvo] of L such that, for every set x, G[x] is equivalent to ‘x is an ordinal and F
and all its sub-formulas reflectin V,’.

Set « = sup{a, : n € w}. We then note that V, is the union of the family
{Va, : n € w and n is even}; so by the lemma, F and all its sub-formulas reflect
in V. But V, is also the union of the family {Vq, : 7 € w and n is odd}, so F, and
all its sub-formulas also reflect in V,. Consequently, F and all its sub-formulas
reflect in V.

To conclude, we consider the case in which F is equal to JugGlvog, vy, ..., vkl
First, we prove that, for every ordinal y, there exists an ordinal & such that

UEYu Y. Yy(vie VA eV, A Ay eV,
A AugGlvo, v1, ..., vel) = Fvg(vg € Vs A Glug, vi, ..., Vk])).

For this purpose, let H[w, «] be the following formula:

if there exist vg, v1, v2, ..., Uk

such that w = (v1, vy, ..., vx) and Glvg, v1, ..., Vk],

then « is the least ordinal such that there exists u satisfying
e Vyand Glu, vy, ..., ul;

otherwise, o = @.

We see that the formula H defines a function and, by the axiom of replacement,
the image of the set of k-tuples of elements of V,, is a set, Y. It suffices to choose §
so that Vs includes Y.

Next, we define a sequence (&, : n € w) by induction as follows:

o ap = p.
e If n is different from O and is even, then «, is the least ordinal greater than o,

such that G and all its sub-formulas reflect in Vg, (such an ordinal exists by the
induction hypothesis).

e If nis odd, then «, is the least ordinal such that
YuiYup .. . VYup((u) € Vg, A+ Avg € Vo, A 3voGlug, v1, ..., Vk])
= vy € Vi, A Glug, v1, ..., Uil)).
Let « be the least upper bound of the set {a;, : n € w}. Then, as before, V, is
the union of the family (V,, : n € w and n is even) and, according to Lemma

7.91, G and all its sub-formulas reflect in V,,. It remains to show that F itself
reflects in V.

Suppose, to begin with, that aj, as, . .., a belong to Vy and that
(Vo, €) F JuoGlug, ar, ag, ..., akl.
So there exists an element ag in V,, such that

(VOH e) t: G[aO) al) a2$ A | ak])
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and, because G reflects in V,,
Uk Glag, ai,az,...,ar] and U F JvgGlug, ai, aé, AR
Conversely, suppose that
U= JugGlug, ar, az, ..., agl.

We know there exists an integer n, which can be assumed to be even, such that
ai, az, ..., a belong to V,, ; by definition of o1, there exists an element ag of

Va1 such that
UE Glag, a1, a2, ..., arl,

and, because G reflects in V,,,
(Vy, €)Y F Glag, a1, a2, ...,ax] and (Vy, €) F JugGluo, a1, az, ..., arl.
We will conclude this chapter with an application of Theorem 7.90.
Proposition 7.92 Ifthe theory ZF is consistent, then it is not finitely axiomatizable.

Proof We argue by contradiction. If ZF is finitely axiomatizable, then so is
ZF + AF. Let F be a formula of L that is equivalent to ZF + AF. We will now work
in amodel I/ of ZF+ AF (whose relative consistency was proved in Theorem 7.83).
According to Theorem 7.90, there exists an ordinal « such that

(Va, €) F F

hence,
Uk F',

Let us return for a moment to the definition of the relativization of a formula
(Definition 7.81). Two facts follow rather easily from this definition: first, there
exists a formula G[vg] of L such that, for every set A, F4 is equivalent to G[A];
second, if A C B, then (F4)8 = FE.

So there exists an ordinal B satisfying G[Vg]; let y be the least such ordinal.
Since (V,,, €) is a model of ZF + AF, it satisfies the reflection scheme. Therefore,

(V,, €) F there exists an ordinal § such that F Vs,

But as we have seen [item (v) from Remark 7.82}, the ordinals of (V,, €) are
precisely the ordinals less than y; we can also see (this follows easily from
Remark 7.84) that, for every x € V,,

(Vy,e)FxeVs ifandonlyif UFx e Vs
This shows that
Uk (F8Y,

and, since (FY$)Vy = F% (V;, €) is amodel of F; this contradicts the minimality
of y. |
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EXERCISES FOR CHAPTE R 7

Unless otherwise specified, the context for all the exercises below is auniverse U

that is a model of ZF.

1. The notions of natural number, membership, function, and so on involved in

this exercise are intuitive (not those of the universe U). We will use them to
construct a universe that satisfies some of the axioms of ZF.
Let W denote the set of finite subsets of N.
(a) Let ¢ be a bijection from N onto W and let g4 be the binary relation on N
defined as follows: :

for all integers x and y, x &4 y ifandonlyif x € ¢(y).

Show- that the universe Mg = (N, g4) satisfies all the axioms of ZF except
the axiom of infinity. Show that if, forall x, y € N, x € ¢ (y) impliesx < y,
then M also satisfies the axiom of foundation.

(b) Show that the mapping ¢ whose value for A € W is ), .4 2% [with the
convention that ¢ (@) = 0]is a bijection from W onto N. Let 8 be the inverse
mapping. Show that My is a model of ZF~ and of AF.

(c) Find a bijection ¢ from N onto W such that M does not satisfy AF.
. Show that the class On’ defined in U by the formula

Vy((y € x A=y =x Ay is transitive) = y € x)

is the class of ordinals.

. Let x be a set and I"(x) be the class of ordinals that are subpotent to x.

Show that I"(x) is an ordinal, that it is the least ordinal not subpotent to x,
and that it is a cardinal. We call this Hartog’s cardinality of x.

Characterize I'(x) assuming that I/ satisfies the axiom of choice.

. This exercise is devoted to some statements that are equivalent to the axiom of
choice.

A choice function on a set a is a mapping ¢ from the set of non-empty subsets
of a into a such that, for every non-empty subset x < a, P(x) €x.

Show that AC is equivalent (in the theory ZF) to each of the following
statements:
(a) For every set a, there exists at least one choice function on a.

(b) If x and y are sets and if g is a surjective mapping from x onto y, then there
exists a mapping h from y into x such that g o & is the identity mapping
from y into itself.
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(¢) For every set a whose elements are non-empty and pairwise disjoint, there
exists a set b whose intersection with each of the elements of a is a
singleton.

(d) For any sets a and b, either a is subpotent to b or b is subpotent to a.
[Exercise 3 may be used in proving the equivalence between (d) and AC].
Property (d) is known as the trichotomy of cardinals because it can also

be expressed in the following way: given two cardinal classes A and y, one
and only one of the three possibilities holds:

A= or A<t or W<A,

More simply, trichotomy is satisfied if and only if the ordering of the cardinal
classes is a total ordering.

5. Show that in the theory ZF + AF, the axiom of choice is equivalent to each of
the following three statements:
(a) If the set x has a well-ordering, then g (x) has a well-ordering.

(b) For every ordinal «, g () has a well-ordering.
(c) Every totally ordered set has a well-ordering.

6. Without using the axiom of choice, show that for every non-empty set a, the
following properties are equivalent:
(1) a includes a denumerable subset.

(2) a includes a denumerable subset b such that ¢ and a — b are equipotent.
(3) For every denumerable set b, @ and a U b are equipotent.

(4) For every finite set x, a and a U x are equipotent.

(5) For every finite subset x of @, a and a — x are equipotent.

(6) There exists a non-zero integer n such that, for every subset x of a that is
subpotent to n, a and a — x are equipotent.

(7) There exists a non-zero integer n such that, for every set x of cardinality #,
a and a U x are equipotent.

(8) forevery t, a and a U {t} are equipotent.
(9) There exists an element ¢ € a such that ¢ and a — {t} are equipotent.

(10) There exists a subset of a that is non-empty, different from a, and equipo-
tent to a.

(11) There exists a subset b € « that is non-empty, different from a, and such
that a is subpotent to b.

7. Determine the cardinality of each of the following sets:

xi={feNV:(VneN)(¥pe N)(n < p= f(n) < fF(P)};
xo={feNV:@peN)(Vne N)(f(n) < p)};
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={feQV: (M eN(p e < p = f() < f(P)};

xa={feQ:@p e eN)(f®) < p);

X5 = X3 M X4;

= {feQV:@eN)¥peNn<p= fin) =

={feRN:(vr e R)@n e N)(f(n) = 1)}

8. Determine the cardinality of each of the following sets:

Eo = the set QNof sequences of rational numbers;

E| = the set RN of sequences of real numbers;

Ey = the set of sequences of rationals that converge to 0;

E3 = the set of convergent sequences of rationals;

E4 = the set of bounded sequences of rationals;

Es = the set of unbounded sequences of rationals;

E¢ = the set RY of mappings from Q into R;

E7 = the set of continuous mappings from R into R;

Eg = the set of open intervals of R;

E9 = the set of open subsets of R (with the usual topology).

9. Determine the cardinality of each of the following sets:

few”

ay = fea)

few
ag = fEa)

by ={f €w”
by ={f eao”
by ={f €w”
={feo”
={f ew®
be = (f €

= {
{
={f €a”
{
= {
{

: (Yn € w)(¥p € w)(f(n) < p)};
¢ (Yn e w)@p € 0)(f(n) < p)};

c(@n € w)(Yp € W)(f(n) < p));
ag = {f € 0”: (An € )Ep € 0)(f(n) < p)};
“.@3pew¥new(fn) <pl;
“: (Yp € 0)(3n € w)(f(n) < p));
L (Yn € 0)(Vp € )(f(n) = p)};
: (Vn € w)3p € w)(f(n) > p)};
(3n € w)(¥p € w)(f(n) = p)};
:(@n € w)@p € w)(f(n) = p)};
1 (3p € 0)(Vn € 0)(f(n) = p)};
:(Vp e w)(@n € 0)(f (n) > p)}.

F N}
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10. Assume that the universe satisfies the axiom of choice. Let a and b be two infinite
sets whose cardinalities are A and u, respectively. Assume A > w. Let g be an
injective mapping from b into a. The reader should determine the cardinalities
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11.

12.

of each of the following sets:

y1 = {f €b®:card(f(a) = 1}

y2 = {f €b”: (Vx € p (@) (card(f(x)) < D}
y3 = {f € b* :card(f~ (b)) = A};

ya = {f € b*: card(f(a)) = 2};

ys =a—g(b);

Yo = {f € b*: (Vy € BY(f(g(»)) = N;

y7 = (f € b* : card(f(a)) = u}.

[Recall that if f € b?, then f and f~! respectively denote the direct image
mapping induced by f from g (a) into g (b) and the inverse image mapping
from g (b) into g (a).]

Assume that the universe satisfies the axiom of choice. Let a be an infinite set
and let A be its cardinality. Set

p*(a) = (x € p(a) : card(x) = card(a — x)}.

(a) Show that for every integer n,if n % 0, we can find sets ay, ay, .. ., ay, each
of cardinality A, that constitute a partition of @ (i.e. these sets are pairwise
disjoint and ( J ;, @i = ). '

(b) Determine the cardinality of each of the elements of p*(a).

(c) Use the result from (a) for n = 3 to determine the cardinality of p*(aj.

(d) Show that, for every set a; € p*(a), there exists a bijection f from a onto
a such that, for every x € a, f(x) = x if and only if x € a;.

(e) Determine the cardinality of the set of bijections from a onto a.

(f) Let b be an element of p*(a). Determine the cardinality of the set of
bijections from a onto a whose restriction to b is the identity on b.

(g) What is the cardinality of the set of injections from a into g (a)?

Assume the universe satisfies the axiom of choice. We are given an infinite
cardinal A, an ordinal o, and a family of sets (X g)peq indexed by a that satisfies

forevery g € o, card(Xg) < A,
and
forevery B eaandy ea, iff <y, XgCX,.

Show that card(Uge, Xp) < A
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13. Assume that the universe satisfies the axiom of choice. Show that for every
family (Ay)qer Of non-zero cardinals indexed by an infinite cardinal K,

we have
Z Ag = SUp (/c, sup()&a))

ek oeK

14. Suppose that the universe satisfies the axiom of choice. v
Let w be an infinite cardinal. By induction on the integers, we define a
sequence of cardinal (A,), . by setting

o ko = U;
eforeveryn € w, Ayq1 = 2,
SetA =" .M n.

(a) Show that A* = p* = A* = 2%,
(b) Show that, for every cardinal y,

ifRg <y <A, thenA® =)¥ =%
ify > X, thenA? =27,

(c) Show that there exist cardinals e, 8, y, and § such that
a < B, y <8, and o =p9.

15. Let o and B be two ordinals. By definition, f is cofinal with « if and only if
there exists a strictly increasing mapping f from f into & whose image does
- not have a strict upper bound. More precisely, this means that

o for all ordinals y and § belonging to 8, if y < §, then f(y) < f(8), and
o for every ordinal £ € «, there exists y € f such that f(y) > &.

Remark This must not be confused with the notion of cofinal in : a subset Y
of an ordered set (X, <) is cofinal in X if, for every x € X, there exists y € Y
such that x < y. Thus, for example, while w is clearly not cofinal in X, the
mapping n > R,, witnesses that o is cofinal with 8. '

(a) Show that the (meta-)relation ‘is cofinal with’ defined on the class On
is reflexive, transitive, and is not symmetric. With which ordinals is the
ordinal 1 cofinal?

(b) Show that for every ordinal «, the class of ordinals B such that g is co-
final with v is a non-empty set. The least ordinal belonging to this set is
called the cofinality of « and is denoted by cof(a). An ordinal that satisfies
cof(a) = o is called a regular ordinal.

Show that for every ordinal «, cof(e) < o and that cof(c) is a regular
ordinal. .

(c) Show that for all ordinals « and 8, B < cof() if and only if every mapping
from g into « is strictly bounded in «.
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16.

17.

18.

(d) Show thatevery regular ordinal is a cardinal. Show that for every cardinal A,
A is a regular ordinal if and only if it is a regular cardinal in the sense of
Definition 7.87.

(e) Assume that the universe satisfies the axiom of choice. Show that for every
ordinal &, Ry 41 is regular. Show that if « is a limit ordinal, then cof(Ry) =

cof(a).

(f) Determine the first 6rdinal (respectively, the first cardinal) strictly greater -

than o with which w is cofinal.

Assume that the universe satisfies the axiom of choice. This exercise presup-
_poses the concepts and results from the previous exercise.

(a) Show that for every cardinal A, A°7™) > A (use Konig’s theorem).

(b) Show that w is not cofinal with card(2%).

(c) Suppose that the universe satisfies the generalized continuum hypothesis
(GCH), i.e. that for every ordinal ¢, 25 = R 5.

Let X be an infinite cardinal. Show that for every cardinal  other than 0,
we have

A if p < cof(),
M= 12  ifcof(l) < p <A,
20 af A < .

Let @ be a definable strictly increasing function from the class On of ordinals
into itself. We say that ® is continuous at a limit ordinal « if ® () =
SUpge, P(B). Such a function ® is called continuous if it is continuous at
all limit ordinals.

An ordinal « such that ® («) = « is called a fixed point of .

(a) Show that every strictly increasing function @ from On into On has the
following property:

for every ordinal ¢, ®(a) > .

(b) Show that if @ is a strictly increasing function from On into On that is
continuous at every limit ordinal whose cofinality is w, then for every ordinal
o, ® has a fixed point that is greater than «.

(c) Show that if ® and W are two strictly increasing functions from O#n into
On that are continuous at every limit ordinal whose cofinality is w, then for
every ordinal o, @ and W have a common fixed point greater than «.

(d) Suppose the universe satisfies the axiom of choice. Show that for every
ordinal e, there exists an ordinal f > o such that card(Vg) = Rg = .

Assume the universe satisfies AC + GCH. (In fact, it can be proved that AC is
true in every model of ZF + GCH.)
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(a) Consider the function from On into On whose value at an ordinal « is
N;". Is this function continuous at every limit ordinal? (For the definition
of continuity, see Exercise 17.) Answer the same question for the function

i : «No
whose value at an ordinal o is R,°.

(b) Let § be an ordinal. Is the function whose value at an ordinal « is § + «
(ordinal sum) continuous at every limit ordinal? Answer the same question
for the functions whose value at an ordinal « are respectively o+, o -, and
8 - a (these ordinal operations are explained in Definitions 7.31 and 7.32).

19. Show that the axiom of foundation is equivalent (in the presence of the axioms
of ZF) to the following axiom scheme:
for every formula F' with one free variable in the language {e, ~},

o FLve] = Foo(Flvo] A Vo1 (vy € vo = —~Flvi]).

20. In this exercise, we assume the axiom of choice. Let A be an uncountable regular
cardinal (see Definition 7.87). A subset X of A is closed cofinal if
(1) it is closed: this means that for every subset Xy of X that satisfies
card(Xo) < A, sup(Xp) € X [note that because A is regular, sup(Xop)
is an ordinal that is strictly less than A].
(2) itis cofinal in A: this means that for every o € A, there exists 8 € X such
that ¢ < 8.
(a) Show that the collection of closed cofinal subsets of A forms a filter-
base on A (see Chapter 2).
(b) Show that if I is a non-empty set whose cardinality is strictly less

thap A and if (X; : i € I) is a family of closed cofinal subsets of A, .

then (7);; X; is a closed cofinal subset of A.
(c) A subset Y of A is called stationary if it intersects every closed cofinal
subset. Show that the following three properties are equivalent:
(1) there exists a pair of disjoint stationary sets;
(2) there exists at least one stationary set that does not include a
closed cofinal set;
(3) the filter F generated by the collection of closed cofinal subsets
is not an ultrafilter.
(d)Let X = (X, : o € A) be a sequence of subsets of A. The set

ek aec X,

is called the diagonal intersection of X and is denoted by A(X).
Show that if X satisfies the following three conditions,

(I forevery o € A, X, is closed cofinal;

(2)foreveryx € Aand § € A,if o € B, then Xg C X,;

(3) for every « € A, if « is a limit ordinal, then X, = ﬂﬂea Xg;
then A(X) is closed cofinal.
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(e) Prove the following theorem (known as Fodor’s theorem).
o

Theorem 7.93 Let f be a mapping from A into A such that {« € X :
(@) < a} is stationary. Then there exists y € X such that F iy,
the inverse image of y under f, is stationary.

(f) Assume that A > 8,. Show that the set of ordinals in A that have
cofinality Ry (see Exercise 15) is stationary. Show that the set of
ordinals in A that have cofinality ¥; is also stationary and is disjoint
from the preceding set.

(g) Part (f) shows that for every regular cardinal A strictly greater than Ry,
the conditions from part (c) are satisfied. The argument that we will
offer in the next paragraph shows that these conditions are satisfied
for Ry (indeed, the argument works for any successor cardinal).

For every denumerable ordinal «, let f,, be a surjective mapping from w
onto « and, for every n € w, let h,, be the mapping from Ry into Ry defined
by 2,(0) = 0 and h,(x) = fu(n) if o # 0. Show that, for every n € w,
there exists B, € Ry and a stationary subset Y, of Ry such that, for every
¥ € Yy, fy(n) = B,. Show that there exists an integer n such that ¥, does
not include a closed cofinal set.

21. (a) Show that if « is a limit ordinal strictly greater than w, then (V,, €) is a
model of the theory Z.

(b) Conclude from (a) that if Z is a consistent theory, then the axioms of ZF
cannot all be derivable from those of Z.

22. Suppose the universe satisfies the axiom of choice. _
Consider the class W of sets x such that cl(x) (the transitive closure of'x) is
denumerable. Show that (W, €) is a model of all the axioms of ZF except the
power set axiom.

23. Show directly, using a diagonal argument, that the half-open interval of reals,
{x e R:0 < x <1}, is not denumerable.




8 Some model theory

Model theory studies the class of models of a given theory. We have already
encountered two theorems that tend in this direction: the completeness theorem
and the powerful compactness theorem, both of which assert that, under certain
conditions, this class is not empty.

The central notion in this chapter and for the kind of model theory that we
will develop here is the notion of elementary substructure. Intuitively, M is an
elementary substructure of N if, obviously, M is a substructure of N and if,
for every finite sequence s of elements of M and for every property F[s] that is
expressible by a first-order formula, it is equivalent to verify that s satisfies F in
M or that s satisfies F in N. This notion will be our concern for the first two
sections; the important results will be the Lowenheim—Skolem theorems and their
corollaries which imply that a countable theory that has an infinite model must
have infinite models of every infinite cardinality.

We then continue with the interpolation theorem and the definability theorem. It
is worth pausing to reflect on the meaning of this latter theorem. When we wish to
Sformalize a theory, we must first prescribe its langimge; this amounts to deciding
which notions should be taken as primitive and which others should be defined
in terms of these (for example, in the case of arithmetic, 0, S, +, and x suffice,
we can then define the order relation, the notion of prime number, etc.). But how
can we be sure that we have not introduced symbols that are unnecessary? The
definability theorem provides a semantic criterion that answers this question.

The fourth section is devoted to reduced products and ultraproducts; these are
algebraic operations that allow us to define an L-structure from other L-structures.
Ultraproducts are particularly important and permit a purely algebraic proof of the
compactness theorem. In Section 8.5, we will prove some theorems of the following
type: a theory T is equivalent to another theory of this or that form if and only
if the class of its models is closed under this or that operation. These theorems
are called preservation theorems. We will specifically examine preservation under
substructures, under unions of chains, and under reduced products. Finally, in the
last section, we will study models of Ro-categorical theories, i.e. theories whose
countable models are all isomorphic.

The axiom of choice is necessary for nearly all the results in this chapter. So we
assume, once and for all, that it is satisfied.
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8.1 Elementary substructures and extensions

8.1.1 Elementary substructures

The following convention will be in effect for this entire chapter: calligraphic letters
M, N, and so on will denote structures and the corresponding Latin letters M, N,
and so on will denote the underlying sets of these structures. We systematically
assume that the language includes the symbol for equality, ~~, and that the structures
respect equality. The definition which follows is very important and will be with
us throughout the chapter.

Definition 8.1 If L is a language, M is an L-structure, and N is a substructure
of M, we say that N is an elementary substructure of M (o1, equivalently, that
M is an elementary extension of N) if, for every formula Fivy, v, ..., v,) of L
and for all elements a1, ay, ..., a, of N, we have

ME Flai,ay,...,ay] ifandonlyif N F Flay, az, ..., a,).

We will write N' < M to assert that ‘N is an elementary substructure of M.

Recall that for AV to be simply a substructure of M, it is this same formal
condition that must be satisfied, but only for atomic formulas (or, which amounts
to the same thing, for formulas without quantifiers). The first question that comes to
mind is to ask whether there are substructures that are not elementary substructures.
Here are a few examples.

e In the language of groups, (Z, 0, +) is a substructure of (Q, 0, +) that is not an
elementary substructure. For example, the formula

Vvodv (v1 + vy =2 vp)

is satisfied in QQ but not in Z.

e Again in this same language, the structure (2Z, 0, +) of even integers is a
substructure of (Z, 0, +) and, moreover, these two structures are isomorphic
and hence satisfy the same formulas that do not involve parameters. However,
the formula Jvg (v + vp = 2) is satisfied in Z but not in 2Z; so this is not an
elementary substructure of Z. Here, in contrast with the previous example, we
need a parameter from the smaller structure (namely, 2) to find a formula that
is true in one of the structures but not in the other.

e In the language of fields, (Q is not an elementary substructure of R; the formula
Jvp(vo X vp = 2) is satisfied in R but not in Q. Similarly, R is not an elementary
substructure of C; just consider the formula Jvg(vg x vg >~ —1) (here, all
appearances to the contrary, we are not using a parameter).

e In the language for orderings, [0, 1] is not an elementary substructure of
[0, 2}; the formula Yug(vg < 1) is satisfied in the first but not in the second
structure.
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Before proceeding, we recall a definition from Section 3.5 of Chapter 3.

* Definition 8.2 Ler M be an L-structure. The complete theory of M, denoted by
Th(M), is the theory

Th(M) = {F : F is a closed formula of L and M E F).

If M and N are two L-structures, we say that M and N are elementarily equiv-
alent if Th(M) = Th(N). When this is the case, we will write M = N.

It is clear that, concordant with the vocabulary, Th(M) is always a complete
theory and that if two structures are isomorphic, then they are elementarily equiv-
alent. It is an immediate consequence of the definitions that if N < M, then
M = N. The example of (27, 0, +) inside (Z, 0, +) shows that it is possible for
N to be a substructure of M and elementarily equivalent to M while not being
an elementary substructure.

Remark 8.3 It also follows from the definitions that
o if M < Mjand My < M3, then M; < M3;
e if M, <'M3, Mi € My, and My < Ma, then My < M.

In general, itis rather difficult to show that a substructure is elementary. In the next
example, we will illustrate a technique that is very useful for this type of problem.

Example 8.4 (Dense ordering without endpoints) Consider the following theory
T in the language that contains only a single binary relation symbol, <:
@) Yvo(—vo < vp);
(1) YvoYui((vg < v € =y < vg) V vg =~ v1):
(ii1) YuoVu1Yua((vo < v A vy < 1p) = 1o < V2);
(iv) Yvodvi(vg < v1);
(V) Yvodvi(vr < wo);
(vi) YuoYviva(vo < vi = (vg < v A vy < ).

The first three axioms express that < is a total ordering, the next two axioms
that there is no maximum or minimum element, and the last that the ordering is
dense, i.e. between any two distinct elements, there is always a third. It is clear
that any model of T is necessarily infinite. We will prove that if M and NV are two

models of 7" and if M € N, then M < N. We are dealing here with a very strong
property of the theory 7' (see Exercise 8). We will begin by proving two lemmas.

Lemma 8.5 Letay,az,...,a, € M and by, by, ...,b, € N and assume that
these two sequences satisfy the same atomic formulas in M and in N, respectively;
in other words, for everyi and j in{1,2,...,n},

MEai~a; ifandonlyif N Eb; ~bj, and
MEa; <a; ifandonlyif N Eb; <b;.
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Then for every ap € M, there exists by € N such that, for all i and j in
{0,1,2,...,n},

MEa; ~a; ifandonlyif N Eb; =b;, and
MEa; <aj ifandonlyif NEb <bj;

andforeveryby € N, thereexistsag € M suchthat, foralli and jin{0,1,2,...,n},

MEa;i~a; ifandonlyif NEb; ~b;, and
MEa; <aj ifandonlyif N Eb; <b;j.

Proof Assume that aq is given and that we must find bg. There are several cases
to consider:

e ag is greater (in the sense of the ordering of M) than all the g; (for 1 <i < n).
Then choose by in N to be any element that is greater (in the sense of the
ordering of \V) than all the b; (1 < i < n). Such a point exists since there is no
maximum element in V.

e If ag is smaller than all the g; (for 1 < i < n), we take by to be any element of
N that is smaller than all the b; (1 < i < j).

e If ag is equal to one of the a;, say ag, then choose by = by.

e In the remaining case, choose an index p € {1,2,...,n} such that a, is the
smallest (in the sense of the ordering of M) of those ¢; (for 1 < i < n) that
are greater than ap and choose an index g € {1, 2, ..., n} such that a, is the

greatest of the ¢; (for 1 < i < n) that are less than ag. We have a; < ap < a,
and hence b; < bp. We then choose a bg in N which is strictly between by and - -
b, (this is possible because the ordering on NV is dense). ‘

Obviously, we do the same thing to find ag when b is given.

Lemma 8.6 Let M and N be two models of T, let ay,ay, ...,a, € M and by,
by, ..., b, € N, and assume that these two sequences satisfy the same atomic for-
mulas in M and in N, respectively, then for every formula F vy, vy, ..., v,] of L,

M i:F[al,CZZ’-‘-,an] l.'fandonlyif‘ Nl: F[bl,bZ,--wbn]- (*)

With this lemma in hand, we may easily conclude that if M and N are two
models of T and if M is a substructure of A/, then M < N to see this, note that |
if aj, ap, ..., a, are elements of M, then the atomic formulas satisfied in M by ‘
this sequence are the same as those satisfied in A (because M is a substructure
of N'). So the hypotheses of the lemma are satisfied; thus, for every formula
Flvy,vo,...,v,] of L,

ME Flay,ay,...,a,] ifandonlyif N Flay,a,...,a,);

in other words, M < AN
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So it remains to prove Lemma 8.6.

Proof We will assume that no universal quantifiers occur in F (which we may
assume, withoutloss of generality, subject to replacing F by an equivalent formula,
as in Remark 3.57) and will prove the lemma by induction on F.

The hypothesis of the lemma says that the condition (x) holds if F is an atomic
formula. It is immediate that if (%) holds for the formulas F} and F,, then it also
holds for the formulas —=Fy, F1 A Fp, Fi V ), F| = F,, and F| < F,. The
remaining case is when

F[U13 1)2, vers Ull] = HUOG[UI, 025 U] vl?]‘
Assume (in addition to the fact that the sequences a1, az,...,a, € M and
bi,by,...,b, € N satisfy the same atomic formulas in M and in N, respec-

tively) that
ME Flay,ay, ..., a,].
So there exists an ag € M such that
ME Glag,ay,az,...,a,].

We choose an element by € N whose situation with respect to the b; (1 <i < n)
is exactly the same as that of g with respect to the g;; in other words, such
that the sequences (ap, aj, a2, ..., ay) and (bg, by, by, . .., b,) continue to satisfy
the same atomic formulas in M and in N, respectively (Lemma 8.5). Since the
formula G has one fewer quantifier than the formula F, we may apply the induction
hypothesis to it and conclude that '

N E Glbg, by, by, . .., byl
and hence that
N E Flbo, by, by, ..., byl
By interchanging the roles of M and \V, we can show in exactly the same way

that if V' & F[bg, by, by, ..., by], then M E Flay, ay, ..., a). .

8.1.2 The Tarski-Vaught test

The next result, known as the Tarski-Vaught test, is, on occasion, a practical way
to verify that a substructure is elementary.

Theorem 8.7 Let M be a structure, let N be a substructure of M, and assume

that for every formula Flvg, vy, ..., v,) of L and for all elements ay, aq, . . ., a,
in N, if

M !: HUOF[UO,QI,GZ, ey an]’
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then there exists ag in N such that
ME Flao,ay, a2, ..., a].

Then N' < M.

The difference between this and Definition 8.1 is that satisfaction of formulas in
only one of the two structures (the larger one) is involved.

Proof We will prove that for every formula Glvi, vs,...,v,] and for all
al,az,---,an inN’

N E Glay,ap,...,ay] ifandonlyif ME Glay,a,...,a,l.

As we did earlier, we may assume (see Remark 3.57) that no universal quantifier
occurs in G and argue by induction on G. The cases which concern propositional
connectives offer no difficulty. So consider the case where Glvy, vy, ..., v,] =
dvp Flug, vi, v2, ..., vyl (thus F has one fewer quantifier than G).

o If N F JuFlvo,ay,ay,...,a,], then there exists ag € N such that
N E Flag,ai,ay,...,a,] and, by the induction hypothesis, we see that
M E Flag, a1, aa, ..., a,); consequently,

ME g Flvg, a, az, ..., a,].

e Conversely, if M F JugFlvg, a1, az, ..., a,], then by the hypothesis of the
theorem, there exists g € N such that M E Flag, aj, ay, ..., a,). By the
induction hypothesis, we obtain N' E Flag, ai, aq, ..., a,], and hence
N E JugFlvg, ai, az, ..., a,l.

~Remark 8.8 In fact, in applying the Tarski—Vaught test, there is no need to first
verify that NV is a substructure of M; to see this, notice that if A is any subset of
M that satisfies

for every formula Flvg, vi,...,v,] of L

and for all elements a1, as, ..., a, in N,

it M E JugFlvg, ai,az, ..., a,l,

then there exists ag in N such that M F Flag, ai, az, ..., a,],

then A will be closed under the functions of the language; for if f is a k-ary
function, it suffices to consider the formula F = vy =~ fvjvy... vt In other
words, A is a substructure of M (A is non-empty since M F Jvg vg = vg).

We will give an example which applies the Tarski—Vaught test. Before we begin,
let us mention that the cardinality of a language L, denoted by card(L), is equal,
by definition, to the cardinality of the set of formulas of L; so it is equal to
sup(Ro, card(X)), where X denotes the set of symbols for constants, functions,
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and relations of L. The cardinality of a structure is, naturally, the cardinality of its
~ underlying set. The next theorem is known as the downward Lowenheim-Skolem
theorem.

Theorem 8.9 Let M be an L-structure, let A be any subset of M, and suppose
that card(M) > card(L). Then there exists an elementary substructure Mo of M
that includes A and whose cardinality is sup(card(A), card(L)).

Proof We may assume that card(A) > card(L) without loss of generality by
arbitrarily expanding A. Next, we note that if B is a subset of M and if card(B) >
card(L), then the substructure of M generated by B (i.e. the smallest subset N
of M which includes B and is closed under the functions of the language) has
- the same cardinality as B (for every element of N is the interpretation of a term
with parameters from B and the set of such terms is a set of finite sequences from
L x B, so its cardinality is less than or equal to that of B).

By induction on the integer n, we define subsets Ag € A; € A, C ... C
A, C -+ of M which all have cardinality equal to card(A).

e A is the substructure generated by A.

e To define A;y; from A;, we proceed as follows: for every formula
Fluvp, vy, ..., v,] of L and for every sequence (ay, aa, ..., a,) of elements
of Aj, it M F JugFlug, ar, az, ..., a,],thenwechoose anelementcr 4, a,.....a,
of M such that

M t: F[CF,al,az ..... H,,»alaa23"‘aaﬂ];
then set
Bi = Ai U{cF.a,a9,...a, 1 €N, Flvg, vy, ..., v,]is aformulaof L,
ai, az, ..., dy arein M and M F JugFlvg, ay, az, ..., a,l},

and let A; 4 be the substructure of M generated by B;. There are card(L)
formulas F in L and card(A;) sequences (aj, az, ..., a,) in A; of the appro-
priate length. So we need to add at most card(A;) points to A; to obtain B;; this
shows that

card(A;4+1) = card(B;) = card(A;) = card(A).

We set Mo = |_J;cn Ai. It is clear that M is a substructure of M and that its
cardinality is card(A) (see Corollary 7.72). We will now use the Tarski—Vaught
test to show that it is an elementary substructure.

Let Flvg, v1, ..., v,] be a formula of L, let ay, as, ..., a, be elements of My,
and suppose that

ME JwFlvg, ay, as, ..., a,)l.
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We know that there exists an integer i such that A; contains a1, az, ..., a,. By the
construction of A;yy, this set, and hence My, contains a point ¢ such that
ME Fle,ai, ay, ..., ay]; this is exactly what is required by the hypothesis of the
Tarski—Vaught test. : B

8.2 Construction of elementary extensions
8.2.1 Elementary maps

Here is another important concept.

Definition 8.10 Let M and N be two L-structures and let h be a mapping from
M into N; the mapping h is called an elementary mapping if, for every formula
Flvy, va, ..., vy] of L and for ail elements ay, an, ..., ay of M, we have

ME Flaj,ay,...,a,) ifandonlyif N E Flh(a),h(a2),..., k(ay)].

It is immediate, when we consider the formula vyp ~ vy, that an elementary
mapping is injective. To insist on this fact, we will sometimes say elementary
embedding rather than elementary mapping. If there exists an elementary mapping
from M into N, we will say that M can be elementarily embedded in N. It is
also clear that an elementary mapping is a monomorphism of L-structures. The
converse is not true; to be convinced, recall the example of a substructure M of
N that is not elementary (see the previous section). Nonetheless, we do have the
next proposition.

. Proposition 8.11 Let h be a monomorphism from a structure M into a structure
N. Then h is an elementary mapping if and only if the image of h is an elementary
substructure of N.

Proof Denote the image of & by N}; thus & is an isomorphism from M onto N].
So it follows from Theorem 3.72 that, for every formula F[vy, va, ..., v,] of L
and for all elements ay, as, ..., a, of M, we have

ME Flay,ay,...,a,] ifandonlyif N E Flh(ay), h(az), ..., h(ay)].
Suppose first that A’} < N, Then

M E Flh(a1), h(a), ..., h(ay)] if and only if
N E Flh(ay), h(ay), ..., h(ay)],

which, together with the equivalence above, implies that 4 is elementary.

Conversely, suppose that % is elementary and let by, by, ..., b, be elements of
Ny. There exist ay, ap, ..., a, in M such that h(a;) = by, h(a) = by, ...,
h(a,) = by,. For every formula Flvy, vy, ..., v,] of L, we have

ME Flay,ay,...,a,] ifandonlyif N E F[h(a)),h(ay),..., h(a,)],
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and hence
N E F{by, by, ..., b,] ifandonlyif N\ E F[by, by,...,bn). &

Corollary 8.12 If there exists an elementary mapping from M into N, then M
and N are elementarily equivalent.

Proof Indeed,if V/; denotes the image of this elementary mapping, then '] = N
since N1 < NV and N| = M by the isomorphism. B

8.2.2 The method of diagrams

We will now describe the method of diagrams which allows us to construct exten-
sions and elementary extensions. This method was, incidentally, already sketched
in Section 3.5 of Chapter 3. Let M be an L-structure and consider the language
L pr obtained by adjoining to L a constant symbol g for each element a of M. Then
there is a natural enrichment of M to an L ps-structure which we will denote by
M*; simply interpret a by a. Set

D(M) ={Fla;,a,,...,a,l: Flvi,v2,...,v,]is a formula of L,
aj,ay,...,ay, € Mand M F Flay,an,...,a,l}.

We see that D (M), called the complete diagram of M, is the complete theory
of M*. What is important is that any other model of D(M), or, more precisely,
the reduct to the language L of any other model of D (M), is, up to isomorphism,
an elementary extension of M. Let us explain.

Let N* be an L pz-structure that is a model of D(M). Let A/ denote the reduct
of N** to the language L (thus N is obtained from A/* by ignoring the interpre-
tations of the constant symbols a for a € M). For each a € M, let g(a) denote
the interpretation of a in A/*, Thus, g is a mapping from M into N and, for
every formula Flvy, vy, ..., v,] of L and for all elements ay, a;, ..., a, of M,
we have

ME Flay,ay, ...,a,] if and only if
Nt: F[g(al)ag(aZ)a---,g(an)]' (*)

[The reason is that both these conditions are equivalent in turn to the fact that
Flay,ay,...,a,] € D(M), the first by definition of D (M), the second because
N* is a model of D(M), and because the symbols a; are interpreted there by
g(a;) and because D(M) is a complete theory.]

In other words, g is an elementary mapping from M into V. So we are not far
from the goal we had set: A is not an elementary extension of M but is only an
elementary extension of a structure that is isomorphic to M, namely the image
of g. To repair this imperfection, we will prove that we may assume that, for all
a € M, g(a) = a, to do this, we will proceed with a purely formal construction
that is altogether uninteresting. This will be done in the next lemma, which will
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then be used several times in the remainder of this section. Before we start, recall
(from Section 3.5 of Chapter 3) that the simple diagram of a structure M, denoted
by A(M), is the following theory in Ly:

A(M) - {H[Qb QQ» ey Qn] : H[U1> U2y 00y Ull] iS a qua11tiﬁer~free
formula of L, a1, ay, ..., a, are elements of M, and
M }: H[ahaZ, -'~9all]}'

Lemma 8.13 If M is an L-structure, then every model of A(M) is isomorphic
to an extension of M* (in which each symbol a, fora € M, is therefore interpreted
by a). :

Proof Let AV be a model of A(M) and let g denote the map from M into N that,
with each a € M, associates the interpretation of a in AV. Let M; be a set that
includes M and is such that M; — M has the same cardinality as N — g(M). The
mapping g can then be extended to a bijection g; from M| onto N. We define an
L js-structure M, whose base set is M1, by requiring that g; be an isomorphism
from M onto NV; to do this, interpret each of the symbols a, for @ € M, by the

corresponding element «; then, if R is a p-ary relation symbol, the interpretation
of Rin M is

(a1, a2, ...,ap) € M} : N'F Rgi(a)gi(a2) . ..gi(ap)}).

The interpretations of the constant symbols and the function symbols are defined
analogously. It is quite clear that the structure M is an extension of M*, B

If, as we assumed above, N is a model of D(M) [and not merely of A(M)],
then M is an elementary substructure of the reduct of M to L; to see this,

let Flvi, vy, ..., v,] be a formula of L and let ay, ay, ..., a, be points of M.
We have :

M1 E Flay,an, ..., a,]

if and only if ‘
N E Flgi(a1), g1(a2), ..., g1(ay)] (because g; is an isomorphism)
if and only if ‘

N E Flg(ay), glaz), ..., glay)] (because g is an extension of g)
if and only if

ME Flay,ap, ..., a,] (by condition (x)).

Here is a first application of this technique.

Theorem 8.14 Every infinite structure M has a proper elementary extension (i.e.
an elementary extension that is different from M itself).
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Proof Add anew constant symbol ¢ to L, and consider the following theory 7’
in the resulting language:

T'=DM)U(~c>a:aec M)

We begin by observing that, by virtue of the compactness theorem, this theory has
a model since every finite subset of T’ is included in a set of the form D(M) U
{mc>~a:ae A}, where A is a finite subset of M; to obtain a model of such a
set, it suffices to enrich M* by taking any point of M that does not belong to A as
the interpretation of ¢ (which is possible since A is finite and M is infinite).

Let N* be a model of T’ and let AV be its reduct to the language L. We have
seen that we may assume that NV is an elementary extension of M. It is obvious
that the interpretation of the symboi ¢ in A/* cannot belong to M this shows that

N # M. H

To spare the notation, when we apply this method, we will dispense with the
distinction between the structures M and M*. This is, of course, an abuse of
language but it presents no danger.

The same idea, applied in a more daring manner, gives us the upward
Lowenheim-Skolem theorem:

Theorem 8.15 Let M be an infinite L-structure and let « be a cardinal that
satisfies & > sup(card(M), card(L)). Then there exists an elementary extension
N of M whose cardinality is «.

Proof It will suffice, in fact, to construct an A of cardinality greater than or
equal to « such that A/ > M. Once this is done, we choose a subset A of N
that includes M and that has cardinality «, then construct N, using the down-
ward Lowenheim—Skolem theorem (Theorem 8.9), such that M € Ny, Ng < N
and card(Ng) = k. We have already noted (Remark 8.3) that this implies'
M < ./\/().

For each i € «, we introduce a new constant symbol ¢; and we consider the
theory

T'=DM)U{~ci~cj i€k, jekandi# j}.

This theory is consistent since every finite subset of 7" is included in a set of the
form DIM)U {=c; ~¢; :i,j € Aandi # j}, where A is a finite subset of «;
such a subset has a model, for it suffices to interpret the ¢;, fori € A, by pairwise
distinct elements of M this is possible since M is infinite.

We complete the proof as before. Let A be a model of 77 and assume, as we did
above, that A/ > M. Then the interpretations in A/ of the ¢;, for i € «, are distinct
points, so the cardinality of AV is at least equal to «. B

The corollary which follows is an immediate consequence of the two Lowenheim—
Skolem theorems.
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Corollary 8.16 Let T be a theory in a language L and let k be a cardinal that is
greater than or equal to card(L). If T has an infinite model, then it has a model
of cardinality k.

~ For the next theorem, known as Vaught’s theorem, we will need the following
definition.

Definition 8.17 Let T'beatheoryandletk be acardinal. T is called k-categorical
if, first of all, T has a model of cardinality k and, second, if all the models of
cardinality « are isomorphic.

Theorem 8.18 Let T be a theory in a language L and assume that T does not
have a finite model. Suppose that T is k-categorical for a cardinal i that is greater
than or equal to card(L). Then T is complete.

Proof Assume the contrary and let F be a closed formula of L such that T} =
T U{F}and T» = T U {—F} are both consistent. From the upward Lowenheim—
Skolem theorem, there exist models M of 71 and My of T; of cardinality «; My
and M, cannot be isomorphic, but this contradicts x-categoricity. B8

Example 8.19 (Dense orderings without endpoints) Let us re-examine the
theory T of dense orderings without endpoints which we presented earlier in
Example 8.4. This theory clearly does not have any finite models. We will prove
that it is Rg-categorical; this will imply, together with Vaught’s theorem, that this
theory is complete.

Let M and NV be two denumerable models of 7. We will produce an isomor-
phism between these two structures by a ‘back-and-forth’ technique. We begin
by invoking the denumerability of these two models to find enumerations of M
and N:

M={m;:ieN} and N ={n;:i e N}.
By induction, we will define two sequences
(ap:peN) and (bp:peN)
such that, for every integer p,
ap €M,
b, € N, and

the sequences (ap, ay, ..., ap—1) and (bg, by, ..., bp_1)
satisfy the same atomic formulas in M and in AV, respectively.

To define ap, and b, we distinguish two cases:

e If p is even, say p = 2i, we set a, = m;; we conclude from Lemma 8.5
that there exists a point in N which we will call b, with the property that the
sequences (ap, at, ..., ap) and (bo, by, ..., by) continue to satisfy the same
atomic formulas in M and in NV, respectively.
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e If pisodd, say p =2i + 1, we set b, = n; and we choose a, in M such that
(ao, at, ..., ap) and (bg, by, ..., by) satisfy the same atomic formulas in M
and in \V, respectively.

Assume, for example, that ¢ < p and note that a, = a, if and only if b, = b,
[because (ag, ai, ..., ap) and (b, bi,..., b,) satisfy the same atomic formulas].
So we are able to define amapping f from {ay : k € N}into {b; : k € N} by setting
flar) = by for all k € N. By the way the a, were chosen for even p, we see that
{ar . k € N} = M andthe choice of b, forodd p guarantees that {by : k € N} = N
thus f is a bijection from M into N. Itis an isomorphism from M into NV because,
for every p, the sequences (ag, a1, ..., ap) and (bo, b1, .. ., bp) satisfy the same
atomic formulas.

Example 8.20 (Divisible torsion-free abelian groups) Inthelanguage of groups,
{0, +}, we consider the following theory:

(1) YvoVviYua (vo + v1) + v2 = vg + (v1 + v2);

(ii) YvoYvi v + v1 = vy + vo;

(iii) Yvg vy + 0 =~ vg;

@iv) VYuvp3dvi vg + v; = 0

(v) Jvo (—vp = 0);

(vi) Yvg (n - vp 2 0 = vg = 0) for every positive n;
(vii) Yvo3v; vg =~ n - vy for every positive n.

[In (vi) and (vii) above, n - v denotes the term (... ((v + v) +v)...) + v that
contains n occurrences of the symbol v.]

We have here an infinite theory [because of (vi) and (vii) which are, in fact

axiom schemes]. Axioms (i)-(iv) express the fact that we are dealing with an
abelian group, axiom (v) asserts that it is not trivial, axiom (vi) that the group is
torsion-free, and axiom (vii) that it is divisible. We will use Vaught’s theorem to
show that this theory is complete.

The group (Q, 0, +) is a model of T, so T is consistent, But T has other models;
for example, let V be a vector space over Q in which x denotes scalar multiplica-
tion. Then the group G that underlies V is a divisible torsion-free abelian group;
forif pe Nanda € V,

pxa=0+14---+1) xa
=1xa+1xa+ - -+1xa
=a+a+---+a=p-a

andif p-a = 0 with p #0,then 0 = p~! x (p-a) = p~' x (p x a) = a, which
shows that G is torsion-free. As for divisibility, we certainly have p- (p~! xa) = a.

There is, in fact, a bijective correspondence between vector spaces over (Q and
divisible torsion-free abelian groups. If V is a vector space over Q, we have just seen
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that its underlying group, which we will denote by V7, is a divisible torsion-free
abelian group; conversely, if G is a divisible torsion-free abelian group, then there
exists a unique vector space over Y, which we denote by GT, whose underlying
group is G, in other words, (GT)™ = G.Ifa € G andr = p/g (with p € N,
g € N*), r x a must be that element x of G, which is unique, such thatg -x = p-a,
and if » is negative, r x a must equal —((—r) x a). Moreover, we can see that if
G and G’ are two divisible torsion-free abelian groups and /4 is a mapping from G
into G’, then h is an isomorphism of groups if and only if 4 is an isomorphism of
vector spaces over Q from G into G't.

In particular, this shows that T is not Rg-categorical; the two-dimensional and
the three-dimensional vector spaces over (Q are both countable, but they give rise
to models of T that are not isomorphic.

To show that T is R -categorical (in fact, T is A-categorical for every uncountable
cardinal 1), it suffices to show that any two vector spaces over Q of cardinality
N are necessarily isomorphic (the reason is that they must each have a basis of
cardinality Ry this is a small exercise concerning cardinalities).

Yet another remark: there are complete theories that only have infinite models
and that are not categorical in any infinite cardinality (see Exercises 4, 6, and 11).

To conclude this section, here is a procedure for constructing L-structures which,
under the right hypotheses, yields elementary extensions. Let (I, <) be a totally
ordered set and, for every i € I, let M; be an L-structure; assume in addition that
ifi < j, then M; is a substructure of M;. Set M = Uie[ M;. We can easily,
and in a unique fashion, build an L-structure M, also denoted by U,-e M;, whose
base set is M and is such that each M; is a substructure of M. For example, if R
is a p-ary relation symbol and if ay, az, ..., a, are elements of M, we choose an
index i € I such that all the points a1, az, ..., ap belong to M; (this is possible
since the M; are totally ordered by inclusion), we set

(a1, az,...,a,) € RM ifandonlyif (aj,an,...,a,) € RM.

This decision does not depend on the choice of index i; if j is some other index
for which ay, az, ..., a, belong to M, then we have either i < j or j < i. Thus,
either M; is a substructure of M ; or M is a substructure of M;. In both cases,

(al,az,...,ap)ERMf if and only if (al,a2,...,ap)€I§Mfﬂ

We do the same for the constant symbols and the function symbols.

We have arrived at a very useful theorem, due to Tarski, known as the union of
chains theorem.

Theorem 8.21 Let (I, <) be a totally ordered set and, for every i € I, let M;
be an L-structure; assume in addition that if i < j, then M; is an elementary
substructure of M j. Set M =\ J;c; Mi. Thenforevery j € I, M isanelementary
substructure of M.
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Proof By induction on the formula Flvy, vy, ..., v,], we will prove that, for all
ielandforallay,ay,...,a, € M;,

ME Flay,az,...,ap] ifandonlyif M;FE Flay, az. ..., apl.

As mentioned several times previously, we may assume that F' contains no occur-
rences of the universal quantifier.

For atomic formulas, there is no problem since M; is a substructure of M.
The cases which involve propositional connectives are obvious. So suppose that
F = 3vgGlug, vy, ..., vp], thati € I, and thatay, az, ..., ap € M;.

o If M; F JuGluvg, vy, ..., vp], then there exists a point ag in M; such that

- M; E Glag,ay,...,apl; it then follows by the induction hypothesis that
M E Glag, ay, ..., ap] and, consequently, M F Flaj, ay, ..., ap].

o If M F JugGlug, vi,...,vp], then there exists a point ap in M such that
M E Glag, ay, ..., apl; so there exists j € I, j > i, such that ag € M;
and, by the induction hypothesis, M; E Glag,ai,...,apl. Thus M; &
FvoGlvo, ai, ..., apl. But since M; < M;, we also have M; F
Flay, as, ..., ap). B

8.3 The interpolation and definability theorems

At the beginning of the previous section, we saw that if there exists an elemen-
tary mapping between two structures, then they are elementarily equivalent. The
converse is false (see Exercise 4). But we do, nonetheless, have the following
theorem. '

Theorem 8.22 Let M and My be two L-structures. Then M and My are
elementarily equivalent if and only if there is some third L-structure into which
they can both be elementarily embedded.

Proof In one direction, this is clear: if M and My can both be elementarily
embedded in M3, then we have M| = M3 = M.

Conversely, suppose that M| and M, are elementarily equivalent. We will use
the method of diagrams. Consider the language L’ obtained by adding to L
e anew constant symbol a for every element a of M7;
e anew constant symbol b for every element b of M.

Caution: All of these symbols must be distinct and, in particular, if a belongs to

both M) and M;, one must take care that ¢ is different from a.
We introduce the diagrams:

DMy ={Fla;,a,,...,a,): Flv,v2, ..., v,]isaformulaof L,
ay,az,...,a, € Myand M F Flay, aa, ..., a,l}
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and

D(Ma) = {F[by, by, ..., byl : Flv1, v, ..., vn] is a formula of L,
bi,by,...,by, € Myand My E F[by, by, ..., byl}.

We have seen that M can be elementarily embedded in any model of D(M))
and, similarly, M, can be elementarily embedded in any model of D(Mj3).
So it will suffice to prove that 7/ = D(M)) U D(M>) is a consistent theory.
To do this, we will use the compactness theorem. Note that D(M;) is closed
under conjunction; thus, a finite subset of D(M)) is equivalent to a formula
Flay,a,,...,a,]in D(M;) and, if T’ were contradictory, there would exist a
formula such that

D(MZ) i— ﬁF[QI’ QZ: LI} C_l.n]'
But, since the a; do not appear in D(M>), we have (see Lemma 4.26)

D(Mjy) = VYuYuy ... Yu,—Flv, va..., unl.

Thus VuiVvy ... Yv,—F[v, v2..., ;] I8 a closed formula of L which is true
in My; it should consequently be true in M, but this contradicts the fact that
MiE Flay, aa, ..., ayl B

The theorem which follows is called Robinson’s consistency lemma; itprovides
us with a very pretty example of the construction of a model.

Theorem 8.23 Let T be a complete theory in a language L and let L1 and L,
be two enrichments of L such that Ly 0 Ly = L. If Ty and T, are two consistent
theories (in the languages Ly and Lo, respectively) that each include T, then
Ty U T, is consistent.

Proof The proof makes use of the next three lemmas. Throughout, if M is an
L -structure or an Lo-structure, then M™ will denote the reduct of M to L.

Lemma 8.24 Let M be amodel of T. Then there exists a model B of Ty such that
M =< B~

Proof We will use the method of diagrams. It suffices to show that 7, U D(M)
is consistent. If we assume the opposite in order to obtain a contradiction, and
invoke the compactness theorem together with the fact that D(M) is closed
under conjunction, we have a formula Fla,,a,,...,a,] of D(M) such that
I & —Fla;,a,,...,a,]. The symbols a; do not belong to the language L,
in which T3 is expressed. Therefore,

T YuVuy .. . Yu,—Flvg,va. .., vl

The formula Vo Vv, ... Yu,—F[v, v2..., vylisin L and T is included in 75; thus
the formula —VvyVvy ... Yv,=F[v, vz ..., v,] cannot be a consequence of 7.
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Since. T is complete, Yv1Yvy ... Yu,—F[v),vy...,v,] is a consequence of T.
_This yields a contradiction since M is a model of T and M E Flay, as, ..., a,].
' B

Lemma 8.25 Let A be a model of Ty, let M be a model of T, and assume that
Ay < M. Then there exists an Ly-structure Ay such that Ay < A and M < A5
(and hence Ay is a model of T ).

Proof Again, we use the same method; it suffices to construct a model of 7/ =
D(M) U D(Ay}), where, as we recall,

D(M) ={Flay,ay,...,a,l: Flvi,v2,...,v,]1s a formula of L,
ai,az,...,a, € Mand M E Flay,ap, ..., a,l}

and

D(A) = {Flay,a,y,...,a,1: Flvi, v, ..., v,]is a formula of L1,
ai, az,...,ay € Ayand Ay F Flay, az, ..., a,l}.

We must insist on the fact that the language of T’ is L; augmented by parameters
from M. Unlike what was done for Theorem 8.22, we only introduce a new constant
symbol a for each element a of A; (the base set of A1) which is used both for
D(M) and for D(A); it is because of this that we will be able to consider a
model of 7" as an elementary extension of Ay and its L-reduct as an elementary
extension of M.

Again, the argument is by contradiction; we assume that 7’ is not consistent and
deduce, from this, the existence of a formula of D (M) that is in contradiction w1th
D(Ay}). This formula can be written in the form

Flay,ay, i@, appys 5@y ,],

where F is a formula of L, a1, ay,...,a, € Ay and a,4q1, apy, .. S lpgp €
M — Aj.

Since D(A1) F —Flay, a,, o8y Ayyys sy ,] and since the a;, for
n+l <i <n+ p,donot appear in D(Ay), it follows that

D(A1) = YuiYup .. . Yup=Flay, ay,...,a,,v1,02, ..., Up]
and hence that
A EYu Yoy .. Yup,—Flay, a, ..., a,, 01,02, .., Upl.
It is clear that M F Fvidvy... v, Flay, az, ..., a4, 01,02, ..., vp] and this
contradicts the fact that A; < M. [

Obviously, we can replace T by 7> and obtain

Lemma 8.26 Let By be a model of Ty, let M be a model of T, and assume that
B < M. Then there exists a model By of Ty such that By < By and M < B
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We are now in a position to complete the proof of the consistency lemma by
constructing a model of T7UT,. We start with a model A; of 77; A isamodelof T.
So we may apply Lemma 8.24 to find a model B; of T, such that A} < By . Then
apply Lemma 8.25 to find a model A, of T} such that 4; < A, and B < A;.
We continue by applying Lemmas 8.25 and 8.26 in alternation to produce struc-
tures A,, that are models of 77 and B, that are models of 7 such that, for every
integer r,

»An =< A;1+l, Bn < Bn—*—l, An— =< B”_, aIld B < AI‘I—+1

Set A = |~ Ay and B = {J,»| By By the union of chains theorem, A is
an elementary extension of \A;, hence is a model of 71; in the same way, B is a
model of 75. Now these two structures have the same base set and same L-reduci,

namely
A =15

n>1 n>1

So we obtain a model of 77 U T, by considering the (L1 U Lj)-structure whose L -
reductis A and whose Ly-reduct is 3 (this is where the hypothesis that L{yNLy, = L
intervenes; it allows for an unambiguous interpretation of the symbols of L U L2
that do not belong to L).

The next theorem, called Craig’s interpolation theorem, is a consequence of
Robinson’s consistency lemma and should be compared with Theorem 1.35.

Theorem 8.27 Let F and G be two closed formulas and assume that F = G.is
universally valid. Then there exists a formula H such that

(1) WF= H;

2) W H = G;

(3) any symbol for a constant, a function, or a predicate that appears in H
(with the exception of the equality predicate) must also appear in both F
and G.

A formula that satisfies conditions (1), (2), and (3) is called an interpolant

between F and G.

We should note that this theorem does have a purely syntactical meaning in which
only the notion of formal deduction intervenes and in which there is absolutely no
mention of models. There are purely syntactical proofs of this theorem; but that is
not the case for the proof which follows.

Proof Let L be the language consisting of the predicate for equality and of
the symbols common to F and G. We need to find a closed formula of L such that

- (F = H)AH = G).
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We will assume that this is not possible and arrive at a contradiction. The idea

_ is to construct a complete theory T in L such that 7 U {F} and T U {=G} are both

consistent. Robinson’s consistency lemma would then imply that T U {F, =G} is
consistent, which is absurd since - F = G.

The language L is countable, so we can find an enumeration {J,: n € N} of all
the closed formulas of L; assume that Jy = Jvg(vg = vo). We then construct, by
induction on n, a sequence of formulas (K,: n € N) of L in such a way that, for
alln e N,

() F Ky = Ky

(11) = Kn = Jn or - Kn = _'Jn§
(iii) there is no interpolant between the formulas F A K, and G A K.

We start by letting Ko = Jvg(vg = vg). Conditions (i) and (ii) are trivial and,
because we assumed that F and G have no interpolant, condition (iii) is also
satisfied. Next, we construct K+ from K,,.

The crucial observation is that at least one of the following two situations must
arise:

e There is no interpolant between the formulas F A K, A Jy41 and G A
Kn A -]n+1-

e There is no interpolant between the formulas F A K, A =Jpq1 and G A Ky A
pl.

Indeed, if we assume the contrary, there exist closed formulas Hy and H| of L
such that

= (F A Kn AN Jn—}-l) = Hp, = Ho = (G A Ky A Jn—l—l))
}_(F/\Kn/\“'Jn+1):>Hl» HH = (G/\Kn/\"" n+1)~

This is not possible, for it would require that
F(FAK,) = (Hyv H) and F (HoV Hy) = (GAK,),

which makes (Hy v H}) an in;erpolant for FA K, and G A K,,.

So we may take K, 4+ equal to K, A J,41 or K, A—Jy 41 according to whichever
situation holds; as a result, F A K41 and G A K41 will have no interpolant and
conditions (1), (ii), and (iii) will be satisfied. Set

T ={K,:neN}.

Observe that forevery n, F A K, is a consistent formula; otherwise, Jvg—vg >~ vg
would be an interpolant between F A K, and G A K,,. Using condition (i) and
the compactness theorem, we see that T U {F} is a consistent theory. Similarly,
-G A K, is consistent, otherwise K, would be an interpolant between F' A K,
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and G A K,. Therefore, T U {=G} is also consistent. Finally, it is clear that
T is a complete theory in L, for if H is a closed formula of L, then for some
integer n, H = J, and we have arranged things so that either - X, = Jy or
E Ky = —Jy. H

Craig’s interpolation theorem leads to another important result called Beth’s
definability theorem. We will begin with some remarks and notation.

Let L be a denumerable language, let P be a new n-ary predicate symbol and
set L' = L U {P}. Let P; be another n-ary predicate symbol that does not appear
in L. If G is a formula of L/, we will let G p,/p denote the formula obtained by
substituting Py for all occurrences of P in G. Note that if F is a formula of L and
if- F = G,then F = Gpl/p.

Let T be a theory il the enriched ianguage L. It is more or less clear that the
following two conditions are equivalent:

e Forevery L-structure M, there is at most one interpretation of P that results in
an enrichment of M to a model of T'.

e Suppose that P; is a new n-ary predicate symbol, that L = L U { P1}, and that
T is the theory obtained by replacing P with P; in T'; then for every model N/
of T U T\, we have

N EYu Yoy .. Yo, (Pvivy. .. vy & Piviva...vp).
The previous condition is also equivalent to
TUT EVYuyYuy ... Vu,(Puivy... v, & Proivy. ..o uy).

If one of these conditions is satisfied, we say that P is implicitly definable
in 7. We will say that P is explicitly definable in 7 if there exists a formula
Flvi, vy, ..., v,] of L such that

T EYuiVuy.. VYo, (Puivy.. vy & Fluy, v, o0, ).

It is rather obvious that if P is explicitly definable in 7', then it is implicitly
definable. The converse of this is Beth’s definability theorem.

Theorem 8.28 [f P is implicitly definable in T, then it is explicitly definable
inT.

Proof We retain the notations from the preceding paragraph. We introduce n
constant symbols, c1, ¢2, ..., c,. Because P is implicitly definable, the theory

TU {P0162 e C,,} U T1 U {—\P1C162 . .C,,}

is contradictory. Using the compactness theorem, we can find closed formulas F
of L' and G of L; such that FAGA Pcicy...cy A—Picicy . .. ¢y is contradictory,
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while T + F and T} + G. The fact that
FANGAPcier...cpANPiciea. .. ¢y
is contradictory can be rephrased as
E(F A Pciea...cp) = (G = Piciey...cy).

Now apply the interpolation theorem to obtain a formula H[vy, vy, ..., v,] of L.
(in which neither P nor Py occurs) such that H{vy, vo, ..., u,] is an interpolant
between ' A Pcicy...cp and G = Picicy...c,. Since T F F, we have

TE Pcycy...cp = Hlvp, v, ..., v,
and since the constants, ¢;, do-not occur in T, we have

T EYuiYuy... Vo, (Pvivy... vy = Hlvi, v2, ..., val).
Similarly, we have

Ty - VYu)Yuy .. Yo, (H[vy, vg, ..., 0] = Pioivy ... uy),
and when W(;, substitute P for Pj, we have

T EYNviVuy ... Yo, (H[vi, vo, ..., vp] = Pojvy...uy).

8.4 Reduced products and ultraproducts

We are given a language L, a set I, and a family (M;);ey of L-structures. We are
going to define another L-structure, called the product of the family (/\/l,")iE 7
and denoted by [];.; M;, whose base set is the product set [, M;. First, some
notation: if a is anelementof [ [;_; M; andi € I, weleta' denote theith coordinate
of a [in other words, a is equal to the sequence (a': i € I)];if X is a symbol (for a
constant, a function or a predicate) of L, then X; denotes the interpretation of this
symbol in M;.

e If cisaconstant symbol, then the interpretation of ¢ in [ [;.; M; is the sequence
(citiel).
e If f is an n-ary function symbol, then the interpretation of f in [[;.; M; is the
map which, with (ay, ap, ..., a,), associates
(fila}, a5, ...,a,) i €1).

e If R is an n-ary predicate symbol, then the interpretation of R in [];.; M; is
the set

n

(ay,ap,...,ay) € (HM,‘) foreveryi € I, (aj,ay,...,a,) € Ri ¢.
iel

To restate this in a more compact fashion, we could say that [];.; M; is

defined in such a way that, for every atomic formula F[vy, vy, ..., v,] and for
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allay, ap, ..., ayin[[;c; M,

H’Mi ': F[Cl],(lz, o "all]
iel

if and only if forall i € I, M; F Flal,ab,...,al].

H
When [ is finite, we refer to this as the finite product.

Example 8.29 If the M; are groups, this is the familiar product of groups.
Similarly for rings and for ordered sets. We should note that the product of fields
is not, in general, a field (see Exercise 14); also, the product of totally ordered sets
is not, in general, totally ordered.

We will now generalize this definition. In addition to the set / and the structures
M;, we are now also given a filter F on the Boolean algebra of subsets of 1.

Consider the binary relation = on [ [;; M; defined by

(@:ie~p @ :iel) ifandonlyif (i el:d =b'}eF.

Note that this is an equivalence relation. It is clearly symmetric and reflexive. To
see that it is transitive, suppose that (@' : i € I), (b' :i € I),and (¢' : i € I) are
three elements of | [;.; M; such that

(@:ieD~p@ :icl) and (B :iel)~g( :iecl);
this means that
liel:d=b}eF and {el:b =c}elF.

But{iel:al=b)N{icl:b =cYC{iel:da =c}and, since Fisa
filter, it is clear that {i € I : @' = ¢/} € F.

The set of equivalence classes of [ [;.; M; with respect to this relation will be
denoted by [ [;; Mi/f. If a € [[;c; M, the equivalence class of @ modulo ~ ¢
will be denoted by a provided this does not lead to any ambiguity.

We will now define an L-structure on the set [];., M; / J which we will de-
note by [[;; M / JF and which we will call the reduced product of the family
(M})ier modulo the filter F. This definition will be such that, for every atomic

formula Flvy, vy, ..., v,]and forall ay, ag, ..., a, in [ [;c; Mi,
H/\/t,-/ft: Flay, ay, ..., ]
iel

if and only if

iel M E F[ai,aé,...,ai]} e F.

o If ¢ is a constant symbol, the interpretation of ¢ in [];.; M; /F is the equiva-
lence class of the sequence (¢; : i € 1) modulo ~ .
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e Suppose R is an n-ary predicate symbol and that ay, ap, ..., ﬁ,l are elements of
[lies Mi /F. Suppose, for all k from 1 to n inclusive, that (b} : i € I) is some
other representative of @y in [ [;c; M;. Then

{i € I:forall k from 1 to n inclusive, a,’;, = b};} e F,
and consequently
i el: M;ERald}.. a}erF
if and only if
i el: Mk Rbb,.. bi}eF.

So it is natural and legitimate to decide that

HM,‘/]:F:R@(_IQ_...&"

iel
if and only if
(i el: M;FRald,...a}eF.
e Suppose next that f is an n-ary function symbol and that a;, az, ..., a, are

elements of [],., M; / F. Once again, we note that if for all £ from 1 to n
inclusive, (b;< :i € I) is some other representative of ai, then

(filal, d,...,aly:i el)mx (fi(b}, by, ...,bY) i el).

The interpretation of f in[[;,;
a,, associates the equivalence class of (f; (aﬁ, ay,...,ay) 1 1 € I) relative
to=r.

M, / JF is the mapping which, with aj, ap, .. .,

Example 8.30 The product defined earlier is a special case of the reduced
product; it corresponds to the situation in which F is the filter 7 whose single
element is the set I itself. We will show that the reduced product of groups, of
rings, or of ordered sets is, respectively, a group, a ring, or an ordered set. We
will also see (Exercise 14) that the reduced product of fields is only rarely a
field.

In case all the structures M; are equal to the same structure M, we will speak
of the reduced power of M modulo F and denote it by M’ /F.

If F is an ultrafilter, then | [;.; M; / F is called the ultraproduct of the family
(M;)ie; modulo the filter F and if all the structures M; are equal to the same
structure M, it is called the ultrapower of AM modulo F (and, in agreement with
the previous convention, we will denote it by M /F). What makes ultraproducts
interesting is the next theorem, known as Los’ theorem.
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Theorem 8.31 Let (M; : i € I) be a family of L-structures and let F be an
ultrafilter on 1. Then for every formula F[vy, va, ..., vy] of L and for all eleme‘nz‘s
ay, az, ..., 0y Ofl—[iel Ml’

HMI‘/?I:F[&Ia&Za"'aaH]
iel
if and only if

iel: M;EFld,d,.. . a1 eF.

Proof We may begin by assuming that the only propositional connectives
occurring in F are — and A and that the universal quantifier does not appear.
The proof is then by induction on the height of . We already have the result if F
is an atomic formula.

e Case in which Flvy,vy,...,v,] = —Glvy,va,...,v,]. For all elements
a,az,...,dy Of I—L'e[ Mi,

HM,'/fh Flay, a, ..., as
iel
if and only if
HM//H‘ Glay, ay, ..., ),
iel
and thus, by the induction hypothesis, if and only if

iel: MiEGla,d,...,al)¢F.

Because F is an ultrafilter, {i € I : M; F Gla!,a}, ..., al]} ¢ F if and only
if its complement does belong to F. Therefore, '

HM,-/ﬂ:F[al,az,...,a,,]

iel
if and only if
{iel: M; l:F[ai,aé,...,af,]} e F.
e Casein which Flvi, vy, ..., v, = Glv, va, ..., vul A H[vy, vg, ..., v,]. For
all elements ay, az, ..., a, of [ [;c; Mi,

HM,/?# Flay, &, ..., dn)

iel
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if and only if

HM,-/}W: Glay, a, ..., a,} and

iel

HM,/J? F H[dy,a, ..., G-
iel

By the induction hypothesis, this is equivalent to

iel: MiEGld,d),...,all} € F and

F

iel: M;FHld,d...,a}l} e F.

7

Because F is a filter, these two sets belong to F if and only if their intersection
belongs to F, and their intersection is equal to

{iel:M;FFlaj,d,...,a}l}.

Case in which Flvy, v, ..., v;] = JvoGlvg, v1, ..., vyl Let ag, an, ..., ay
be elemerits of [ [, M; and suppose that

HM,-/:/% Fla, az, .. ., .

iel

iel

Then there exists ag € [ [;.; M; such that [Tics M,‘/F E Glag, ai, ..., a,l.
By the induction hypothesis, we see that the set

X={iel: M;EGld,d,... a1

I

belongs to F. It is clear that
lfl € X, then Mi t:E]UOG[UO,C_lelZ»'--aarz];

thus, theset {i e [ : M; E F[a’i, ag, ey a,’;]} includes X and belongs to F.
Conversely, suppose that

Y={(iel: M EFld,d,. .  dlleF,

>R

We define a sequence ag = (aé : 1 € I) as follows: if i € Y, then aé is a
pointin M; such that M; F Glay, aj, ..., a;,];if i ¢ Y, then aj can be chosen
arbitrarily in M;. It is then clear that

iel:MEGladal,.. . adl)

includes Y, hence belongs to F. So by the induction hypothesis,

HM’./]:’:G[&O;&h'-"&n]' m

iel
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Observe that it is only for the step involving negation that we use the fact that
F 1s an ultrafilter and not just a filter. : »

In the particular case in which F is a closed formula, F.os’ theorem tells us that
F is true in an ultraproduct of the family (M;);¢; if and only if it is true in ‘almost
all’ the M;.

The construction of reduced products and ultraproducts is strictly algebraic and
very little is required for the proof of Los’ theorem. The argument that follows
provides a new proof of the compactness theorem. This proof is unencumbered
by syntactic considerations, in opposition to the proof that we gave originally and
which relied on the completeness theorem.

Corollary 8.32 If every finite subset of a theory T has a model, then T has a
model. -

Proof Let I be the set of finite subsets of T. For every i € I, let M; be a model
of i (we know that one exists).
Now, for every formula F of T', consider the subset X (F') of I defined by

X(F)={iel:Fei}.

We see that the intersection of any finite number of sets of the form X (F) is
never empty; for if Fi, Fp,..., F,, are in T, then {Fy, F2, ..., F,} belongs to
(Ni<i<y X(F;). So the set {X(F) : F e T} is a filterbase and we can find an
ultrafilter F that includes this set (see Theorem 2.79). We may then use Los’
theorem to verify that [[;c, M; / F is a model of T indeed, if F € T, then
{i e I : M; F F}includes X (F) and hence belongs to F. - H

The next proposition asserts that an ultrapower of M may be considered as an
elementary extension of M.

Proposition 8.33 Let M be an L-structure, let I be a set and let F be an ultrafilter
onl. Fora € M, let c(a) denote the constant mapping from I into M whose value
is a and let h(a) denote the equivalence class of c(a) modulo ~x. Then h is an
elementary mapping from M into M | F.

Proof Inlight of Los’ theorem, this amounts to showing that, for every formula
Flvi, va, ..., v,]) of L and for all elements a1, ay, ..., a, of M,

Mt: F[al7a2,‘--sail]
if and only if
i eI ME Fle(a)', cla)', ..., clan)']} € F.

But this is obvious since, for all i € [ and for all k from 1 to n inclusive, ¢(a)’
is equal to ay. [ |
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8.5 Preservation theorems

'8.5.1 Preservation by substructures

Preservation theorems are results which relate the syntactical form of a theory with
closure properties of its class of models. We begin with the easiest one; it concerns
preservation of universal formulas. This problem has already been broached in
Chapter 3 (Theorem 3.70). We recall a definition.

Definition 8.34 A universal formula is a prenex formula in which the existen-
tial quantifier does not appear. A universal theory is a theory that only contains
universal formulas.

For example, the theory of total orderings [axioms (i), (ii), and (iii) from
Example 8.4] is a universal theory. The theory of groups is another interesting
example. In the language that consists of one constant symbol, 1 and one binary
function symbol, -, its axioms are

(1) YuiYu¥us (vr - v2) - v3 = vy - (V2 - v3);

(i) Yoi(vp-1>=vi A1-v; > vy);

(i) Yvr3va(vy-va 1A v v 1),

In this form, we do not have a universal theory because of the third axiom. However,
we may choose to include a unary function =1 in the language to denote the inverse
function. If we do this, we can replace the third axiom by

(i) Yor(u-opt = 1av v 21,
~which, this time, provides a universal axiomatization.

Remark 8.35 The conjunction of two universal formulas is not, in general, a
universal formula. It is, nonetheless, equivalent to a universal formula. Indeed,

Yup ... Yo, Fy AVYwy . Yw, By
is equivalent to Yvy ... Yy, Ywy ... Yw,(Fi A F32)

provided that the v; (for i from 1 to n inclusive) have no free occurrences in I
and that the w; (for j from 1 to p inclusive) have no free occurrences in FJ.
Subject to renaming the bound variables, we can always guarantee that this con-
dition is satisfied. The conjunction of a finite number of universal formulas is also
equivalent to a universal formula. The same applies to the disjunction of universal
formulas:

Yvy... Vo, Fy VVYwy . Yw, By
is equivalent to Vv ... Yu,Ywy ... Yw,(F] V )

provided the condition just mentioned is also satisfied.
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Definition 8.36 A theory T is said to be preserved under substructures if, for
every model M of T and for every substructure N' of M, N is a model of T.
A closed formula F is preserved under substructures if the theory { F} is.

Here is the promised preservation theorem for universal formulas.

Theorem 8.37 Let T be a theory in a language L. The following two conditions
are equivalent: ‘

(i) There exists a universal theory W in L which is equivalent to T

(ii) The theory T is preserved under substructures.

Proof The direction (i) = (ii) was proved in Chapter 3 (Theorem 3.70). For the
converse, we resurrect an idea that was developed in Exercise 20 from Chapter 3.
Suppose that (ii) is satisfied. Set

VU = {G : G is a closed universal formula and T - G}.

It is clear that every formula in WV is a consequence of 7. So let M be a model of
. Consider the simple diagram of M:

AM) = {Hla,,a,,...,a,]: H is a quantifier-free formula
and M k: H[ala 612, Y all]}'

It suffices to show that A(M) U T has a model; for we have seen that if this is
the case, then A(M) U T has a model that is an extension of M (Lemma 8.13).
Together with hypothesis (ii), this implies that M is a model of T'.

- Suppose that A(M)UT is not consistent; then there exist quantifier-free formulas
Hilvi, vz, .., ol Holvg, va, oo, ol ooy Hplog, vz, .0, v,] and points ay,
az,...,d, in M such that

T ‘_ —'(Hl[gl’ Q_z, o ’)Qn] A Hz[g_laQZ) e agn]
NN Hplag, ay, ... a,])

and
M ': Hl[alv az’ [ ,an] A HZ[ala 512» o e e ?all] /\ tre /\ Hp[(ll, a27 veey all]'
But since the symbols a;, for 1 <i < n, do not appear in T', we have

T = YvYv .. Yo, —(Hi[vy, vz, ..o, o] A Hplug, va, .00, ]
VANEKIRIVAN HP[U], U2> sty Un]),

which proves that

YuiVup ... Y,
—(H[vy, v2, .., Ul A Hplug, vg, oo upl A A Hp[vl, V2, ey Unl)

is a formula in W. This contradicts the fact that M is a model of W,
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Let us return to the example of groups. If the language is (1, -), then it is false
that every substructure of a group is a group; for example, N is a substructure of Z
but is not a subgroup of Z. This shows that in this language, the theory of groups
is not equivalent to a universal theory. But if we add the inverse function to the
Janguage, the notion of substructure changes (a substructure has to be closed under
all the functions in the language) and a substructure of a group is now necessarily
a group (which is not surprising since we do have a universal theory in this case).

Corollary 8.38 Let F be a closed formula in a language L. Then the following
nwo conditions are equivalent:

(i) There exists a closed universal formula G of L which is equivalent to F.

(ii) The formula F is preserved under substructures.

Proof The direction (i) = (ii) is part of the preceding theorem. So assume (ii).
The preceding theorem also tells us that there is a universal theory W equivalent
to F. By the compactness theorem, there exists a finite subset Wo of W which is
equivalent to F; F is therefore equivalent to the conjunction of the formulas in Wy
which, in turn, is equivalent to a universal formula by Remark 8.35. B

There are dual versions of these theorems. A closed formula F (or a theory T')
is preserved under extensions if, for every model M of F (of T') and for every
extension N of M, N is a model of F (of T). Also, a prenex formula in which the
universal quantifier does not occur is called an existential formula; an existential
theory is a theory that consists only of existential formulas. We note that a formula
is equivalent to an existential formula if and only if its negation is equivalent to a
‘universal formula; also, a formula is preserved under extensions if and only if its
negation is preserved under substructures. From all this, we obtain the following
preservation theorem for existential formulas.

Theorem 8.39 A closed formula is preserved under extensions if and only if it is
equivalent to an existential formula.

The previous theorem also extends to existential theories.

Theorem 8.40 A theory T is preserved under extensions if and only if it is
equivalent to an existential theory.

Proof If T is equivalent to an existential theory, it is clear that any extension of
amodel of T is also a model of T'.

Conversely, suppose that T is preserved under extensions. If F is a closed
formula, let

U(F) = {G : G isuniversal and - F = G}.

Using the method of diagrams, as above, we see that any model of U (F) can
be embedded in a model of F. Consequently, if ' € T, then U(—F)YUT is
contradictory: to see this, observe that if M were amodel of U(F)UT, M would
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embed in some model M’ of —F which would also be a model of T since T, is
preserved under extensions. Now, by compactness, there exists Gr € U(—F) suph
that T UG f is contradictory; in other words, T = =G p.SetT' = {(—Gp : F € T}).
Clearly, T’ is equivalent to an existential theory and is a consequence of T'. Since
b —=Gp = Fistrueforevery F € T, T’ is equivalent to T'. &

8.5.2 Preservation by unions of chains

We now proceed to something more complicated.

Definition 8.41 An V3 formula is a prenex formula of the form
YuiVua .. Vo dupp3opgs .o 300G,

where G is a formula without quantifiers. An Y3 theory is a theory consisting of
V3 formulas.

So an V3 formula begins with a certain number (possibly zero) of universal
quantifiers followed by a certain number of existential quantifiers followed, finally,
by a quantifier-free formula. Universal and existential formulas are special cases
of V4 formulas.

Note that the conjunction or disjunction of a finite number of V3 formulas is
equivalent to an V3 formula (this is easy to prove, as before, simply by renaming
the bound variables).

Definition 8.42 A theory T is preserved under unions of chains if every union
of a chain of models of T is again a model of T. A closed formula F is preserved
under unions of chains if the theory {F} is. ’

To paraphrase, T is preserved under unions of chains if and only if the following
condition is satisfied:

If (1, <) is a totally ordered set, if (M; : i € I) is a family of models of 7', and
foralli and jinI,ifi < j, then M; € M, then | J;.; M, is amodel of T'.

Theorem 8.43 A theory is preserved under unions of chains if and only if if is
equivalent to an Y3 theory.

Proof We will first prove that a closed V3 formula is preserved under unions
of chains. This will clearly imply that a closed formula which is equivalent to a
closed V3 formula, as well as a theory which is equivalent to an V3 theory, are also
preserved under unions of chains.

So consider the formula

F =YuiVuy .. Y, 3vup13vpq2 .. Fupyp Hlvy, va, o0 Ungp],

where H is a quantifier-free formula. Let (/, <) be a totally ordered set and let
(M; i € I) be a chain of models of F. Set M = | J;.; M;. To show that M
is a model of F', we will consider arbitrary elements ay, a, ..., a, of M and will
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show that-
ME Jugp1dogygn . —:—]L’11+pH[ala az, ..., 0p, U1, V2, ..., U;1+p]~

Since the family (M; : i € I) is totally ordered by inclusion, there exists an
index i € I such that all the ay, for k from 1 to n inclusive, are contained in M;.
Because M; is a model of F, there exist points a,+1, Gn42, - - . » Apyp 0 M such
that M; F Hlai, aa, ..., antpl. Since H is quantifier-free and M is an extension
of M;, it follows that M F Hlay, a, ..., anqpl. Thus, M F F.

For the converse, we will prove that a theory T which is preserved under unions
of chains is equivalent to an V3 theory. Set

¥ = {G: Gisaclosed Vd formula and T F G}.
It is clear that every formula of W is a consequence of 7'; we will now prove that
the converse is also true. We will need a definition and two lemmas.

Definition 8.44 Suppose that M and N are two L-structures and that M € N.
We say that M is a 1-elementary substructure of N' (and write M <y N) if for
every universal formula Flvy, v, ..., vy] of L and for all elements ay, az, .. ., an
of M,

ifME Flay,ag,...,a,), then NE Flaj,a,...,an)

It is easy to see that if M is a 1-elementary substructure of A, then for every
universal or existential formula F[vy, vy, ..., v,] of L and for all a1, ay, ..., a,
of M,

ME Flay,an,...,a,] ifandonlyif N E Flay, az,...,a).

This is what justifies the expression ‘1-elementary’ (elementary for formulas which
have only a single block of the same quantifier).

Lemma 8.45 Assume that M <1 N. Then there exists M’ such that M < M’
and N € M’

Proof We use the method of diagrams. Consider the following theories in Ly
(the simple diagram of N and the complete diagram of M):

AWN) ={Hl[a,,ay,...,a,]: Hisaformula of L without quantifiers,
ai,ay, ..., a, are points of N and N = Hlay, az, ..., ayl}

and

D(M) ={Fla,,ay,...,a,]): Fisaformulaof [,
ai, az, ..., ay are points of M and M & Flay, az, ..., a,l}.
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We are going to prove that A(N) U D(M) is a consistent theory; we will then
be finished since, thanks to Lemma 8.13, we will have a (simple) extension of N
that is a model of D(M), i.e. an elementary extension of M.,

The set A(N) is closed under conjunction. If we suppose that A(N) U D (M)
is not consistent, then, invoking the compactness theorem, we obtain a formula
of A(W) of the form Hla, a0 38,8501 8p1gs- - sQ;n-l—p], where H is
quantifier-free, aj, ap, ..., a, are points of M and @41, ay2, . . . , Gn1p are points
of N — M such that

DM)bE—Hla, a5, -8y, Qpi1s 5 Lyl
Since the a;, for i from n + 1 to n + p inclusive, do not occur in D(M), we have
D(M) EYviYuy .. . Yv,—Hla,ay,...,a,,v1, 02, ..., Vp]
and hence
MEYu Yy .. . Yv,—Hlay,a, ..., a,, V1,02, ..., Vpl.

But this formula is clearly not satisfied in A/, which satisfies |

Hlay,ay, ..., 4y, Guyt, Gui2, . o Gugpl,
so this contradicts the fact that M < N. 2]

Lemma 8.46 Let N be a model of V. Then there exists a 1-elementary extension
of N that is a model of T.

Proof Consider the theory

A(N) = {Hla,,a,,...,a,]: H isaconjunction of universal formulas of L,

ay,a,...,a, are points of N and NV F Hlay, az, ..., anl}.

We will begin by showing that Aj(N) U T is a consistent theory. If it is not,
then there exists a formula H(ay,a,,...,a,] of A1 (N) (which is closed under
conjunction) such that

T ‘_ _IH[QI) Q_z, [ >_(£n]7
and since the a;, for i from 1 to n inclusive, do not appear in 7',
T Yo Yuy ... Yu,—H[v, v, ..., vyl

Since H is equivalent to a universal formula, =H[vy, vy, ..., v,] is equivalent to
an existential formula; so YuiVuv, ...Yv,—H[vy, va, ..., v,] is equivalent to an
V3 formula which belongs to W, according to the definition of this latter set. This
contradicts the fact that AV is a model of W,

Thus we can find a model M of A1(N)UT which we may assume, again thanks
to Lemma 8.13, is an extension of V. The fact that it is a model of Aj (V) shows
immediately that A <1 M. |
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We are now in a position to prove that every model of W is amodel of T'. Starting
_with a model Mo of ¥, we use Lemma 8.46 to obtain a model M of T such
that Mg <1 M. Then use Lemma 8.45 to obtain an elementary extension M
of Mo (which is therefore a model of W) and which is also an extension of M.
Alternately invoking the two lemmas, we construct a chain (Mg : k € N) of
[-structures such that, for all k, Moy is a model of W, Moy is a model of 7',
Mok <1 Moy and Mag < Maga. A
Set M = Upeny M. Note that M is also equal to both | J,ny Mok and
Ukeny M2k+1. Because T is preserved by unions of chains, M is a model of T'.
According to Tarski’s unions of chains theorem (Theorem 8.21), since the chain
(Mo : k € N) is elementary, M is an elementary extension of My, thus Mp is
also amodel of T'. 2

Remark 8.47 In the preceding argument, we only used the fact that T was
preserved by unions of chains that are indexed by the integers. In other words,
we have also proved that

if, for every increasing chain (M, : n € N) of models of T, | ey Mn

is amodel of T, then T is equivalent to an V3 theory.

As examples of V3 theories (that are therefore preserved under unions of chains),
we have the theory of groups, of fields, and of dense orderings without endpoints.

By contrast, the theory of dense orderings with a first and last element is not
preserved under unions of chains. Here is an axiomatization of that theory:

(1) Yvo(—vo < vo);

(i1) YvoVvi((vo < vy & =1 < vp) V vg =2 v1);

(iii) YvoVuiVua((vg < v1 Avp < v2) = Vg < 12);

(iv) —VuvgIdvy vg < vy;

(v) —VYugdvy vy < vg;

(vi) YugVuidua(ug < v = (Vg < v2 A vg < v1)).
For every positive integer i, let M; be the interval of reals [—i , +i]; each M; is
clearly a model of the theory above, but the union of the M, is the whole of R
which does not have a first or a last element. This shows that it is impossible to find
an V3 axiomatization for the notion of a dense ordering with first and last element.

Using an argument by compactness which is analogous to the one given for
Corollary 8.38, we obtain the next theorem.

Theorem 8.48 A closed formula is preserved under unions of chains if and only

if it is equivalent to a closed Y3 formula.

8.5.3 Preservation by reduced products

At this point, we will take a new leap forward and deal with preservation under
reduced products.
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Definition 8.49 An elementary Horn formula is a formula of the form
HivHyV---Vv H,

in which at most one of the H; (for i from I to n inclusive) is an atomic formula,
while the others are negations of atomic formulas.

A Horn formula is one that can be obtained from elementary Horn formulas
using conjunction together with the universal and existential quantifiers.

Elementary Horn formulas are clauses (see Definition 4.65). Therefore, up to
logical equivalence, an elementary Horn formula has one of the following two
forms:

o (FiANFy A+ AFy,_|) = F, where, for k from 1 to » inclusive, the Fy are
atomic formulas; this is the case in which there is in fact one atomic formula
among the Hy in the definition;

e H,V HpV ...V H, where, for k from 1 to n inclusive, the Hy are negations of
atomic formulas. These could also be written in the previous form if we accept
the formula that is always false as an atomic formula.

By definition, the conjunction of a finite number of Horn formulas is a Horn
formula. So it is easy to see that a Horn formula is equivalent to a formula of
the form

Q1010202 ... QU (GL AGa A - AGy),

where each Q;, for i from 1 to n inclusive, represents either the quantifier V or the
quantifier 3 and where the G;, for j from 1 to n inclusive, are elementary Horn
formulas.

Example 8.50 The theory of groups and that of rings can be axiomatized with
Horn formulas. By contrast, we will see (Exercise 14) that it is impossible to
axiomatize the theory of fields by Horn formulas. It is the axiom

Yui3up(—vp > 0= vy vy = 1)

that is not equivalent to a Horn formula.

Definition 8.51 A closed formula F in alanguage L is preserved under reduced
products iffor every set 1, for every filter F on I, and for every family (M; i € I)
of L-structures, if {i € I : M; E F} € F, then

HM;/T-!:F.

iel

Proposition 8.52 Horn formulas are preserved under reduced prodicts.
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Proof The proposition is a consequence of the following property:

for any Horn formula Glvy, vy, ..., vy] of L, for any

family (M; : i € I) of L-structures, for any filter F on [

and for all @y, az, ..., a, in [[;c; Mi,

if{i eI: M; FGlal,al,...,dll} € F,

then [{;.; M; /F & Glai, az, ..., an). (*)

(Here, we are reusing the notations from Section 8.4: if a € Hi <1 Mi, then alis
the ith coordinate of a and 4 is the equivalence class of a with respect to ~.)
We will prove (*) by induction on the number of steps required to obtain

Glvi, v, ..., vy] starting from elementary Horn formulas.
e Case in which G[vy, v, ..., v,] is an elementary Horn formula. We can then
rewrite G[vy, v2, ..., Uy] in the form
Hl['U], V2,00, vn] \4 HQ[UI, V2,00, Un] VeV Hk[vl, U2y eens vll]a

where Hj is either an atomic formula or a formula that is always false and
where, for j from 2 to k inclusive, H; = —J;, where J; is an atomic formula.
For each j from 1 to k inclusive, set

X;j={iel: Mk Hjal,d, ... a1

>R
and let Y; be the complement of X; in /. By hypothesis,
) Xj={iel: M;FGlal,a,....a,]) € F.

7N
I<j<k

We distinguish two possibilities.
(a) First possibility: for some integer j with 2 < j < k, Y; does not belong to
JF.This means that {i € I : M; E J;[a}, a;, ..., a,]} ¢ F. By definition of

N
the reduced product and because J; is atomic, this implies that

HMf/f# Jilay, a, ..., a),
iel
hence that
ﬂjm/thwh@“w@J
iel
(b) In the opposite case, ngjgk Y; € F.But

[ LJXJ”[IW n}gxh

I<j=k 2=j<k
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and this implies that X; = {i € I : M; F Hy[a}, d}, ..., a,)} € F; in this
case, Hj is an atomic formula (otherwise, the empty set would belong to F)
and, according to the definition of reduced product,

HM,-/fr: Hilay, a, ..., ),

iel

SO

HM,-/be[al,az,...,an].

iel
e Case in which G = G| A G,. This presents no problem. If
iel M;F G[ai,aé,...,afl]} e F,
then

{iEI:M,'t:Gl[ai,ai,...,ai]}eF and
1» %2 n
iel: MiEGd,a,... al}eF,

and, by the induction hypothesis,

HMZ-/?# Gilai, @, ..., d,) and

iel

ﬂMi/fh Galar, @, .. ., s

iel
SO
HMI/‘F l: G][C_ll,(—l2, L) &)l] N GZ[dla aZ,.' oy Eln]-
iel
e Case in which G = JvgGq[vo, v1, ..., v,). If the set

X={iel: MEGld,d,.. al

belongs to F, we can define an element ag € [ [;; M; in the following way: if
i € X, a;is apoint in M; such that
M E Gl[af),a’i, cadl

n

if i ¢ X, we can choose a6 to be any element of M;. We then observe that

iel: M EGia)ad,.. . al=X,

TR
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and, by the induction hypothesis,

I—[/\Ai/F._F Gilao, @, ..., dn)

iel

and hence that

ﬂM,—/th[&l,...,an].

iel
e Case in which G = YugG1lvg, v1, V2, ..., vy]. Our hypothesis is that
X=1{iel: M;EYuGilvo,a,...,al}eF;

let ag € Hie[ M;; we wish to show that [[;; M,-/.’F = Gilag, a1, ..., ay).
Now, foralli € X, M; E Gl[aé, ai, s a,’;]; hence the set

(iel: M;FGld,d,... dl}

n

includes' X and therefore belongs to F. By the induction hypothesis, this
implies that

HMi/thl[ao,al,...,an]. 2
iel

The converse of this proposition is true: every formula that is preserved by
reduced products is equivalent to a Horn formula. But the proof of this requires

techniques that we have not included in this brief introduction and we will not give
it here. We will be satisfied to consider universal Horn formulas.

‘ Proposition 8.53 Let F be a closed formula. The following three conditions are
equivalent:

(1) F is equivalent to a universal Horn formula.

(il) F is preserved under reduced products and substructures.
(iti) F is preserved under finite products and substructures.
Proof The implication (i) = (ii) follows from Proposition 8.52 and Corollary
8.38. The implication (ii) = (iii) is obvious. Let us deal with the implication

(iii) = (i). Because F is preserved under substructures, it is equivalent to a
universal formula,

G - VU}VUZ .. .VU”H[Ul, V2, .., vn].

We may assume, in addition, that H is written in conjunctive normal form (see
Chapter 3, Section 3.4), in other words,

H][Ul, V2, ...y UII] A HZ[UI’ V2, 0vsy Un] ANERIVAN Hk[Ul, U2y ooy Ul’l])
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where, for i from 1 to k inclusive, H; is a disjunction of atomic formulas and nega-
tions of atomic formulas. Because universal quantifiers commute with conjunction,
the formula G is equivalent to the following set of formulas:

(YviVvy ... Yo, Hi[vi, v2, ..., vp] 0 1 <0< k)

We will now replace each of the formulas YuVv, ... Vv, Hi[v1, v2, ..., vp] by a
Horn formula thanks to the following lemma:

Lemma 8.54 Let T be a theory and let K be a closed formula of the form
Y Vuy.. Yo (A1 VALV --- VA, V=B VaBy V.. V=B,

where, for 1 <i <uandforl < j <t, A; and B; are atomic formulas. Assume
that T U {K} is preserved under finite products. Then there is a universal Horn
formula J such that

THK & J.
Proof For every s from 1 to u inclusive, consider the formula
Ky =YuiVuy ... You(As VBV =By V.-V =B,

This is clearly a universal Horn formula. It is just as clear that K; = K. We will
prove that there exists an integer s between 1 and u such that

T+-K = K.

For an argument by contradiction, assume the contrary; so for I < s < u,
we obtain a structure M, which is a model of T, of K and of —Kj;. So there
exist points af, a3, ..., a,, in My such that M F —Aslaj, a3, ..., ay) and M F
Bjlay,a;,...,qy]for1 < j <t

Then consider the product M = [],.;., Mi and, in this product, the points
a=(@,:1<s=<u)yforl < k <n. B§ definition of the product, we have

ME —Ailay, az,...,a,] forl <gs <u
and
ME Bjlay,a2,...,ay] forl<j<t.

We conclude from this that X is not satisfiable in M; but this contradicts the
fact that T U {K'} is preserved under finite products. [ |

Returning now to the proof of the proposition, we apply this lemma to the formula
K =VYuiVuy ... Yu, Hi{vi, v2, ..., v,] and the theory

T = {VuiVuy... Yo, Hi[v,v2, ..., 0] 12 <i <k}
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We obtain a universal Horn formula J; with the property that G is equivalent
.. .to the set

{(J1}U Vo Yuy .. . Yo, Hi[vy, v, ..., 0] 12 <0 < k).

We repeat this process and replace YviYvy . .. Vo, Ha[vy, va, .. ., Uy by an equiv-
alent universal Horn formula, and so on, until we obtain a set of universal Horn
formula, which, in turn, is equivalent to a single universal Horn formula. |

8.6 Rg-categorical theories
8.6.1 The omitting types theorem

Recall that a theory is Rg-categorical if it has a denumerable model and all of its
denumerable models are isomorphic. The denumerable models of such a theory
have a certain number of very nice properties which we will now display. Through-
out this section, T will denote a complete theory in a denumerable language L and
the word ‘model’ will always mean ‘model of 7. We begin by introducing the
notions of type and of isolated type which are essential in this area.

Definition 8.55 (1) Let n be an integer. An n-type is a set p of formulas of L that
is closed under conjunction and is such that any free variables in a formula of p
must be among vg, v, . .., Uy—1. We will use the word type when we do not need
to specify the integer n.

(2) Let p be an n-type, let M be amodel and let ap, ay, . . ., ay—1 be points of M.
We say that the sequence (ag,ay, ..., ay—1) realizes p if for every formula
Flvg, v1, ..., Un—1] Of p, we have

ME Flag, ay, ..., ap-1].

(3) We say that a model M realizes an n-type p (or that p is realized in M) if
there exists a sequence from M that realizes p. In the opposite case, we say that
M omits p.

(4) Let a = (ag, ay, ..., ay—1) be a sequence of points of M. The type of a
in M, denoted by t(a/M), is the n-type

{F[UO, Ul, ve ey vn—l] : M 'Z F[ao’ als ey an—l]}'

(5) Let p be an n-type and let Glvp, v1, ..., Un—1] be a formula. We say that
Glvg, v1, ..., Uy-1] isolates p if

T - 3ve3vy ... 3v,—1Glvg, V1, - .., Un—1]
and, for every formula Flvg, vi, ..., V1] Of P,
T |_ VUOVUI M 'VUII—I(G[UO: Ul, veey Un»—l] :§ F[U()a vl, ML UN——I])"

We say that p is isolated if there exists a formula that isolates it.
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Before approaching the key theorem (the omitting types theorem), we will need
a few lemmas and remarks. :

Lemma 8.56 If p is an n-type, the following three conditions are equivalent:

(i) there exists a denumerable model that realizes p;
(ii) there exists a model that realizes p;

(iii) for every formula Flvo, vi, ..., V1]l of p,.
T b Jug3vy ... 3vu—1 Flvo, v1, ..., Un—1].

Proof It is obvious that condition (i) implies condition (ii). To prove that (ii)
implies (iii), suppose that M is a model of T, that (ap, a1, . . . , an—1) 1s a sequence
of points of M that realizes p and that Flvg, v, ..., Uy—1] belongs to p; then

M ': F[a()’ al’ L :all-—-l]
and hence
ME 31)031)1 e 31),1_1F[v0, Viy ooy Un—l]-

Since T is a complete theory, any other model of T is elementarily equivalent
to M; consequently,

T + JupIvy ... Jvy—1 Flvg, vi, ..., Un—1].

Finally, suppose that (iii) is satisfied. Letus add constantsymbols cg, ¢1, ..., Cn—1
to the language L and consider the following theory T

T' =T U(F[co,Cls.-sCnet]l: Flvg, v1,..., va-1]1 € p}.

This theory is consistent; otherwise, by the compactness theorem, there exists a
finite subset pg of p such that

T U{F[co, ¢ty .--»Cn—-11: Flvg, v1,...,vn—1] € po}

is inconsistent. Let G[vg, v1, . .., vn—1] denote the conjunction of the formulas
of po. The formula G[vo, vy, ..., Uy—1] belongs to p because p is closed under
conjunction; so we have

T ‘— _.'G[COa Cly .oy Cn——l]~
Since the symbols cg, ¢, . . ., ¢n—1 do not appear in T, it follows, as usual, that
T + —3vgIvy ... Fvy—1Glvg, V1, ..., Un—1],

which contradicts (iii).
By the Lowenheim-Skolem theorem, we can find a denumerable model M’
of T'. If, for i from O to n — 1 inclusive, we let a; denote the point in this model
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that interprets the symbol ¢;, and if we let M denote the reduct of M’ to the original
* language L, then the sequence (ag, ai, . .., a,—1) realizes the type pin M. H

Definition 8.57 A type that satisfies the conditions of Lemma 8.56 is called a
consistent type.

The next two remarks are evident.

Remark 8.58 If M’ < M and if the sequence (ap, ai, ..., a,—1) realizes the
type p in M’, then this same sequence realizes the type p in M.

Remark 8.59 If the models M and M’ are isomorphic and if p is realized in one
of the models, then it is realized in the other one.

L.emma 8.60 Let M be a model and let p be a consistent type. Then there exists
an elementary extension M of M in which p is realized.

Proof We know there exists a model M’ in which p is realized. Because M
and M’ are elementarily equivalent, there exists an elementary extension M of
M and an elementary embedding from M’ into M (Theorem 8.22), and hence
an elementary substructure M, of M that is isomorphic to M’. The two previous
remarks show that p is realized in M. B

Remark 8.61 An isolated type is realized in every model of T" (and is therefore
a consistent type).

To see this, suppose that p is an isolated n-type and let G[vp, vy, ..., v,—1] be
a formula that isolates it. If M is a model of T, there exist points ag, ay, ..., ay—]
in M such that

M i: G[aOa al)"'3an-‘]‘

It is then clear that the sequence (ag, ay, ..., a,—1) realizes p.
The omitting types theorem is a converse of Remark 8.61.

Theorem 8.62 Let p be an n-type that is not isolated. Then there exists a
denumerable model of T that omits p.

Proof will construct a model of 7' using Henkin’s method which we employed
in Chapter 4 to prove the compléteness theorem. To produce a model that omits p,
we must play our cards right.

Let C = {¢; : [ € w} be an infinite set of new constant symbols that we adjoin to
L to produce L'. We will construct a theory T” in L’ that has the following prop-
erties:

() TCT
(2) T'is complete in L,

(3) T’ admits Henkin witnesses, i.e. if F[vg] is a formula of L', then there exists
an integer I such that the formula Jug F[vg] = F|c;] belongs to T':
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(4) if (do, dy, ...,dn—1) is a sequence of length n of elements of C, then there
exists a formula Flvg, v1, ..., Up—1] € p such that ‘

_IF[d()’ dl: LR | dll—l] € T/'

The reader is advised to review the proofs of Propositions A and B from
Section 4.2 of Chapter 4. Conditions (1), (2), and (3) above appeared there also;
using them, we prove the following:

e The binary relation R on C defined for all i and j in » by
R(ci,cj) if and only if T k¢ ~cj

is an equivalence relation. If d € C, d will denote the equivalence class of d
modulo R.

o If M denotes the set of equivalence classes for this relation, we can define an
L'-structure M’ whose base set is M and is such that

for every integer n, for all symbols do, di, ..., dp—1 of C,
and for every :formula If[vo, V1, ..., Un_1]of L',
M' E Fldy, d1,...,dy—1,]ifand only if F[do,d1,...,dp-1] € 7. (%)

We then use condition (4) to show that M, the reduct of M’ to L, omits the
type p; to do this, let (a0, a1, ..., an,—1) be a sequence of points of M and, for
all i from O to n — 1 inclusive, let d; be a point of C whose equivalence class
is a;. From (4), we know that there exists a formula Flvg, vi,...,Un~1] € P
such that —F[do, d, ...,dn—1] € T'; we can then deduce from (x) that M E
—Flag, aj, . .., an—1). In other words, no sequence from M realizes p.

A brief digression: for the reader who is not keen to dive back into the proof of
the completeness theorem, the argument above (for constructing from 7" a model
that omits p) can be replaced by the following argument. T’ is a consistent theory,
so it has a model M'; if we let N denote the set of interpretations in M’ of the
symbols in C, then we can see, using condition (3) together with the test from .
the Tarski—Vaught theorem (Theorem 8.7) and its accompanying remark, that N
is the base set of an elementary substructure N of M’; the reduct of N to the
language L is therefore a model of T' and we can verify, using condition (4), that
it omits p.

Tt remains to construct 7. To do this, we will need
e an enumeration (K; : i € N) of all the closed formulas of L
e an enumeration (G;[vo] : i € N) of all formulas of L' with one free variable;
e an enumeration (y; : i € N) of all sequences from C of length n.

By induction on the integer k, we will define a sequence of theories (Tj : k € N)
which will, among others, satisfy the following properties:

e forall k € N, T} is the union of T and a finite set of closed formulas of L';
e forall k € N, Ty is a consistent theory;
e forkandminN,ifk <m,then Ty C T),.
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The theory T’ will be the union of the theories Tj for k € N; we can already see
* (by compactness) that the result will be a consistent theory that includes 7.

The induction begins with Ty = T.

Let k be an integer greater than or equal to 0 and assume that 7}, has already
been defined for all m < k. The definition of T} splits into three cases depending
on whether k is congruent to 0, to 1, or to 2 modulo 3.

o Case in which k = 3i for some integer i. If T U {K;} is a consistent theory,
then set Trry = T U {K;}; if not, then since Tj is consistent by the induc-
tion hypothesis, the reason is that Ty U {—K;} is consistent, so we set Ty4+1 =
T U {—K;}.

e Case in which k = 3i + 1 for some integer i. We choose an integer j such
that ¢; does not occur in T or in G; (this is possible since Ty is the
union of T, in which no constants from C occur, and a finite number of
formulas). Set

Tie+1 = T U {FvoGilvo] = Gilcjl}

The theory Tj.1 is consistent by Lemma 4.26.

So far, we have merely copied the proof of the completeness theorem, while
leaving some freedom for a third stage of the construction. We are already
assured that the theory T’ will be complete and will admit Henkin witnesses.

e Case in which k = 3i + 2 for some integer i. Suppose that do, dy, ..., dn—1
are the symbols from C such that y; = (do, d1, ..., dp—1). We know from the
induction hypothesis that there exists a closed formula H of L’ such that Tk is
equivalent to 7 U {H}. Also, H can be wriiten in the form

H = D[dy, di,...,dy-1,€0,€1, .., em—1],
where D[vg, U1, V2, ..., Un—1, Un, Unit1s - - - » Untm—1] is a formula of L and

where, for i and j satisfying0 <i <n—1land0 < j <m-—1,¢; € C and
di # ej. Set

Elvo, ..., va—1]
= vy Ayt .- Vpgm—1 D[Vo, -+ o5 Un—1, Uy ooy Ungm—1].
The formula Jvg3vy ... Jv,—1 Elvg, v1, ..., Un—1]is a consequence of T'. Since

this is a closed formula and T is complete, we have
T F JugIvy ... v, Elvo, v1, ..., Up—1].

Because p is not an isolated type, it contains a formula Flvg, vy, ..., Up—1]
such that '

U {—'(VUOVUI v ~VU71—1(E[UOa vla L] Un—l] :> F[U()a Ul, et Ull—l]))}
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is consistent. This amounts to saying that

TU{Tup...3v,—1(@vy ... w1 Do, ..o, Un—1, Uy - Vndm—1]

A—Flug, ..., vp-1])}
is consistent or, equivalently, that the theory

T U {3vodvy ... dvgqm—1

(D[U()’ vy vll“l’ vlh vy Uﬂ+l?l—1] A _‘F[UO, ey vn—l])}

is consistent. Because the constants from C do not appear in this theory, it easily
follows that

T U {D[d03 dls s dll—l» eOa ela L ] em—l] A _1F[d0’ dl’ RS} dn—l]}
is a consistent theory. So it suffices to set

Tir1 =T U{=Fldo,d1,...,dn1]}. B

Remark 8.63 The preceding proof can be modified to obtain the following
stronger result: let {p; : j € N} be a denumerable set of non-isolated types
(to be precise, suppose that p; is an nj-type); then there exists a denumerable
model of T' that omits all the types p; for j € N.

To achieve this, we simply have to do more at stages of the form 3i + 2 in the
preceding proof. Enumerate the set of pairs (y, j), where y is a finite sequence
from C, j is an integer, and the length of y is equal to n;. Using the same strategy
of sabotage as above (which allowed us to prevent the sequence y; from realizing
the type p by requiring this sequence to satisfy the negation of some formula in p),
we ensure at stage 3i + 2 that if (y, j) is the ith element in the enumeration, then
y does not realize p;.

8.6.2 Rj-categorical structures

Corollary 8.64 Suppose that T is an Rg-categorical theory; then every consistent
type is isolated.

Proof Suppose there exists a consistent type p that is not isolated. According to
Definition 8.57, there exists a denumerable model that realizes p. Theorem 8.62,
for its part, guarantees the existence of a denumerable model that omits p. These
two models cannot be isomorphic (Remark 8.59) so T is not Rg-categorical. - &

Definition 8.65 An n-type p is complete if, first, it is consistent and, second, if
for every formula Flvg, vi, ..., vp—1] of L,

either Flvg, v1,...,vp—11 € p or —~Fluvg, v1, ..., v—1] € p.

The set of complete n-types will be denoted by S,,.
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We note that if p and g are two complete n-types and if p C q,thenp = q; for
~if Flvo, vt ..., vn—1] ¢ p, then =F[vg, v1, ..., vy—1] € p, 50
ﬁF[UOyvly‘“avn—l‘]Eq

and, since ¢ is consistent, Flvg, v1, ..., Us—1] ¢ ¢.

For example, if a is a sequence of length n from a model M, then ¢(a/M)isa -

complete type. Conversely, if p is a complete n-type, then there exists a model M,
which we may assume is denumerable, and a sequence a from M that realizes p
and it is easy to see that t (a/ M) =

Remark 8.66 Ifaformula Flvg, vy, ..., v,—1] isolates a complete n-type p, then
it must belong to p. To see this, note that because

T+ Juo3vy ... dvy—1 Flvg, v1, ..., Un—1],
it is false that
T = YuVvp ... Yuu—1(F[vo, v1, ..., V=11 = —=F[vo, v1, ..., Un—11);

thus = F [vo; V1, ..., Uy—1] does not belong to p. Then, since p is a complete type,
Flvo, v1, ..., vy—1] does belong to p.

Corollary 8.67 Suppose that T is an Ro-categorical theory; then, for every
integer n, the set S, is finite.

Proof If p is a complete n-type, it is isolated (Corollary 8.64) so we may
choose a formula Fp[vg, vi, ..., vy—1] that isolates it. We have just observed that
Fplvg, vy, o, Upe 1] belongs to p.
If p and g are distinct complete n-types, then —F, € g; for if not, we obtaln
a contradiction as follows. Because g is complete, we would have F, € ¢q. If
Flvg, v1, ..., v,—1] € p, then by the choice of F,

=Flvo, vy, ..., Un—1] A Fplvo, v1, ..., Up—1]

is not consistent, hence —F[vg, v1,...,Un—1] ¢ g. Because g is complete, it
follows that F[vg, vi, ..., Un—1] € ¢. So we have proved that p C g; but we have
already remarked that th1s implies p = gq.

We continue the proof, arguing again by contradiction; assume that, for some
integer n, S, is infinite. Add to the language a set {¢; : 0 < i < n — 1} of new,
pairwise distinct constant symbols and consider the theory

T'=TU {(=Fplco,c1,...,cna1] 1 p € Sp}.

This theory is consistent. To prove this, it is sufficient, by the compactness theorem,
to show that for every finite subset X of S,, the theory

Tx =T U{=Fplco,c1,...,cn-1]: p € X}
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is consistent. Choose a complete - type g that does not belong to X (this is possible
because X is finite and S, is infinite), a model M, and a sequence of pomts
(ao, at, . . ., an—1) of M such that 7((ao, ay, . . -, An— /M) = q. We saw above
that, forall p € X, —F, € q; hence

M t: —‘Fp[a(), ALy ooy an—l]-

So to obtain a model of T, it suffices to interpret ¢; by a; for i between 0 and
n — 1 inclusive.

Consequently, there exists a model M of T’ containing points bg, b1, .. ., by—1
such that, for all p € Sy, M E =Fylbo, b1, ..., bp—1]. Thus, '
t((bo, by, . .., by—1)/ M) cannot belong to S,,, this is a contradiction. | |

We will prove a converse to Corollary 8.64.

Theorem 8.68 Suppose that, for every n, every complete n-type is isolated; then
T is Rp-categorical.

Proof The proof of the theorem is preceded by two lemmas.

Lemma 8.69 Suppose that, for every n, every complete n-type is isolated. Let M
and N be two models of T and let

(ag, ai, ..., an—1) and (bo, b1, .., bn-1)
be two sequences from M and N, respectively, that satisfy
t((ag, ai, - . » an—1)/M) = £((bo, b1, .. ba—)/N).
Then for every a € M, there exists b € N such that
t((ag, ai, - .-, an—1, @)/ M) = t((bo, b1, ..., bu-1, b)/N).
Proof Set p = 1((ag, a1, ..., an-1)/M) and g = t((ao, a1, .. ., dn-1, a)/M).

Let Fi[vo, v1, ..., Un—1] and Fafvo, v1, ..., Un—-1, v,,] be formulas that isolate p |

and g, respectively. We then see that
v, Falvo, Uiy -+, Un—1,Un]l E P
and, since ¢ ((bo, b1, .., by—1)/N) = p,
| N E Fua Falbo, b1, - baet, .

So let b be a point of N such that N' F Fylbo, b1, ..., by—1,b]; then
t((bo, b1y .- b1, D)IN) = q. =

Lemma 8.70 Suppose that, for every n, every complete n-type is isolated. Let M
and N be two denumerable models of T and let

(aoyal’--"an—l) and (b()’bl, “wbllj—l)



Rg-CATEGORICAL THEORIES 225

be two sequences from M and N, respectively, that satisfy
t((ag, ay, ..., an—1)/ M) =1t((bo, by, ..., bn_1)/N).

Then there exists an isomorphism f from M onto N such that, for all i from I to
n — 1 inclusive, f(a;) = b;.

Proof We will construct f using the back-and-forth technique that we used in

Example 8.19. Let (¢; : i € N) be an enumeration of M and let (d; : i € N) be an
enumeration of N. The mapping f is already defined on the set {ag, a1, ..., an—1}.
We will extend it by defining, with an induction on k, a point a,4, and a point
bn+k in such a way that, for every integer k,

t((a0, a1, - -+ » npr) /M) = t((bo, b, . . ., busi) IN). (*)

To define ap4x and b, assuming that the points ¢; and b; fori < n+k
have already been defined in such a way that (x) holds, we will distinguish two
cases: :

o If k is even, say k = 2i, then set a,4; = c;; by the induction hypothesis,
we have

t((aO» al, . all’*‘khl)/M) = Z‘((bO: bl! te bll+k“1)/N)s

and Lemma 8.69 allows us to find a point b, such that

l'((aOa ag, ..., aII'H()/M) = t((bO’ bl’ crt b’1+k)/N)‘

o Ifkisodd, say k = 2i + 1, then set b,y = d; and use this same lemma to find

a point a, 4+ such that

t((ao, ai, . .., anx) /M) = t((bo, b1, - - -, bn+k)/_N)-

Observe that for all integers m and p, a,, = ap if and only if by, = bp; to see
this, note for example thatif p > m,

am =ap ifandonlyif v, ~=v, €t((ao,a1,..., ap)/ M)
if and only if v, =~ v, € t((bo, b1, ..., bp)/N)
ifandonly if b, = bp.

So we can define a bijection f from {a,, : m € N} onto {b,, : m € N} by setting
f(an) = by, for every m € N. But the choice of a, for even k guarantees
that {a,, : m € N} = M and the choice of b,;r for odd k guarantees that
{b,, : m € N} = N; thus f is a bijection from M onto N.

The fact that this bijection is an isomorphism from M onto A is a consequence
of the fact that, for every formula F{vg, v, ..., Um—1], the following conditions
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are equivalent:

(1) ME Flag, a, ..., am-11;

(2) F[”Oa 'Ul, LR Um—l] € t((aO, al» ] am—l)/M);

(3) Flvg, vi, ..., vm_1] € t((bo, b1, ..., by-1)/N);

(4) Nt:F[bO,b],...,bm_I]. -
The proof of the theorem can now be completed. Suppose that M and N are

two denumerable models of 7. The complete type realized in M by the empty

sequence is the theory of M and it is equal to the complete type realized in A by

the empty sequence [because, since T is complete, we have Th(M) = Th(NM)].
So Lemma 8.70 can be applied to conclude that M and AV are isomorphic. @

There is another interesting consequence of Lemma 8.70 in case the models M
and AV are equal. We obtain:

Proposition 8.71 Let M be a denumerable model of an Ro-categorical theory
and suppose that (ag, ai, ..., an—1) and (bo, b1, ..., by—1) are two sequences
from M such that t((ag, ai, -..,an—1)/M) = t((bo, b1, ..., bp_1)/M). Then
there exists an automorphism | of M such that, for all i between 0 and n — 1
inclusive, f(a;) = b;.

Let n be aninteger. It is possible to define, on the set of formulas of L whose only

free variables are among vg, V1, . . ., Uy, a relation = that is obviously an equiva-
lence relation: for all formulas Flvg, vi, ..., va—1]and Glvg, v1, ..., Up—1],

: F[UO, Ul; ceey Un—l] = G[U()» Ul, MR ] vll—l]
if and only if

T I_ VUOVUI . 'VUII—I(F[UO’ U15 MR UIZ—I] <:\’> G[UO, Ul: L] Un—l])-

In other words, F[vg, vi,..., Un-1] = Glvg, vy, ..., vy—1} if and only if, for -
every model M of T and for every sequence (ag, ai, ..., ay—1) from M,

ME Flap,ay, ...,an—1]1 & Glao, ay, ..., a,-1].

The set of equivalence classes for this relation is denoted by Lind, (the
Lindenbaum algebra); it is, of course, a Boolean algebra.
If F = Flvg, vy, ..., Vy—1] is a formula of L, let

Su(F)={peS,: F € p}.
1t is clear, first of all, that if two formulas
Flvo,vi,...,vu—1] and Glvg, vy, ..., Uy—1]

are equivalent modulo =, then'S,,(F ) = S5,(G). Conversely, if I and G are
not equivalent modulo =, then there exists a model M of T and a sequence
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(ag, ai, . .., an—1) of points of M that satisfies one of the formulas, F for example,
_and not the other. Then #((ag, ai, ..., ay_1)/M) is in S,(F) but not in S,,(G);
as a consequence, there cannot be more elements in Lind, than there are subsets
of Sy; thus, if S, is finite, so is Lind,,.
The next theorem summarizes and completes the results which we have obtained
conterning Rp-categorical theories. '

Theorem 8.72 The five properties which follow are equivalent.
(i) T is Ro-categorical;
(ii) for every integer n, every consistent n-type is isolated;
(iil) for every integer n, every complete n-type is isolated;
(iv) for every integer n, the set Sy is finite;

(v) for every integer n, the set Lind,, is finite.

Proof The implication (i) = (ii) is Corollary 8.64; (ii) = (iii) is obvious;
(iii) = (i) is Theorem 8.68. In addition, (i) = (iv) is Corollary 8.67 and we have
just proved the implication (iv) => (v). So to finish the proof, we will show that
=(iil) = —(v). N

By hypothesis, therefore, there exists an integer n and a complete n-type p that
is not isolated. By induction on k, we construct a sequence (Fr[vo, vy, ..., Up—1]:
k € N) of formulas belonging to p in such a way that for all k,

T = YugVvr ... Yoy (Fra1lvo, vi, ..., v_1] = Filvo, v1,..., Us—1])
and

T+ =VuoVuy ... Vuu—1(Felvo, v1, -« oy Uy—1] = Frg1lvo, vi, ..o Un—11).

We start with an arbitrary formula Fo[vg, vy, ..., Un—1] of p. Assume that
Fi[vg, vi,...,vp—1] has already been defined. Because p is not isolated, we
know there exists a formula G[vg, vy, ..., vy—1] € p such that

T+ =VugVv; ... Yuu_1(Felvo, v1, ..., Va1l = Glvo, v1, ..., Ua—1D).

Set Fiq1lvo, v1, ..., vp—1] = Frlvo, v1, ..., va—11 A Glvo, v1, ..o, Un—1].
1t is then clear that the formulas Fy[vg, vi, ..., v,—1] are pairwise inequivalent
modulo =, | |

A structure will be called Rg-categorical if its complete theory is Rg-categorical.
Let M be a denumerable structure thatis Rg-categorical. Consider, for every integer
n, the following binary relation R, on M": for all sequences (ag, ay, ..., dn—1)
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and (bg, by, ..., b,,_1) from M,

Rn((aO, al’ ey all—l), (bO? bl, teey b}l—l))
if and only if

there exists an automorphism f of M such that,
for all i from 0 to n — 1 inclusive, f(a;) = b;.

It is easy to see that this relation is an equivalence relation. We should note that
the set of automorphisms of M is a subgroup of the group of permutations of. M
and that the equivalence classes modulo R,, are none other than the orbits under
the action of this group on M”".

We have seen (Proposition 8.71) that if two sequences of the same length from
M realize the same complete type, then they are equivalent modulo R,,. It follows
from Theorem 8.72 that if M is Rg-categorical, then the relations R, each have
only finitely many equivalence classes.

The converse is also true; this allows us to give a purely algebraic characterization
(with no reference to the notion of formula) of Rg-categorical structures.

Theorem 8.73  Let M be a denumerable structure. Then the following conditions
are equivalent:

(1) M is Ro-categorical;

(i) for every integer n, the relation R, defined above has only a finite number of
equivalence classes.

Proof Assume that for every integer n, the relation R, has only a finite number-
of equivalence classes. We need to prove that T = Th(M) is Ry-categorical.

Let n be fixed. If two sequences (ag, ay, ..., a,—1) and (bg, by, .. ., by_1) are
equivalent modulo R,, they realize the same complete type. So there are only a
finite number of complete n-types realized in M. Let {p1, pa, ..., Dk} be the set
of these complete n-types; we will prove that this set is equal to S, (7). Suppose
the contrary and let ¢ € S,(T) be different from all the p;. Then g contains

a formula F[ug, vi, ..., v,—1] such that, for all i, =F[vg, vy, ..., Un—1] € pi.
We do have Jvp3v; ... Jv,—1 Flvg, v1, ..., vy—1] € T, so there must exist points
ap, at, ..., ay—1 suchthat M F Flag, ay, ..., a,—1]; butthisis not possible since,
for some i with 1 < i < k, the sequence (ag, ai, ..., a, 1) must realize one of
the types p;.

This shows that for every integer n, S,(T) is finite; so T is Ro-categorical by
Theorem 8.72. | |
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EXERCISES FOR CHAPTER 8

1. Consider the first-order language L that has two unary predicate symbols E and

P and one binary predicate symbol A. Let T be the theory of L consisting of
the following formulas:

Hp .
H:
Hz:
H3:
Hy .

Hs

YugéEvy & —Pug)

YugVvi (Avgu; = (Evg A Puvy))

YuiYua ((Pu; A Py AVYup(Avguy & Avgrr)) = vy 2~ v2)
Fvg(Pvg A Yv1—Av)vp)

Yui(Pv; = v (Puy AVug(Evg = (Avgur & —Avgv2))))

YoV dus((Pug A Pug) = Yug(Avgus & (Auguy V Avgrp)))

and, for every integer n > 1, the formula

(a) Let X be a non-empty set and g (X) be the set of subsets of X, which we

F, ='Vv1Vv2...Vv,l(< /\ Ev,->

1<i<n

= 3w1Vwo(Awow1 & ( \/ wp = Ui)))-

1<i<n

assume to be disjoint from X. We define an L-structure M as follows:

the base setis My = X U p(X);
the interpretation of E is X;

the interpretation of P is o (X);
the interpretation of A is the set

/iz{(x,y)eM%:xeX, y € @(X)and x € y}.

Show that M is a model of T'.

(b) Does T have a denumerable model?

(c) For which integers n, does 7" have a model whose base set has cardinality n?
(d) Show that T is equivalent to {Ho, Hy, Ha, H3, H4, Hs, F1}.
(e) Show that T is not Ro-categorical.

2. This is a follow-up to Exercise 15 from Chapter 3.
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(a) Let M = (M, d, §) be an arbitrary model of 7. Define a binary relation ~
on M by ~ .

a~ b ifandonlyif there exist integers m, n, p, and g
such that ™ (8" (a)) = dP (87 (b)).

Show that & is an equivalence relation on M. An equivalence class under
~ will be called a grill. Show that every grill is stable for d and for g. Show
that every grill, together with the restrictions of the mappings dand g g, isa
substructure of M that is a model of T.

(b) Let L’ be the language obtained by adding two new constant symbols A
and p to L. For every four-tuple (m, n, p, q) of natural numbers, let G54
denote the following closed formula of L':

—d"g") >~ dPgp.

Using this family of formulas, prove the existence of a non-standard model
of T (i.e. amodel of T that is not isomorphic to the standard model).

(c) Let A be a non-empty set. Construct a model of 7" whose set of grills is
equipotent with A.

(d) Show that two models of T whose sets of grills are equipotent are
isomorphic.

(e) Show that T is not Rg-categorical. Consider a set X of L-structures that has
the following properties:

e the elements of X are denumerable models of T';
o if M e X, N e X, and M # N, then M and NV are not isomorphic;
e every denumerable model of T is isomorphic to one of the elements of X.

What is the cardinality of X'?

() Let « be an uncountable cardinal. Show that T is «-categorical.

3. Let (G, -, e) be a group. With this group, we associate a first-order language Lg
that has a unary function symbol f, for every elementa € G. Let T denote the
following theory of Lg: »

{Yvg fevo = vo}
U {Yuo fo fpvo = fapvo i@ € Gand B € G)
U {Yug— fovo =~ vp : @ € G and o # e}.

(a) Show that for every term ¢ of Lg, there exists an element o € G and a
symbol x for a variable such that

T Vxt o fax.
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(b) After observing that any atomic formula of Lg can involve at most two
variables, show that, for every atomic formula F = F{vg, v{] of Lg, one
of the following three possibilities holds:

e T FYyVu I
e T F YyyVu—F;
e there exists an element ¢ € G such that T F YugVu (F & vy = fyvy).

(c¢) Let G be the L-structure whose base setis G and in which, forevery « € G,

the symbol f, is interpreted by the map 8 +— « - 8 from G into G (i.e. left
multiplication by «). Show that G is a model of T,

(d) Let M = (M, (¢pq)aei) be a model of T and let a be an element of M.
Consider the set

O(a) = {x € M . there exists @ € G such that x = ¢ (a)}.

Show that O (a) is a substructure of M that is isomorphic to G.

Show that Xy = {O(a) : a € M} is a partition of M.

Show that if M and N are two models of T and if X and Xy are
equipotent, then M and A are isomorphic.

(e) Show thatif G is infinite, then the theory T is complete.

(f) Suppose that G is finite. Does there exist an infinite cardinal A such that T
is A-categorical? Is the theory T' complete?

. Consider the language L that consists of a single binary relation symbol R. Let
Lo denote the language obtained by adding denumerably many new constant
symbols cg, ¢1, ..., Cn, ... to L.

For each integer n, let L,, denote the language L U {co, 1, ..., Cn}.

Given an L-structure M and an integer n, let M,, denote the reduct of M
to the language L.

Consider the theory in the language L expressing that the interpretation of R
is an equivalence relation that has infinitely many equivalence classes, each of
which is infinite.

(a) Write down axioms for the theory 7" and give an example of a model of T'.
(b) Show that T is not equivalent to any finite theory in L.

(c) For which infinite cardinals A is the theory T A-categorical? Find two
models M and My of T such that there is no elementary embedding
from M into M, or from M, into M.

(d) Is the theory T complete?
(e) Let T} be the folllowing theory in the language Loo:

Ty =T U{—Rcpcy :n €N, m € Nand n # m}.

Give an example of a model of T..
Show that T4 is not equivalent to any finite theory in the language L.
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(f) For which infinite cardinals A is the theory Ty A-categorical?

(g) Let M) and Mj be two denumerable models of 7'y. Show that for every
integer 7, the reducts of M and of M3 to the language L, which we will
denote by M [ L, and M, | L,, are isomorphic. Conclude from this that
Ty is a complete theory in L.

. Consider a denumerable first-order language L and let F; denote the formulas

of L that have at most one free variable.

Given a formula F[x] € F and an L-structure M = (M, ...), the value of

F in M, denoted by Val(F, M), is the subset of M defined by the formula F,

in other words, the set '

Val(F, M) ={a e M : MFE Flal}.

For any infinite cardinal A, a A-structure is an infinite L-structure M with
the property that, for every formula F € Fi, the value of F in M is either a
finite set or a set of cardinality A.

A model of a formula or of a theory that is a A-structure will be called a
A-model.

(a) Show thatif A is an infinite cardinal, then every A-structure has cardinality A.
(b) Show that every structure of cardinality R is an Ro-structure.

(c) Let T be a theory in L and let F[x] be a formula in F7. Suppose that for
every integer n, T has a model in which the value of the formula F is a set
that contains at least n elements.

Show that for every infinite cardinal A, T' has at least one model in which
the value of F is a set whose cardinality is equal to A.
(Hint: Add to the language a set of constant symbols of cardmahty AL

(d) Let T be a theory in L that has at least one infinite model. Prove that for
every infinite cardinal A, 7" has at least one A-model.
(Hint: Choose an infinite model Mg of 7' and, with each formula G € F;
whose value in My is an infinite set, associate a set C of constant symbols
of cardinality A.)

(e) Let S be a consistent theory in L that only has infinite models. Assume that
for some infinite cardinal A, all A-models of T are isomorphic. Show that §
is complete.

. Consider the languages L1 = {f} and Ly = {f, P}, where f is a unary func-
tion symbol and P is a unary relation symbol. Let T; denote the following
theory in L:

(VaVy(fx =~ fy = x = y)}U{Vx3Iy fy =~ x}
U{Vx—f"x ~x:n e N

[The term f"x is defined as usual: f9% = x and, for all n € N, frly =

F(ftx).]
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Let T denote the following theory in Ly:
Ty U{3xPx, 3x—Px, Vx(Px <& Pfx)}.

(a) Show that T is a complete theory in L.
(b) Show that T, is not categorical in any infinite cardinal.

(c) Use the results from the preceding exercise to show that 73 is a complete
theory in L,.

. (a) Let Lg be the language consisting of the single binary predicate R. Let Tp be
the theory expressing that the interpretation of R is a total ordering, together
with the following two additional formulas:

Yvi3va(Rvyvy A =y 22 v A Vus((Ruivs A =v1v3) = Ruau3));
Yvi3va(Ruavy A o1 2 vg A ((Rusvg A —op 2 v3) = Ruswg)).

Show that we can find two models Mg and M of Ty such that Mg is a
substructure of M1, but is not an elementary substructure.

(b) Show that Ty is not equivalent to an V3 theory in Ly.

. Let L be a denumerable language and let T be a consistent theory in L that only
has infinite models.

T is called model-complete if and only if for all models M and N of T, if
N is an extension of M, then it is an elementary extension.

A model M of T is called a prime model of T if and only if every model of

T is isomorphic to a (simple) extension of M.

(a) Show that a model-complete theory that has a prime model is complete.

(b) Show that the following four conditions are equivalent:
(1) T is model-complete;
(2) for every model M of T, every formula of D(M) is a consequence of
A(M) U T (for the notations, see Section 8.2 of Chapter 8);
(3) for every denumerable model M of T, every formula of D(M) is a
consequence of A(M)UT;
(4) for all denumerable models M and M’ of T, if M C M’, then
M < M. '
(c) Show that if T' is model-complete, 7' is equivalent to an V3 theory. Is the
converse true?

(d) Let Flvg, vy, ..., v,] be a formula of L. Consider the following property
of T and Flvg, vy, ..., vl

for all models M and M’ of T such that M C M/,
for all elements ag, ay, ..., a, of M,
if M E Flag, ay,az, ...,ay), then M’ F Flao, a1,a2,...,a,]. (%)
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Prove that (%) holds if and only if there is an existential formula
Glvo, v1, V2, ..., v,] of L such that '

T F YuoVvy ... Yuu(Flvo, v1, ..., 4] & Glvo, v1, ..., vuD).

(Hint: Adjoin constant symbols co, ¢y, ..., c, and reread the proof of
Theorem 8.37 for inspiration.)

(e) Show that T is model-complete if and only if for every universal formula
Flvp, vi, ..., vy)of L, there exists an existential formula G{vg, vy, ..., V]
of L such that

T '_ VUOVUI . 'VUII(F[UO: vla vy Un] <:> G[UO) vl, ey Un])-

9. The purpose of this exercise is to prove Lindstrom’s theorem: let T be ar V3

10.

theory in a denumerable language; if T has no finite models and is categorical
in some infinite cardinal, then T is model-complete.
We resume with the notations and results from the preceding exercise.
(a) Let A be an infinite cardinal and let F[vg, v1, ..., v,] be a formula of L.
Show that the following two conditions are equivalent:
(1) For all models M and M’ of T of cardinality A such that M C M/’

and for all elements ag, ay, . .., a, of M,if M E Flag, a1, a2, ..., a,],
then M’ & Flag, ay,ay, ...,a,]. -
(2) There is an existential formula G[vg, v, ..., v,] of L such that

T = NugVuy ... Yo (Flvg, vi, ..., unl & Glvg, vi, ..., unl).

(b) Assume that T is an V3 theory. Let F[vg, vy, ..., v,] be a universal formula
and let A be an infinite cardinal. Prove that 7" has a model M of cardinality
A which has the following property:

for every model M’ of T such that M € M/,
for all elements ag, ai, ..., a, of M,
if M E Flag, a1, a2, ...,a,], then M’ E Flag, a1, a2, ..., ay]. (¥%)

(c) Prove Lindstrom’s theorem.

(d) Assume that the langnage consists of a single unary function symbol f
and set ‘

To = {(YuoVu1 (fvg = fv; = vo =~ v} U {Vug—f"vg >~ vg : n € N},

Show that T is an V3 theory that is neither complete nor model-complete.
The language L consists of a binary predicate symbol R and a denumerably
infinite set of constant symbols {cg, 1, ..., Chy-. .}

Let A be a closed formula of L expressing that the interpretation of R is
a strict, dense, total ordering without endpoints. For every n € N, F), is the
formula Reycpy1.
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Consider the theory
{AYU{F, :neN}.

Welet A, B, and C denote the three L-structures whose base setis @, in which the
interpretation of R is the usual strict ordering, and in which the sequence of con-
stant symbols (¢,),en is interpreted, respectively, by the following sequences
of rationals: '

@ = (0p)neN, B = (Bu)neN, Y = (¥u)neN
where

,3 1 » "1
Oy = n, n — — =, Yn = —.
n-t1 = k!

(a) Show that T is complete in L.

(b) Show that every denumerable model of T is isomorphic to one of the three
structures A, B, or C.

(c) Show that the theory T is model-complete (see Exercise 8).

(d) Show that every denumerable model of 7' has an elementary extension
that is isomorphic to B and an elementary extension that ‘is isomor-
phic to C.

Let L be the first-order language consisting of a unary function symbol f and a

- binary relation symbol R. Let A denote the conjunction of the following seven -

formulas:

Yo Rugug;

YuoVvi ((Ruguy € Rujvg) = vg =2 vy);
YugVuYuy ((Rugvy A Rujvp) = Rugry); |
Yogdui (fur == vg AV (frr = vg = v = v1));
YuoVvi (Ruguy < Rfvofvy);

Vo (Rug fug A =g = fug),

YugVu1 ((—vg = v1 A Ruguy) = Rfvguy).

(a) Show that in every model of the formula A, the interpretation of the symbol
R is a total ordering of the base set of the model, with no least or greatest
element, such that every element has a successor, i.e. a strict least upper
bound.

(b) Show that Z with its usual ordering and the successor function is a
model of A.
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Let X = (B, <) be an arbitrary totally ordered set. Consider the following
L-structure My : :

e the base set of My is the set B x Z;

e the interpretation of R in My is the set

{((x,n), (y,m)) € (B x Z)2 cx <yor(x =yandn <m)};

e the interpretation of f in My is the mapping that, with (x, n) € (B x Z),
associates (x, n + 1).
Show that My is a model of A.
(c) Let M = (M, f, R) be a model of A. We wish to prove that there exists a
totally ordered set X such that M is isomorphic to M.

On the base set M of M, we define two binary relations <« and ~ as
follows: forallg and b in M,

a < b ifandonlyif foralln e N, ME Rf"ab
and

a~b ifandonlyif there existintegers n and p
such that M E f"a ~ fPb.

Show that « is irreflexive and transitive, that & is an equivalence relation,
and that

a~b ifandonlyif a <« b and b < a are both false.

Show that each equivalence class modulo ~ is a substructure of M that
is isomorphic to Z.

Show that the relation < allows us to define a total ordering on the set
M/ ~ of equivalence classes.

Show that if X = (C, <) is the ordered set obtained in this way, then M
is isomorphic to M.

(d) Show that if X and Y are two totally ordered sets, then My and My are

isomorphic if and only if X and Y are isomorphic.

Show that A only has infinite models and is not categorical in any infinite
cardinal.

(e) We wish to show that {A} is a complete theory.

(1) Show that if a and b are two points in a model M of A which satisfy
a < b, then there exists an elementary extension M; of M and a
point ¢ in M such that

a<<c and c¢ <«b.
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- (2) Show also thatif a is a pdint of M, then there exists an elementary
extension M of M and points b and ¢ of M such that

b«a and a <c.

(3)Let M and N be two models of A and let (a;,as,...,a,) and

(b1, ba, ..., by) be two finite sequences of the same length from M
and NV, respectively.
Consider the following condition

P((M’al:aZ) . -7an)a (N, bla b2, .. -’bn)) :

for every atomic formula Flvy, vy, ..., vy] of L,
ME Flay,ay,...,ay] ifandonly if N'E Flby, by, ..., by].

Show that this condition is equivalent to

for all integers i and j suchthat 1 < i, j < nandforall k € N,
MEa; ~ ffa; ifandonlyif N Eb; >~ ffb;, and
. ME Raja; ifand only if N E Rb;b;.
(4) Assume that the condition

P((M,Cll,az,'",all)v(j\/s bl:bza '-',bll))

is satisfied.
Show that if ¢ is an element of M, then

e if ¢ &~ g; for some index i between 1 and n inclusive, then there
exists a point d € N such that

P((Maalaa27 . -,aih C)’ (Na bla b2, . "7bn’d’));

e if not, there exists an elementary extension A" of A and a point d

of N’ such that P((M, ay,aa, ..., a,,¢), N, by, by, ..., by, d)).

(5) Use induction on the height of the formula Glvy, vy, ..., v,] to prove
the following assertion:

If M and NV are two models of A and if (ay, ap, ..., a,) and

(b1, by, ..., by) are two sequences from M and N, respectively,
then P((M, ay, ay, ..., a,), N, by, ba, ..., by)) implies

ME Glay,ap,...,a,) ifandonlyif N E G[by, by, ..., b,

(6) Conclude from this that {A} is a complete theory.

12. Let L be the language consisting of a single binary predicate symbol < and let
T be the theory of dense linear orderings with no first or last element. Show that
for every formula Fluvy, U1, V2, ..., Uy], there exists a quantifier-free formula
Hlvg, vi, va, ..., v,] such that

T = NuoVoy ... Vo (Flvo, v1, v2, ..., va] & Hlvo, v1, 02, ..., val).
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13.

14.

1s.

16.

Let L be a language. A class C of L-structures is closed under ultraproducts if
for every set I, for every ultrafilter {{ on I, and for every sequence M; i el
of structures from C, [ [;o; M /U belongs to C.

Let T be a theory in L. Show that the class of L-structures that are not models
of T is closed under ultraproducts if and only if 7 is finitely axiomatizable.

Let K be a field (the language is {0, 1, 4+, x}). Let I be a set and let F be a
filter on 1.

(a) Show that K! /F is aring and that it is a field if and only if 7 is an ultrafilter
on . ‘

(b) Let J be the subset of K’ defined by
J=(ki:ieek :{iel:k=0}eF}
Show that 7 is an ideal in the ring K! and that the quotient ring KT is
equal to K7 /F.
The language is that of ordered sets: L = {<}.

(a) Let « be an infinite ordinal. Show that there exists an ordered set that is
elementarily equivalent to {«, <) but is not a well-ordering.

(b) Show that there exists a denumerable ordinal « such that
{a, <) < Ry, =),

(%1 denotes the least uncountable ordinal.)

(c) Show that there exist two distinct denumerable ordinals o and 8 such that

(o, <} < (B, =).
Consider the uncountable language L that contains:
e for every integer n a constant symbol n;
e for every subset A of N, a unary predicate symbol A;

e for every mapping f from N into N, a unary function symbol f.
Let AV be the L-structure whose base set is N and in which each symbol X of
L is interpreted by X. Let T be the theory of V.

(a) Show that every model of T is isomorphic to an elementary extension of NV.

(b) Let M be a proper elementary extension of N and let a be a point of M
that does not belong to N. Show that the set

Fa={ACN: MEF Aa)

is a non-trivial ultrafilter on N.

(¢) Leta beabijection from N? onto N. For every positive real number r, choose
two sequences of natural numbers (p,(n) : n € N) and (g,(n) : n € N)
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- such that the sequence (p,(n)/q,(n) : n € N) converges to the limit r.
Define the mapping f, from N into N? by setting

fr(n) = a(pr(n), gr(n))

foralln e N,
Show that if 7 and s are distinct positive reals, then the set

{neN: fr(n) = fs(n)}
is finite,

(d) Show that every model of T that is not isomorphic to N must have cardi-
nality greater than or equal to 2%,
Show that T" is Ry-categorical.

(e) Let L' be the language obtained by adding a new unary predicate symbol X
to L and let 77 be the theory T U {Xn : n € N}. Show that 7" has no finite
model, is Rp-categorical, and is not complete.




Solutions

Solutions to the exercises for Chapter S

1. Since the set of primitive recursive subsets of N is closed under finite unions,
it is sufficient to show that singleton subsets are primitive recursive. Note that
the characteristic function of {r} is equal to

Ax.((x + D=n) ((n + 1)—x).
2. If we set g(n) = an(f(n), f(n + 1)), we have

g(0) = (1, 1),
g(n+ 1) = aa(B2(g(n)), B2(g(m)) + B3 (g(n)));

this shows that g is primitive recursive; and so is f which is equal to ,321 og.

3. (a) f a(o) = a(c’) = n, then o and ¢’ have the same length p = ﬂzl (n) and
are therefore equal since o, (0) = ap (¢ = ﬂ% (n). The image of « is the
set {x : ,B% (x) % 0} which is primitive recursive.

(b) Itis easy to verify that
o (x1, %2) < (x1 + %2 + 1),

and, by induction on p, that

0y (X1, Xpr oo Xp) < (X1 Xg 4 xp + D

So it suffices to take g(x) = (x + n%.

(c) Let us first show that the function ¥ = Apx.¢(p, p, x) is primitive recur-
sive. When we refer to the definition of the functions :31'] (in Proposition
5.4), we see that ¢ can be defined by recursion:

Y (0, x) =0,

v, x)=ux; .
Y(p+1,x) = B2 (p, x)).
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Next, the function ¢ itself is definable by recursion:

¢(0,1,x) =0;
¢(1,i,x) =x ifi =1 and O otherwise ;
p(p+1,1,x)=0 ifi=0orifi >p+1;
d(p+1,i,x)=¢(p,i,x) if0<i < p;
p(p+1,i,x)= 521(¢(P,i,x)) if p>0 and i = p;
d(p+1,i,x)=v(p+1,x) ifp>0andi=p+1.
(d) The fact that the function y is injective is easily proved using the theorem

that the decomposition of a number into prime factors is unique. The image
of y is the set

{x : for all p less than x and for all g less than p,
if p and ¢ are prime and if p divides x, then ¢ divides x};

this set is defined from primitive recursive sets using bounded quantifica-
tions and Boolean operations; it is therefore primitive recursive.

(e) Leto be afinite sequence and suppose that (o) = x; we may then calculate
the length of o which is equal to p = /321 (x) and we see that

i=p—1
, 1,041,
y@)= [] =@?@Hot
i=0
SO we may set
i=p—1 )
fx) = H 7 ()PP itLo+
i=0

where p = ;321 (x) [and f(x) = 1 incase /321 (x) =0].

For the function %, we begin by doing the same thing: it is easy to define
two primitive recursive functions p(x) and 8 (i, x) which behave as follows:
if o = (x1,x2,...,xp) is a finite sequence and y (o) = x, then p(x) is
equal to the length p of x and, for all i from 1 to p inclusive, x; = 0(i, x).
We may then use the function g described in part (b) and define 4 by

h(x) =y <g(x)  (B3(y) = p(x) and,
for all ifrom 1 to p inclusive, 8(i, x) = ¢ (p(x), i, ﬂ%(y))).

4. The number e is the sum of the series

R A
LT TR AR i AL
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Sete, =1+ % + % + -+ nl, = o, /n!, where o, is an integer. A simple
calculation shows that ‘
1 1

—— <y < ——,

(n+ 1! " nen!
and we may then observe thate-n!—a, lies strictly between 1/(n + 1) and 1/n;
thus if n > 2, then o, is the integer part of e - n!. If p is an arbitrary integer,
we have

Pl 1
- =i > .
n! (n+ 1!

1
le~n!~p|>n—+—I and !e

Now let p/q be any positive rational. It can be written in the form p’/g!;
therefore

-2 o
e——|>

gl (@+D
Fix n and set ¢ = 10" + 1. We are going to prove that the nth digit in the
decimal expansion of e, is equal to the nth digit in the decimal expansion of e:
let B be the integer part of 10" - ¢,. It is clear that B < 10" - e, so it suffices to
show that 10" - e is less than 8 + 1.
If we assume the contrary, we obtain, from the inequality (), that
B+1 {
e —

T

(%)

but we have already seen that

0 1 1
<e—e; < —— < —;
T Tgq! g
this contradicts the definition of 8.
It is now easy to see that the function o = An.c, is primitive recursive and
that the function which sends » into the nth digit in the decimal expansion of
o (10" + 1)/(10" + 1)! is also. This concludes the exercise.

5. (a) Letus get rid of the case where ag is zero [there is then at least one integer
root; this remark should be repeated for part (b)]. In all other cases, it is
clear that some root of P = ag +a1 X +- - - + a, X? must be negative and,
if it is an integer, it must divide ag. Assume, for example, that p is even (the
other case is treated the same way); we then see that P has a root in 7Z if
and only if there exists y € N less than or equal to ag such that

ao+ay* + - +apy’ =ary+azyt + o+ a1y’

The set E is therefore defined by applying a bounded quantification to a
primitive recursive set.
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(b) We may again assume that ag is not zero and, arguing by induction on p,
that a,, is also different from zero. Suppose that y = —r/s is a root of P,
where r and s belong to N, s is non-zero, and r and s are relatively prime. It
is then easy to see that » must divide ap and that s must divide a,. Assuming,
once again, that p is even, we see that P has a root in Q if and only if there
exists an integer r less than or equal to ap and an integer s less than or equal
to a, such that

ags? + aysP T 4o apr?

=a1sP r +assP 3+ + ap._lsrp_l.

(c) We begin by constructing two primitive recursive functions 6;(x, y) and
62 (x, y) such that, if x codes the sequence (ap, ai, . .., ap) [in other words,
ifQ(ao, a1, ..., ap) = x], then -

61(x,y) =) 8Qi,x)-»¥, and

2i<x
br(x,y) = ) 8Qi+1,x) Y
2i+1<x

(see Definition 5.5 for the definition of §).
These functions are primitive recursive. We may then use the same argument
as in part (a):

x € F if and only if
there exists y < §(0, x) such that 6;(x, y) = 0,(x, y).

6. The formula F has a model of cardinality » if and only if it has a model M
whose base setis A, = {0, 1, ..., n —1}. This model will then be characterized
by the interpretation R C A2 of the binary predicate. We code the model by the
pair (n, u(R)), where u(R) is the integer defined by

wR) =[] mleal, ).

(i,j)eR

It is easy to see that u(R) is bounded by a primitive recursive function of n
[z (n, n)!, for example]. Without too much difficulty, we also see that the set
of codes of finite L-structures,

M = {(n, u) : there exists R C Af; such that u = u(R)},
is primitive recursive. We will show that the set

U(F) = {(n,u(R)) : R S A% and (A, R) is a model of F}
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is primitive recursive. It will follow that n € Sp(F) if and only if there exists
an integer u less than «p (n, n)! such that (n, u) € U(F) and, hence, that Sp(F)
is primitive recursive. ’

The formula F is equivalent to a formula of the form

Q102...0pBlvi,v2...,vpl,

where p is an integer, where for i between 1 and n inclusive Q; represents either

the quantifier Jv; or the quantifier Vv;, and where B[vy, v2..., vp]is aformula
without quantifiers. ,

We begin by showing that if C[vy, v2,...,vp] is a formula of L without
quantifiers and whose free variables are among v1, vy, ..., vp, then the set

X(C) - {(n’ M(R), al, a23 v ey ap): (An’ R) ‘: C[ala a27 rey ap]}

is primitive recursive. To do this by induction on the complexity of C is straight-
forward. If C is atomic, i.e. of the form Rv;v; where i and j are integers between
1 and p inclusive, then

(nyu,ay,ay,...,ap) € X(C)
if and only if

(n,u)e M anday,ay,...,apareall between O and n — 1

and 7 (aa(a;, aj)) divides u.
Then, we note that

X(C1AC) = X(C) NX(Cy),
X(Crv Q) = X(C) UX(Cy),

and that (n, u, a1, az, ..., ap) € X(—C) if andonly if (n,u) € M, ar, a, ..
ap are all between O and n — 1, and (n, u, ay, a2, ..., ap) ¢ X(C). ‘

As a consequence, X (B) is primitive recursive. Now, the set U (F') can be
defined by

° %

(n,q) € U(F) if and only if
T1T2 L Tp((n’ q,xl,x2, o s ,xp) € X(B))!

where, for all { from 1 to p inclusive, T; is equal to Ix; < n — 1if Q; is the
quantifier Jv; and T; is equal to Vx; < n — 1 if Q; is the quantifier Vv;. This
shows that U (F) is primitive recursive.

. This exercise is left to the reader.

. The machine can have as many bands as one wishes; it is only the first that mat-
ters, so we will neglect the others. The machine has three states: e, ej, and e .
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Here is its table;

M ey, d) = (ep, d, +1); M (e, |) = (e1, b, +1);
M(ey, ) = (ep, b, +1); M(ey, b) = (e1, b, 0);
M(eg, b) = (e, b,0).

9. (a) Let M be a machine with n bands that computes f; we will simulate the
computation performed by M using a machine N that has three bands in
the following way; the computation will, in reality, take place on the third
band. Cells numbered 1, n + 1, 2n + 1, etc. of this band will play the role of
the first band of M; cells numbered 2, n + 2, 2n 4 2, etc. will play the role
of the second band of M; and so on. Machine A/ must begin by copying
the contents of the first band of M onto the third band using only one out
of every n cells; it must then simulate the computation of M. After that,
it must recopy the contents of cells 2, n + 2, 2n + 2, etc. onto the second
band, finally, it must erase the contents of the third band. We leave it to the
reader, if desired, to specify the exact number of states required by N and
to write down its table.

(b) The set M, is finite!

(c) It suffices to add p + 1 new states fy, fi, ..., fp to the set of states of M.
The initial state of NV, pis fo; when the machineisinstate f; (0 <i < p—1),
it adds a stroke to the first band and enters state f;41; when it is in state f,,
it returns its head to the beginning of the tape and enters the initial state of
M. Thus, N, has n + p + 1 states.

(d) Suppose that the function ¥ is T-computable; then so is the function.

Ax.2(2x + 1) + 1 and we may assume that it is computable by a machine
that has three bands and » states. Then the machine ./\f,l constructed in part
(c) has 2n + 1 states and, when stated with a blank tape, will halt with
¥ (2n + 1) strokes on its second band. This contradicts the definition of X.

10. If f is recursive, then the characteristic function of its graph G is
X6 = Axy.(1=[(y=f(x)) + (f ()=,

which is obviously recursive. Conversely,

f&x)=unyx,y) €gqG,
so if G is recursive, then so is f.

11. (a) We leave it to the reader to verify that the relation < is transitive, reflexive,
and antisymmetric. If (a, b, ¢) € N and (x, v, 2) < (a, b, ¢), then all three
of x, y, and z are less than sup(a, b, ¢); this shows that the set

((x,y,2) e N’ ¢ (x,9,2) < (a,b,¢))

has at most (sup(a, b, ¢) + 1)? elements.
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Let(a, b, c) € N3, We will define, by distinguishing several cases, another
element (a’, b, ¢’) of N° and the reader should verify that itis the immédiate
successor of (a, b, ¢). Let sup(a, b, ¢) = k; '

ifk > ¢, ' thena’ =a,b =b,c' =c+1;
ifk=c,k>b+1, and k >a, thena' =a,b =b+1,c=c
ifk=c,k>b+1, and k=a, thena' =a,b/=b+1,c'=0;

ifk=c=b+1, thena' =a, b’ =b+1,c =0;
ifk=c=5b and k >a+1, thena’' =a+1,0'=0,c =¢;
fk=c=b=a+1, thena’ =a+ 1,0 =0, =0
ifk=c=b=a, thena’ =0,b' =0,c’ = ¢+ 1.

(b) The functions y;, y2, and y3 are defined simultaneously by induction as in the
double recursion which follows Definition 5.5. 1 (0) = 1,(0) = y3(0) =0
and yi(n + 1), y2(n + 1), y3(n + 1) are defined from y; (n), y2(n), y3(n)
as follows: ‘

if sup(y1(n), y2(n), y3(n)) > y3(n),
then y1(n + 1) = y1(n), yo(n + 1) = y2(n),
and y3(n + 1) = y3(n) + 1;

if sup(y1(n), v2(n), y3(n)) = y3(n),

v2(n) + 1 < sup(y1(n), va(n), y3(n)),

and y1(n) < sup(y1(n), y2(n), y3(n)),

then y1(n + 1) = yi(n), 2(n + 1) = y2(n) + 1,
and y3(n + 1) = y3(n);

if sup(y1(n), y2(n), y3(n)) = y3(n),

y2(n) + 1 < sup(y1(n), y2(n), y3(n)),

and y1(n) = sup(y1(n), y2(n), y3(n)),

then y1(n + 1) = y1(n), u(n + 1) = ya(n) + 1,
and ys(n + 1) = 0;

if sup(y1(n), v2(n), y3(n)) = y3(n) = y2(n) + 1,
then yi(n + 1) = y1(n), 2o(n + 1) = yo(n) + 1,
and ys(n + 1) = 0;

if sup(y1(n), y2(n), y3(n)) = y3(n) = ya(n)
and y;(n) + 1 < sup(y1(n), y2(n), y3(n)),
then yy(n+ 1) = yi(n)+ 1, mmr +1) =0,
and y3(n + 1) = y3(n);

if sup(yy(n), y2(n), y3(n)) = y3(n) = y2(n) = y1(n) + 1,
then yi(n + 1) = y1(n) +1and yo(n + 1) = y3(n + 1) = 0;

if sup(y1(n), y2(n), ys(n)) = y3(n) = ya(n) = y1 (n),
then y1(n+1) = ya(n + 1) = 0 and y3(n 4 1) = y3(n) + 1.
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It is clear that (0, 0, 0) is the minimum element of N3 for the rel_ation <.
Also, by comparing this with the results in part (a), we see that, for every n,

(yi(n+1), va(n+1), y3(n+1)) is the immediate successor of (y; (1), y2(n),
y3(n)) for the relation <.
For every integer n, we can see by induction on p > ( that

i(n+ p), y2(n+ p), y3(n + p)) > (vi(n), ya(n), y3(n)

and that the inequality is strict for p > 0. This establishes that, for all m
and n,

(y1(m), ya(m), y3(m)) < (y1(n), y2(n), y3(n))
if and osly if m < n,

and that if m < n, then the inequality

(y1(m), ya(m), y3(m)) < (y1(n), y2(n), y3(n))

is strict. So the map [' = An.(y1(n), y2(n), y3(n)) is injective.

Let us next deal with surjectivity. Suppose (a,b,c) € N3 and let
d = sup(a, b, ¢). We will argue by contradiction, so assume that, for all
n<(d+13 ) # (a, b, ¢). We will then prove, by induction, that, for
alln < (d+ 1)3,

()’1 (}’l), )/Z(n)’ )/3(”)) < (a> b, C)'

This is true for 0 since (y1(0), 2(0), y3(0)) = (0, 0, 0) is the minimum
element for <. Assuming it is true for n, together with our assumption

that (y; (n), y2(n), y3(n)) # (a, b, c), we may conclude that (yy(n), y2(n),
y3(n)) is strictly less than (a, b, ¢) for the ordering <; and since

S+ 1), 200+ 1), v+ 1)
is the immediate successor of (y)(n), y2(n), y3(n)), it follows that
ni(n+ 1), y2(n+ 1), y3(n+ 1)) K (g, b, 0).

So we see that the set {(x, y,2z) € N> : (x, y,2) < (a, b, ¢)} has at least
(d 4+ 1) + 1 elements; this is impossible since it contradicts the fact, from
part (a), that this set has at most (d + 1)? elements.

(c) The fact that H is a primitive recursive set is not entirely obvious: to

compute xy(n), we need to have at our disposal all the values xg(p)
for p < n [not only xg(n — 1), as in a standard induction]. The pro-
cedure to follow in this situation is explained in the solution of
Exercise 13.
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Let us turn to proving the equivalence

neH ifandonlyif y1(n) =&Gn(n), vin)).

This is proved by induction on n. For n = 0, it is true since n ¢ H but

y1(0) = 2(0) = 13(0) = 0 and &(y2(n), y3(n)) = 1. For n # 0, we must

distinguish several cases: '

e if y»(n) = 0, then the equivalence follows without any difficulty from the
definitions;

e the same holds in case y3(n) = 0;

e in the remaining case, suppose z = y1(n), y = y2(n), and x = y3(n).
Assume first that z = £(x, y) and that we wish to conclude n € H. From

_the definition of Ackerman’s function,

z=§0—-180,x—-1).

Since I' is a bijection, there exist two integers p and g such that

ri(p) =&, x - 1), v2(p) =y, and py(p)=x-—1

and

vi(q) = z, v2(@) =y, and y3(q) = vi(p).

It follows easily from the properties of Ackerman’s function that

(v1(p), 2(p), v3(P)) K (¥1(n), y2(n), y3(n)), and

(1@, (@), 13(@) K (Y1(n), y2(n), y3(n)), and

(v1(p), v2(p), v3(P)) # (y1(n), y2(n), y3(n)), and

(r1(9), 2(@), 3(@)) # (Y1 (), y2(n), y3(n)),
and thus p < n and g < n; so by the induction hypothesis, p and ¢
belong to M. The recursive definition of H then shows that n also belongs
to H.

Conversely, suppose that n € H and let us consider the integers p and g

that are involved in the recursive definition of H. We then see, by the in-

duction hypothesis, that y;(p) = &(y,x — 1) and z = &(y — 1, y1(p));
this shows that z = &(x, y).

(d) From what we have seen, (y,x,z) € G if and only if there exists
n < (sup(x,y,z) + 1)3 such that n € H and y1(n) = z, y2(n) = y
and y3(n) = x; so Ackerman’s function is recursive (see Exercise 10).

12. Let f € F) be an increasing recursive function; if f is bounded, its image is
finite, hence recursive. If not, define the function g by

glx) =uny f(y)=x;

then g is a total recursive function and x € Im(f) if and only if f(g(x)) = x.
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Now let A € N be an infinite recursive set and define the function f by
induction:

fO)=pyyeA;
fn+1) =py(eA and y> f(n).

Then f is recursive, increasing and its image is A.

13. Define the function g as follows:

g(0) = f(0);
g(n+ 1) = f(p) where p is the least integer

such that f(p) ¢ {g(0), g(1), ..., g(m)}.

It is more or less clear that g is a total injective function and that its image
is equal to the image of f. It is less obvious that it is recursive, for to compute
g(n + 1), one needs to know not only g(n), as in a classical induction, but the
values of g (i) for all i < n. So we will begin by defining the function

t=x

hx) =[] =@

=0

by the following induction, which, by contrast, is entirely orthodox:

h(0) = 7 (f(0));
hin+ 1) = h(n) - 7 (f (uy(m (f (y)) does not divide h(n)))).

The function g can then be defined by g(0) = f(0) and
g(n+ 1) = py (7w (y) divides h(n + 1) but does not divide ki (n)).

In the body of Chapter 5, we saw that there exist recursive functions whose
image is not recursive. Now we know that there exist such functions which are,
moreover, injective.

14. Let A be an infinite recursively enumerable subset of N”. We wish to show that
itincludes an infinite recursive set. By replacing A with its image under the map
o, (see Proposition 5.4),we may restrict our attention to the case where A C N.
We then know that A is the range of a primitive recursive function f € Fj.
Define the function g by

g(0) = f(0);
gn+1) = sup(g(n), f(n+1)).
g is then an increasing primitive recursive function whose range is infinite and
is included in A. According to Exercise 12, this range is recursive.

15. (a) The set B is recursively enumerable since it is the projection of a recursive
set. We claim that, for every xo € N, there exists x; € N such that x| > xq
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and x; ¢ B; to see this, it suffices to choose x; > xo such that a(x1) is the
least element of {«(y) : y > xo}. '

(b) Itis clear that A is recursively enumerable; so it suffices, by Theorem 5.38,

(c)

16. (a)

(b)

to show, under the assumptions of part (b), that the complement of A is
recursively enumerable. Since C is included in the complement of B, if
x € Cand y > x, then a(y) > a(x); thus « is strictly increasing on C,
Since C is infinite, the set {a(x) : x € C}isunbounded. Let ¢ be an integer
and let xo be an element of C such that «(xg) > ¢; then 7 is in A if and only
if there exists y < xg such that «(y) = ¢. In other words,

t ¢ A ifandonlyif there exists x € C such that
a(x) > tand, forall y < x, a(y) # ¢;

this shows that the complement of A is the projection of a recursively
enumerable set.

Let A be an infinite subset of N that is recursively enumerable but not
recursive. It is the range of a total recursive function, so, according to
Exercise 13, it is also the range of an injective recursive function that we
will call «. If we set

B = {x : there exists y > x such that «(y) < a(x)}

and set D = N — B, we see that B is recursively enumerable and that
D is infinite [see part (a)]. But D cannot include an infinite recursively
enumerable subset, otherwise A would be recursive by part (b). The con-
clusion is that every infinite recursively enumerable set has non-empty
intersection with B,

The set of bijections together with the operation of composition forms a
group, so it suffices to show that the set of recursive bijections is a subgroup.
To do this, we must show that the identity is recursive (which is obvious),
that the composition of two recursive bijections is recursive (which is also
obvious), and that the inverse of a recursive bijection is recursive; this last
fact is true because if f is a bijection, then f~! is defined by

o = py (FO) = x).

Let us recall the definition of C! € N*: @ t,x,y) € Clif and only if the
machine whose index is i, when started with x on its first band, completes
its computation at time ¢ with y strokes on its second band. We have seen
that C! is primitive recursive. If we suppose that f is primitive recursive
and that, for all x, f(x) > T (x), then

$(x) = py < ST'(e, f(x),x) (e, f(x), x,y) € CP)

is primitive recursive; this contradicts our hypotheses.



SOLUTIONS FOR CHAPTER 5 251

“The graph G of T is defined by

(x,y) € G ifandonlyif
(e, y,x) € Bland, forallz < x, (e,2,x) ¢ Bl;

this shows that it is primitive recursive.

(c) The fact that g is recursive and strictly increasing is more or less obvious,

Since g(x) > T(x) for all x, it is not primitive recursive by part (a). Its

graph G and its image [ are primitive recursive since:

e (x,y) € G if and only if there exists i < x such that (i,y —2x) € G
and, for all j < x, there exists z < y — 2x such that (j, z) € G;

s y & I if and only if there exists x < y such-that (x, ¥} € G7.

(d) We have no choice: g’(n) must be the (n + 1)st element of N — /. Since

(©)

0 clearly does not belong to I (a calculation requires at least one step), we
must set g’(0) = 0. On the other hand, for every n, the set I N{y : y < 2n}
has at most n elements; hence the set (N — I) N {y : y < 2n} has at least
n + 1 elements, which proves that g’(n) < 2n; this allows us to define g’
by recursion, setting

g+ D=puy<2n+2 (y¢Ilandy > g'®).

It is clear from its definition that the function 4 is recursive, injective, and
surjective. We also see that it cannot be primitive recursive, otherwise g
would be as well. Now we may define h~! in the following way:

2uy <x((y,x) € G))  ifxel,

i (x) = ! .
2(uwy <x(g'(y) =x))+ 1 otherwise,

which shows that 27! is primitive recursive. By contrast, we have just seen
that its inverse, A, is not primitive recursive.

17. Let us take a set B’ € N that is recursively enumerable but not recursive
[for example, the domain of the partial function kx.qﬁl (x, x)]. B’ must be the
projection of some recursive set C;

B’ = {x : there exists y € N such that (x, y) € C}.

The complement A of C is also recursive and

B=N-B ={x: forally e N, (x,y) € A}

is not recursively enumerable, otherwise B’ would be recursive (Theorem 5.38).

18. Consider the partial function g € F; defined by

g, 1) = py (@' (x, y) = ).
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It is recursive and, if ¢} is a bijection from N into N, then Af.g(x, t) is the
inverse bijection. Let i be an index for g; so we have

forall x and forall t, g(x,¢t) = ¢2(i, X,1).
Now, by applying the smn theorem, we obtain
g(x, 1) = ¢! (51, 0), ),

and we observe that s% (i, x) is an index for the inverse bijection. Thus, for «,
we may take the function )kx.sl1 (i, x), which is primitive recursive.

19. Let us define

20.

21.

fo=¢g
and, by recursion on x,

Se41(y) = h(fx (@(3)), ¥, X).

It is then clear that the partial function Axy. f; (y) is the unique partial function
that satisfies the stated conditions. It is also clear that each f, is recursive, but
it is not clear, a priori, that f itself is. To prove this, we will imitate the proof
that Ackerman’s function is recursive.

Consider the map that, with each partial function k € F, assigns k* € 75
defined by

k"0, y) = g(»);
(x +1,y) = h(k(x, a(y)), y, x).

Observe that f is the unique partial function that satisfies f* = f. Also, as
was the case for Ackerman’s function, we can find, using the smn theorem, a
primitive recursive function 8 such that if k = ¢2, then k* = q% (x)- The fixed

point theorem then tells us that there exists an integer i such that qbiz = qﬁ% (i)
so f is equal to qbiz, which is recursive.

If the function Ax.T'1(i, x) can be extended to a total recursive function %, then
A isrecursive; to decide whether n € A, we observe whether the machine whose
index is i has completed its computation after h(n) steps.

(a) To prove that a primitive recursive function is computable within a time that
is primitive recursive, it is sufficient to repeat the proof that every partial
recursive function is T-computable. If the u-scheme is not used, as is the
case when we are dealing with a primitive recursive function, we note that
the time taken by the computation can be bounded by a primitive recursive
function. '

The converse of this is precisely the remark that follows Theorem 5.29.

(b) This follows from Corollary 5.14.
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(¢) When we fix n (and A and i), the function Ax.&(n, x) is primitive recursive
and so is the function Ax.g(i, A, n, x). Conversely, suppose that f e Fjis
primitive recursive; then according to (a) and (b), there exist integers i, n,
and A such that f(x) is computed by the machine whose index is i within
a time that is bounded by sup(4, &(n, x)). In other words,

f=Ax.g(, A, n, x).

(d) Thus we see that the set of funqtions Ax.g(i,A,n, x), where [, A, and n
are integers, is equal to the set of all primitive recursive functions of one
variable. The desired function is obtained by setting

¥ (x, ) = g(B3(x), B3 (%), B3(), ).
(e) We employ a diagonal argument. The set
X={x: ¢¥&x,x)=0}

is obviously recursive. It is not primitive recursive, for if it were, there
would exist an integer y such that its characteristic function would equal
Ax.(y, x) and it would follow that

ye X ifandonlyif y ¢ X,

which is absurd.

22. (a) The same diagonal argument is applicable. If we suppose that the set of

total recursive functions of one variable is listed by the function F(x,y), .

we obtain a contradiction when we consider the function Ax.F (x, x) -+ 1.

(b) Let F(x, y) be a recursive function that enumerates the primitive recursive
functions of one variable (see Exercise 21). We define G(x, y) by

G(x,0) = F(x,0);
Glx,y+1)=sup(Gx,y)+ 1, F(x,y-+1)).

Verify that, for all x, the function G, = Ay.G(x, y) is primitive recursive
and strictly increasing and that, moreover, if Fy is strictly increasing, then
Gy = Fy. The set {G, : x € N} is therefore equal to the set of all strictly
increasing primitive recursive functions of one variable.

(c) We use the same technique. Define the function H by
H(x,0) = F(x, 0);
H(x,y+1)

_JFGy+ D HFGy+ D¢ {HGK ) 0=1 =<y},
- sup{H(x,i)+1:0<i <y} otherwise.
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(To prove that the function H is recursive and that the functions H, are all
primitive recursive, one must use the technique outlined in the solution to
Exercise 13.)

(d) We will construct a strictly increasing recursive function g whose range, B,
does not include any of the sets Ay. The set B will be recursive according
to Exercise 12; so this will answer the question. We define g by

g(0) =0
gx + 1) = B2(ut [B5(t) = F(x, B5(1)) and B5(t) > g(x)]) + L.,

The function g is clearly recursive and the fact that the range of the function
Ay.F(x, y) is infinite guarantees that g is total.

For every integer x, seta = ut [ﬂ%(t) = F(x, ,821 (t)) and ,3%(1‘) > g(x)],
b = B2(a), and ¢ = f, (a). We then have

gx+1)=b+1, b>gl) and b= F(x,c).

This shows that g is strictly increasing and that b, which belongs to the
range of the function Ay.F(x, y) (i.e. to Ay), lies strictly between g(x) and
g(x + 1) and hence does not belong to the range of g.

If the set of strictly increasing recursive functions (or the set of injective
recursive functions) were listed by some recursive F, it would be listed
by some F € F, with the property that, for any integer x, the range of
Ay.F(x, y) is infinite. But we have just constructed a strictly increasing
recursive function g (which is therefore injective) which cannot be equal to
any of the functions Ay.F(x, y).

23. (a) This follows immediately from the fact that the set of total recursive func-
tions contains the identity and is closed under composition.

(b) Suppose that B is a recursively enumerable set. It is therefore the domain
of some partial recursive function . If A is reducible to B, it is because
there exists a recursive function f such that

ifx € A, then f(x) € B,so (ho f)(x)is defined;
if x ¢ A, then f(x) ¢ B,so (ho f)(x) is not defined.

This shows that A is the domain of 4 o f, so it is recursively enumerable.

It is certainly clear that A < B if and only if N—- A < N — B. So
if we assume that B is recursive, then A and N — A are both recursively
enumerable; thus A is recursive,

(¢) We know that Y is recursively enumerable; thus, using part (b), we
see that if A < Y, then A is recursively enumerable. Conversely, sup-
pose that A is the domain of the partial recursive function whose index is e.
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Then

xeA ifandonlyif ¢!(e,x)is defined
ifandonly if «ay(e,x) €Y,

thus A is reducible to Y.

(d) First of all, it is clear that A and B are both reducible to C since x € A if
and only if 2x € C and x € Bifand only if 2x + 1 € C.
Let D € N and let f and g be two functions that satisfy

xe€A ifandonlyif f(x)e D, and
xe B ifandonlyif g(x)e D.

We must prove that C is reducible to D. It suffices to consider the function
h defined by

f(x/2) if x is even;

o = fxi
g((x — 1)/2) if x is odd.

It is then easy to see that x € C if and only if 2(x) € D.

(e) Let B € N. Let C be the set obtained by applying the construction from
part (d) to the sets B and N — B. We will prove that C is self-dual. Since B
and N — B are both reducible to C, we see that N — B and B are reducible
to N — C. It follows from the minimality property of C [proved in part (d)]
that C is reducible to N — C.

(f) () Let f be a partial recursive function that does not belong to 7 . Consider
the function O(x, y) = f(y) + ¢1(x,x) — ¢!(x, x) and, for every
integer n, set

0, = Ay.Q(n,y).

Thus 6, is the partial function whose domain is empty if n € N — X
and is equal to f otherwise. If e is an index for @, the smn theorem tells
us that sl1 (e, n) is an index for 6,,. We see that n € N — X if and only if
s 11 (e, n) € A; this shows that N— X isreducible to A and, consequently,
X is reducible to N — A.

(if) This time, choose a partial recursive function f that does belong to
7 and, once again, set 6(x, y) = f(y) + pl(x, x) — ' (x, x) and,
for every integer n, 6, = Ay.0(n, y). If ¢ is an index for 8, sl1 (e, n)
is an index for 6,. Thus n € X if and only if sll(e, n) € A, so X is
reducible to A.

(iii) We will argue by contradiction and assume that there exists a recursive
function f such that for every integer x, x € A if and only if f(x) €
N — A. The first fixed point theorem furnishes an integer »n such that
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(15 = <,i> Fs this implies that n € A if and only if f(n) € A, Wh1ch isa
contradiction.

(g) To show that Y is reducible to X, consider the partial function

¥(x, y) = ¢  (Bl(x), B3(x))

and, for every integer n, set ¥, = Ay.¥ (n, y).If n € Y, this function s total
(and constant); otherwise it is not defined. Now if e is an index for Y, then
h Le, n) is an index for ¥,. Thus, if n € Y, then P! (sl(e n), s (e n)) is
defined and s, Le, n) € X. Conversely, if n ¢ Y, then P! (s1 (e, n), sl(e n))
is not defined and s, Ye,n) ¢ X, this shows that Y < X.

24. That ¥ is a partial recursive function derives from the fact that it was defined
by cases, in a way which is sanctioned by Theorem 5.44. We also see that ~
gx)=0if ¢! (x, 0) is defined and that g(x) = 1 otherwise. In other words, g
is the characteristic function of the set

{x : ¢'(x, 0) is not defined},

which is not recursive according to Rice’s theorem; thus g is not recursive.

25. (a)

(b)

To begin with, A is the domain of the partial recursive function Ax Hlx, 0);
so A is recursively enumerable. Consider the set

= {f: f € F}, f isrecursive, and f(0) is defined};

it is clear that .4 is neither empty nor equal to the set of all partial recursive
functions of one variable; also, Rice’s theorem allows us to conclude that A
is not recursive. Since we already know that A is recursively enumerable,
it follows from Theorem 5.38 that the complement of A is not recursively
enumerable.

Consider the partial function H = Axy.sg(l + ¢! (x, 0)); it is recursive, so
it has an index a. We have

H = ¢2.

Next, consider, for each integer n, the function H, = Ay.H (n, y). The smn
theorem tells us that sl1 (a, n) is an index of H,; we can also easily see that
ifn € A, then H, is the constant function equal to 1, while if n ¢ A, then
H,, is the function whose domain is empty. Therefore,

neA ifandonlyif sl(a,n)eB.

So for o, we may take the primitive recursive function Ax.s 11 (a, x).

The fact that B is not the complement of a recursively enumerable set is a
consequence of the small lemma that follows and which will be used many
times subsequently.
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Lemma Let C CN, let f € F) be a total recursive function, and suppose

that, for every integer n,
neA ifandonlyif f(n)e C;

then N — C is not recursively enumerable.

Proof Assume the contrary and let & be a partial recursive function whose
domainis N— C. Thenn ¢ A if and only if 4 (f (r)) is defined; this implies
that N — A is recursively enumerable (it is the domain of 2 o f). But this is
false. B

Observe that if n ¢ A, then Bl(e, z,n) is not satisfied for any value of
z and that, consequently, the function Ay.F (n, y) is the constant function
equal to 1. On the other hand, if n € A, then Bl (e, z, n) is satisfied for all
values of z greater than or equal to the time required for the computation
by the machine whose index is e with initial input n on its first band. So
in this case, the domain of the function Ay.F(n, y) is finite. The function
F is clearly recursive; suppose that b is an index for F. Then, by the smn
theorem, sl1 (b, n) is an index for Ay.F (n, y). So we see that

n € A if and only if s}(e,n) e N- B;

it then follows from the preceding lemma that B is not recursively enumerable.

Set B’ = {x : ¢} = f}. To show that neither B’ nor its complement is
recursively enumerable, we will construct two primitive recursive funct1ons
y and 8, of one variable such that, for every integer n,

necA ifandonlyif y(n) € B,
neA ifandonlyif 8(n)eN-— B

Consider the functions H’ and F’ defined by

H'(x) = f(y) H(x,y),
F'(x) = f(y) Fx,y),
where H and F are the functions defined in parts (b) and (c); let ¢ and d

be indices of these functions, respectively. As above, we see that, for every
integer n, sl1 (¢, n) and s} (d, n) are indices for the functions

H =M\y.H'(n,y) and F, =Ay.F'(n,y).

Using what we know about the functions H and F, we see thatif n € A,
then H' is equal to f and F is a function whose domain is finite (and hence
different from f); on the other hand,if n ¢ A, then F, i ' is equal to f and H,
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is the function whose domain is empty. All of this proves that
n € A if and only if sll(c, n) € B/;
neA ifandonlyif s{(d,n)eN-—B.

The statement that was to be proved now follows from the lemma.

26. (a) Consider the function Anx.n. It is recursive; hence there exists an integer i
such that, for all » and x,

G2, n, x) = n;

by setting § = )m.sf(i , n), we see that the function qbé(") is surely the
constant function equal to .

(b) The third version of the fixed point theorem tells us that there exists a
primitive recursive function i (n, t) such that, for all n and ¢,
1 ol
¢h(n,t) - ¢y(n,t,h(n,t))'

Ifhi(n,t) <t,then y(n,t, h(n,t)) = 8(n);if not, then y(n,t, h(n,t)) = ¢
and we obtain what was desired.

(c) The map from A, into the set {0, 1, ..., ¢} which assigns h(n, ) to n is
injective. To see this, suppose that n and m are in A; and that n # m; then

1 1 1 1
¢h(n,t) = ¢8(n) # ¢h(m,t) = ¢8(m)'

This shows that A(n, t) # h(m,t) and that A; has no more than ¢ 4 1
elements. So we are justified in defining o

a)=pun <t+ 1@, t)>1) and p) = h(a@),1).

Then (1) > 1 and ¢p ) = Ghuin.y = -

27. (a) We will first show that (i) implies (ii). Since the function ¢! is partial
recursive, there exists an integer i such that ¢! = 1//i2; hence, for all x
and y,

Pl (x,y) =2, x, y) = ¥ (o] (i, x), y) = 0(c] (G, %), y). -

So it suffices to choose § = )kx.all (i, x).
To show that (ii) implies (i), set

llfp(iaxlaXZs ey xp) - Q(La Olp(Xl, X2y o0y xp))-

The property (enu) is easy to verify; suppose that f is a partial recursive
function of p variables. Then the function

= 2x.f(B,(0), By (), .., Bp (X))
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- 1s also partial recursive and there exists an integer i such that g = 6;, so
we see that f = 1//,.1". Let us move on to the property (smn). We know there
exists an integer e such that § = ¢>§ and, by setting o (i) = sl1 (e, i), we see
that §; = qbo’[(i). We have

w’2+,,1(i,x13x21 . “7-x)l> yl’ y2’ e ym)
=00, opam (X1, X2, o X0, Y1, Y2, ooy Ym))
1 .
— ¢ (a(l)a all+771(-xl’ x2’ crry xn, yl) yZa ey )’m))-

Now consider the partial function

. 3 1 . 1 2
Aixyxo .. xp2.@ (@), Opgm (X1, X2, 000y X, B (@), B2, -, Bi (2))).

It has an index €/, so, for all i, xy, x2, ..., x, and z,

, 1 2
wn_‘_’n (l1 'xli x2, e -xn, ﬁnl (Z)$ ﬁnl(z)v ey ,’rr:(z))

= @' (@), A (X1, X2, -+, Xn, By (@), BE @), -, BT (2)))

= ¢" (e i, x1, %2, .1, Xn, 2)
1 .
- ¢l(sn-|-2(e,’ i, x11x27 vey xn), Z)
1 ,
= Q(ﬂ(s)l+2(e,’ L X1, X2, -+ -, xﬂ))s Z)'

When we replace z by «,, (1, y2, ..., ym) and set

. 1 .
O‘;;n (l’ xl, x2a RS ] xll) - IB(Sn-I_Z(e,s L xla x2) e ,xn))’
we obtain
wn—l_’,l(i, xl’ x2’ AR ) -xn, }’1, )’2, ey ym)

= 9(0,’1"(1., X1, X2, oo Xn)s O (Y1, Y25 o5 Ym))
= wln(o’);n(i’xly x27 c ey xn)s )’1, Y2, s ym)-
(b) The proofin Chapter 5 of the fixed point theorems uses only the enumneration
theorem and the smn theorem; here, we may use exactly the same proof.

(c) The function « has already been constructed and the function § is given
by the hypotheses. It remains only to show that we may assume they are
injective. We know how to do this for the function «; it suffices to use a
function 6 (n, x) that is strictly increasing in the first variable and is such
that, for all n and x,

1 1
¢8(n,x) = ¢y

We use the same line of argument for the function f. So we must show that
there exists a function y (n, x) such that, for all » and x,

9)/ (n,x) — Ox.
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To do this, we employ the proof given for Exercise 26 which uses only the
fixed point theorems and can therefore be applied to the family .

(d) We will use the functions § and y mentioned in part (c). We are going
to construct two sequences of functions f,, and g, for n > —1 that will
be approximations for the functions & and g1 respectively, that we are
trying to construct. More precisely, we will notice, once the construction is
completed, that, for n € N,

fa(p) =e(p) and g(p)=¢"'(p) ifp=<n,
fu(p) =gn(p) =0 ifp>n.

We will arrange things so that, in addition, for all p less than or equal
ton, ¢, =0 }n ) and 6, = q‘);“ " These functions f, and g, are defined
simultaneously by induction on n. For f_; and g_;, we set both equal to
the function that is constantly equal to 0. Let us examine the case n + 1:

o fur1(p) = fu(p) exceptif p =n + 1;

e if there exists a < n such that g, (a) = n + 1, then f,11(n + 1) = a;

e otherwise, f,+1(n + 1) is the least integer m that does not belong to the
(finite) set {1, 2,...,n} U {f,(0), fu(D),..., fu(n)} (this condition is to
be ignored if n = —1) and is such that m equals y (k, B(n + 1)) for some
element k.

The definition of g is analogous.

o 81+1(p) = gn(p) exceptif p =n + 1;

e if there exists a < n + 1 such that f,+1(a) = n + 1, then
Enki(n + 1) = a; S

e otherwise, g,41(n+ 1) is the least non-zero integer m that does not belong
tothe set {1,2,...,n+ 1} U{g,(0), g,(1), ..., gn(n)} and is such that
m equals 8(k, a(n + 1)) for some element k.

We leave it to the reader to verify that the functions Anx.f,(x) and
Anx.gn(x) are recursive, as is the function & = Ax.fy(x); the function
Ax.gx(x) is the inverse of g, which is therefore bijective and has the desired
properties. |

Solutions to the exercises for Chapter 6

1. (a) It suffices to verify axioms Ay, Ag, ... and A7; this does not present any
special difficulty. We will treat A7 for the sake of example. Let a and b
belong to M and let us show that

axSh={axb)+a. (%)

We must distinguish several cases:
(i) a and b are both in N; then (%) is obvious since M is an extension

of N,
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(ii)a € X xZ,saya = (x,n),andb € N; then Sb =b+1,a x Sb =
(x,n x (b+1)). _
Ifb =0,a x5 = (x,n) =aanda x b = 0, so we do have
(a xb)y+a=ax Sh.
Ifb#£0,axb = (x,nxb)and (axb)+a = (x, (nxb)+n) = axSh.

(iii) a € Nand b € X x Z, say b = (y,m); then Sb = (y,m + 1) and

ax8Sbh=(y,ax(@m+1)).Also,axb=(y,axm)and(axb)+a=
(y, (@ +m)+a).

(iv)a € X xZandb € X X Z, saya = (x,n) and b = (y,m); then
Sb = (yym+ 1), a x Sb = (f(x,y),n x (m + 1)); on the other
hand, a x b = (f(x,y),n x m) and (@ x b) +a = (f(x,y),
(n +m) + n).

(b) We will make use of (a) to construct a model of Py in which none of the given
formulas is true. It is sufficient to take any X that has at least two elements,
for example X = N, and to take, for f, any non-associative function, for
example f(x, y) = x + 2y. In the model M built from this data according

. to (a), we have, for example,

OLH+E,0=@1,1) and 2,00+ (1,1 =2, 1)
which shows that addition is not commutative, and

((1,1) x (2,2) x (3,3) = (5,2) x (3,3) = (11,6), and
(1,1) x ((2,2) x (3,3)) = (1, 1) x (8, 6) = (17, 6)

which shows that multiplication is not associative. For the third formula, -

we see, for example, that (1, 0) < (1, 1) [because (1, 1) + (1, 0) = (1, 1)]
and (1, 1) < (1, 0) [because (1, —1) 4+ (1, 1) = (1, 0)]. The fourth formula
is not satisfied because, for example, 0 x (1, 0) = (1, 0).

(c¢) In the models we have just constructed, addition is associative. We can use
the same idea to show that the associativity of addition does not follow from
Po. Here is a model of Py, among many others, in which addition is not
associative. The base set is NU (N x Z) (so it is an extension of N) and S,
+, and x are interpreted by

Sn,a) =(n,a+1);

(n,a) +m=m,a+m) =m+ (n,a),
n,a)+ (m,b) =m+2m,a+b) ifn+#m,
(n,a) + (n,b) = (n,a +b);

(n,a) xm= (n,am) =m x (n,a) ifm+#Q;

(n,a) x 0=0x (n,a) =0;

(n,a) x (m, b) = (2nb, ab).
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Here, once more, it is not difficult to show that the seven axioms of Py
hold but that, for example,

((1,0) +.(2,0) + (3,0) = (11, 0);
(1,0)+ (2,00 + 3,0)) = (17,0).

2. (a) Itis clear that the relation & is symmetric; it is reflexive because of axiom
Ay4. Let us prove itis transitive. If x, y, and z are elements of M and if there
exist integers n, m, p, and g such that

MEx+n>~y+m and MFy+p>~z+g,
then, because addition is associative and commutative in any model of P,

MEx+n+p=z+m+q.

(b) By hypothesis, we have integers n, m, p, and g such that
MEa+n~d+m and MFEb+p~b'1g
and, because addition is associative and commutative in any model of P,
ME@+by+n+p ~ (@ +b)+m+gq.

(c) Reflexivity is clear. Let us prove transitivity: so suppose x, y, and z are in
E and that x Ry and yRz. Thus there exist a in x, b and »’ in y, and ¢ in z
such that M E a < b A b < ¢; also, there exists n in N such that

MEbL<b +n.
It follows that
MEa<c+n,

and hence that x Rz because ¢ 4 n is also in z.
Let us now prove that R is antisymmetric: we assume there are points a
anda’ inx € E and b and b in y € E such that

MEa<b and MEV <d'.

We must show that x = y. The hypotheses translate as follows: there exist
u and v in M and integers n, m, p, and ¢ such that

MEa+u~b; MED +v>d;
MEa+n~d+m; MEb+p~b+gq.

Allthis, together with the associativity and commutativity of addition, yields

MEat+ut+v+p+m>=a+n+gq.
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It now follows from property (19) of the subsection on the ordering of the
integers that M F 1 < n + ¢ and, because N is an initial segment of M,
1 € Nand a = b. Therefore, x = y.

The ordering R is indeed total: if x and y are elements of E, if a € x
andb € y, then M E a < bor M E b < a because the order < is a total
ordering in M; so we do have xRy or yRx.

The standard elements are all equivalent and the equivalence class they
form is less than all the others. By contrast, if a is a non-standard element,
a and a + g are not equivalent and the equivalence class of a + a is strictly
greater than that of a.

To show that R is a dense ordering of E, we first show that

P VYvodvi(vy +vp = v Vv +vp v+ 1),

which is easily proved by induction on vp.

If @ and b are elements of M such that, say, a < b, and if ¢ is the element
suchthatc4+c=a+borc+c=a-+b+1, then we easily see thatc = a
if and only if ¢ ~ b. It follows that if a ~ b is false, then the equivalence
class of ¢ lies strictly between the equivalence class of a and that of b.

3. We prove by induction on n thatif (bo, by, .. ., by) is a sequence of integers that

are pairwise relatively prime and if («g, @1, . . ., ¢, is another sequence of the
same length, then there exists @ € N such that, for all i from 0 to » inclusive,

a is congruent to «; modulo b;.

‘For n = 0, it suffices to take a = «. Next, consider the case n = 1. Since by

and b; are relatively prime, the theorem of Bezout guarantees the existence of

elements yp and ¥ in Z such that
vobo + yi1by = 1,
which, when multiplied by («; — «p), yields
(ay — ) yobo + o = (0 — @) y1b1 + e,

s0 we obtain an element m in 7, namely (¢ — «g)yobo + g, that is congruent
to ag modulo bg and to o1 modulo b;. To get an element of N that has this same
property, it suffices to add to m some multiple kbob; where k is sufficiently
large.

Now consider the case n + 1. By the induction hypothesis, there exists an
integer ¢ such that, for all i from O to n inclusive,

¢ is congruent to «¢; modulo b;.

But b,y and bgb; - - - by are also relatively prime. As we have just seen, this
implies the existence of ana € N such thata is congruent to ¢ modulo boby - - - b,
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and to «,,4) modulo b, 4. This certainly 1rnphes that, forall i fromOton + 1
inclusive, :

a is congruent to ¢«; modulo b;.

. Suppose that the formula F{vg, vy, ..., vp] represents a total function f from
N7 into N. Then by the definition of Drvy,

x = f(ny,n2,...,np) ifandonlyif there exists y
such that (#F[x, n1, na, ..., npl, y) € Drvg.

So consider the function g:
(11,2, ..y np) =y (BFLx, ny na, ..., npl, y) € Drvg)

This function is total recursive and f(n1, na, ..., np) = ,B; (g(n1,n2, ..., np)).

5. This involves a technique known as the method of pleonasm. We enumerate

T = {F, : n € N} in such a way that the function An.#F,, is a total recursive
function (see Section 5.4.1). For every n € N, let G, denote the formula F; A
oA ANF,. SetT' = {G, : € N}. It is clear that the theories T and T’ are
equivalent and that the function An #G,, is total recursive and strictly increasing;
this implies that 77 is a recursive theory (see Exercise 12 of Chapter 5).

. We must first convince ourselves that this question has a meaning, specifically,
that Fermat’s last theorem is expressible by a formula of Lg. This is not obvious,
a priori, because of the exponentials x’ and so on. So we begin by eliminating
these exponentials using the formulas that represent them. Thus, let F'[vg, v 1, Uz]
be a % formula such that, for all integers n, m, and p,

PoF Fln,m, p] ifandonlyif n=mP.

We may then observe that the negation of Fermat’s last theorem can be expressed
in the language L by the following closed ¥ formula:
G = JvgFviFvpAvzTvgTdusIvg(vg = 1AV > 1 Avg =1 Ay =3
A Flvy, vz, vo] A Flvs, va, vol A Flus, ve, vol A v1 + v3 =2 vs).
If G is true in N, then it is derivable in Py (Proposition 6.34) so Fermat’s last
theorem is refutable in Py.

. (@) It is clear that if N F v Drv[#F, v;], then there exists an’integer n such
that N F Drv[#F, n] and hence that (#F, n) € Drv. It follows that the
formula F' is derivable in P and is therefore true in N,

(b) The proof of the second incompleteness theorem supplies a model M of P
and a closed formula F such that

M E 3uiDrv[#F, vi] A QuuDiv[#—~F, vp].

This shows that (b) cannot be simultaneously satisfied by F' and by —F.



10.

SOLUTIONS FOR CHAPTER 6 265

(c) We will suppose that (c) is true for every closed formula F' and obtain a
contradiction. Since, in N, either F is true or —F is true, then either F is
derivable in P or —F is derivable in P, in other words, 7P is complete; but
we know this is false.

(d) This is obviously false since (d) implies (c).

. For the formula F[vg] we may take the formula Drv[#0 =~ 1,10}, and for H we

may take the formula

Glvo, vi, ..., va] < Dro[#0 =~ 1, vol.

. Suppose that P - JugDrv[#F, vg] = F ; then by taking the contrapositive,

P =F = =3ugDrv[#F, vl;
equivalently,
7) U {—1F} l— _‘HUODW[#_}?J UO]'

But =3vgDrv[#F, vo] means that F is not derivable in P, in-other words, that
P U {—F} is a consistent theory. So we have

PU{=F} Con(PU{—F}),

which implies, according to Godel’s second incompleteness theorem, that P U
{—F} is not a consistent theory; hence P I F.

(a) We will prove, by induction on the height of the formula G{vy, vy, ..., vp],
that, for all elements ay, ay, ..., a, of N, we have

ME Glay, az,...,ap] ifandonlyif N E Glay,a,...,ap)

If G is an atomic formula, this is true because N is a substructure of M.
The propositional connectives do not present any problem. For the sake of
example, let us take the case of A. Assume that G[vy, v2, ..., v} = GIAGy
and that ay, a3, ..., a, are points in N. Then,

ME Glay, ay, ..., ap]
if and only if
ME Gilat, a2, ..., apl ANME Galay, az, ..., ap].
Now by the induction hypothesis,

ME Gilay, az,...,ap) ifandonlyif N E Gilay,az,...,ap], and
ME Galay, az,...,ap] ifandonlyif N E Gala,a,...,apl;

this clearly implies that

ME Glay, az,...,a,] ifandonlyif N E Glay,a,...,ap)
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Now let us deal with the existential quantifier. We assume that
Glvi, v, ..., vp]l = FveFlvo, vy, ..., vp]

and that aj,az,...,ap ‘are points in N. If we suppose that
N E Glay, ag, ..., ap], then there exists a point ag of N such that N E
Flag,ay, ..., apl; so by the induction hypothesis, M F Flagp, ai, ..., ap)
and thus N F Glay, az, ..., ap).

Conversely, suppose that the points ay, az, . . ., ap are in N and that there
exists a point ag in M such that M F Flag, ai,...,ap]. Consider the
formula '

Hlvg, v1, .., Vp] = (mFvp1 Flvpsr, 01, .o, 0p] = vo = 0)
AFVp4+1 Flvpt1, v1, .oy Up] = (Flvg, vi, ...y Up]
AYVpio < vg = F[vpi2, U1, ..oy Up])).

Thus, the formula H defines the following function f from M? into M:
e if there exists at least one element x € M such that

MEF Flx,a1,a,...,ap],

then f(ai,az,...,ap) is the least element that satisfies this formula

(which exists by the induction scheme);
e otherwise, f (a1, az,...,ap) =0.

By hypothesis (because N is closed under definable functions),
flai, a2, ...,ap)is an element of N. From the definition of H, it follows
that

ME Flf(ay,a2,...,ap),a1,az,...,ap)
and, by the induction hypothesis,

NEFlf(ai,a,...,ap),a1,a,...,4p],
and hence N E Glay, az, ..., apl.

(b) If X1 and X, are subsets of M that are definable by the formulas F;[vg] and

F>[vo], respectively, then X1 N X5 is definable by the formula Fy A F,. The -
analogous facts for union and complementation are also true; this shows
that the collection of definable subsets of M form a Boolean subalgebra of
the algebra of all subsets of M.

If f and g are functions that are definable by G[vg, vi] and G,[vg, v1],
respectively, then

{ae M: f(a)=g(a)}
={aeM: ME Jvu(Gilvg, al A Gilvg, al)};

‘this is certainly a definable subset,
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(c) Suppose, once again, that f and g are functions definable by G1[vo, vi1] and
G [vo, v1], respectively. Now consider f + g, for example; it is definable
by the formula

JuyFuz(vg =~ v + v3 A Gilvg, v1] A Gofus, v1]).

Similar conclusions for f x g and Sf are just as easy.
(d) Suppose that f, g, and & are in F. Then,

faeM: f(a)=gla)}N{a e M: gla) =h(a)}
ClaeM: f(a)=h(a)}

which shows that if the first two of these sets belong to I/, then so does
the third; this proves that the relation ~ is transitive. It is obvious that ~ is
symmetric and reflexive. Also,

faeM: flay=f@nfaeM: g =g@)
ClaeM: (f+8@= (" +g)al

soif f~ f'andg ~ g/, then f + g =~ f’ + g’. Similar arguments apply
to the successor and product operations.

(e) We must simply verify that if @ and b are elements of M, then
a+b=a+b, axb=axb, and Sa=Sa;

these are all obvious.

(f) The argument is by induction on the complexity of F'. As examples, we will
treat the cases of — and 3.

e For —: we assume that Fvy, vz, ..., vp) = ~Glvy, v, ..., vp) and that,
for all f1, f2, coey fp in]—",

FIUE GLAMU, /U, ..., fp/U]

if and only if
{aeM: MEGLfi(@), /@), ..., fo@]) U

But we see that ‘

FIUEGLAU, /U, ..., [p/U]
if and only if

FIU¥E FLAM, LU, ..., fplU]
and, since {{ is an ultrafilter,

laeM: ME G[fl(a),fz(a),...,fp(a)]} el
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if and only if :
faeM: MFEFLfi(@), 2(a),..., @]} ¢U. ~
e For3: this time,weassurhethatF[vl, V2, ..., Upl = FvpGlug, v1, ..., vp]

and that G satisfies the induction hypothesis. Suppose first that
FIUE FLAMU, /U, ..., fp/U].

So there exists a function fy € F such that
FIUEGLo/U, filU, ..., fp/U]

and, by the induction hypothesis,
{aeM: MEG[fo(a), fila),..., fr@]l}eld;

it follows from this that

{aeM: ME F[fi(a), f2(a),..., fr@]} el
Conversely, suppose that
A={laeM: ME F[fi(a), fala), ..., fr@]}el.
Once again [see (a)], consider the formula '

Hlvo, vi, ..., vpl = (=Fvpp1Glopyr, vi, o vp] = 09 = 0)
AN@vp11Glvpat, v1, .o, vp] = (Glwo, vy, ...y Vp]
AV, < Vo ~GlVpe2, V1, ...y Up))).

We can then define a mapping fo from M into M as follows: foralla € M,
fo(a) is the unique element of M such that

ME H[fo(a), fia), ..., fp(a)];

we then see that, foralla € M,

ME Gl fo(@), fi(@), ..., fr@)],
and hence, by the induction hypothesis,

FIUEGL/U, fiJU, ..., fp/U]
and

FIUFEFLAM, /U, ..., fp/U].

Now let d;, dy, ..., dp be points of M and let di, dy, ..., EI; be the
corresponding constant functions. Then

laeM: ME Fldi(a),d(a), ...,dya)]}
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isequal tothe whole of Mif M & F[dy, dy, ..., dp)andisempty otherwise.
Hence, ’

{aeM: ME Fldi(a),dy(a), ...,dy(a)]} €U

if and only if M F Fldi, da, ..., dp]; this means precisely that the map
from M into F /U that sends a into a is elementary.

(g) Let Flvg, vi, wo, w1, ..., wp] be a formula of Lg. Let

(h)

Funcplwg, wy, ..., wpl
denote the formula
Yuedlvy Fluo, vy, wo, wi, ..., Wpl;

this is the formula which expresses that F' defines a function, once param-
eters are substituted for the variables w;. We have to show that

M EYwoVYwi ... Yw,(Funcplwo, wi, ..., wp]
= Yv3v3VueYvi ((vo < v2 A Fluvg, v1, wo, wi, ..., wpl)
= v < v3)).
Since M is an elementary extension of N, it is sufficient to show that
this same formula is true in N. So, if for integers mg, my, ..., my, the
formula F[vg, v1, mo, mi, ..., mp] defines a function, say f, with domain

N and if n, is an integer, then there certainly exists an integer n3, namely
sup{ f(x) + 1: x < na}, such that

N E VugVu1 ((vp < va A Flug, vi, mo, my, ..., mpl) = v1 < n3)

Let B denote the Boolean algebra of subsets of M that are definable with
parameters in M and consider the following subset of 3 :

{la,b]: aeN, be M —N},

where [a, b] denotes the set of points of M that are between a and b inclusive.
This set is closed under finite intersections and does not contain the empty
set. It follows that there is an ultrafilter / of B that includes it. Let N/
denote the structure F /U as constructed above, considered as an elementary
extension of M. We will show that it has the desired property.

Let f/U4 € N. Choose an arbitrary non-standard element ¢ of M. We
know, from the preceding question, that there exists d € M such that if
x € M and x < c, then f(x) < d. Let d be the constant function equal
to d and recall that we have identified d/i{ € N and d. Then,

[0,c]C{aeM: f(a) <d@)},

and, because [0, ¢] € U, we do, according to (f), have f/U < d.
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11. (a) Let H denote the conjunction of the seven axioms of Py and let T be a
theory that is satisfied by N. If T were decidable, then the set

#F . #(H = F) € Th(T)}

would be recursive; but this set is precisely Th(7"U7Pg) which is a consistent
theory (it has N as a model) that includes Po; this contradicts Godel’s first
theorem.

(b) We will show how to construct the formula F* from F. The procedure we
will describe is effective and it is not a problem to prove the existence-of a
primitive recursive function o that, with the Godel number of F, associates
the Godel number of F*.

This construction is by induction on the height of F. We must begin with
the atomic formulas which, for the case of L, are of the form ¢ 2~ s, where
s and ¢ are terms of Lg. We dispense first with the situation in which s and
t are simple terms, i.e. where F has one of the following forms:

F =v; >0, then F* = G1[v;];
F =v ~vj, thenF*:Go[v,-]/\Go[vj]/\v,-:vj;
F =y :ﬁvj, then F* = Golvil A Go['l)j] A Golv;, vj];

F =v; ~vj+u, then

F* = Golvi] A Golvj1 A Golud A Galvi, vj, uel;
F =v; ~vj+uv, then

F* = Gol[vi] A Golvj] A Golue] A Galvi, vy, vl

We then deal with formulas of the form v; = ¢, where ¢ is a term. This
is done by induction on ¢. As an example, let us treat the case where F' =
v; = t; +1 under the assumption that we have already constructed the
formulas (v; = £;1)* and (v; =~ #,)* . Choose variables wp and w; that do
not occur in v;, #1, and fp. Set

F* = Jwo3w (wo == t1)* A (wy = 1) A (v ~ wo_—twl)*).
We finish with the atomic formulas by setting
(t1 2 1)* = Fwo((wo = 11)* A (w1 = K)"),

where, once again, wo is a variable that does not occur in 71 or in £;.
There is then no problem with the further induction on the height of F :

o (MF)* =-F%

e (F] /\Fz)”< = FI*AFZ*;

o (F1V B)* = F{V F},

o (FI = F)*=F} = FJ;
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Lo (P & ) =Ff & Fj;

()

(d)

(e)

e (AwF[w])* = Jwe(Golwo] A Flwo]*), where wy is a variable that does
not occur in Gg orin F;

e (VwF[w])* = Ywg(Golwo] A Flwol*), where wy is a variable that does
not occurin Ggorin F.

Itis obvious that (1) implies (2) and (3) implies (1). So itremains to show that
(2) implies (3). We will use the completeness theorem and show, assuming
T~ F G, that T U {=G*} does not have a model. Assume the contrary
and let N be the Ly-structure definable in a model M of T U {~G*}.
Since M is a model of T, N is [according to (b)] a model of T~ and
hence of G; but since M is a model of =G*, A/ is a model of =G this is
impessible. -

We will first show that every consistent theory in the language £ that extends
To U {H*} is undecidable (recall that H is the conjunction of the axioms
of Pp). So let T be such a theory and, as previously, let us consider

T~ ={F: Fisaclosed formula of £y and T I F*}.

This is a consistent theory that extends P, so it is undecidable. Now if T
were decidable, then T~ would also be decidable because T~ + F if and
only if T - F* (and the passage from F to F* is effective).

Suppose now that N is definable in M and let T be a theory in £ that
has M as a model. Our goal is to show that 7" is undecidable. Let K be
the conjunction of the formulas of To U { H*} (this is a finite theory). We
then see that M is a model of 7’ = T U {K}, which is, therefore, consis-
tent and, from what we have seen, undecidable. But for every formula F
of L,

T'+F ifandonlyif T+ K = F,

which shows that 7 is also undecidable.

It is not difficult to define N in Z; for example, by using the following
formulas:

e Golvo]
= Fv1FvyFvzTvg(vo = ((v1 X v1)+ (V2 X v2)+(v3 Xv3)+ (V4 X v4))); (this
is where we invoke Lagrange’s theorem.)

Gilvo] = vo > 0;

G2[vo, v1] = Golvol A Golvi] A 3vaVus(va Xv3 = v3 A vg X v1+v);
Gialvo, v1, v2] = Golvol A Golvi] A Golva] A v = vitvy;

G4lvo, v1] = Golvo] A Golvi]l A Golvz] A wp = vi X).

We conclude from this that Z is strongly undecidable and that every the-
ory in L that has 7Z as a model is undecidable; for example, the theory of
rings, the theory of commutative rings, etc.
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(f) We notice, first of all, that if x is an element of M that belongs to N x N,
say x = (n,m), there are exactly two elements y-of M, namely m and
(n + m,n - m) such that (x, y) € RM; on the other hand, if x € N, the set
of elements y of M such that (x, y) € R™ is infinite. This permits us to
define N in M by the formula Gg[vo] that is equal to

JviJvydvs(Ruguy A Rugua A Rugus A —(v) 22 1)
A (v >~ v3) A (V3 = Vy)).

Addition and multiplication are then easy to define:

Gilvo, vi, v2] = Golvg] A Golvi] A Golv2]
‘ A Fusdvs(Rvivs A Rvgvg A Rusvg A Ruguy);
Galvo, v1, v2] = Golvo] A Golvi] A Golve]
A Juzdvg(Ruivs A Ruzuy A Rusvg A Rugqug).

Then zero and one can be defined as the identity elements for addition
and multiplication, respectively, and the successor function can be defined
with the help of addition.

It follows that M is strongly undecidable and that the empty theory
in the language that consists of a single binary predicate symbol is
undecidable.

(g) Since we have addition at our disposal, we are able to define the order-
ing of the integers, the elements 0 and 1 and the successor function. It
is then sufficient to show that multiplication is_definable in M. We be-
gin by defining the least common multiple, (lcm) of two integers by the
formula

Gslvg, vy, v2] = Dvyvg A Duyug
AYu3((Dvivs A Duyus) = Dugus).

Since the lcm of y and y -+ 1 is always y - (y + 1), we may define the relation
x =7y (y+1) by the formula

Gelvo, vi] = Gslvo, v1, vi+1].
Observe that, for every x and y in N, we have
G+ - @+y+D)=x-x+D+y-(y+1)+2xy,
therefore we may set ¥4[vg, v1, v2] equal to

JuzdvadvsIvg(v3 =2 v +vo A Gelvs, v1 + 2]
A Gelvs, v1] A Gelug, v2] A vg = (Us 4 v6)+ v3).
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12. (a) The proof is a routine induction on the height of the formula F. It involves
showing that the class of recursively enumerable sets is closed under
conjunction, disjunction, existential quantification, and bounded universal
quantification.

(b) Let f be a recursive function from N into N; according to the second
representation theorem (Theorem 6.33), there is a & formula F[vg, v1] that
represents f. Conversely, if

Graph(f) = {(n, f(n)) : € N}
= {(n,m): N EF[m,nl}
= {(n,m): Po k- Flm,nl},

where F is a ¥ formula, then, from part (a), Graph(f) is also recursively
enumerable. Since f is a total function, we also have that

(n,m) ¢ Graph(f)

if and only if
there exists m’ # m such that (n, m’) € Graph(f),

which means that the complement of Graph( f) is also recursively enumer-
able; hence Graph(f) is recursive (Theorem 5.38). Thus, f is recursive
(Chapter 5, Exercise 10).

(c) If Flvp, v1] is a X formula, then for all integers n and m,

NF F[m,n] ifandonly if

there exists a derivation of F [m, n] in Py
(Proposition 6.34); a fortiori,

NF F{m,n] if and only if

there exists a derivation of F [m, n] in P.

Let « be the function of three variables defined as follows:

o If a is the Godel number of a ¥ formula with two free variables, say
Flvg, vi], then a(a, m, n) = #F|[m, n].
e If not, then w(a, m,n) = 0.

This function « is primitive recursive and, if a is the Godel number of the
formula F, then for all integers n and m, we have

NE Fim,n}] if and only if
there exists b € N such that («(a, m, n), b) € Drv.
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We can then define the paftial function k:

k(a,n) = uy (@(a, B (), n), B2(y)) € Drv

and set

h(a,n) = B3 (k(a, n)).

(d) It is not difficult to see that g is recursive; it is defined by cases and the
relations

a is the Godel number of a X formula,
or
b is the Godel number of a derivation in P of the formula . . . ,

and so on are all recursive.

Let us prove that g is total; let a, b, and n be integers and assume that a
is the Godel number of a ¥ formula, say F[vg, v1], and that b is the Godel
number of a derivation in P of the formula Yv3vg F[vg, v1]. The problem
is to show the existence of an m € N such that P - F[m, n]. But since N
is a model of P, we have

N E Yo 3vg Flvg, v1],

so there exists an integer m such that N = F[m, n]; and since F[m, n]is a
2 formula, we have

Pt Flm, n]
by Proposition 6.34.
(e) It follows from all that has preceded that the set of functions
E={in.gla,b,n): aand b are in N}

is exactly equal to the set of all recursive functions that are provably total.
We then apply a diagonal argument to this set: the function

an.g(By(n), Ba(n),n) + 1

is total recursive but cannot belong to £.
13. (a) If {F1, F2, ..., F,} is a finite set of closed formulas,

PU{FI,F2)~*-7FI1}

is a recursive theory. If it is consistent, it cannot be complete by Godel’s
first incompleteness theorem (Theorem 6.30).

(b) The construction is by induction on the length of s: we assume that s is in
{0, 1}" and that the formulas Fg, F(50)), F(s(0),s(1))> - - - » F(s0),s(1),...,s(n—1))
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- have already been constructed in such a way that

P UFg, Fs0)), Fis0),501))s -+ 5 Fis0),5(1),..s(r—1)))

is a consistent theory, and we will construct the formulas Fs(0),s(1),...,s(1—1),0)
and F5(0),5(1),...,s(n—1),1)- Since

PU(Fg, Fis@))s Fis©),s(1))s+ - -+ Fs0),5(1),....s(i—1))}

is not a complete theory [as we saw in part (2)], there exists a formula G
that is neither derivable nor refutable in this theory; we set

(c) Foreach o in {0, I}N, set

To =P U{Fg, Fis0) Fis@,5())s -+« » Fs(0),501),..s0=1))5 + - }-

Every finite subset of 75 is included in a set of the form

P U(Fg, Fs0))s Fis0),50))s -+ > Fs(0),501), ..., s0—=1)) }»

where n € N and s € {0,1}"*, and is therefore consistent. Now let o
and 7 be two distinct elements of {0, 1}N and let n be the least integer
such that o(n) # t(n). Without loss of generality, suppose o(n) = 0
and t(n) = 1. Then the formula F(;(0),z(1),...,z(n~1),7(x)) Which belongs to
T; and is equal to the formula F(;(0y,z(1),...,c(n—1),1) is the negation of the
formula Fig 0y,0(1),...,0 (1—1),0) Which belongs to 75 ; thus T;, and T are not.
equivalent.

We have thereby found 280 theories in £ (as many as there are elements
of {0, 1}N), that all extend P and are pairwise inequivalent.

.....

14. (a) If M is countable, then there are only countably many formulas with
parameters from M; so there cannot be more than this many subsets of
N that are definable in M.

(b) There is a formula F'[vg, v1] in Lg such that for all integers n and m,
NE F[n,m] if and only if the (n -+ 1)st prime number divides #i.

Let X be a subset of N. Add a new constant symbol ¢ to the language Lo
and consider the following theory T in the language obtained thereby:

Tx =(Glno, n1, ..., npl:
p is an integer, G[vo, vy, ..., vp] is a formula of Lo,

no, ni, ..., np are integers and N F Glng, ny, ..., npl}

U {Fln,cl: ne X}U{~F[n,c]: n;X}.
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This theory is consistent by the compactness theorem: observe that every
finite subset of Ty is included in a set of the form -

Ty ={G[Q_Q,_r}l,...,n_p]:
p is an integer, G{vg, vy, ..., vp] is a formula of Lo,
ng,ny, ..., np are integers and N F Glnog, ny, . --’ﬁg]}
U {Fn,c]l: neY}U{=F[n,c]: n¢ Y},

where Y is a finite subset of X. The structure N in which the constant ¢ is
interpreted by

Hn(k),

keY

where (k) is the (k 4+ 1)st prime number, is a model of Ty. It follows
(see Chapter 8, Lemma 8.13) that Tx has a countable model which we will
call M. We may even suppose (Chapter 8, Lemma 8.13) that this model
is an elementary extension of N. Let us abuse language by denoting the
interpretation of ¢ in M by c¢. Then

X={neN:MEFIn,c],
which shows that X is definable in M.

(c) For any countable elementary extension M of N, let us consider

S(M) ={X: X € Nand X is definable in M }.
In part (a) we saw that S(M) is a countable subset of P(N), and in part (b) that
PN) = U {S(M) : M > Nand M is countable}.

If A is the cardinality of the set {S(M) : M > N and M is countable},
then A x R = 20, from which it follows that A = 280, Now if M and N/
are two elementary extensions of N and if f is an isomorphism from M
onto NV, then the image under f of a subset of N definable in M will also
be definable in A/ (by means of the same formula). Thus if S(M) and S(N)

are different, then M and AV cannot be isomorphic. There are therefore 280

countable elementary extensions of N that are pairwise not isomorphic.

15. (a) Epimenides cannot be telling the truth because, being a Cretan, he must lie.

But if he is lying, it is false that Cretans are liars, so he is telling the truth.

In fact, it is not difficult to counter this argument; first of all, a liar may
occasionally tell the truth; also, it is possible that Epimenides is lying, the
truth being that certain Cretans, including himself, are liars.

(b) This barber is a woman; otherwise, one could not respond to the question

‘does this barber shave himself?” without leading to a contradiction.
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Solutions to the exercises for Chapter 7

" 1. (a) In the solution to this exercise, we will write ¢ instead of g4. Let us verify
the axioms of ZF ™.

o Extensionality. Let x and y be two integers such that, for every integer z,
zexifandonlyif zey,ie suchthatz € ¢(x) if and only if z € ¢ (y);
it follows that ¢ (x) = ¢ (y) and, since ¢ is bijective, that x = y.

e Pairs. Let x and y be two integers; we wish to find an integer z such
that the set (in the intuitive sense) of integers ¢ that satisfy ¢ ¢ z [equiva-
lently, t € ¢(z)] is equal to the pair (in the intuitive sense) {x, y}; so we
need to have ¢(z) = {x, y}. This defines a unique integer z since ¢ is a
bijection.

e Unions. Let x be an integer; set z = Uregb(x) $()and y = ¢ 1(2). We
see that, forevery integer u, u € ¢ (y) if and only if there exists an integer ¢
such that t € ¢(x) and u € ¢(t). When this is re-expressed using the
relation &, it means that, for every u, u € y if and only if there exists ¢
such that ¢ ¢ x and u ¢ t. Thus, in the universe (N, ), y is the union of the
elements of x.

e Subsets. Let x be an integer; we seek an integer y such that, for every
integer z, z € ¢ (y) if and only if, for every ¢ belonging to ¢ (z), t belongs to
¢ (x); in other words, for every z, z € ¢ (y) ifand only if ¢ (2) € g (¢ (x)).
It is easy to see that g (¢ (x)) is a finite subset of W, the set of all finite
subsets of N. Its inverse image under the bijection ¢ is therefore a finite
subset of N, hence is an element of W, which itself has a unique preimage
under ¢. So the set we seek is y = 1P Hp (@ ().

e Replacement. Let x be an integer and let F'[vg, v1] be a formula of the-

language of set theory that is functional in vo (in the universe (N, ¢)).
To simplify the presentation, we have taken, here, a formula without
parameters; the presence of parameters would not substantially change
the proof that follows. We need to produce an integer y that is ‘the image
of x under F’, i.e. is such that, for every integer z, z & y if and only if
there exists # such that ¢ ¢ x and (N, &) F F[¢, z]. Let & denote the partial
function from N into N defined as follows:

for all integers n and m,
h(n) = m if and only if (N, ¢) F F[n, m].

(This is a partial function since F is functional.) We then see that by
setting y = ¢~ 1 (h(¢(x))), we have the desired set. [We will have noted
that the set i(¢ (x)), the direct image of the finite set ¢ (x) under the
partial function £, is indeed a finite subset of N, so it does have a unique
preimage under ¢.]

e Negation of the axiom of infinity. We argue by contradiction and assume
that (N, &) does satisfy the axiom of infinity. So there exist integers «
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and f such that

(N, &) E ‘ f is a mapping from a into itself that is inje’ctivé :

but not surjective’.

We easily see that the set

((x,y) € pl@)?: (N, &) Fy = f(x)’}

is a mapping from ¢ (a) into itself that is injective but not surjective; this
is impossible since ¢ (a) is a finite set.

Next, assume that, for all integers x and y, x € ¢(y) implies x < y. In

particular, this implies that ¢ (0) is the empty set.

e Foundation. Let x be an integer greater than 0 (thus distinct from the
empty set in (N, ¢)). We seek an integer y such that, in (N, &), y £ x and
y N x = @ (this last condition means that, for all ¢, if £ y, then £ £ x). It
suffices to take y to be the least element (in the sense of the usual ordering
< on N) of ¢ (x); note that ¢ (x) % ¥ since x # 0. We do have y & x since
y € ¢(x) and, if ¢ ¢ y, then t < y; thus, in view of the way y was chosen,
t¢ d(x),ietfx.

(b) The fact that ¢ is a bijection from the set of finite subsets of N onto N
is easily proved, as well as the fact that if x and y are two integers, then
x € {(y) implies x < y. It then follows from part (a) that My is a model
of ZF~ + AF.

(c) It is sufficient to make a slight change in the definition of ¢. Consider the
mapping & from W into N defined as follows:

e if x is a finite subset of N different from @ and from {0}, then £ (x) = ¢(x);
o £() =1,
o £({0) =0.

The mapping & is again a bijection from W onto N and, from part (a),

M g1 is a model of ZF~; howeyver, it does not satisfy AF since 0 g1 0 (see
Remark 7.76).

2. Let x be an ordinal and let y be a transitive subset of x that is distinct from x.
According to Proposition 7.17 and Corollary 7.22, y, being a transitive set of
ordinals, is itself an ordinal. Thus y € x means that y < x,i.e.y =xory € x.
But y = x is false by hypothesis, hence y € x.

Conversely, let x be a set in the class On’. There are definitely some ordinals
that are not included in x, otherwise, by applying the comprehension axiom
to the set g (x), the class of ordinals would be a set, which it is not. Let f
denote the least ordinal that is not included in x. We can then choose an element
o € B (this element will obviously be an ordinal) such that o ¢ x. Since « is
less than 8, we have o« C x by definition of B; moreover, « is a transitive set
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(it is an ordinal). If o were distinct from x, we would conclude, because x is in-
the class On’, that @ € x; but @ was chosen precisely so this does not happen.
Consequently, @ = x, which proves that x is an ordinal.

. It suffices to revise the second proof of Theorem 7.69. Consider the class of
well-orderings of subsets of x; this is a set, by the axiom of comprehension.
The replacement scheme then guarantees that I" (x) is a set. This set is an ordinal
(by Proposition 7.17 and Corollary 7.22) since it is clearly a transitive set of
ordinals. It cannot be subpotent to x for this would imply that I'(x) € I'(x),
which is absurd since I'(x) is an ordinal. Every ordinal strictly less than I"(x)
belongs to I'(x), so is subpotent to x. It follows that I" (x) is the least ordinal that
is not subpotent to x. Because it is not subpotent to x, I'(x) cannot be equipotent
with any ordinal that is subpotent to x, and hence with any ordinal 8 < I'(x).
This confirms that ["(x) is a cardinal.

Observe that in the proof of Theorem 7.69, the set that played the role that
is played here by x was an ordinal; however, this fact did not intervene in any
way in the proof of that theorem. _

If the universe U satisfies the axiom of choice, then x (just as any other set)

has a cardinality, say A, that is the greatest cardinal subpotent to x. Since I"(x)
is a cardinal and is the least ordinal that is not subpotent to x, we conclude
immediately that I'(x) = AT,
. AC = (a): Assume that a is a set and that / is the set of non-empty subsets
of a. Let (a;);e; be the family of sets such that, for every i € I, a; = i. By
the definition of I, all the a; are non-empty, so by AC, the product [ [;.; a; is
non-empty; let x be an element of this product. Then x is a mapping from I into
;s @i such that, forevery i € I, x(i) € a;. When we notice that | J;; a; = a,
we see that x is a mapping from [ into a such that, for every non-empty subset
of a, x(i) € i, i.e. it is a choice function on a.

We should note that it is possible that a is the empty set and that, in this
case, we need not invoke the axiom of choice to prove the existence of a choice
function on «; the empty mapping will do perfectly well (the set of non-empty
subsets of a is the empty set in this case).

(a) = (b): Let x and y be two sets and let g be a surjection from x onto
y. Let ¢ be a choice function on x and define a map A from y into x in the
following way:

foreveryt € y, h(t) = ¢ @' ().

This definition is legitimate since the fact that g is surjective guarantees that,
for every element ¢ € y, the inverse image of {¢} under g is a non-empty sub-
set of x. It is immediate that, for every t € y, g(h(t)) = t; thus g o h is the
identity on y.

(b) = (c): Let a be a set with the property that, for every pair of distinct
elements x and yof @, x # P and y £ Gand x Ny = @; set w = |Ja. By
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hypothesis, for every element ¢ € w, there exists a unique element x € a such
that ¢ € x. So if we set g(f) = x, we define in this way a mapping g from w
into a; g is surjective since the empty set does not belong to a. Condition (b)
then produces a mapping % from a into w such that g o 4 is the identity ona. Let
b be the image of this mapping & and observe that, for every x € a, h(x) € x
[since x = g(h(x))]. It follows that, for every x € a, h(x) € b N x and, for
every element y of ¢ other than x (and so, by hypothesis, disjoint from x),
h(y) ¢ x. This proves that, for every element x of a, i(x) is the unique element
of b N x. So we have found a set whose intersection with each element of a is a
singleton.

(c) = AC:Let (a;);e1 be afamily of non-empty sets. Setb; = {i} xa; forevery
[ € landseta = {b; : i € I}. The elements of g are non-empty and pairwise
disjoint; so there exists a set b such that, for every i € I, b N b; is a singleton.
Setc = ;e @i and setb’ = bN (I x ¢); b’ is then a subset of 1 x ¢ and we see
that, for every i € I, there exists one and only one element of b’ (namely, the
unique element of b N b;) whose first projection is i. Thus b’ is a mapping from
I into ¢ and, for every i € I, b(i), which is the second projection of the unique
element of b b;, belongs to a;. So b’ belongs to [ [;; a;, which is consequently
non-empty.

AC = (d): Let @ and b be two sets. We use Zermelo’s theorem (see Theorem
7.41). We know that there exist ordinals o and f that are equipotent with a
and b, respectively. Besides, Corollary 7.22 tells us that either « is included
in B (in which case « is subpotent to 8, which implies that a is subpotent
to b) or else § is included in o (and in this case, g is subpotent to o and b is
subpotent to a). | L

(d) = AC: Once again, we will replace AC by its equivalent, Zermelo’s
theorem. We will show that an arbitrary set x can be well-ordered. We use the
Hartog cardinal of x (the least ordinal that is not subpotent to x) defined in
Exercise 3 and denoted by I"(x). Since (d) is satisfied by hypothesis, it must be
that x is subpotent to I'(x). Let ¢ be an injective map from x into I"(x) and set

iel

r={uv)exxx: ¢u) S o)}

It is routine to verify that r is a well-ordering of x; we have done nothing more
than ‘import’ the well-ordering of I (x) using the injection ¢.

. Itis obvious that in ZF, Zermelo’s theorem (so also the axiom of choice) implies
each of the statements (a), (b), and (c) since every set is then well-orderable.
In ZF again, it is trivial that (a) implies (b) and it is not hard to check that
(b) implies (a); to do this, let (x, R) be a well-ordered set and let o be the
unique ordinal that is isomorphic to (x, R). The isomorphism between « and
x induces a bijection between g (o) and g (x) which allows us to ‘transfer’ a
well-ordering on g (&) [which exists, by (b)] into a well-ordering on g (x). It
is also true in ZF that (c) implies (b). For this, it suffices to prove that, for every
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ordinal «, the set g (&) is totally ordered. Set

r={(u,v) e go(cx)2 : u = v or the least element

of the symmetric difference 1 Av belongs to u}.

It is elementary to show that r is a total order on g («).

To conclude, we will prove that in ZF + AF, statement (a) implies Zermelo’s
theorem (and hence the axiom of choice). First, observe that in ZF + AF,
Zermelo’s theorem is equivalent to the following statement:

for every ordinal &,  Vj is well-orderable. )

Indeed, it is clear that this statement follows from Zermelo’s theorem. Con-
versely, if it is satisfied, then for any set x, we can choose an ordinal « such that
x € V, since the axiom of foundation is satisfied. But then x C V,, because V,
is transitive and, as we can well-order V,, by hypothesis, the restriction of such
a well-ordering to x will be a well-ordering of x.

We will now argue by contradiction by supposing that (a) is satisfied simulta-
neously with the negation of (f). We may then consider the least ordinal o such
that V,, is not well-orderable and we see that & must be a limit ordinal, for if
o = B +1, then V, = p (Vp); this would mean that Vj is well-orderable while
g (Vp) is not: this contradicts (a).

So we know that for every ordinal 8 < «, there is a well-ordering of Vg. We
will use (a) to show that there exists a family (s(8) : 8 < «), where, for every
B < a, s(B) is a well-ordering of V. For each B < a, set

Xpg = {y : v is the ordinal of a well-ordering of Vg}.

(This is a set; see the proof of Theorem 7.69.) Next, let X = | J Bea Xg and let &
be the least upper bound of X. Let r be a well-ordering of g (§) [by (a), such
exists].

The family (s(8) : B < «) can now be defined by induction.
e If 8 = 0, there is no problem; s(8) = 0.

e If B is a limit ordinal, we know that Vg = Uy ep Vy- Itis then easy to verify
that the relation s(B) defined on Vg as follows is a well-ordering: for all
elements x and y of Vg,

rk(x) <rk(y), or

xs if and only if
By afandonly i by = k() =y and x50)y

[note that we must have y < B, so s(y) is already defined].

e If B is a successor ordinal, say 8 = y + 1, let §,, denote the unique ordinal
such that (V,,, s(y)) is isomorphic to (3,, €) and let fy denote the unique
isomorphism from (V,,, s(y)) onto (8, €). Itis clear that §, < & and that f),
induces a bijection g from Vg [which is equal to g (V),)] onto g (8,) [which
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is included in g (8)]. We may then define s(8) by transferring the ordering
r | $(8,) onto Vg by declaring, for elements x and y of Vp, thatx s(f8) y if
and only if g(x) r g(y). '

e Once the family (s(8) : B < ) is available, we can define a well-ordering
s on V, as follows: for all elements x and y of V,

rk(x) < rk(y), or
rk(x)=rk(y)=p and xs(8)y.

So we have arrived at a contradiction.

6. The initials CB will refer to the Cantor-Bernstein theorem (Theorem 7.43).

(1) = (2): Suppose that x is a denumerable subset of a, that ¢ is a bijection
from w onto x, that ¢ is the image under ¢ of the set of even integers, and that
b is the image under ¢ of the set of odd integers. We define a mapping f from
a into a as follows: the restriction of f to a — x is the identity and, for every
tex, f(t) = dQ2p~1()). Itis easy to verify that f is a bijection from a onto
a — b and that b is a denumerable subset of a.

(2) = (3): Suppose that b is an arbitrary denumerable set, that x is a denu-
merable subset of a, that f is a bijection from a onto a — x, and that ¢ is a
bijection from b onto x. The mapping g from a U b into a which agrees with ¢
on b and with f on a — (a N b) is obviously an injection. Also, the identity is
obviously an injection from a into a U b. It follows from CB thata and a U b
are equipotent.

(3) = (4): Suppose that x is a finite set and that b is a denumerable set that
includes x (for example, w U x). We have a bijection from a U b into a whose
restriction to a U x is an injection from a U x into a. Since the identity is an
injection from a into a U x, it follows from CB that a and a U x are equipotent.

(4) = (5): Suppose that x is a finite subset of a, that y is a set that is disjoint
from a and equipotent with x, and that f is a bijection from a U y onto a. Let
z denote the direct image of y under f and set

xsy ifandonlyif

t=xMNg, u==x-—t, v=z—1t, and w=a— (xUz).

It is easy to verify that the sets ¢, u, v, and w constitute a partition of a, that x
and z are equipotent, and that 1 and v are equipotent. Choose a bijection ¢ from
1 onto v and consider the map s from a into a that agrees with the identity on
w U ¢, with ¢ on u, and with ¢~! on v. The map h is a bijection from a onto a
that interchanges x and z; the composition g = h o f is a bijection from a U y
onto y such that the image of y is x and the image of a is @ — x. The restriction
of g to a is a bijection from a onto a — x, so these two sets are equipotent.

(5) = (6): This is obvious; any non-zero integer will do.

(6) = (7): Since a is non-empty, it follows from (6) that, for every singleton
subset y of a, a and a — y are equipotent. Consider such a subset, for example
y = {t}, where t € a and let f be a bijection from a onto a — y. Now let x be
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an arbitrary set containing a single element, say x = {u}; if u € a, it is rather
obvious that @ and a U x are equipotent; if u ¢ a, the mapping g from a U x
into a that agrees with f on « and sends u to ¢ is a bijection. This shows that a
and a U x are equipotent and proves (7) [with n = 1, i.e. in fact (8)!].

(7) = (8): Suppose that n > 0 is an integer provided by (7), that ¢ is an
arbitrary set, and that y is a set that does not contain ¢ and whose cardinality is
n— 1. Setx = y U {r}; we then have thata C a U {t} € a U x and, according
to (7), that @ and a U x are equipotent. This proves, invoking CB, that a and
a U {t} are equipotent.

(8) = (9): Choose a set u such that u ¢ a. Let f be a bijection from a U {u}
onto a and set ¢t = f{u); we see that the restriction of f to a is a bijection from
a onto a — {t}, so these two sets are equipotent. » )

(9) = (10): Suppose that ¢ is a set with r € a and that a is equipotent with
b = a — {t}. Since a is non-empty and b is equipotent with a, b is non-empty.
Also, b # a since t € abutt ¢ b. Thus b is a subset of a that is non-empty,
distinct from a, and equipotent with a.

(10) = (11): This is obvious since ‘equipotent’ is stronger than ‘subpotent’.

(11) = (1): Suppose the set b is such that b € a, b # @, b # a, and that
a is subpotent to b. Let f be an injection from a into b. By induction on the
integers, we define a sequence (x,)nen Of element of a as follows: xg is an
arbitrary element of ¢ — b (there are some) and, for every n € w, x,41 = f(xy).
Let ¢ be the image of this sequence, i.e.

c=ftea: (Anew)(t=x)}

we will show that ¢ is a denumerable set. To do this, we must establish, for any
distinct integers n and m, that x,, # x,. Suppose this is false and let k denote
the least element of the (consequently non-empty) set

Z=hew: @mew)y(m>nAxy,=2x,};

let k be an integer such that & > k and x;, = x¢. If k % 0, we have x;, =
f(xp—1) = x¢ = f(xx—1) and, since f is injective, xp_1 = x;—1; this proves
that k — 1 € Z and contradicts the definition of k. It follows that k = 0, but this
also leads to a contradiction, for if xg ¢ b while xp,, which belongs to the image
of f since h > 0, does belong to b, the equality xg = xy is violated.

The alert reader will have understood that the sets which satisfy one, hence
all, of these eleven equivalent conditions are the infinite sets. To be precise,
these sets are infinite in the strong sense. A set is infinite in the weak sense if
it is not equipotent with an integer. These two notions coincide in universes that
satisfy the axiom of choice; but in the absence of AC, we cannot prove that a set
which is not equipotent with an integer must then include a denumerable subset.

. For this exercise and the next three, we will be content to provide the answers,
occasionally accompanied by sketchy hints. The reader can (profitably) supply
complete proofs.
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We will make use of the following facts:
o card(p (N)) = card(NY) = card(QN) = card(R) = card(RN) = 2**0
e the set g ¢(N) of finite subsets of N is denumerable;
e the set g0 (N) of infinite subsets of N has cardinality 2%,

card(x;) = 2%0: With each infinite subset of N, we associate the sequence of
its elements taken in‘increasing order; this constitutes a bijection from g0 (N)
onto x1, the set of strictly increasing sequences of integers.

card(xy) = 2%0: x, is the set of bounded sequences of integers; it includes
the set 2N,

card(xz) = 2M0: x3 is the set of strictly increasing sequences of rationals; it
includes x;.

card(xs4) = 2%0: x4 is the set of bounded sequences of rationals; it includes x;.

card(xs) = 2%0: With each element f € x;, we associate the map g from
N into Q) which, with each integer », assigns the value —1/(1 + f(n)); gisa
bounded, strictly increasing sequence of rationals, so we have an injection from
X1 into xs.

card(xg) = Ry: For every n € N, set

=@V VvpeN)n<p= fn)= F(P)};

thus, x¢ = |, ey 2n. Now each z,, is equipotent with Q"+, so it follows that
x¢ is equipotent with |, . Q"+! which, by item (3) from Theorem 7.61, is a
denumerable set.

card(x7) = 2%0: x7 is the set of unbounded sequences of reals; it 1ncludes X1.
. card(Eq) = card(NN) = 2%,

card(E}) = (280)%0 = 98§ — 2%,

card(E,) = 2%: Use the fact that the set of strictly increasing sequences
of integers has cardinality 280 (see Exercise 7); with such a sequence u,
we associate the sequence of rationals v defined by v(n) = 1/(1 + u(n)) for
all n. ,

card(E3) = 2N E, C E3 C Ey.

card(E4) = 2%0: E, C E4 C Ey.

card(Es) = 2%0: Every strictly increasing sequence of integers is an
unbounded sequence of rationals and E5 € Ej.

card(Eg) = card(E) = 2%,

card(E;) = card(Eg) = 2™: If two continuous maps from R into R have
the same restriction to Q, then they are equal:

card(Eg) = 2%0: Eg is obviously subpotent to R x R.

card(Eg) = 2"0: We invoke the following classical result: every open subset
of R is the union of a family of pairwise disjoint open intervals that is indexed
by the integers; we conclude from this that there exists an injection from Eg
into (Eg)N.
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9. A map from w into w will be called a sequence.

10.

11.

card(a;) = 1: a; contains only the empty sequence.

card(ay) = 2% : a; is equal to w® [take p = f(n)].

card(az) = 2M0: g3 is the set of sequences that assume the value 0 at least
once; it includes the set of sequences f such that f(0) = 0, which is equipotent
with w®~{0},

card(ayg) = 220 a; € ay € w® (in fact, a4 = @®).

card(as) = 250 : a5 is the set of bounded sequences; it includes 22.

card(ag) = 2%0: a3 C ag C w® (in fact, ag = as). »

card(b)) = 0. Every sequence satisfies the negation of the property in
question.

card(by) = 280 : b, is equal to w® [take p = f(n)].

card(bz) = 0: Every sequence satisfies the negation of the property in
question.

card(by) = 280: by C by C w® (in fact, by = w?).

card(bs) = 2%0: b5 = w® (take p = 0).

card(bg) = 2%0: by is the set of unbounded sequences; it includes the set of
strictly ihcreasing sequences (xy from Exercise 7).

card(y;) = w: With each element x € b, we associate the map from a into b
whose value at every point is x; this defines a bijection from b onto yj.

card(y;) = u: yp is equal to y; since, for every x € g (a) and for every
f € b%, we have card(f(x)) < card(f(a)); this shows that y; C y,. Con-
versely, if f € y,, we have card(f(a)) < 1, hence card(f(a)) = 1 because a
is non-empty; this proves y, € yj.

card(ys) = 2*: For every map f from a into b, we have 1) = a, thus
card(f (b)) = A; this shows that y3 = b? and that card(y;) = p* = 2*
(since 2 < pu < A).

card(ys) = 2*: Let x and y be distinct elements of b (b is infinite). We have
{x,y}* € y4 Uy C b°, therefore 24 < sup(card(ys), u) < p* = 2*; also,
@ < 2*. This proves the result.

card(ys) = A: Since g is injective, the cardinality of g(b) is that of b, i.e. is
equal to . Because card(a) = A > pu, the difference a — g (b) has cardinality A
(Proposition 7.74).

card(yg) = 2*: When we associate with each element of yg its restriction to
the set ys, we obtain a bijection from yg onto 575,

card(y7) = 2*: Every element of y is a surjective map from a onto b and is
thus an element of y7; it follows that yg C y7 € b9,

(a) Let n be a non-zero integer and set b = a x n. We have card(h) = A
(Corollary 7.72). So we can choose a bijection 4 from b onto a. For each
i €{1,2,...,n},let a; denote the image under h of the subseta x {i — 1}
of b. The cardinality of each «a; is obviously A and the a; (1 < i < n)
constitute a partition of a.




286 SOLUTIONS

(b) For every x € g (a), we have card(a) = sup(card(x), card(a — v)) by
Corollary 7.72. Thus, if x € p*(a), card(x) = A.

(c) Consider a partition of g into three subsets a1, ay, a3, each of cardmahty A
[which is justified by part (a)]. The map x +— ap; U x from g (ap) into
e (a) is injective and its image is a subset of g *(a), for if x C ay, then the
inclusions a; Ca; Ux Caandas Ca — (az U x) C a prove that

card(ay Ux) = card(a — (ap Ux)) = A.
Therefore, card(gp (a;)) < card(p*(a)) < card(g(a)). Conclusion: -
card(p*(a)) = 2*.

(d) Let a; € p*(a) and set b = a — a;. Since card(b) = A, we can find a
partition of b into two sets b) and b, that each have cardinality A [by part (a)].
The sets ay, by, and by constitute a partition of a. Choose a bijection ¢ from
by onto by and define a mapping h,, from a into a as follows:

e the restriction of kg, to ay is the identity;
e the restriction of kg, to by is the map ¢;
e the restriction of A4, to by is the map ¢_1.

It is easy to verify that h,, is a bijection from a onto a whose set of fixed
points is aj [for x € by, hg, (x) € by, hence hy, (x) # x; the same argument
applies if x € by].

(e) The preceding question shows that the map a; +> hy, is an injection from
g™ (a) into the set S(a) of bijections from a onto a. Since S(a) is included
in the set of all maps from a into a, it follows that

2% < card(S(a)) < A} = 2%,

So the cardinality of the set of bijections from a onto a is 2*.

(f) Let b € p*(a) and let X be the set of bijections from a onto a whose
restriction to b is the identity on b. We define a bijection from X onto
S{a — b) (the set of bijections from a — b onto a — b ) by associating, with
each element of X, its restriction to a — b. The cardinality of X is therefore
that of S(a — b), which is 2* since card(a — b) = A [see part (e)].

(g) With each bijection f from a onto a, we can associate an injective mapping
¢ from a into g (a) by setting ¢ (x) = {f(x)} for every x € a. It is
immediate that the map f 1 ¢y is an injection from S(a) into the set of
injective mappings from a into g (a), which, in turn, is included in g (a)°.
But card(S(a)) = 2* and card(p (a)?) = @M = 22** = 2} The
cardinal we seek is therefore 2*.

12. By induction on 8 € «, we will define a family (fg)ge« of injections from X g
into A such that for all ordinals § € @ and y € «, if B < y, then fg C f,.
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e fo is an arbitrary injection from X¢ into A [there are some, since
card(Xo) < A). |

elfpeaandf =y +1, then /g 1s defined as follows: the restriction of fg to
Xy is fy andtherestriction of fg to Xy 41—X, isaninjectionfrom X, .1 —X,,
into A whose image is disjoint from that of f,,. Such an injection exists since
the image of f, is a subset of A whose cardinality is card(X,) < A, hence
card(r — Im(fp)) = & > card(X, 1 — X,); besides, the axiom of choice
is satisfied.

e It is easy to verify that the family of mappings just defined has the desired
properties. The map f = | J peq /g is an injection from U peq X p 10O A
Conclusion: Card(Uﬁea Xg) <A

13. By definition, ) ., Aq = ‘Card(UaEK (e x {a})). It follows from item (2)
of Corollary 7.72 that )", . A, < sup(k, sup,e, Ae). To obtain the reverse
inequality, we need the following two remarks:

e The mapping « > (0, &) is an injection from « into | J, ¢, (Ae X {a}).

o The mapping from |, Ao = SUpye, Ae ito |, ¢, (A X {}) which, with
each element x, associates the unique pair (x, ) such thata € k, x € Ay and
forall B < a, x ¢ Mg, is also injective.

It follows that & < ), o, Ao and supye,e Ao < D gex Ao
Finally, Y, <. Aa = sup(k, sup,e, Ae)-
14. (a) We have 2 < u < A, hence 2% < p* < A* = 2% this proves that 2 =
pur = A*. Moreover, g < u < A, hence A®0 < A* = 2% So it suffices to
show that 2* < A®0_To do this, we verify that

2t = 2™, ®

new

and we notice that, for every n € w, 20 < A, .
To prove (1), consider a family (X,),en of pairwise disjoint sets such

that, for every n, X, has cardinality A,; set X = |, ., X». The cardinality

of X is A, hence that of g (X) is 2*. With each ¥ C X, we associate the

sequence (Y,)new such that, for all n, ¥, = Y N X,,. In this way, we have

a mapping from g (X) into [ ], ., g (X,) that is clearly bijective (since the

X, are pairwise disjoint); this proves (1). '
(b) Let y be a cardinal.

e I[f Ry <y < A, then

AN <Y <t = 2%

)

but Wekhave just seen that 2* < AN which proves the equalities AR0 =
AV = At

e If y is greater than or equal to A, we have 2 < A < y, hence

2 §Ky§)/y:2y.
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(c) It suffices to choose o =6 = A, B = 2%, and y = Ry. Cantor’s theorem

(Theorem 7.49) tells us that ¢ < f; the fact that ©-> Rg and A > 2“ >
2%0 > Ry implies y < 8. Now let us compute ¥ and ﬂ5
o oY = A% = 1} = 2% [from part (b)];
® /35 (Zk)k zkx}» — 2A'
The desired equality follows.

15. (a) For every ordinal e, « is cofinal with «; note that the identity is a strictly

increasing, unbounded mapping from « into o (this is true even fora = 0
for the empty mapping also has these properties). So the relation is reflexive.
To prove that it is transitive, consider three ordinals &, 8, and y such that o
is cofinal with 8 and B is cofinal with y; so we have mappings f : @ — S
and g : B — v that are strictly increasing and without strict upper bounds.
Then g o f is a strictly increasing map from « into y. Let us prove that its
image does not have a strict upper bound. Let § be an element of y; we can
find an element £ € B such that g(§) > §, and then find an element { € «
such that f(¢) > &. Since g is increasing, we have

(8o ) =g(f(E) = gk) = 4.

The ordinal w is cofinal with R,; the map n — R, from w into R, is
strictly increasing with no strict upper bound. But &, is not cofinal with @
since there cannot exist an injective map (so certainly not a strictly increasing
one) from R, into w. The relation ‘is cofinal with’ is therefore not symmetric.

The ordinals with which 1 is cofinal are the successor ordinals; if & =
B + 1, then the map f from 1 (= {0}) into « defined by f(0) = B is
strictly increasing and its image is not strictly bounded (for if y € «, then
f(0) = B > y); thus, 1 is cofinal with . Conversely, if 1 is cofinal with
the ordinal @ and if f is a map from 1 into o whose image is not strictly
bounded, then (because 0 is the only element of 1) it must be that f(0) > §
for every § € «. This means that f(0) must be the greatest element in o;
this situation is possible only if o is a successor.

(b) If « and B are ordinals and B is cofinal with o, then the existence of a

strictly increasing map from B into « proves that g is less than or equal to

. The class of ordinals 8 such that g is cofinal with « is therefore the set

{B € a+1: Biscofinal with o} (axiom of comprehension). This set is not
empty since it contains o; its least element, cof{w), is therefore less than or
equal to o,

To prove that cof(«) is regular, we must show that cof(cof(a)) = cof(w).
From what we have just observed, cof(cof(a)) < cof(e) so it remains to
prove the reverse inequality. So suppose that y is an ordinal that is cofinal
with cof(«); then by transitivity, y is cofinal with «. Because cbf(a) is the
least ordinal that is cofinal with &, we have cof{e) < y. This shows that

cof() < cof(cof(a)).
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(c). First suppose that B > cof(«). Let f be a strictly increasing map from
cof(a) into o whose image is not strictly bounded. Then the map g from S
into « that agrees with f on the subset cof(«) of B and that is equal to 0
elsewhere is not strictly bounded in c.

Conversely, suppose there exists a map f from § into « whose image is
not strictly bounded. This means that the upper bound of the image of f is
the ordinal . Let § be the least ordinal in the set

{y =f:supf(§)=a}

tey

(This set is not empty since, as we have just seen, it contains 8.) We then
define a map g from & into « as follows: for every y € 6,

g(y) = sup f(§).
Eey

It is easy to check that g is increasing. The definition of § guarantees, on the
one hand, that the values assumed by g are in « and, on the other hand, that
its image has no strict upper bound in .. Let X denote the image of g and let
h be the mapping from X into § whose value, for x € X, is the least ordinal
£ such that x = g(&). One is easily convinced that 4 is an isomorphism
from X (with the order €) onto its image, which is some subset Y of 8.
Y is isomorphic to a unique ordinal o < § by Remark 7.23. Let ¢ denote
the isomorphism from ¢ onto ¥. We see that A~ o ¢, an isomorphism from
o onto X, is a strictly increasing map from ¢ into o whose image is not
strictly bounded. We conclude that o is cofinal with v, As aresult, 8, which
satisfies 8 > & > o, is greater than or equal to the cofinality of o. o

(d) It follows from part (a) that ¢ is a successor ordinal if and only if cof(a) = 1;
thus 1 is the only successor ordinal that can be regular, and it is indeed regular
since 0 is not cofinal with 1. So the unique regular successor ordinal is a
cardinal. Since 0 is cofinal with 0, it is regular; it too is a cardinal. It remains
to consider the regular limit ordinals. Let ¢ be such an ordinal and let A be
its cardinality. Of course, A < «; we can also choose a bijection f from A
onto «. Since « is a limit ordinal, the image of f is not strictly bounded
in . Because of question (c), we may conclude that A > cof(«) = «. The
conclusion is that @ = A so « is a cardinal. Thus, every regular ordinal is a
cardinal.

Let A be a cardinal that is a regular ordinal and let X be a subset of
A such that card(X) < A. With the well-ordering €, X is isomorphic to
an ordinal § < A by Remark 7.23; but this inequality must be strict since
card(s) = card(X) < A and A is itself a cardinal. Let ¢ be an isomorphism
from & onto X ; then ¢ is a strictly increasing map from § < A into A, whichis
regular by hypothesis. It follows immediately that ¢ is strictly bounded in A
or, equivalently, that the least upper bound of X is strictly less than A. Thus,
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A is a regular cardinal in the sense of Definition 7.87. Conversely, suppose
that X is a regular cardinal in the sense of Definition 7.87 and consider an
ordinal @ < X and a strictly increasing map f from « into A. The image
of f is a subset ¥ of A whose cardinality is strictly less than A (since its
cardinality is the same as that of «). It follows that the least upper bound of
Y is an element of A; this shows that the image of f is strictly bounded in A,
so « is not cofinal with A. Thus A is a regular ordinal.

(e) We now assume that the universe satisfies the axiom of choice. Let «

be an ordinal and let A be the cofinality of 8y41. There exists a strictly
increasing map f from A into Ryy; whose image is not strictly bounded.

‘Forevery B € A, f(B) € Ryt1,1.. f(B) < Ryy1, thus card(f(B)) < R.

Moreover, since f is not strictly bounded in &y41 which is a limit ordinal,
we have

Rt = 5up f(F) = L r.

pei

We conclude that

card( U f(ﬁ)) = Rat1.

Bel

But we also have (Corollary 7.72, with AC)

card( U f(,B)) < sup (k ZUp card(f(ﬂ)))

per

Consequently, Ry 11 < sup(A, supge, card(f(f))). Also, forevery B € A,
card(f(B)) < Ry, so SUPgey, card(f(B8)) < Ry < Wy41, which implies
that X > Ry11. But cof(Ry+1) < Ry41. Conclusion: 8.1 is regular.

Suppose that ¢« is a limit ordinal and let § be its cofinality. Let f be a
strictly increasing map from ¢ into o whose image is not strictly bounded.
Then the map g from & into R, that sends B (€ §) to Rg is also strictly
increasing, with no strict upper bound; this shows that § is cofinal with R,
and that cof(¥y) < . To show that cof(R,) = §, we will use question (c)
and show that if 8 is an ordinal strictly less than § and if 4 is a map from S
onto Ry, then A is strictly bounded in R, So let k be a map whose domain
is B and whose value, for y € B, is the unique ordinal & such that ¥, is
the cardinality of A(y); k is in fact a map from g into « and, from part (c),
since B is strictly less than the cofinality of «, k is strictly bounded by some
ordinal { € «. It follows that, for every y € B, h(y) < R;y1. Because
o is a limit ordinal, { +1 < o and Ry 11 < Ry; so h is strictly bounded
in Ry.

(f) The map n — w -+ n from w into w + w (the ordinal sum) is clearly strictly

increasing and not strictly bounded. Thus w is cofinal with w + w. It is also
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clear that w is not cofinal with any of the ordinals w+n (0 < n < w)because
any strictly increasing map from w into w+n must be strictly bounded by w.
The least ordinal strictly greater than @ with which w is cofinal is therefore
w+ w. When it comes to the least cardinal strictly greater than w with which
w is cofinal, we must assame that the universe satisfies the axiom of choice
to assert that it is 8,,; this follows from part (e).

16. (a) Let 6 be the cofinality of A. If § = A (in other words, if A is regular), then by.
Cantor’s theorem (Theoremn 7.49), A* > A.If not, there exists a limit ordinal
a such that A = Ry and cof(ar) = cof(A) and there exists a strictly increasing
map f from § into « that is not strictly bounded [part (e) of Exercise 15].
For every B € 8, set Ag = X p(g) and g = A. So for every B € §, we have
Ap < pg and, according to Konig’s theorem (Theorem 7.75),

card(UM) =A< card(ﬂulg> =A%,

Bes peéb

(b) Because Rg = Rg X N, we have 280 = 280x®0 — 2%0)R0_Sg it follows
from the preceding question that the cofinality of 280 is strictly greater
than w.

(c) e Suppose . < & (< A). Then every element f € A* is strictly bounded in

A [part (c) of Exercise 15]. This means that A* is included in |, ., «*.
@IfA = ut = 2% (so A is regular), then A* = (QH)* = 2131 —
20 = ).
(ii) If not, then for every cardinal « strictly between 1t and A, we have

K< QO = 2H =2 =t < )y

so of course, if ¥k < p, we will have k# < A,
As aresult,

A< CMd(UK“) =supkt < A.

Ker KEM

The inequality A < A* is obvious (u # 0), so we are able to conclude

A=A ‘

e Suppose § < u < A. From part (a) together with the GCH, we conclude
2% = AT < A% < A* <At =2 Thus, M =2,

e Suppose A < p. Then 2# < AP < puH = 2#; 50 A = 24,

17. (a) Weargue by contradiction. Let @ be a (definable) strictly increasing function
from On into On that does not have the property in question. Let § denote
the least ordinal for which ®(§) < §. Set 8 = ®(§); thus B < § and, by
the choice of §, ®(B) > B. This means that § < § and ®(B) = D(8); thus
® is not strictly increasing. Contradiction.
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(b) Let @ be an ordinal. By induction on the integers, we define a family of

ordinals (¢, : n € w):
e o is any ordinal strictly greater than o;
e forevery n € w, apr1 = ©(ay).

We then distinguish two cases: either there exists an integer n such that
op+1 = ay (in which case «, is a fixed point of & that is strictly greater
than o) or else the mapping n + «,, is a strictly increasing unbounded map
from w into the limit ordinal B = sup, ¢, @,. Thus w is cofinal with g, so
& is continuous at B, which means that

D(B) = sup ®(y) = sup ®(«,) (because P is increasing)

)/E,B new
= sup apt+1 = B;
new

once more, we have a fixed point of ®, namely g, that is strictly greater
than o.

(c) The properties of being strictly increasing and of being continuous at limit

ordinals are clearly preserved under composition. The construction in part
(b) can be redone with the function W o ®; starting with an arbitrary ordinal
«, we choose an ordinal ¢y > «, then for every n € o, we set o] =
(¥ o ®)(ay). From question (a), we know that, for every n € w, ay <
® (o) < (W o O)(ary) = opy41. It follows that if for some n, oy, = otp41,
then o, is a common fixed point of ® and W that is strictly greater than
«. In the opposite case, the ordinal 8 = sup,, o, 18 a fixed point of
W o ®. Because ® and W are strictly increasing, we have, from part (a),
B=Wod)B)>D(P)=pPand f = D(B) = V(B). So B is a common
fixed point of ® and W that is greater than .

(d) Let ® and W be the maps that, with each ordinal «, associate ¥, and Vj,

respectively. It is immediate from their definitions that these functions are
continuous at limit ordinals. It is obvious that ® is strictly increasing. Also,
W is strictly increasing, forifo < B, thena+1 < 8,50 p(Vy) = Vo1 €
Vg, which shows that

card(V,) < 26240 — card(V,41) < card(Vp).

So we may apply part (c) to conclude that, for every ordinal «, there exists
an ordinal B > « that is a common fixed point of ¢ and W, i.e. such that

Ry = card(V,) = a. |

18. (a) We use the results from Exercise 16. We have R, = sup,,¢,, Ry; but

oo =M 5 R, = sup R, 41 = sup 2™ = sup o™
new new new
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Thus the first function is not continuous at w. Nor is the second one, for that
matter: !

(Na))w = 2% > Ry =sup R4y = SUP(N;1+1)(L)-
new new

(b) For the first function, the answer is ‘yes’ (refer to the definition of ordinal
sum). The second function is not continuous at w:

(supn)—}-w:a)—I—w but sup(n + w) = w.

n=Xw@ new

The third function is continuous at every limit ordinal (refer to the definition
of ordinal product). The fourth function is not continuous at w:

2-(supn):2‘a)=a5+a) but sup(2 - n) = w.

new new

19. Assume that the universe U/ satisfies AF (so it coincides with the class V). If
a formula F with one free variable defines a non-empty class, in other words,
if U F Jup F[vo], then we can choose from this class an element a of minimal
rank; this means that there exists an ordinal « such that a € V,, and that, for
every ordinal 8 < o, no element of Vg satisfies F. It is then clear that, for
every set b such that b € a, U E —F[b] since the rank of b is strictly less
than the rank of a. This proves that the proposed axiom scheme is satisfied
inY.

Conversely, suppose that the scheme is satisfied and consider the formula

Flvp] = Yv1(Onlvi] = —vp € V,,) which defines the class X of sets that do -

not belong to V. If the class X is not empty, we can find, thanks to the axiom
scheme, a set a in this class with the property that if b € a, then b does not
belong to X. In other words, all the elements of @ must belong to ), and hence
to V,, for some appropriate «; a would then be a subset of V,,, hence an element
of Vg1, and hence an element of V. This contradiction proves that the class A’
is empty or, equivalently, that the universe coincides with V; this shows that it
satisfies AF (see Theorem 7.80).

20. (a) Itisclear that a closed cofinal set is not empty. To show that the set of closed
cofinal subsets forms a filterbase, it will suffice to apply the result that will
be proved next in part (b) to the special case of finite families of closed
cofinal sets.

(b) SetX = ();¢; Xi.Itisclearthat X is closed, forif ¥ C X and card(Y) < A,
thenforalli € I,Y C X;andsupY € X;; thussupY € X.

Let us prove that X is also cofinal. Let a € A. We define a sequence
(fi)new of mappings from 7 into A by induction as follows: foralli € I,
fo(i) is the least element of X; thatis greater than a (there exists one because
X; is cofinal); for all n € w and for all i € I, f,41(i) is the least ordinal
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in X; that is greater than sup{f,(j) : j € I}. [Note that the cardina}ity of
the set { f;,(j) : j € I} is strictly less than A, so that sup{f,(j) : j € I}is

' also strictly less than A.]

(c)

(d)

(e

Foreveryi € I, {f;(i) : 'n € w} is a denumerable subset of X;; hence
a; = sup{f,({) : i € I}is anelement of X;. But for all i and j belonging
to I, o; = aj; this is because by definition of the mappings f,, we have
far1@) > fu(j) for all n € w, which shows that &; > ;. An analogous
argument shows that @; > o;, so o; = «;. Consequently, the common
value of all these «; belongs to X.

The implication (1) = (2) is more or less obvious; if Y] and ¥, are two
disjoint stationary sets, then at least one of them cannot include a closed
cofinal set, otherwise their intersection would not be empty.

The other implications are not any more difficult once we have observed
the following fact: let F be the filter generated by the closed cofinal sets;
then a subset Y of A is stationary if and only if its complement does not
belong to F.

We first show that A(X) is closed. Let Y be a subset of A(X) whose cardi-
nality is strictly less than A. Y is well-ordered by the membership relation
and is therefore isomorphic to an ordinal ¢ that must be less than A. There
exists a strictly increasing bijection f from o onto Y. By definition of A(X),
forevery B € a, f(B) € Xr(p).

Let y = sup Y. We must show that y € X,. This is clearif y € Y. If
not, then « is a limit ordinal and, for every § € «, y = sup(f(§) : B <
§ <o) Butif 8 <6 < a, then Xr5y € Xy(p) [by property (2)], so
f(8) € Xyp). Since X p(p) is closed, it follows that y € X r(g); since this
is true for all B € «, we see that y € (\gey X f(p), Which is equal to X,
[by property (3)].

Now, let us show that A(X) is cofinal. Let « € A. Define a sequence
(ay : n € w)byinduction, setting &g = « and ¢, 41 equal to the least ordinal
that belongs to X, and is strictly greater than «,,. Set B = sup(@, : n € w).
Once again using the same type of argument, we see that 8 € X g and hence
that B € A(X).

We will prove the contrapositive of Fodor’s theorem. Let f be a map from
X into A and assume that, for every a € A, f~!(«) is not stationary. We will
construct a closed cofinal set X such that, for every @ € X, f(x) > «.

From the hypotheses together with the axiom of choice, we can find a
family (Ty : « € X) of closed cofinal subsets of A such that, for every
a € A and for every B € Ty, f(B) # «. We then define another family
(Xq : a € )) of closed cofinal subsets of A by induction as follows:

-] XO — A,,
e if ¢ is a limit ordinal, then X, = ﬂﬂea Xp;
e ifa=p-+1,then Xy = Xg N Tp.
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The family (X, : o € A) satisfies conditions (1), (2), and (3) of the
previous question and, moreover, for every o € A and for every 8 € X,
f(B) > « (this is easy to check).

Let Y be the diagonal intersection of this family. This is a closed cofinal
setand, if ¢ € Y, then o € Xy; hence (&) > «.

(f) We will show that every closed cofinal subset X of A contains an ordinal
whose cofinality is Ng. Define a strictly increasing sequence of ordinals.
(an © 1 € w) by induction, setting «g equal to the least ordinal belonging
to X, and «,41 equal to the least element of X strictly greater than «,,. It
is then clear that the cofinality of B = sup(o, : n € w) is Ry and that
belongs to X since X is closed. So it follows that the set of elements of A that
have cofinality Ryg intersects every closed cofinal subset of A; it is therefore
stationary.

To show that the set of elements of A that have cofinality R; is also
stationary, the argument is similar. If X is a closed cofinal set, we again
define by induction a strictly increasing sequence (o; : i € R1) of elements
of X and we set B = sup(e; : i € Ry);then B € X and the cofinality of 8
is clearly less than or equal to . We finally prove by contradiction that it
cannot equal Rg; for if so, then there exists a strictly increasing sequence of
ordinals (y, : n € w) such that sup(y, : n € @) = B = sup(a; : i € Ry).
For each integer n, set

An - (l € N] Lo = )/n}~

Since the sequence (¢; : § € Ryp) is strictly increasing and is not bounded
by yu, A, is a proper initial segment of Ry and is therefore denumerable.
Besides, if i € ¥, there exists an integer n such that o;; < ¥, which proves
that | J,,.,, An = Rp; but this is not possible by Corollary 7.72.

It is obvious that the cofinality of an ordinal cannot simultaneously equal
Ko and 81; so we have found a pair of disjoint stationary sets.

(g) For every a € Ry, h,(a) € «, so we may apply Fodor’s theorem; there
exists 8, € Ry such that h;l (Br) is a stationary set. Let Y}, denote this set
(from which 0 has been removed if it was present). Then, forevery y € ¥,
fy(n):hn(y):ﬁw o

Let y € (),ep Yn- Forevery n € w, f,(n) = hy(y) = B,. Since f,
is a surjective map from w onto y, we see that y = {B, : n € w}. So we
conclude that (), ., Yy is not a cofinal set, so it does not include any cofinal
subset. Together with part (a), this shows that at least one of the sets ¥,, does
not belong to F.

21. (a) The comments in Remark 7.82 show that if « is a limit ordinal, then (V,, €)
satisfies the axioms of extensionality, pairs, and subsets. Moreover, since «
is strictly greater than w, it also satisfies the axiom of infinity, 1.e. in {Vy, €),
w is an ordinal that is neither zero nor a successor.
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It remains to prove the comprehension axioms. Let Flvg, vy, ..., v,] be
a formula of L and let b, ay, as, ..., a, be sets in V. We know that there
exists a set ¢ such that

UEYwwece (we b/\FV"[w,al,.‘.,an])).

It is clear that ¢ € b. Since there exists 8 < « such that b € Vg we have
¢ € Vg41. Since « is a limit ordinal, 8 +1 < «, so ¢ € V. By construction
of the formula FV¢, we have

UEYwwecs (webAFw,ay,...,a))
if and only if
(Vo, €) EYw(w € c & (w € bA Flw, ai; ..., ayl)).

So the comprehension axioms are true in (V, €).

(b) If ZF is not consistent, then it is surely not a consequence of Z, which is
consistent by hypothesis. So suppose that ZF is consistent and let I/ be a
model of ZF. Consider the set V., defined inside this model /. (Here,
@ + o denotes the ordinal sum.) We have just seen that (Vy44, €) is a
model of Z. But it is not a model of ZF, for otherwise we would be able to
define by induction a sequence of ordinals («, : n € w) by setting

oy = w,
Opp1 = oy + 1.

We then see that, in (Vay, €), the set |
ordinals; this violates Proposition 7.25.

new %n 18 equal to the class of all

22. To begin with, (W, €) satisfies the axiom of extensionality since this axiom is
a universal statement and (W, €) is a substructure of /. In addition, for all sets
x and y, cl({x, y}) = cl(x) Ucl(y) U {x, y}; thus cl({x, y}) is denumerable if
cl(x) and cl(y) are. It follows that (W, €) satisfies the axiom of pairs. By the
very definition of transitive closure, the inclusion cl(|,, #) € cl(x) is true for
all x; this shows that (MWW, €) satisfies the axiom of unions.
We leave it to the reader to verify, by referring to the definition of the ordinals,
that for every x in W,

(W, e) E On(x) ifandonlyif UF On(x).
Now cl{w) = w, thus o is in W and we see that
(W, €) E ‘o is an ordinal that is neither zero nor a successor’.

So (W, €) satisfies the axiom of infinity.
We are now left with the most difficult, the axioms of replacement. Let W[vg]
abbreviate the formula ‘Cl(vg) is denumerable’,
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Let Flwg, w1, vg, V1, ..., Uy] be a formula of L and let b, ag, a;, cony @y DE
sets in W; suppose also that the formula F[wg, wy, vg, vy, . . ., v, ] is functional
in vg, in (W, €), in other words, that '

(W, €) F YwoVYwiYwa ((Flwo, wy, ao, . .., a]
A F[w()) w?,) aOs LA »an]) : wl = w2)'

This implies that

U E Ywo((Wlwg] A Ww ] A Wlw,]
A FW[wo, wy, ag, . .., ay] A FW{wo, wa, ag, . . ., an))
= w; X~ wy);

so the formula
Wlwol A Wlwy] A F¥[wo, wi, ao, a1, . . ., ax]

is functional in wyq in . By the axiom of replacement in U/, we conclude that
there exists a set ¢ such that

U E Yug(vg € ¢ & Jwy € b (Wlwo] A Wlwvg]
A FW¥[wo, vo, ag, a1, . . ., an1)). @)

The set ¢ is denumerable because the formula F W[wo, Wi, ag, Al -+ .,y
defines a surjective map from a subset of b, which is denumerable since it is in
W, onto c¢ (see Proposition 7.62). Besides, all the elements of ¢ are in W by
definition. Since cl(c) = ¢ U | J,, cl(t), we see that ¢ is in W. From (1), we -
conclude that

(W, €) E Yug(vg € ¢ & Jwg € b Flwo, vo, ao, ai, . .., anl).

So the replacement axioms are satisfied in (W, €).

It is clear that all the subsets of w are in WV; but g (w), which is not denu-
merable, is not in W; this shows that (W, €) does not satisfy the axiom of
subsets.

Every real number r in the interval (0,1] has a decimal expansion. This means
that there is a sequence (a; : [ € w) of integers, all between 0 and 9 inclusive,
such that

aj

'ﬁ-

i>1

ryr =

This expansion is not unique. However, if we set

S*={s€(0,1,2,3,4,5,6,7,8,9)“ :
for every n € w, there exists p > n such that s(p) # 0},
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then, for every r € (0, 1], there exists one and only one element (a; : i € w) €
S* such that r —-Zl>1a,/10 :

To show that the interval (0, 1} is not denumerable it suffices to show that $*
is not denumerable; this amounts to showing that if (s' : i € w) isa sequence
of elements of S*, then there exists an element s in $* that is not equal to any
of the s'. We may define such an s by

s@) =1 ifs'() #1;
s@) =2 ifs'(@) = 1.

Solutions to the exercises for Chapter 8

1. (a) Begin by noting that the set N* = N — {0} is an example of a set that is
disjoint from its power set (0 belongs to every element of N* but to none of
its subsets).

Myx E Hpbecause X and g (X) constitute a partition of My; My E H,
because, for every pair (x, y) € A, we have x € X and yeEpX), MxE
H, by extensionality; Mx F Hi because the empty set is an element of

g (X); Mx E Hg because every subset x € g (X) has a complement in X;
My F Hs because

forall subsets x e p(X)and y € o (X), xUy € p(X);
finally, for every n > 1, Mx E F), because
for all elements xy, x2,...,x, of X,  {xy, x2, ..., x4} € p(X).

(b) Yes. The language is denumerable, the theory T has infinite models [for
example, the model My from part (a) when X is infinite]; thus by the
downward Lowenheim-Skolem theorem, T has a denumerable model. In
fact, we can easily describe one by taking X to be some denumerable set in
part (a); it is the substructure of M x whose base set is

X Uéof(X) U@cof(X)y

where g7 (X) is the set of finite subsets of X and g.,(X) is the set of
cofinite subsets of X. It is easy to check that this is a denumerable model
of T.

(¢) They are all integers of the form k + 2%, where k € N.

(d) We leave to the reader the task of proving, using Hs, that, for every integer
n > 1, we have {Ho, Hi, Hy, H3, Hy, Hs, F1} = F,.

(e) Let Mg denote the model described in part (b) whose base set is

XU @f(X) U@cof(X);
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to be precise, we will take X = N*. We are going to describe a denumerable

model M| of T that is not isomorphic to M. Let C be an infinite subset of
X whose complement is also infinite (for example, the set of even integers).
Consider the Boolean subalgebra B of g (X) generated by

£ 1 (X) U gcor(X) U {C}

B is still denumerable. For M|, take the substructure of My whose base -

set is X U B; it is easy to verify that this is a model of T
We will now prove that Mg is not isomorphic to M. For every integer
p > 0, consider the formula

Fplvol = Jvdvg ... Juy (VUJQ(AU)QUO =>( \/ wgy 1’,’))

I<i<p

\% Vw0<~wAw0vo = ( \/ wo U,'))).
I<i=p

Then My has the following property:

for every element x of Mo, there exists an integer p
such that Mg F F,[x].

Obviously, this property must also be satisfied by any structure that is
isomorphic to Mp; but M does not have this property since C does not
satisfy any of the formulas F,, in M.

2. In what follows, the word ‘preliminaries’ refers to results found in the solution
to Exercise 15 from Chapter 3.

e (a) Itis clear that the relation ~ is reflexive (take m = n = p = ¢ = O in the

definition) and symmetric. Suppose thata, b,ce€ M, thata ~ b and b =~ c.
So there exist natural numbers m, »n, p, g, r, s, {, and u such that

d"in(gil (a)) = jp(gq (b)) and C?r (gs (b)) = gt (g“ (C))
The fact that d and g commute implies (see the preliminaries)
amtr (g”‘H (a)) = aprtr (§Q+S b)) = artr (gu—{—q ()),

which proves that a = c.

Since for every element a of M, a = d(a) and a ~ Z(a), the grill of a is
closed under the mappings d and g.

Note that this property is stronger than mere compatibility of the relation =
with the mappings d and g [which would say thatif a = b, then d(a) ~ d(b)
and g(a) ~ g(b)].

Let G be a grill of M. The fact that G is closed under d and g is suffi-
cient to guarantee that (G,d | G,g | G) is a substructure G of M. All
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closed universal formulas of L that are satisfied in M are also satisfied in G
(Corollary 8.38). So to show that G is a model of T', we need only check that
G satisfies the formulas of T that are not universal, i.e. the formulas Vx3u
du ~ x and Vx3v gv =~ x. So let a be an element of G. Because these
formulas are true in M, we can find two elements b and ¢ in M such that
a = d(b) = g(c). But we have just proved that b & d(b) and ¢ ~ g(c). As a
result, b and c are in the same grill as a, i.e. in G; this proves that the formulas
in question are satisfied in G.

e The standard model (see the preliminaries) has a unique grill; to see this,
consider two pairs (i, j) and (k, 1) in Z? and set m = sup(j —[,0), n =
sup(i—k, 0), p = sup(l—j, 0),and g = sup(k—i, 0); itis then easy to see that

sam (sgn (i, J)) = sar (sga (k, 1)),
which shows that (i, j) =~ (k, ).

We will now prove a property which will be of use in some later questions.
In a model M = (M,d, g) of T, every grill G determines an L-structure
G = (G,d | G, g | G) that is isomorphic to the standard structure M.

Let a be an element of G. Consider the mapping ¢ from Z x 7Z into M
which, with the pair (i, j), associates the element d’ (&' (a)) of M. We leave it
to the reader to verify that ¢ is injective, that its image is G, and that ¢ is an
isomorphism from Mg onto G.

(b) Let T’ denote the theory in the language L’ obtained by adding to T
all the formulas Guppg (for m,n, p,q € N). Given an L’-structure M’ =
(M,d, g, X, i) thatis amodel of 7', the underlying L-structure M = (M, d, 2)
is obviously a model of 7'; and the elements A and i are not ~-equivalent, for
if they were, one of the formulas G,,,p, would not be satisfied in M. So the
model M contains at least two grills (those of A and of 1) and is therefore not
isomorphic to the standard model. Thus the existence of a model for the theory
T’ implies the existence of a non-standard model for the theory T,

So it remains to prove the existence of a model of T7; in view of the compact-
ness theorem, this amounts to proving the existence of a model for an arbitrary
finite subset of T. Let Ty be a finite subset of 7”. There exists a natural number
N such that

To € Ty =T U {Gmnpq : sup(m,n, p,q) < N}.

Let My be the L’-structure obtained by enriching the standard L-structure Mg
with the following interpretations of A and fi:

A =(0,0), p=N+1N+1).
If m, n, p, and g are natural numbers less than or equal to NV, we have

Sqm (Sgn (;,)) = (n, m) while Sqp (qu (/2)) = (N -+ 1, N + 1),
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which shows that the formula G4 is satisfied in the structure My; so My
is a model of Tx and, a fortiori, of Tp.
(c) Consider the structure My = (M4, d4, g4), where
e Mg =AX17 x17,
eforalla € A and for all i,j € N, da((a,i,j)) = (a,i,j + 1) and
gal(a, i, j)) = (a,i + 1, j). ‘
It is easy to verify that M, is a model of T'. Also, if (a, i, j) and (@', i’, j)
are elements of M4, then (a, i, j) ~ (d/,i’, j') if and only if a = d’; this is
because the map that, with a € A, associates the set '

{(@,i,j): (,])eZxZ}

is a bijection from A onto the set of grills of My4.

It is natural to feel that this question renders the previous one superfluous
since we have done more here than prove the existence of a non-standard model
of T : we have explicitly described one. A

(d)Let M = (M, dy, g1) and N = (N, dy, g2) be two models of T and let ¢
be a bijection from the set M/~ of grills of M onto the set N/~ of grills of /.,
Because, as we have seen, every grill is isomorphic to the standard model, we
may conclude that we can always find an isomorphism between any two grills
(not necessarily extracted from the same model). For every grill G € M/ ~,
choose an isomorphism ¢ from G onto o (G) (notice that we are identifying
a grill with its associated L-structure and that, besides, we are using the axiom
of choice).

The union ¢ of all the maps ¢ for G € M/~ is an isomorphism from M
onto V.

(e) If A is a set with one element and B is a set with two elements, we see that
models M4 and Mg, which are denumerable, are not isomorphic (M 4 has
one grill while M p has two). Thus T is not ¥g-categorical.

Moreover, if M is a model of T and if we let C denote the set of its grills,
we note, from part (d), that M is isomorphic to M and hence that

card(M) = card(C x Z x Z) = sup(Rp, card(C)).

It follows that the cardinality of the set of grills of a denumerable model of
T is either a positive integer or Rp; it is therefore a non-zero element of the
denumerable set w 4+ 1 = @ U {w}.

The mapping ¢ from & into @ + 1 that, with each element of /X', associates
the cardinality of its set of grills is injective; to see this, note that if M € X,
N € X, and ¢(M) = c(N), then from part (d), M and A/ are isomorphic, so
according to the properties of X, M = N. This proves that the cardinality of
X is at most Rg.

But we have also seen that, for every non-zero element x of w + 1, M is a
model of T whose set of grills has the same cardinality as x. The properties of
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X imply that we can find a model that is isomorphic to /\/l\ So the map €18
surjective onto (w + 1) — {0}.

The cardinality of X is therefore exactly Rg.

(f) Let « be an uncountable cardinal. We have seen that if M is a model of T
and if C is the set of its grills, then card(M) = sup(Rg, card(C)). This implies
that if the cardinality of M is equal to «, then the cardinality of C is also equal
to . Thus, all models of cardinality « are isomorphic and T is categorical in
every uncountable cardinal.

3. (a)

(b)

We argue by induction on ¢. If £ is a variable x, then
TEVxt fox.

If t = fpu and if we assume (induction hypothesis) that T = Vx u > fqx,
thenwehave T + Vx ¢t =~ fg fox, 50, according to the second set of formulas
inT, if y = Ba, then

THVxt>fyx.

This same argument also shows that, for the variable x, we can take the
one that appears in the term ¢ (there is only one since the language has only
unary function symbols and no constant symbols).

Since there are no relation symbols other than the symbol for equality, every
atomic formula is of the form ¢ ~ u, where ¢ and u are terms. Since each
term involves at most one variable, each atomic formula can involve at most
two variables.

Consequently, given an atomic formula F[vg, vi], there are two terms ¢

and u such that F = ¢ ~ u. We may assume that vg is the variable that
occurs in ¢ and, if we let x denote the variable that occurs in u, then we
have x = vg or x = v;. As seen in part (a), there exist elements  and y of
G such that

TVt~ faoo and T Vxuz fyx.

Seta =B loy.

e If x = vg, we have
T = Yuo(F & fgvo = fyvo);
and therefore,
T b Voo(F € v = favo);
if « = e, we obtain T = YyoVu1 F and if « # e, we obtain

T = Yy~ F.
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e If x = vy, we have
T - YuoVu (F 6 fevo = fyvr);
and therefore,
T FVYuVui(F & vg = fyup).

(c) This presents no problem and is left to the reader.

(d) To show that O(a) is a substructure of M, we use the fact that, for all «
and B in G, ¢g(da(a)) = Pp.o(a). It is straightforward to check that the
mapping whose value at « is ¢, (@) is a monomorphism from G into M and
that its image is O (a).

Letus prove that X j/ is a partition of M. Begin by noting thatif b € O(a),
then a € O(D) [forif b = ¢q(a), thena = ¢,-1(b)] and O(a) = O(b).
Suppose that O(a) and O(b) are not disjoint; then if ¢ belongs to their
intersection, O(a) = O(c) = O(b). Two distinct elements of X,y are
therefore disjoint and, in addition, it is clear that the union of all the elements
of X is equal to the whole of M.

We now assume that the partitions Xy and Xy associated with two
models M and N are equipotent. Thanks to the axiom of choice, we can
find two families (o, : x € Xy) and (b, : y € Xy) such that, for all
X € Xp,a, € xand, forally e Xy, by € y. There exists a bijection o
from X s onto X, and the map 7 from (ay : x € X ) into (by:y€ Xn)
defined for all x € X by

T(ay) = ba(x)

is also a bijection. The reader can then verify that the mapping 7 defined
forallo € G and x € X by

7T (Palax)) = ¢u(r(ay))

is an isomorphism from M onto .

(e) The proof is analogous to that of part (f) of Exercise 2. We show that if
is an infinite cardinal that is strictly greater than the cardinality of G, then
T is k-categorical. Every model of T' contains a copy of G and is therefore
infinite. T is complete by Vaught’s theorem.

(f) If the cardinality « of G is finite, the preceding argument remains valid
for all models whose cardinality, A, is infinite; the theory is A-categorical.
However, we may no longer conclude that the theory is complete since, in
this case, it has finite models, the model G in particular, so Vaught’s theorem
is no longer applicable. The formula

3x13x2,..3xK< /\ X X X;AVX \/ x:x,')

I<i<j<k 1<i<k
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is satisfied in the model G but is not satisfied in any infinite model of T
(such as the one that we would obtain by taking the union of denumerably
many pairwise disjoint copies of G). So in this case, the theory is not com-
plete. Nonetheless, we do have a complete theory if we add formulas to T
expressing that the base set is infinite (see Section 3.5 of Chapter 3); we are
then once again in a situation where Vaught’s theorem applies.

4. (a) Let

EQ = {YvgRvgug} U {VvoVvi(Rvovy = Rvivg))
U {YugYv1 Yua ((Rugvy A Rujv) = Rupua)}.

Also, for k € N — {0, 1}, let Fy and Gy, respectively, denote the following
formulas:

Fui3vy ... dug /\ —Rv;v; and

1<i<j<k

VvoEIle!vz...Elvk< /\ - XU A /\ Rvov,->.

I<i<j<k I<i<k
As our theory T we take
T=EQU({F,: ke N—{0,1}}JU{Gy: ke N~-{0, 1}}.

(The first of these sets expresses that the interpretation of R is an equivalence
relation, the second that there are infinitely many equivalence classes, and
the third that each equivalence class is infinite.) '

Let A and B be two non-empty sets. Consider the L-structure

Ma,p = {(Ma,B, Ra,g),

where M4 p = Ax B and where for (a, b) and (@', b’)in M4 B, Ra,5((a, b),
(a’, b)) if and only if @ = a@’. This is a model of EQ and, if A and B are
both infinite, is a model of T.

(b) Suppose that T is equivalent to a finite set of formulas, A. By compactness,
each formula of A is a consequence of some finite subset of T' and, hence,
the whole of A itself is a consequence of some finite subset S of 7. As T
is a consequence of A, T is also a consequence of S; hence S and 7" are
equivalent. We can find an integer N such that § is included in

Ty =EQU({Fy: 1 <k <N}U{Gr: 1 <k < N}.

We arrive at a contradiction when we consider two sets A and B of cardi-
nality N; M4 g is a model of Ty but is not a model of 7.

(c) Let )\ be an uncountable cardinal. Then the structures M, ,, and My, ) are
two models of T of cardinality A that are not isomorphic; each equivalence
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- class of the first is denumerable while those of the second have cardinality .
So the theory T is not categorical in any uncountable cardinal. We can also
see that if M’ is a model of T and if there exists an injection of M A0
into M’, then M’ has at least A equivalence classes; so there cannot exist
an elementary embedding of M} , into M, ;. Silnilariy, if there exists
an injection from M, , into M’, then certain classes of M’ (those that
contain the image of some element of M,, ») have cardinality at least A; so
there cannot exist an elementary embedding of M,,  into M, ,,.

Let (M, Ry) and (N, Ry) be two denumerable models of 7. The sets
M /Ry and N / Ry are infinite, hence denumerable; so there exists a bijection

¢:M/Ry — N/Ry.

The equivalence classes for Ry and Ry are also denumerable; so for every
i € M/Rpy, we can find a bijection f; from i onto ¢ (i).
The unionof the f;, i.e. themapping f : M — N definedforalla € M by

f@ = fuwa)

[where cl(a) is the equivalence class of @ modulo Ryy], is a bijection from
M onto N and is an isomorphism from (M, Rys) onto {N, Ry).

So the theory T is Rp-categorical and is not categorical in any infinite
cardinal other that Ry,

(d) From all that has preceded, we can conclude using Vaught’s theorem (after
noting that 7' obviously has no finite models) that T is a complete theory.

(e) Every L-structure that is a model of T can be enriched to an Lg-structure |
that is a model of 77 ; to do this, it suffices to interpret the symbols ¢, for
n € N, by elements from different equivalence classes (which is possible
since there are infinitely many such classes). For example, if we start with
the model M4 p constructed in part (a) with A and B infinite, we may
choose pairwise distinct points a, € A, forn € N, and a point b € B and
interpret ¢, by (ay, b); in this way, we obtain a model of T
To show that Ty is not equivalent to a finite theory, show that every finite
subset of Ty has a finite model; this can be done using an argument that is
analogous to the one used above in part (b).

(f) The argument employed above in part (c) to prove that the theory T is not
categorical in any uncountable cardinal can be reused to arrive at the same
conclusion for 774 ; it is sufficient to enrich the two non-isomorphic models
of cardinality A from part (c) to models of 7'y by applying the method from
part (e); the resulting L ,-structures cannot be isomorphic.

But unlike T, the theory T, is not Rp-categorical. Take, for example,
the model M  from part (a) and enrich it to an Leo-structure in two
different ways. On the one hand, for every n € N, when we interpret the
constant ¢, by the pair (n, 0), we obtain a denumerable model of T, which
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we will call Mg. On the other hand, when, for every n € N, we interpret
the constant ¢, by the pair (n + 1,0), we obtain another denumerable
model which we will call M. These models cannot be isomorphic for the
following reason; every monomorphism # from My into M must send
(n,0) to (n -+ 1, 0); so h must, for every n € N, send the set

(x e Nx N: Mo FE Reyx} ={(n,y): yeNj}
into the set
(xeNxN: MiERcx}={(n+1,y): yeN}

thus, the point (0, 0) does not belong to the image of &; so the monomor-
phism A from My into M is not surjective.

Let Rj and R; be the interpretations of R in M and M, respectively, and,
for every p € N, let a, and b, be the interpretations of ¢, in M; and My,
respectively. We begin by defining a bijection ~ from M) /R, onto M2 /R,
in such a way that

for every integer p, if 0 < p <n, thenh(cl(ap)) = cl(bp).

It is clear that this can be done. [Here, cl(x) denotes the equivalence class
of x modulo Ry or R, according as x is in M or M,.] Next, for every
o € Mi/R,, define a bijection f, from « onto k(e in such a way that

if0 < p <n and « =cl(ap), then fy(ap) =bp.

The union of the mappings fy for o € My/ R 1 is an isomorphism from.

My | L, onto My | L.

We are now in a position to prove by contradiction that 7'} is a complete
theory in Leo. If it is not complete, we can find a closed formula F of Lo,
a denumerable model M of T U {F}, and a denumerable model M of
T, U {—F}. Since F involves only finitely many symbols, there exists an
integer n such that F' € L,. We have just seen that M [ 'L, and M3 | L,
are isomorphic, but this contradicts the fact that one satisfies " and the other
satisfies = F.

5. (a) Let A be an infinite cardinal and let M = (M, ...) be a A-structure; so M

is an infinite set. The value of the formula x 22 x in M is M. This set is not
finite; so it is a set of cardinality A.

(b) In a structure M = (M, ...} of cardinality R, every subset of M is either

finite or of cardinality R¢. In particular, this is true for those subsets of M
that are the value in M of some formula of F}; thus M is an Rg-structure.

(c) Let A be an infinite cardinal. Adjoin to L a set of new constant symbols, C,

of cardinality A and, in the enriched language, consider the theory

Tr =TU{F[c]: ce C}U{-c=d: cs#d,c,deC}.
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- It is clear that the reduct to the language L of any model of TF is a model
of T in which the value of the formula F has cardinality greater than or
equal to A. To show that Tr has at least one model, we can use a basic
compactness argument; it suffices to show, for every finite subset Cy of C,
that the theory

T'=TU{F[c]l: ce Co}U{~c>d: c#d, ¢, d € Co}

has amodel. By hypothesis, there exists amodel M of T such that Val(F, M)
has cardinality greater than that of Co. We enrich M to a model of T’ by
interpreting the symbols in Cq by distinct points of Val(F, M) (there are
sufficiently many); the remaining points of C can be interpreted arbitrarily.

According to the downward Lowenheim—Skolem theorem, we can find a
model A of Tr whose cardinality is that of the enriched language which,
in this case, is equal to A since L is denumerable. The value of F in A/ must
have cardinality A. The reduct of AV to the language L is therefore a model
of T that answers the question.

(d) Let A be an infinite cardinal and let Mg be an infinite model of T'. Set
A ={G € F\ : Val(G, Mp) is infinite}.

For every formula F of A, let Cr be a set of constant symbols of cardinality
A chosen so that if /' and G are distinct elements of A, then the sets Cg
and Cg are disjoint. For F' € A, consider the following theory:

Tp=TU({F[c]: ceClU{~c~d: c#d, ¢, d € Cr).

Let T/ = Th(M) U Jpeu TF.
We begin by showing that 7" is consistent; by compactness, it is sufficient
to show that if Ag is a finite subset of A and D is a finite subset of Cr, then

T" = ThOM) U [F[c] : F € Agand ¢ € Df)

U Jtrc~d: c#dandc, de Dp)
FeAg

has a model. We can enrich M to a model of T”; we simply need, for each
F € Ao, to interpret the symbols of Df (there are only finitely many) by
distinct points of Val(F, M) (which is an infinite set).

So we see that 7/ has a model and, as in part (c), that it has a model of
cardinality A. Let A/’ be such a model and let AV be its reduct to L. We will
now prove that A is a A-model. Let F € F|.If F € A, then Val(F, N) has
cardinality A by construction. If F' ¢ A, then Val(F, N) is finite; let n be
its cardinality. Thus the closed formula

H:Vvo‘v’vl...‘v’vn( N\ Fluil= \/ u;:vj)

O<i<n O<i<jzn
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is true in M. Since A and M have the same theory, Val(F, N) is finite; so
N is a A-model. : :

(e) We argue by contradiction. Suppose that S is not complete; then there is a
closed formula F of L such that the theories SU {F'} and S U {—F} are both
consistent. Just as S, these theories only have infinite models. According to
part (d), each of these theories has a A-model for every infinite cardinal A.
If we choose A so that all A-models of S are isomorphic, we arrive at a
contradiction since, among these isomorphic A-models, one must satisfy F
and another must satisfy —F, which is impossible. Thus, the theory § is
complete. ‘

6. (a) The structure (Z, n > n + 1) is obviously a model of T;; we will call this
the standard model. In every modei M = (M, ¢) of T;, we can define un
equivalence relation ~ by

a ~ b if and only if there exists n € N
such thata = ¢"(b) or b = ¢"(a).

The equivalence class of a for the relation ~ will be called its orbit. Each
orbit determines a substructure of M that is a model of T} isomorphic to
the standard model. For two models of 77 to be isomorphic, it is necessary
and sufficient their sets of orbits be equipotent. If « is an uncountable car-
dinal, the set of orbits of any model of T} of cardinality ¥ must also have
cardinality « since each orbit is denumerable. It follows that the theory T}
is «c-categorical and, since all its models are infinite, it is.also complete
(Vaught’s theorem). '

(b) A model M = (M, ¢, 2) of T; is a model of T| enhanced by a ‘colouring’
(with two colours) of its orbits; each orbit is either included in €2 (let us
call these red) or is included in M — Q (call these yellow). The formula
Vx(Px < Pfx) excludes all other possibilities. Moreover, each color is
effectively present (3x Px, 3x— Px). For two models of 75 to be isomorphic,
itis necessary and sufficient that the sets of their red orbits are equipotent, as
well as the sets of their yellow orbits. Let « be an arbitrary infinite cardinal.
We obtain two non-isomorphic models of T, of cardinality « by taking, on
the one hand, a model that has one red orbit and « yellow orbits and, on the
other hand, a model with one yellow orbit and « red orbits. To be precise,
wecouldtake M =Z Xk, ¢ = (n,a) = (n+ 1, ), 2 = Z x {0}, and
Qo = 7Z x (k — {0}); then set

M1:<M’¢’Ql> and MZZ(M’¢,Q2)~

This shows that 7} is not k -categorical.

(c) Let A be anuncountable cardinal and let M = (M, ¢, Q) be a A-model of T,
[see the previous exercise, especially part (d)]. The value of the formula Px
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in.M is not a finite set (there is at least one orbit included in €2, a red orbit); it
follows (because M is a A-model) that Val(Px, M) is a set of cardinality A.
A similar argument applies for the formula — Px. Consequently, the set of
red orbits and the set of yellow orbits of M each have cardinality A (since
each orbit is denumerable while A is not). As in part (b), we conclude that
all A-models of T3 are isomorphic and, from part (e) of Exercise 5, that T,
is complete (it is clear that 7, has no finite models).

7. (a) The models of Tj are the totally ordered sets in whieh every element has an
immediate successor (i.e. a strict least upper bound) and predecessor (i.e. a
strict greatest lower bound).

Set Mo = (27, <) and M = (Z, <) (27 is the set of even positive
and negative integers). Mg and M are obviously models of Tp; in My,
the successor and predecessor of the element 2k are 2k + 2 and 2k — 2,
respectively; in M the successor and predecessor of the element & are
h + 1 and h — 1, respectively. My is a substructure of M but it is not an
elementary substructure because, for example, the formula

Yvg(Rug0 Vv R2up)

with parameters from M is satisfied in Mg but not in M (M does not
satisfy R10 or R21).

(b) For every integeri € N set
Ai={xeQ:2xeZ} and (A = (A <))

The ordering in question is the usual order on QQ; A; is the set of rational
numbers of the form a /2!, where a € Z; A; is an Lo-structure. It is clear’
that, for i < j, A; is a substructure of \A;. In addition, each .4; is a model
of Ty and is in fact isomorphic to M (the map which, with each a € Z,
associates a/2! is an isomorphism from M onto A;). So we are in the
presence of a chain of models of Ty. The union of this chain is the set A
of rational numbers whose denominator is a power of 2, together with the
usual ordering. This is not a model of 7 since, for any pair of elements a
and b of A with a < b, b cannot be the immediate successor of a because
the rational number (a + b)/2, which belongs to A, lies strictly between a
and b. v

So we may conclude from Theorem 8.43 that Tp is not equivalent to any
V3 theory in Lg.

8. (a) Let M be aprime model of a model-complete theory 7. Given two arbitrary
models A and B of T, there exist structures A’ and /3, isomorphic to A
and B, respectively (and hence models of T), such that M C A’ and
M C B'. Because T is model-complete, we know that these inclusions
are elementary, i.e. M < A’ and M < B'. In particular, A’ and B’ are
elementarily equivalent to M, hence A’ = B’. But since A is isomorphic
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(c)

(d)
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to A’ and B is isomorphic to B', we conclude that A = B. We have proved
that any two models of T" are elementarily equivalent, so T is complete.

(1) implies (2): We prefer to prove that the negation of (2) implies the
negation of (1). Let M be a model of 7 and let F be a closed formula of
Ly (the language obtained by adjoining to L a constant symbol for each
element of M) such that F is not a consequence of 7' U A(M). So there
exists a model M’ of T U A(M) U {—F} and we may even assume that
M € M’ (see Lemma 8.13). However, M’ is not an elementary extension
of M since F is satisfied in M but not in M’.

(2) implies (1): Suppose that M C M’ are two models of 7. Then once
M’ has been enriched, in a natural way, to an L ps-structure, it is a model
of T U A(M), and is thus a model of D(M). It follows that M < M,

(2) implies (3) is obvious.

(3) implies (2): We will prove that the negation of (2) implies the negation
of (3). Let M be amodel of T and let F be a formula of D (M) that is not
a consequence of 7 U A(M). So there exists a formula G[uvg, vy, ..., v,]
of L and elements aq, ay, ..., a, of M such that F = Glag, aj, ..., a,]
and M F F. By Theorem 8.9, there exists a denumerable elementary sub-
model Mg of M that contains the elements ag, ai, ..., a,. Since F is not
a consequence of ' U A(M), neither is it a consequence of the subset
T U A(Mg) € T UAM). But F e D(My); thus condition (3) is not
satisfied.

(1) implies (4) is obvious.

(4) implies (3) is proved in the same way as (1) implies (2), taking care
to only choose denumerable models (as the Lowenheim—Skolem theorem -
allows us to do).

It is sufficient to show that the class of models of T is closed under unions of
chains (Theorem 8.43). Because T is model-complete, any chain of models
of T satisfies the hypotheses of Theorem 8.21, so the union of such a chain
is a model of T. The converse is clearly false; the empty theory is an V3
theory that is not model-complete! It is more difficult to find a complete
V3 theory that is not model-complete; this will be done in the last part of
Exercise 9.

The condition () is verified for all existential formulas (see Theorem 8.39)
and for all formulas that are equivalent modulo 7' to an existential formula.
This proves the ‘if” direction.

For the opposite direction, we add, as suggested, new constant symbols
co, C1, - . ., Cp to the language and we consider the theory

vV = {Glcp, c1,...,cnl: Glvg, vy, ..., v,]1sa
universal formula of L and

T i_ -"F[C(),C], Lo ,Cn] :# G[CO, Cly e ,Cn]}~




SOLUTIONS FOR CHAPTER 8 311

Let N be a model of T U W. We are going to prove that A has an
extension AV that satisfies = F[co, ci, . . ., ¢, ]. To do this, we use the method
of diagrams; it suffices to show that 7" U AN)YU {=F[co, c1y...,cnl} is
consistent, For an argument by contradiction, we assume this is false; so
there exists a formula H of A(N) such that

T+ H = Flcg, ¢l ..., Cnl

Since H belongs to A(N), there exists a quantifier-free formula

K{vo, v1, ..+, Untpl
of L and points a1, az, ..., a, in N such that
H = Klco, ¢ty ..., Cn, a1, 02, ..., Qnipl.
Because the pointsay, az, . . ., ap donotappearin T orin Flco, ¢t, .. ., cnl,

we may conclude that
T FYvYup ... Yup(K[co, €1y vy Cny V1502, 00y vp]l
i F[CO,Cl, -«-,Cn])>
or, equivalently,
T+ —=Flco,c1,...,Cnl

= Yy Yuy .. .va_'K[Co, ClyeoosCny UL, V2,000, Up].
Thus, we see that the formula

YuiVug .. .VUP‘_'K[C(), Cly ooy Cus V1, V2, oo vy ‘Up]

belongs to W, so is true in V; but this contradicts the fact that

K[CO: Cly e Cp,y AL, a2, ... >all+p]

belongs to A(N).

Next, suppose that the formula F[vg, vy, ..., v,] satisfies condition ().
Since amodel of TU{F|cg, c1, . .., cy]} cannot have an extension that satis-
fies = Flcg, 1, . .., cu], it follows from what we have just proved above that

TU{F[COaCI,'*'$CIl]}ULIj

is contradictory. So by compactness, there exists a finite subset Wy of W
such that —=F[cg, c1, . .., ¢n] is a consequence of Wy U T and, since Wy is
a consequence of T'U {—=F|co, ¢y, ..., cy]}, we have

Tk ~Flco,c1,...,eal & /\ Gleo,er, .-, enl.
GeVyy
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Also, we know thata conjunction of universal formulas is equivalent to a uni-
versal formula and that the negation of a universal formulais equivalent to an
existential formula. So there exists an existential formula H[vg, v1, . . ., Uy]
of L such that '

T }— F[COaCI, ~'~’Cn] @ H[CO,Ch '-~,Cll]’
and since the constants ¢; do not appear in T,

T = YuoVvy ... Y, (Flvo, v1, ..., v,] & H[vo, v1, ..., vsl).

(e) Tosay that T is model-complete is to assert that condition () is verified for

every formula of L. According to part (d), it is sufficient to prove that

condition (%) is satisfied for all formulas
if and only if
it is satisfied for all universal formulas.

Assume that () is satisfied for every universal formula; we will prove that
itis satisfied by every formula. We argue by induction. Let Flvg, vi, ..., V,]
be a formula of L; we may assume that the only logical symbols appearing
in F are -, A, V, and V. The only case that poses a problem is when
Flvg, vy, ..., vp] = =Glv, vy, ..., v,]. By the induction hypothesis, we
know that there exists an existential formula

Hlvog, vy, ..., v,]
such that .
T =YYy ... Vv, (H[vg, v1, ..., 4] & Glvg, v1, ..., v,]);
therefore,
T FYvoVuy ... Yo, (—H[vg, v1, ..., V] © —Glvg, v, ..., n]).

But —H[vp, vy, ..., v,] is equivalent to a universal formula and, by
hypothesis, there exists an existential formula K [vg, v1, ..., v,] such that

T = YvyoVuy ... Yo, (—H[vo, v1, ..., 0n] & K[vg, vi, ..., vy]).
It follows from all this that

T = YvoVur ... Vv, (Flvg, vi, ..., vq] < Klvg, v, ..., 0.

9. (a) In part (d) of Exercise 8, we proved the equivalence of (2) with a condition

that is a priori stronger than (1) (without cardinality restrictions). So we
know that (2) implies (1). For the reverse direction, we adapt this proof
taking care to choose only models of cardinality A (which is possible thanks
to the Lowenheim—Skolem theorem).
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(b) Begin with a model M of T of cardinality A. We will first construct an
extension M of M that is a model of T and has the following property:

for all elements ag, ay, ..., a, of M and
for every model M’ of T that is an extension of M,
it M!'E Flag, a1, ...,an), then M'E Flag, a1, ...,a,). (%)

To do this, we enumerate the set of sequences of elements of M of length n
(this set has cardinality A): {(a}), a}, ..., a}) : i € A}. The model M! will
be the union of an increasing chain (M; : i € A) of models of T" which we
will construct by induction on i € A as follows:

e Mo= M.

e If i is a limit ordinal, M; = Uj<i M ; we know that M; is a model of

T because T is an V3 theory (see Theorem 8.43).

e Suppose that j = i + 1. We distinguish two cases:

(i) () If, for every extension N of M; that is a model of T, N' E
F[aé, a'i, e, afl], then we set M; = M ; we remark that this prop-
erty will also be true for the model M! that we will obtain at the end
of this construction: for every extension A of M1 that is a model of T,
NE Fldai,di,...,all.

(i) (B) If there exists an extension N of M; that is a model of T,
NE ﬂF[aé, a’i, e afl], then we set M; equal to such an NV of cardi-
nality A (again, the Lowenheim—Skolem theorem guarantees that one
exists); note that because F is universal, for every extension N of M;
(in particular for our target structure Ml), N E=F [af), a’i, e, afl .

Now, as we anticipated, by setting M = U;ex Mi, we obtain a model of

T that has property ().

Next, start over! Using the same method, we construct a model M?
such that

for all elements ag, ay, ..., a, of My and
for every model M’ of T that is an extension of M?,
if M2 E Flag, ay, ..., a,), then M’ Flag, ay, ..., a,],

then another model M3, and so on. If we set M’ = |,y M¥, we see
that M’ is a model of T (again, because T is an V3 theory) of cardinality A
and that it satisfies the condition (%%) from the statement of the exercise
(because every finite sequence of elements from the structure M’ already
appears in the base set of one of the structures M¥),

(c) We have just seen that if 7 is an V3 theory, then it has a model M of
cardinality A that satisfies (xx). If, in addition, T is A-categorical, then all
models of T of cardinality A are isomorphic to M, so they also satisfy
(+). Thus, condition (%) from part (b) is verified for any universal formula
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~ Flvg, vi, ..., vy]. It then follows from part (d) of Exercise 8 that every
universal formula is equivalent modulo T to an existential formula, so by
part (e) of that same exercise, T'; is model-complete. ‘

(d) The theory Tp is universal, hence it is V3. Consider the following models
of Tp :

No=N,n>n+1) and M ={Z, n>n+1).

The closed formula Yvg3v; (vg =~ fv)) is true in M but not in My, so
these models are not elementarily equivalent; so 7 is not complete. We
have Mg € M but, clearly, My is not an elementary submodel of M;;
so Tp is not model-complete.

Add a denumerably infinite set cg, ¢y, ..., ¢y, ... of new constant sym-
bols to the language of Ty and consider the theory

T =ToU {Yvo—cy = fug: n €N}
U{cn #cm : n,m € Nand n # m}.

The theory T is V3 since it is universal. We will show that it is not model-
complete. Let Ay and A7 be the structures whose respective base sets are
N x Nand Z x N, in which the interpretation of f is the mapping (m, n)
(m + 1, n + 1), and in which the constant symbol ¢, is interpreted by the
pair (n, 0); these are models of T that satisfy Ny € N but not Ny < N
[for example, the formula Jvg fvg =~ (0, 1), with parameters from Ny, is
satisfied in V] but not in NMg]. .

The most difficult part is to show that T is complete. We will be content to
outline the main idea of the proof. We proceed with an analysis of models of
T (as we have already done many times); a model M = (M, f, (€x)neN)
of T decomposes into f-orbits [these are the equivalence classes for the
relation in which x and y are related if and only if there exist integers n and
m such that £"(x) = f™(y)]; it is easy to see that for the initial language
(without the ¢, ), each orbit is isomorphic either to (Z, n +> n + 1) (when
the restriction of f is bijective) or to (N, n > n + 1) (when it is not). For
the enriched language, there are three types of orbits: of type Z, of type N
containing one of the elements ¢,, and finally of type N without constants.
We prove, on the one hand, that any two denumerable models that have
denumerably many orbits of each type are isomorphic and, on the other
hand, that every denumerable model has an elementary extension that does
have denumerably many orbits of each type.

10. Let Lo be the language reduced to the single symbol R. We will make use of
the following facts.
Every denumerable model of A is isomorphic to the ordered set of rationals
(see Example 8.19).
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If M and N are models of A and if (mg, my, ..., my) and (no, ny, ..., ng)
are two sequences of elements from M and NV, respectively, then the following
two conditions are equivalent:

(1) For every formula F[vg, vy, ..., vx] of Ly,

ME Flmg, mi,...,mg) ifandonlyif N E Flng,ni,...,ngl
(2) For every quantifier-free formula Flvp, vy, oy v] of Lo,
ME Flmg,m1, ..., mg) ifandonlyif N F Flng,n1,...,nkl

(see Lemma 8.24).

In addition, here are a few remarks concerning the sequences «, §, and y.
These are three strictly increasing sequences of rationals: the first is unbounded, -
the second is bounded and has the rational number 0 as its least upper bound,
while the third is bounded but does not have a least upper bound in Q (its least
upper bound in R is the number e which is not rational).

(a) Let M and NV be two models of T and, for k € N, let my and ny be the
interpretations of c; in M and NV, respectively. Let F be a closed formula

of L. So for some integer k and some formula Glvg, v1, ..., v] of Lo,
F = Glcg, cy, ..., ci]. Since the sequences
(mo, my,...,my) and (no,ni,..., ")

are strictly increasing, they satisfy condition (2) above, and hence condi-
tion (1) also. In other words,

AE Gleo, c1,...,¢c] ifandonlyif BF Gleo,cy, ..., ¢kl

The structures M and N satisfy the same closed formulas, so they are
elementarily equivalent and the theory T is complete.

(b) Let M be a denumerable model of 7. Then M | Lo is adenumerable model
of A; so there exists an isomorphism ¢ from M | Lo onto (@, <). We can
enrich (Q, <) to an L-structure M by declaring that, for all n € N, the
interpretation of ¢, is the image under ¢ of the interpretation of ¢, in M.
We are guaranteed in this way that ¢ is an isomorphism from M onto M.

It remains to prove that M is isomorphic to one of the three structures
A, B, or C. Let §,, denote the interpretation of ¢, in M. Then

A=(,: neN)

is a strictly increasing sequence of rationals for which there are three
possibilities:
(1) The sequence A is unbounded. Here is an isomorphism ¢ from .4 onto
My
oIf x < 0, then ¥ (x) = x + 8o (thus ¥ is an increasing map and is a
bijection from the interval (—o0, ag] onto the interval (—00, dol).
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elfn <x <n+1, then ¥y (x) = (6,41 — 8n)(x — n) + 8, (again,
is an increasing map from [o,, @, +1] onto [8,8,41]). '
(2) The sequence A is bounded and its least upper bound is the rational
number &. This time, it is /3 that is isomorphic to M. The same principle
is used to construct the isomorphism ¥ from B onto M; we define
bijections between the intervals into which Q is decomposed by the
sequences (8 : ne N) and (8, : n € N), respectively.

.BO /31 ,Bn—l ,Bn
V¥ ‘2 ' N Ly
) 81 Sn—1 &y £

—Ifx < Bo, then ¥ (x) = x — Bo + 0.

—If Bn = x = Batr, then ¥ (x) = (Bny1 —81)/(Bnt1 — Bn))
(x — Bn) + én.

—Ifx >0, theny¥(x) = x + &.

(3) The sequence A is bounded but its least upper bound is an irrational
number £. We define a map 1 from C into M by the following:
—Ifx <y, then ¥ (x) = x — 35 + &o.

—If y < x = Yutl, then ¥(x) = (Bpy1 — )/ (Bnsr1 — Bu))
(x — ¥n) + dn.

—1It remains to define ¥ on QN (e, +00); there exists an isomor-
phism @ from this interval onto Q N (g, +o00) (because these are two
denumerable, dense linear orderings with no first or last element).
Set ¥ (x) = 0(x).

It is more or less obvious that the structures .4, B, and C are pairwisé not

.isomorphic. The conclusion is that the only models of T, up to isomorphism,
are A, B, and C.

(c) This follows nearly immediately from Lemma 8.6.

(d) Since 7 is model-complete, we can replace ‘elementary extension’ by (sim-
ple) extension’ in the question. Moreover, it is sufficient to prove that A has
an extension that is isomorphic to 3, that 1 has an extension that is isomor-
phic to C, and that C has an extension that is isomorphic to B.

Instead of showing that A has an extension that is isomorphic to 5, we will
show that B has a substructure that is isomorphic to 4 (using an argument
analogous to the proof of Lemma 8.13). If By is the substructure of B whose
base set is the interval (—oo, 0), we see that By is a model of T in which the
sequence (B, : n € N) is unbounded, so it is isomorphic to .4 according to
part (b).
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Similarly, there is a substructure Cq of C that is isomorphic to B; it is the one
whose base set is (—00, €) U [3, 4+00). Cp is certainly a model of T and, in Cp,
the sequence (y, : n € N) is bounded and has a least upper bound, namely 3.

We can also find a denumerable extension of C that is a model of T and in
which the sequence (y, : n € N) is bounded and has a least upper bound: it is
the substructure of (R, <) whose base set is Q U {e}.

(a) Let M = (M, f, R) be amodel of A. The first formula expresses that < is
reflexive, the second that it is total and antisymmetric [if x and y are distinct
elements of M, then exactly one of R(x,y) or R(y, x) holds]; and the third
that R is transitive. So we are dealing with a total ordering. Together with the
fourth and fifth formulas, we have that f is an isomorphism of the structure
(M, R) onto itself. The sixth and seventh formulas assert that f(x)isastrict

bound for x and that it is the successor of x (i.e. the least of its strict upper

bounds).
(b) Itis not a problem to verify this.

(c) The fact that the relation < is reflexive and transitive follows easily from
properties of £ and R. The fact that the relation ~ is an equivalence relation
is more or less obvious.

If @ & b, then there exist integers n and p such that f"(a) = f? (b). We
then have

ME =Rf"abAn=RfPba,

and it is false that @ « b and that b < a. Conversely, ifa < band b < a
are both false, there exist integers n and p such that

ME=Rf'abA—-RfPba.

Suppose, for example, that a is less than or equal to b (for R) and that m
is the least integer such that M E —Rf™ab; m is strictly positive and
M E Rf"lab. Because f"a is the successor of f™ !a, we see that
f™a = b (if not, we would also have M E Rf™a b). This proves that
a=b.

Since f is bijective, we can refer to f ~! and, indeed, to f" foralln € Z.

Let a be an element of M. Itis easy to check that the map from Z into M
whose value for n € Z is f"(a) is a monomorphism from Z into M and
that its image is the equivalence class of a relative to ~ . It is also easy to
see that this class is closed under f, which shows that this is a substructure
of M.,

We see that if a, b, and ¢ are elements of M andif a ~ b, thena < ¢
it and only if b « c¢; indeed, suppose, for example, that a = f” (b). It is
then certainly clear that ‘for every p € N, R( f P(b), c)’ is equivalent to
“for every p € N, R(f"*P(b), c)’, which is equivalent in turn to ‘for every
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p €N, R(fP(a), ¢)’. Thus, we can define a binary relation < on M/~ as
follows: for all a, b in M, '

a/~<b/~ ifandonlyif a <« b.

The fact that < is irreflexive and transitive follows immediately from the
corresponding properties for < . To show that < is a total strict ordering, it
is sufficient to show that if « and f are elements of M/ =, then eitheror = B
ora < Bor B < «;in other words, that if a and b are elements of M, then
a~ bora < borb < a; but that is what we did at the beginning of this
question. '

So let C be the set M/ =~ and X = (C, ). For each « € C, choose a
point ¢, in the class «. It is then easy to verify that the map ¢ from My
into M defined for all « € C and for all n € Z by

¢ (@, n) = f"(ca)
is an isomorphism.

(d) We leave it to the reader to check the next two facts.

e If ¢ is an isomorphism between two totally ordered sets X and Y, then
the map ¥ from My into My defined foralla € M and foralln € Z by

¥ ((a,n)) = (¢(a), n)

is an isomorphism.
e If i is an isomorphism from M x onto My, then the set

{(a, b) : there exist n and p in Z such that ¥ ((a, n)) = (b, p)}

is the graph of an isomorphism from X onto Y.

If A is an infinite cardinal, then we can find two models of A of cardinality A
that are not isomorphic; for example, X = A and ¥ = A U {A} are totally
ordered sets of cardinality A that are not isomorphic (the second has a
greatest element but the first does not). Consequently, Mx and My are
two models of cardinality A that are not isomorphic. This shows that A is
not categorical in any infinite cardinal.

(e)(1) We use the method of diagrams. In the language L s, consider the com-
plete diagram D(M) of M; add a new constant symbol ¢ and consider
the theory

T =DM)U{=Rcf"a:n e NyU{=Rbf"c:n eN}.

Using the compactness theorem we can show that this theory is consistent;
if Ty is a finite subset of T', there exists an integer k such that Tp is
included in

DM)U{=Rcf"a:0<n<k}U{—=Rbf"c.0=<n <kl
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and, to produce a model of Tp, it suffices to enrich M by taking f k1)
as the interpretation of c. '

We have seen that 7" has a model M| whose reductto L is an elementary
extension of M. If ¢ is the interpretation of ¢ in M, we certainly have
a<Kcandc K b.

(2) The argument is analogous. It is sufficient to show that the theory

=DM)U{=Rcf"a:n e N}U{=Raf"b:n N},

in the language enriched by two new constant symbols b and ¢, is consistent.
(3) This verification is left to the reader.
(4) If ¢ = a; for some i between 1 and n inclusive, then there exists an
element p in Z such that ¢ = fP(a;) Then, using (3), we see that

P((MsalaaZ’ . ~'9alla C), (Na b11b2$ L -sbll, fp(bl)))

If not, then we must distinguish several cases:

e For every i between 0 and n inclusive, ¢ <« a;; in this case, we use
(2) to produce an elementary extension NV of A/ and a point d in N/

* such that, for all i from O to n inclusive, d < ag;. Then, again using (3),
we have

P((M’alya‘l’ ...,Cl,l,C), (N/,bl, b27 ~--’bn’d))‘

e For every i between 0 and »n inclusive, a; <« c; this time, we choose
N’ = N and d € N7 such that, for all i from 0 to » inclusive, b; < d.
Again, we have

P((M,al,aL ...,an,C), (N/sbla bz,'--abnad))'

e Finally, in the remaining case, suppose that in the set {ay, ag, ..., a,},
a; is the largest element that is less than ¢ and | is the smallest element
that is greater than c. So we have a; < ¢ and ¢ « a; and, because
P((M,ay,az,...,a,), N,bi,by,...,by)), bi € bj. We can then
use (1) to find N/ > N and d € N7 such that b; « d and d < bj.
Once again, we have

P((M,alsazy -~->4n»c)a (N/vbl’ b27"~9bn7d))'

(5) We may always assume that the universal quantifier does not occur in
the formula G[vy, va, ..., v,]). In a proof by induction, the hypothesis
provides the result for atomic formulas and the steps involving the propo-
sitional connectives are straightforward. So it remains to deal with the
existential quantifier.

So suppose that P((M, ay,ay, ..., ay), (N, by, ba, ..., by)) is satis-
fied, that Glv, vy, ..., v,] = FvgF[vg, vi,..., vy, and that M F
Glay, az, . .., ay]. Consequently, there exists a point ¢ in M such that
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M E Flc,ay, ..., a,). According to (4), there exists N/ > N and
d € N such that

P(M, a1, ay,...,a5,¢), N, b1,by, ..., by, d));
by the induction hypothesis, we have
" N'E Fle,b1, by, ..., by,
and hence
N'E Glby, b, ..., byl
Since NV’ is an elementary extension of AV, we also have
N E G[by, by, ..., byl

(6) Let M and AV be two models of A. When we apply the preceding result
to these two models and to the empty sequence, we see that M and N
satisfy the same closed formulas. This shows that two arbitrary models
of A are elementarily equivalent and that T is complete.

12. We will use Lemma 8.6. Add n + 1 new constant symbols cg, ¢j, ..., ¢, to the
language L and consider the theory

® = {H[cg, c1,...,Cnl: Hlvg, v1, ..., v,] is a quantifier-free
formulaof L and T - Flco, ¢1,...,cn) = Hlco,c1, ... cnl}e

Let M be a model of ® U T. Consider the theory

v = {K][co, 1, ..., cnl : Klvo, v1, ..., vy]is a quantifier-free
formula of L and M = K[co, €1, ..., ¢cnl}.

We claim that ¥ U T U {F{co, c1, . : ., cn]} is consistent; if not, then for some
finite subset Wy of W, the theory Wo U T U {F[cp, c1, ..., cx]} is contradictory.
There exists a quantifier-free formula J[vg, vy, ..., v,] of L such that

J = /\ K and T4+ Flcg,cty...,cn) = —Jlco,C1y...,Cnl.
Keyy

It follows that =J[cg, c1, . . ., €] belongs to ®; but this is absurd since M is a
model of ® and satisfies J{cg, c1, ..., ¢nl.

So there exists amodel N of WU T U{F|cy, ci, ..., ¢y]}. The interpretations
of co, c1, ..., ¢, in M and N, respectively, satisfy the same atomic formulas;
so by Lemma 8.6, they satisfy the same formulas and M E Flco, c1, ..., ¢, ].
We have thereby proved that every model of ® U T satisfies Flcg, ¢, ..., cyl.

Once more, we use the compactness theorem; there is some finite subset ®q of
& such that Flco, ¢1, . . ., cn]is aconsequence of ®oUT. Let Hvg, vy, ..., Uy]
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be a quantifier-free formula of L such that

Hlco,ct, el = [\ K.
Kedg

Then T + Fleg, ¢ty ..., ¢ch) & Hlco, 1, ..., ¢y] and, as a result,
T = VYuVur ... Yu, (Flvo, vi, ..., v] & Hlvo, vi, ..., 0 ]).

Remark When every formula is equivalent modulo 7T to a quantifier-free for-
mula, we say that 7 admits elimination of quantifiers. The argument that we
have just presented can be applied in a much more general context. In fact, it
proves the following theorem.

Theorem Assume ihat for all models M and N of T and for all sequences
(ao,a1,...,ay) and (by, by, ..., by) from M and N, respectively, whenever
(ao, a1, ...,ay) and (b, b1, ..., by) satisfy the same atomic formulas in M
and N, respectively, then they satisfy the same formulas. Then T admits elimi-
nation of quantifiers.

For example, the theory under consideration in Exercise 11 admits elimination
of quantifiers [thanks to the property proved in part (5) of (e)].

Let T be a theory in a language L that is equivalent to a finite theory. So T is
equivalent to a single closed formula of L which we will call F. The class of
L-structures that are not models of T is precisely the class of models of —F and,
by Los’ theorem (see Theorem 8.31), this class is closed under ultraproducts.
Conversely, suppose that T is not equivalent to a finite theory. Then for every

~ finite subset X of 7', there exists an L-structure My that is a model of X but

not of 7. Let P denote the set of finite subsets of T and, for every X € P, set
OX)={YeP: XCY}

If X1, X9, ..., X, are elements of P, then O(X{)NOX)N---NOX,)
includes X1 U X, U --- U X, so it is not empty. According to Theorem 2.79,
there exists an ultrafilter I/ that includes the set {O(X) : X € P}. We claim that

M=T] Mx/u
XeP
isamodel of T'. To see this, suppose F is aformulaof T. Sowe have O ({F}) € U,
O{F}) C{X e P: MxF F}, and hence
{(XeP: MyEFEF}el.

Using L.os’ theorem, this shows that M satisfies F. In this way, we have obtained
structures that are not models of T but whose ultraproduct is a model of 7.

14. (a) We noted in Example 8.50 that the theory of rings can be axiomatized by

Horn formulas; therefore a reduced product of fields is a ring. If the filter
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is an ultrafilter, it follows from Eos’ theorem that the ultraproduct will
be a field.
Let F be a filter on a set I and, for every i € I, let K; be a field. Set

A:HK,-/]—".

Suppose that F is not an ultrafilter. So there exists a finite subset Iy of 7
such that neither Iy nor I — Iy belongs to F. For eachi € I, let 0; and 1;
denote the identity elements for addition and multiplication in the field Kj.
Consider the functions in [ [;.; K; defined in the following way:

o if i € Ip, thenapg(i) = 0; and a; (i) = 1;;

e ifi ¢ I, then ap(i) = 1, and a; () = 6,.

)]
15. (a)

(b)

(c)

Let ag and a; be the corresponding elements of A. Then because
iel: KiFa(@)=0}=0¢F,

we have A ¥ ap =~ 0 by the definition of reduced products; similarly,
A ¥ a; ~ 0. By contrast,

liel: KiFap() xa(i) =0;} =1,
so A F ag x a; ~ 0. The ring A is therefore not an integral domain, so it is
not a field.

This follows directly from the definitions.

When we repeat the notations and the method from Exercise 18 of Chapter 3,
we can easily see that the theory ‘

Th{{a, <) U {1 <ot neN)

18 consistent.

By the Lowenheim~Skolem theorem, we know that there exists a denumer-
able subset X of ¥y such that (Xg, <) < (R, <). Set op = sup Xg. We

can then find a denumerable subset X of ¥} such that ¢y € X and
(X0, =) < (X1, ) < 8, ).

Repeating this process, we define by induction a sequence (X, : n € N)
of denumerable subsets of 8y such that if o, = sup X,

oy © Xn—l—l and (X, <) < (Xn+la <) < Ry, <).

Set o = sup{ay : n € N} = |,y X». Since any union of elementary
submodels is an elementary submodel, we conclude that {«, <) < (¥}, <).

Choose a denumerable ordinal « such that (o, <) < (R}, <) and repeat
the construction from part (b) starting with a denumerable set X such that
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o« € Xp. We obtain another denumerable ordinal 8, strictly greater than «,
such that ’

(B, <) < (¥, =).
In fact, this argument shows that
the set of ordinals « such that (o, <) < (Ry, <)

is a closed, cofinal subset of 8] (see Exercise 20 of Chapter 7).

16. (a) Since every point of NV is the interpretation of a constant symbol, 7T is in
fact the complete diagram of A/ (or, more precisely, of the reduct of AV to

the language L minus its constant symbols). It follows from this, with the

help of Lemma 8.13, that every model of T is isomorphic to an elementary
extension of V.

(b) Let A and B be two subsets of N such that A € B and A € F,. Then
| N Yoo(4vo = Bo),
therefore
M EVug(Avo = By),

and since M F Aa, we conclude M E Ba and B € F,.
Next, suppose that A and B both belong to . Set C = A N B. Then

N E Yo ((Avo A Bug) = Cup),
therefore
M E Yug((Avo A Bug) = Cup),

and since M F Aa A Ba, we see that M F C and C € F,. In addition,
the formula Yvg(vg ¢ @) is true in NV, hence also in M, and it follows that
B¢ F,. -

This shows that F is a filter. To prove that it is an ultrafilter, suppose we
are given a subset A of N; denote its complement by B. Then

N E Yug(Avg V Bup),

and hence M F Aa Vv Ba; this shows that either A or B belongs to F,.

To prove that the ultrafilter F, is non-trivial, we invoke Lemma 2.75;
if A = {n} for some n € N, then N E Vug(Avg = vy =~ n). Since
MFEa~ n, weseethat A ¢ F.

(c) If f,(n) = fs(n) for infinitely many integers n, then

pr(n)/qr(n) = ps(m)/qs(n)
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for infinitely many integers n; so the convergent sequences

(pr()/gr(n): n €N) and  (ps(n)/gs(n) : n € N)

have a common subsequence and must consequently have the same limit
and r = s.

(d) Let M be amodel of T that is not isomorphic to /. We wish to show that

the cardinality of M is at least 280 According to part (a), we may assume
that M is an elementary extension of AV, Let a be a point of M that does
not belong to N. We claim that if » and s are distinct positive reals, then

ME =fra > fsa;

this will show that the mapping from Ry into M whose value at r is f,(a)

is injective and, hence, that the cardinality of M is at least 280. To prove
the claim, let C be the set of integers n such that f,(n) = f;(n). We have
just seen that C is finite; hence from part (b), C ¢ F, (because a non-trivial
ultrafilter cannot contain a finite set) and M E —Ca. Also,

N E Yuo(frvo = fsvo < Cvo);
therefore

M E Yoo (frvo = fsvo < Cuvo),
which shows that M F = f,a >~ fsa. |

So all denumerable models of T are isomorphic and T is Ro-categorical.

(e) The model A has only one enrichment N’ to an L'-structure that is a model

of T'; it is the one in which the symbol X is interpreted by the whole set N,
Every model of 7" is then isomorphic to N7 (its L-reduct being isomorphic
to V).

However, T, which obviously has no finite models, is not complete; the
formula Yvg X vg is true in AV, but we can find a model of 7/ in which it is
not true by choosing a proper elementary extension of N and interpreting X
by the set N.

This example illustrates that the hypothesis ‘« is greater than or equal to .

card(L)’ cannot be omitted from Vaught’s theorem (Theorem 8.18).
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