Elementos de Apoio

Ruy Costa

Consideremos o seguinte problema de Programação Linear:

Maximizar
$$F = 3 \cdot X + Y$$

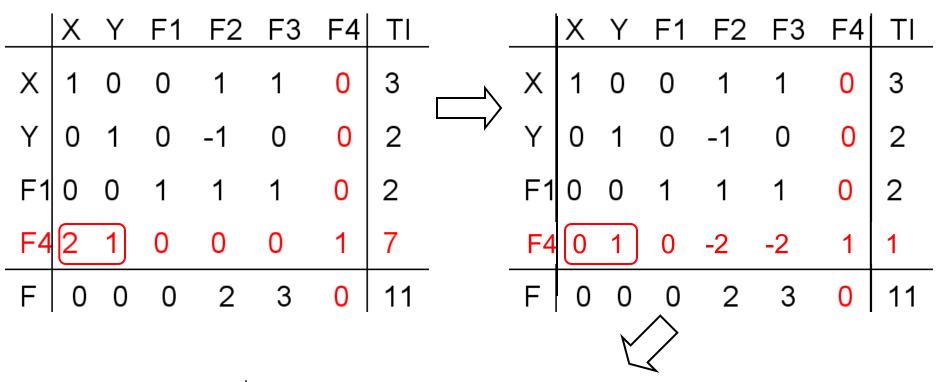
sujeito a:

$$\begin{array}{ccc} X & \geq 1 \\ & Y \geq 2 \\ X + Y \leq 5 \end{array}$$

$$X, Y \ge 0$$

Base óptima:
$$(X^*; Y^*; F1^*) = (3; 2; 2) F^* = 11$$

f) Se, ao problema original, se acrescentar a restrição 2 . X + Y ≤ 7 , manter-se-á a solução óptima determinada ? Em caso negativo, determine a nova solução óptima.


$$2.3 + 2 \le 7$$
? Não!

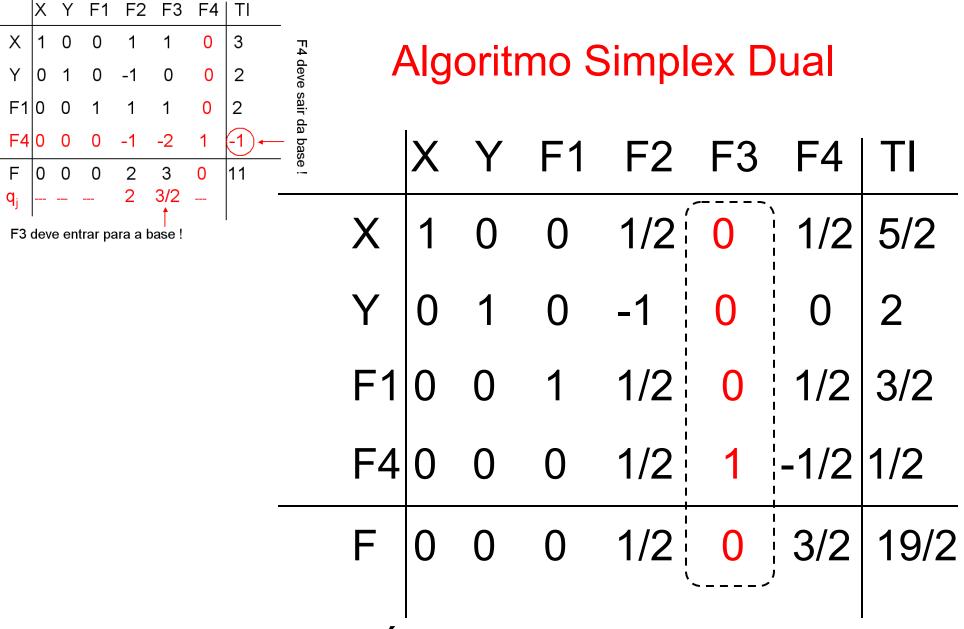
A Base óptima terá de ser alterada ...

f) Se, ao problema original, se acrescentar a restrição 2 . X + Y ≤ 7 , manter-se-á a solução óptima determinada ? Em caso negativo, determine a nova solução óptima.

	X	Y	F1	F2	F3	F4	TI
X	1 1	0	0	1	1	0	3
Y	: O	1	\mathbf{O}^{\dagger}	-1	\mathbf{O}	\mathbf{O}	2
F1	0	0	1	1	1	0	2
F4	2	1	0	0	0	1	7
F	0	0	0	2	3	0	11

	Χ	Υ	F1	F2	F3	F4	TI
Χ	1	0	0	1	1	0	3
Υ	0	1	0	-1	0	0	2
F1	0	0	1	1	1	0	2
F4	0	0	0	1 -1 1 -1	-2	1	-1
F	0	0	0	2	3	0	11

Sol. **Não** Admissível mas ... ""Óptima""!


				F2				
X	1	0	0	1 -1 1	1	0	3	
Y	0	1	0	-1	0	0	2)eve s
F1	0	0	1	1	1	0	2	sair d
F4		0	0	-1	-2	1	-1	a base
F	0	0	0	2	3	0	11	W

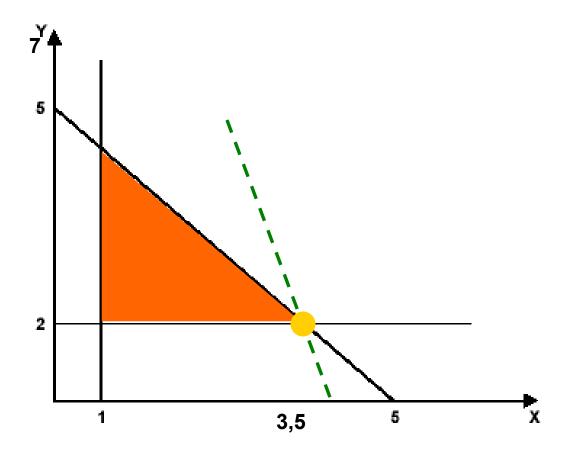
Quem entra para a base ? Calcular os quocientes $q_j = |r_j| a_{ij}$, para aij < 0 e seleccionar a variável que minimiza esses quocientes.

	X	Y	F1	F2	F3	F4	TI	
X	1	0	0	1	1	0	3	F4
Y	0	1	0	-1	0	0	2	deve
F1	0	0		1		0	2	sair c
F4	0	0	0	-1	-2	1	-1)-	da bası
F	0	0	0	2	3	0	11	. <u> </u>
q_j				2	3/2			

F3 deve entrar para a base!

Solução Óptima e Admissível !!!

Maximizar F = 3.X + Y

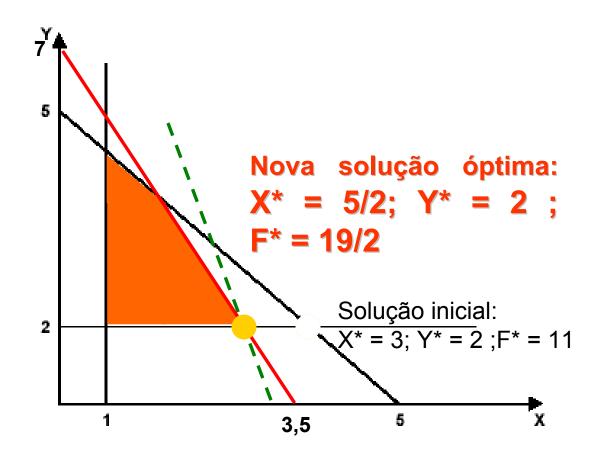

sujeito a:

$$\begin{array}{ccc} X & \geq 1 \\ & Y \geq 2 \\ X + Y \leq 5 \end{array}$$

$$X, Y \ge 0$$

Solução inicial:

$$X^* = 3$$
; $Y^* = 2$; $F^* = 11$



Maximizar F =
$$3.X + Y$$

sujeito a:

$$\begin{array}{ccc}
X & \geq 1 \\
Y \geq 2 \\
X + Y \leq 5 \\
2.X + Y \leq 7
\end{array}$$

$$X, Y \geq 0$$

De notar que, com a introdução da nova restrição, a solução óptima inicial, deixou de ser solução do "novo" problema por violar a nova restrição!

Algoritmo Simplex Dual - Revisão

De notar que, com a introdução da nova restrição, a solução óptima inicial, deixou de ser solução do "novo" problema por violar a nova restrição!

O que fazer?

♦ Introduzir a nova restrição no Quadro do Simplex correspondente à anterior solução óptima. O Quadro deixa de ser um Quadro do Simplex ...

	Χ	Υ	F1	F2	F3	F4	TI
Χ	1	0	0	1 -1 1 0	1	0	3
Υ	0	1	0	-1	0	0	2
F1	0	0	1	1	1	0	2
F4	2	1	0	0	0	1	7
F	0	0	0	2	3	0	11

Algoritmo Simplex Dual - Revisão

♦ No novo Quadro e na linha da nova restrição anular os coleficientes das variáveis básicas anteriores. Agora temos um Quadro do Simplex correspondente a uma Solução "'Óptima" Não Admissível.

	Χ	Υ	F1	F2	F3	F4	TI		
Χ	1	0	0	1	1	0	3		
Υ	0	1	0	-1	0	0	2		
F1	0	0	1	1	1	0	2		
F4	2	1	0	0	0	1	7		
F	0	0	0	2	3	0	11		
X Y F1 F2 F3 F4 TI X 1 0 0 1 1 0 3 Y 0 1 0 -1 0 0 2 F1 0 0 1 1 1 0 2 F4 2 1 0 0 0 1 7 F 0 0 0 2 3 0 11									
F4	0	1	0	-2	-2	1	1 1		

	Χ	Υ	F1	F2	F3	F4	TI
Χ	1	0	0	1	1	0	3
Υ	0	1	0	-1	0	0	2
F1	0	0	1	1	1	0	2
F4	0	0	0	1 -1 1 -1	-2	1	-1
F	0	0	0	2	3	0	11

Algoritmo Simplex Dual - Revisão

Algoritmo Simplex Dual

- ♦ Seleccionar a variável mais negativa para sair da base.
- ♦ Quem entra para a base? Calcular os quocientes $q_j = |r_j| a_{ij}$, para aij < 0 e seleccionar a variável que minimiza esses quocientes.
- ◆ Repetir os dois passos anteriores, obtendo sempre soluções "'Óptimas"" piores e não admissíveis, até se obter uma solução admissível a s.b.a. óptima!

	X	Y	F1	F2	F3	F4	TI	
Χ		0	0	1	1	0	3	F4
Υ					0		2	deve
F1	0	0	1	1	1	0	2	sair c
F4	0	0	0	-1	-2	1	<u>-</u> 1)←	da bas
F	0	0	0	2 2	3	0	11	ë
q_j				2	3/2			

F3 deve entrar para a base!

	l .					F4	
X	1	0	0	1/2	0	1/2 0	5/2
Υ	0	1	0	-1	0	0	2
F1	0	0	1	1/2	0	1/2	3/2
F4	0	0	0	1/2	1	-1/2	1/2
F	0	0	0	1/2	0	3/2	19/2

Solução Óptima e Admissível !!!