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Language Models

• Language Model given a document 𝑝 𝑡|𝑀𝑑

• Computed from document statistics

• Language Model given a collection 𝑝 𝑡|𝑀𝐶

• Computed from the collection statistics

• Language Model given a query 𝑝 𝑡|𝑄
• Computed from the top ranked documents

• Based on a relevance estimation

5



Relevance feedback

• Given the initial search results, the user marks some documents as 
important or non-important.
• This information is used for a second search iteration where these 

examples are used to refine the results

• The characteristics of the positive examples are used to boost 
documents with similar characteristics

• The characteristics of the negative examples are used to penalize 
documents with similar characteristics
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Example: UX perspective
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Example: geometric perspective
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Key concept: Centroid

• The centroid is the center of mass of a set of points
• Recall that we represent documents as points in a high-dimensional 

space

• The centroid of a set of documents C is defined as:
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Rocchio algorithm

• The Rocchio algorithm uses the vector space model to pick a 
relevance fed-back query
• Rocchio seeks the query qopt that maximizes

• Tries to separate documents marked as relevant and non-
relevant

• Problem: we don’t know the truly relevant docs
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The theoretically best query 
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Relevance feedback on initial query 
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Rocchio 1971 Algorithm (SMART)

• Used in practice:

• Dr = set of known relevant doc vectors

• Dnr = set of known irrelevant doc vectors

• Different from Cr and Cnr

• qm = modified query vector; q0 = original query vector; α,β,γ: weights (hand-chosen or set 
empirically)

• The new query moves toward relevant documents and away from 
irrelevant documents
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Subtleties to note

• Tradeoff α vs. β/γ : If we have a lot of judged documents, we 
want a higher β/γ.

• Some weights in query vector can go negative
• Negative term weights are ignored (set to 0)
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Google A/B testing of relevance feedback
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Relevance feedback: Why is it not used?

• Users are often reluctant to provide explicit feedback

• Implicit feedback and user session monitoring is a better 
solution

• RF works best when relevant documents form a cluster

• In general negative feedback doesn’t hold a significant 
improvement
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Relevance feedback: Assumptions

• A1: User has sufficient knowledge for initial query.

• A2: Relevance prototypes are “well-behaved”.
• Term distribution in relevant documents will be similar 

• Term distribution in non-relevant documents will be different from 
those in relevant documents
• Either: All relevant documents are tightly clustered around a single 

prototype.

• Or: There are different prototypes, but they have significant 
vocabulary overlap.

• Similarities between relevant and irrelevant documents are small
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Violation of A1

• User does not have sufficient initial knowledge.

• Examples:
• Misspellings (Brittany Speers).

• Cross-language information retrieval (hígado).

• Mismatch of searcher’s vocabulary vs. collection vocabulary
• Cosmonaut/astronaut
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Violation of A2

• There are several relevance prototypes.

• Examples:
• Burma/Myanmar

• Contradictory government policies

• Pop stars that worked at Burger King

• Often: instances of a general concept

• Good editorial content can address problem
• Report on contradictory government policies
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Evaluation: Caveat

• True evaluation of usefulness must compare to other 
methods taking the same amount of time.

• There is no clear evidence that relevance feedback is the 
“best use” of the user’s time

Users may prefer revision/resubmission 
to having to judge relevance of documents.
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Pseudo-relevance feedback

• Top documents are our “best guess”…

• Given the initial query search results,
• take pseudo-relevant documents from the top of this rank, and

• generate an expanded query with these positive examples.
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Pseudo-relevance feedback

• The most frequent terms of all top documents are considered the 
pseudo-relevant terms:

• The expanded queries then become: 𝑞 = 𝛾 ∙ 𝑞0 + (1 − 𝛾) ∙ 𝑝𝑟𝑓𝑡𝑒𝑟𝑚𝑠

• Other strategies can be thought to automatically select “possibly” 
relevant documents
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𝑝𝑟𝑓𝑡𝑒𝑟𝑚𝑠𝑖 = ቊ
𝑡𝑜𝑝𝐷𝑜𝑐𝑇𝑒𝑟𝑚𝑠𝑖 𝑡𝑜𝑝𝐷𝑜𝑐𝑇𝑒𝑟𝑚𝑠𝑖 < 𝑡ℎ

0 𝑡𝑜𝑝𝐷𝑜𝑐𝑇𝑒𝑟𝑚𝑠𝑖 < 𝑡ℎ

, 𝑠. 𝑡. 𝑝𝑟𝑓𝑡𝑒𝑟𝑚𝑠 0 = #𝑡𝑜𝑝𝑡𝑒𝑟𝑚𝑠

𝑡𝑜𝑝𝐷𝑜𝑐𝑇𝑒𝑟𝑚𝑠 = ෍

𝑖=1

#𝑡𝑜𝑝𝐷𝑜𝑐𝑠

𝑑𝑟𝑒𝑡𝐷𝑜𝑐𝐼𝑑(𝑞0,𝑖)



Negative feedback

• The parameters are critical:
• #TopDocuments

• #TopTerms

• Excluding words from the less relevant documents also
improve the selection of the expansion terms.
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Language Models

• Language Model given a document 𝑝 𝑡|𝑀𝑑

• Computed from document statistics

• Language Model given a collection 𝑝 𝑡|𝑀𝐶

• Computed from the collection statistics

• Language Model given a query 𝑝 𝑡|𝑄
• Computed from the top ranked documents

• Based on a relevance estimation
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Relevance based language models

• Relevance based language models aims to estimate the 
relevance of each word for a given query Q and the set 𝜣 of 
documents retrieved with that query Q

𝑝(𝑤|𝑄, Θ)

• This lets the system expand the initial query with new words 
captured from the set of documents Θ:
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Expanding the query

• The relevance of each word in the expanded query is:

𝑝 𝑤 𝑀𝑄
′ = 1 − 𝛼 ⋅ 𝑝 𝑤|𝑀𝑄 + 𝛼 ⋅ 𝑝1 𝑤|𝑄

• 𝑝(𝑤|𝑀𝑄) is given by the original query.

• 𝑝 𝑤 𝑄 is given by the relevance-based model computed 
from the feedback documents.

• Words with higher probability 𝑝 𝑤 𝑀𝑄
′ will be used to 

generate the new expanded query.
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The expanded query

• The query vector of the expanded query is now a vector of 
probabilities:

• Words with probabilities below a given threshold should be 
zeroed.
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Relevance Model 3: i.i.d sampling

• The first approach assumes independence between query 
words:

𝑝𝑅𝑀1 𝑤|𝑄 ∝ ෍

𝑀𝑑∈Θ

𝑝 𝑤|𝑀𝑑 𝑝 𝑀𝑑 ෑ

𝑖=1

𝑚

𝑝 𝑞𝑖|𝑀𝑑

• The final relevance language model becomes:

𝑝𝑅𝑀3 𝑤 𝑀𝑄
′ = 1 − 𝛼 ⋅ 𝑝 𝑤|𝑀𝑄 + 𝛼 ⋅ 𝑝𝑅𝑀1 𝑤|𝑄

• The 𝛼 parameter interpolates the original query with the 
new query.
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Relevance Model 4: conditional independence

• The second approach assumes conditional independence 
between query words and expansion words:

𝑝𝑅𝑀2 𝑤|𝑄 ∝ 𝑝 𝑤 ෑ

𝑖=1

𝑚

෍

𝜃𝑑∈Θ

𝑝 𝑞𝑖|𝑀𝑑

𝑝 𝑤|𝑀𝑑 𝑝 𝑀𝑑

𝑝 𝑤

• The final relevance language model becomes:

𝑝𝑅𝑀4 𝑤 𝑀𝑄
′ = 1 − 𝛼 ⋅ 𝑝 𝑤|𝑀𝑄 + 𝛼 ⋅ 𝑝𝑅𝑀2 𝑤|𝑄

• The 𝛼 parameter interpolates the original query with the 
new query.
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Comparision
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PRF iterations: Query drift

• Using multiple iterations of PRF may drift the interpretation
of the original query, hurting results.
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Experimental comparison

TREC45 Gov2

1998 1999 2004 2005

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

BM25 0.424 0.178 0.440 0.205 0.471 0.243 0.534 0.277

BM25+PRF 0.452 0.239 0.454 0.249 0.567 0.277 0.588 0.314



Example with top 2 documents

• Query: 

• “Donald Trump”

• Top retrieved doc1: 

• “Donald Trump lashes out at figures 
who have been critical of him”

• Top retrieved doc2:

• “Demi Lovato has been critical of
Donald Trump”
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Summary

• PRF can improve top precision.

• It’s often harder to understand why a particular document 
was retrieved after applying PRF.

• Long queries are inefficient for typical IR engine.
• Long response times for user.

• High cost for retrieval system.

• Partial solution:
• Only reweight certain prominent terms

• Perhaps top 20 by term frequency
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