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As recently as the 1990s, studies showed that most people preferred getting information from other people rather than from information retrieval sys tems. Of course, in that time period, most people also used human travel agents to book their travel. However, during the last decade, relentless opti mization of information retrieval effectiveness has driven web search engines to new quality levels where most people are satisfied most of the time, and web search has become a standard and often preferred source of information finding. For example, the 2004 Pew Internet Survey (Fallows 2004) found that “92% of Internet users say the Internet is a good place to go for getting everyday information.” To the surprise of many, the field of information re trieval has moved from being a primarily academic discipline to being the basis underlying most people’s preferred means of information access. This book presents the scientific underpinnings of this field, at a level accessible to graduate students as well as advanced undergraduates. 
Information retrieval did not begin with the Web. In response to various challenges of providing information access, the field of information retrieval evolved to give principled approaches to searching various forms of con tent. The field began with scientific publications and library records, but soon spread to other forms of content, particularly those of information pro fessionals, such as journalists, lawyers, and doctors. Much of the scientific research on information retrieval has occurred in these contexts, and much of the continued practice of information retrieval deals with providing access to unstructured information in various corporate and governmental domains, and this work forms much of the foundation of our book. 
Nevertheless, in recent years, a principal driver of innovation has been the World Wide Web, unleashing publication at the scale of tens of millions of content creators. This explosion of published information would be moot if the information could not be found, annotated and analyzed so that each user can quickly find information that is both relevant and comprehensive for their needs. By the late 1990s, many people felt that continuing to index
Online edition (c)2009 Cambridge UP 
xxxii Preface 
the whole Web would rapidly become impossible, due to the Web’s expo nential growth in size. But major scientific innovations, superb engineering, the rapidly declining price of computer hardware, and the rise of a commer cial underpinning for web search have all conspired to power today’s major search engines, which are able to provide high-quality results within subsec ond response times for hundreds of millions of searches a day over billions of web pages. 
Book organization and course development 
This book is the result of a series of courses we have taught at Stanford Uni versity and at the University of Stuttgart, in a range of durations including a single quarter, one semester and two quarters. These courses were aimed at early-stage graduate students in computer science, but we have also had enrollment from upper-class computer science undergraduates, as well as students from law, medical informatics, statistics, linguistics and various en gineering disciplines. The key design principle for this book, therefore, was to cover what we believe to be important in a one-term graduate course on information retrieval. An additional principle is to build each chapter around material that we believe can be covered in a single lecture of 75 to 90 minutes. The first eight chapters of the book are devoted to the basics of informa 
tion retrieval, and in particular the heart of search engines; we consider this material to be core to any course on information retrieval. Chapter 1 in troduces inverted indexes, and shows how simple Boolean queries can be processed using such indexes. Chapter 2 builds on this introduction by de tailing the manner in which documents are preprocessed before indexing and by discussing how inverted indexes are augmented in various ways for functionality and speed. Chapter 3 discusses search structures for dictionar ies and how to process queries that have spelling errors and other imprecise matches to the vocabulary in the document collection being searched. Chap ter 4 describes a number of algorithms for constructing the inverted index from a text collection with particular attention to highly scalable and dis tributed algorithms that can be applied to very large collections. Chapter 5 covers techniques for compressing dictionaries and inverted indexes. These techniques are critical for achieving subsecond response times to user queries in large search engines. The indexes and queries considered in Chapters 1–5 only deal with Boolean retrieval, in which a document either matches a query, or does not. A desire to measure the extent to which a document matches a query, or the score of a document for a query, motivates the development of term weighting and the computation of scores in Chapters 6 and 7, leading to the idea of a list of documents that are rank-ordered for a query. Chapter 8 focuses on the evaluation of an information retrieval system based on the
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relevance of the documents it retrieves, allowing us to compare the relative performances of different systems on benchmark document collections and queries. 
Chapters 9–21 build on the foundation of the first eight chapters to cover a variety of more advanced topics. Chapter 9 discusses methods by which retrieval can be enhanced through the use of techniques like relevance feed back and query expansion, which aim at increasing the likelihood of retriev ing relevant documents. Chapter 10 considers information retrieval from documents that are structured with markup languages like XML and HTML. We treat structured retrieval by reducing it to the vector space scoring meth ods developed in Chapter 6. Chapters 11 and 12 invoke probability theory to compute scores for documents on queries. Chapter 11 develops traditional probabilistic information retrieval, which provides a framework for comput ing the probability of relevance of a document, given a set of query terms. This probability may then be used as a score in ranking. Chapter 12 illus trates an alternative, wherein for each document in a collection, we build a language model from which one can estimate a probability that the language model generates a given query. This probability is another quantity with which we can rank-order documents. 
Chapters 13–17 give a treatment of various forms of machine learning and numerical methods in information retrieval. Chapters 13–15 treat the prob lem of classifying documents into a set of known categories, given a set of documents along with the classes they belong to. Chapter 13 motivates sta tistical classification as one of the key technologies needed for a successful search engine, introduces Naive Bayes, a conceptually simple and efficient text classification method, and outlines the standard methodology for evalu ating text classifiers. Chapter 14 employs the vector space model from Chap ter 6 and introduces two classification methods, Rocchio and kNN, that op erate on document vectors. It also presents the bias-variance tradeoff as an important characterization of learning problems that provides criteria for se lecting an appropriate method for a text classification problem. Chapter 15 introduces support vector machines, which many researchers currently view as the most effective text classification method. We also develop connections in this chapter between the problem of classification and seemingly disparate topics such as the induction of scoring functions from a set of training exam ples. 
Chapters 16–18 consider the problem of inducing clusters of related doc uments from a collection. In Chapter 16, we first give an overview of a number of important applications of clustering in information retrieval. We then describe two flat clustering algorithms: the K-means algorithm, an ef ficient and widely used document clustering method; and the Expectation Maximization algorithm, which is computationally more expensive, but also more flexible. Chapter 17 motivates the need for hierarchically structured
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clusterings (instead of flat clusterings) in many applications in information retrieval and introduces a number of clustering algorithms that produce a hierarchy of clusters. The chapter also addresses the difficult problem of automatically computing labels for clusters. Chapter 18 develops methods from linear algebra that constitute an extension of clustering, and also offer intriguing prospects for algebraic methods in information retrieval, which have been pursued in the approach of latent semantic indexing. 
Chapters 19–21 treat the problem of web search. We give in Chapter 19 a 
summary of the basic challenges in web search, together with a set of tech niques that are pervasive in web information retrieval. Next, Chapter 20 describes the architecture and requirements of a basic web crawler. Finally, Chapter 21 considers the power of link analysis in web search, using in the process several methods from linear algebra and advanced probability the ory. 
This book is not comprehensive in covering all topics related to informa 
tion retrieval. We have put aside a number of topics, which we deemed outside the scope of what we wished to cover in an introduction to infor mation retrieval class. Nevertheless, for people interested in these topics, we provide a few pointers to mainly textbook coverage here. 
Cross-language IR (Grossman and Frieder 2004, ch. 4) and (Oard and Dorr 1996). 
Image and Multimedia IR (Grossman and Frieder 2004, ch. 4), (Baeza-Yates and Ribeiro-Neto 1999, ch. 6), (Baeza-Yates and Ribeiro-Neto 1999, ch. 11), 
(Baeza-Yates and Ribeiro-Neto 1999, ch. 12), (del Bimbo 1999), (Lew 2001), 
and (Smeulders et al. 2000). 
Speech retrieval (Coden et al. 2002). 
Music Retrieval (Downie 2006) and http://www.ismir.net/. 
User interfaces for IR (Baeza-Yates and Ribeiro-Neto 1999, ch. 10). 
Parallel and Peer-to-Peer IR (Grossman and Frieder 2004, ch. 7), (Baeza-Yates and Ribeiro-Neto 1999, ch. 9), and (Aberer 2001). 
Digital libraries (Baeza-Yates and Ribeiro-Neto 1999, ch. 15) and (Lesk 2004). 
Information science perspective (Korfhage 1997), (Meadow et al. 1999), and (Ingwersen and Järvelin 2005). 
Logic-based approaches to IR (van Rijsbergen 1989). 
Natural Language Processing techniques (Manning and Schütze 1999), (Ju rafsky and Martin 2008), and (Lewis and Jones 1996).
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Prerequisites 
Introductory courses in data structures and algorithms, in linear algebra and in probability theory suffice as prerequisites for all 21 chapters. We now give more detail for the benefit of readers and instructors who wish to tailor their reading to some of the chapters. 
Chapters 1–5 assume as prerequisite a basic course in algorithms and data structures. Chapters 6 and 7 require, in addition, a knowledge of basic lin ear algebra including vectors and dot products. No additional prerequisites are assumed until Chapter 11, where a basic course in probability theory is required; Section 11.1 gives a quick review of the concepts necessary in Chap ters 11–13. Chapter 15 assumes that the reader is familiar with the notion of nonlinear optimization, although the chapter may be read without detailed knowledge of algorithms for nonlinear optimization. Chapter 18 demands a first course in linear algebra including familiarity with the notions of matrix rank and eigenvectors; a brief review is given in Section 18.1. The knowledge of eigenvalues and eigenvectors is also necessary in Chapter 21. 
Book layout 
✎ Worked examples in the text appear with a pencil sign next to them in the left 
margin. Advanced or difficult material appears in sections or subsections ✄ indicated with scissors in the margin. Exercises are marked in the margin 
with a question mark. The level of difficulty of exercises is indicated as easy (⋆), medium (⋆⋆), or difficult (⋆ ⋆ ⋆). ? 
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The meaning of the term information retrieval can be very broad. Just getting a credit card out of your wallet so that you can type in the card number is a form of information retrieval. However, as an academic field of study, INFORMATION information retrieval might be defined thus: 
RETRIEVAL 
Information retrieval (IR) is finding material (usually documents) of 
an unstructured nature (usually text) that satisfies an information need 
from within large collections (usually stored on computers). 
As defined in this way, information retrieval used to be an activity that only a few people engaged in: reference librarians, paralegals, and similar pro fessional searchers. Now the world has changed, and hundreds of millions of people engage in information retrieval every day when they use a web search engine or search their email.1Information retrieval is fast becoming the dominant form of information access, overtaking traditional database style searching (the sort that is going on when a clerk says to you: “I’m sorry, I can only look up your order if you can give me your Order ID”). 
IR can also cover other kinds of data and information problems beyond that specified in the core definition above. The term “unstructured data” refers to data which does not have clear, semantically overt, easy-for-a-computer structure. It is the opposite of structured data, the canonical example of which is a relational database, of the sort companies usually use to main tain product inventories and personnel records. In reality, almost no data are truly “unstructured”. This is definitely true of all text data if you count the latent linguistic structure of human languages. But even accepting that the intended notion of structure is overt structure, most text has structure, such as headings and paragraphs and footnotes, which is commonly repre sented in documents by explicit markup (such as the coding underlying web 
1. In modern parlance, the word “search” has tended to replace “(information) retrieval”; the term “search” is quite ambiguous, but in context we use the two synonymously.
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pages). IR is also used to facilitate “semistructured” search such as finding a document where the title contains Java and the body contains threading. 
The field of information retrieval also covers supporting users in browsing 
or filtering document collections or further processing a set of retrieved doc uments. Given a set of documents, clustering is the task of coming up with a good grouping of the documents based on their contents. It is similar to ar ranging books on a bookshelf according to their topic. Given a set of topics, standing information needs, or other categories (such as suitability of texts for different age groups), classification is the task of deciding which class(es), if any, each of a set of documents belongs to. It is often approached by first manually classifying some documents and then hoping to be able to classify new documents automatically. 
Information retrieval systems can also be distinguished by the scale at 
which they operate, and it is useful to distinguish three prominent scales. In web search, the system has to provide search over billions of documents stored on millions of computers. Distinctive issues are needing to gather documents for indexing, being able to build systems that work efficiently at this enormous scale, and handling particular aspects of the web, such as the exploitation of hypertext and not being fooled by site providers manip ulating page content in an attempt to boost their search engine rankings, given the commercial importance of the web. We focus on all these issues in Chapters 19–21. At the other extreme is personal information retrieval. In the last few years, consumer operating systems have integrated information retrieval (such as Apple’s Mac OS X Spotlight or Windows Vista’s Instant Search). Email programs usually not only provide search but also text clas sification: they at least provide a spam (junk mail) filter, and commonly also provide either manual or automatic means for classifying mail so that it can be placed directly into particular folders. Distinctive issues here include han dling the broad range of document types on a typical personal computer, and making the search system maintenance free and sufficiently lightweight in terms of startup, processing, and disk space usage that it can run on one machine without annoying its owner. In between is the space of enterprise, institutional, and domain-specific search, where retrieval might be provided for collections such as a corporation’s internal documents, a database of patents, or research articles on biochemistry. In this case, the documents will typi cally be stored on centralized file systems and one or a handful of dedicated machines will provide search over the collection. This book contains tech niques of value over this whole spectrum, but our coverage of some aspects of parallel and distributed search in web-scale search systems is compara tively light owing to the relatively small published literature on the details of such systems. However, outside of a handful of web search companies, a software developer is most likely to encounter the personal search and en terprise scenarios.
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In this chapter we begin with a very simple example of an information retrieval problem, and introduce the idea of a term-document matrix (Sec tion 1.1) and the central inverted index data structure (Section 1.2). We will then examine the Boolean retrieval model and how Boolean queries are pro cessed (Sections 1.3 and 1.4). 
1.1 An example information retrieval problem 
A fat book which many people own is Shakespeare’s Collected Works. Sup pose you wanted to determine which plays of Shakespeare contain the words Brutus AND Caesar AND NOT Calpurnia. One way to do that is to start at the beginning and to read through all the text, noting for each play whether it contains Brutus and Caesar and excluding it from consideration if it con tains Calpurnia. The simplest form of document retrieval is for a computer to do this sort of linear scan through documents. This process is commonly 
GREP referred to as grepping through text, after the Unix command grep, which performs this process. Grepping through text can be a very effective process, especially given the speed of modern computers, and often allows useful possibilities for wildcard pattern matching through the use of regular expres sions. With modern computers, for simple querying of modest collections (the size of Shakespeare’s Collected Works is a bit under one million words of text in total), you really need nothing more. 
But for many purposes, you do need more: 
1. To process large document collections quickly. The amount of online data has grown at least as quickly as the speed of computers, and we would now like to be able to search collections that total in the order of billions to trillions of words. 
2. To allow more flexible matching operations. For example, it is impractical to perform the query Romans NEAR countrymen with grep, where NEAR might be defined as “within 5 words” or “within the same sentence”. 
3. To allow ranked retrieval: in many cases you want the best answer to an information need among many documents that contain certain words. 
INDEX The way to avoid linearly scanning the texts for each query is to index the documents in advance. Let us stick with Shakespeare’s Collected Works, and use it to introduce the basics of the Boolean retrieval model. Suppose we record for each document – here a play of Shakespeare’s – whether it contains each word out of all the words Shakespeare used (Shakespeare used 
INCIDENCE MATRIX about 32,000 different words). The result is a binary term-document incidence TERM matrix, as in Figure 1.1. Terms are the indexed units (further discussed in Section 2.2); they are usually words, and for the moment you can think of
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Antony Julius The Hamlet Othello Macbeth . . . 
and Caesar Tempest 
Cleopatra 
Antony 1 1 0 0 0 1 
Brutus 1 1 0 1 0 0 
Caesar 1 1 0 1 1 1 
Calpurnia 0 1 0 0 0 0 
Cleopatra 1 0 0 0 0 0 
mercy 1 0 1 1 1 1 
worser 1 0 1 1 1 0 
. . . 
◮ Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the play in column d contains the word in row t, and is 0 otherwise. 
them as words, but the information retrieval literature normally speaks of terms because some of them, such as perhaps I-9 or Hong Kong are not usually thought of as words. Now, depending on whether we look at the matrix rows or columns, we can have a vector for each term, which shows the documents it appears in, or a vector for each document, showing the terms that occur in it.2 
To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the 
vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a bitwise AND: 
110100 AND 110111 AND 101111 = 100100 
The answers for this query are thus Antony and Cleopatra and Hamlet (Fig ure 1.2). 
BOOLEAN RETRIEVAL The Boolean retrieval model is a model for information retrieval in which we MODEL can pose any query which is in the form of a Boolean expression of terms, that is, in which terms are combined with the operators AND, OR, and NOT. The model views each document as just a set of words. 
Let us now consider a more realistic scenario, simultaneously using the 
opportunity to introduce some terminology and notation. Suppose we have DOCUMENT N = 1 million documents. By documents we mean whatever units we have decided to build a retrieval system over. They might be individual memos or chapters of a book (see Section 2.1.2 (page 20) for further discussion). We will refer to the group of documents over which we perform retrieval as the COLLECTION (document) collection. It is sometimes also referred to as a corpus (a body of CORPUS texts). Suppose each document is about 1000 words long (2–3 book pages). If 
2. Formally, we take the transpose of the matrix to be able to get the terms as column vectors.
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Antony and Cleopatra, Act III, Scene ii 
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus, 
When Antony found Julius Caesar dead, 
He cried almost to roaring; and he wept 
When at Philippi he found Brutus slain. 
Hamlet, Act III, Scene ii 
Lord Polonius: I did enact Julius Caesar: I was killed i’ the 
Capitol; Brutus killed me. 
◮ Figure 1.2 Results from Shakespeare for the query Brutus AND Caesar AND NOT Calpurnia. 
we assume an average of 6 bytes per word including spaces and punctuation, then this is a document collection about 6 GB in size. Typically, there might be about M = 500,000 distinct terms in these documents. There is nothing special about the numbers we have chosen, and they might vary by an order of magnitude or more, but they give us some idea of the dimensions of the kinds of problems we need to handle. We will discuss and model these size assumptions in Section 5.1 (page 86). 
AD HOC RETRIEVAL Our goal is to develop a system to address the ad hoc retrieval task. This is the most standard IR task. In it, a system aims to provide documents from within the collection that are relevant to an arbitrary user information need, communicated to the system by means of a one-off, user-initiated query. An 
INFORMATION NEED information need is the topic about which the user desires to know more, and QUERY is differentiated from a query, which is what the user conveys to the com puter in an attempt to communicate the information need. A document is RELEVANCE relevant if it is one that the user perceives as containing information of value with respect to their personal information need. Our example above was rather artificial in that the information need was defined in terms of par ticular words, whereas usually a user is interested in a topic like “pipeline leaks” and would like to find relevant documents regardless of whether they precisely use those words or express the concept with other words such as EFFECTIVENESS pipeline rupture. To assess the effectiveness of an IR system (i.e., the quality of its search results), a user will usually want to know two key statistics about the system’s returned results for a query: 
PRECISION Precision: What fraction of the returned results are relevant to the informa tion need? 
RECALL Recall: What fraction of the relevant documents in the collection were re turned by the system?
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Detailed discussion of relevance and evaluation measures including preci sion and recall is found in Chapter 8. 
We now cannot build a term-document matrix in a naive way. A 500K × 
1M matrix has half-a-trillion 0’s and 1’s – too many to fit in a computer’s memory. But the crucial observation is that the matrix is extremely sparse, that is, it has few non-zero entries. Because each document is 1000 words long, the matrix has no more than one billion 1’s, so a minimum of 99.8% of the cells are zero. A much better representation is to record only the things that do occur, that is, the 1 positions. 
This idea is central to the first major concept in information retrieval, the 
INVERTED INDEX inverted index. The name is actually redundant: an index always maps back from terms to the parts of a document where they occur. Nevertheless, in verted index, or sometimes inverted file, has become the standard term in infor mation retrieval.3 The basic idea of an inverted index is shown in Figure 1.3. 
DICTIONARY We keep a dictionary of terms (sometimes also referred to as a vocabulary or VOCABULARY lexicon; in this book, we use dictionary for the data structure and vocabulary LEXICON for the set of terms). Then for each term, we have a list that records which documents the term occurs in. Each item in the list – which records that a term appeared in a document (and, later, often, the positions in the docu ment) – is conventionally called a posting.4 
POSTING The list is then called a postings POSTINGS LIST list (or inverted list), and all the postings lists taken together are referred to as POSTINGS the postings. The dictionary in Figure 1.3 has been sorted alphabetically and each postings list is sorted by document ID. We will see why this is useful in Section 1.3, below, but later we will also consider alternatives to doing this (Section 7.1.5). 
1.2 A first take at building an inverted index 
To gain the speed benefits of indexing at retrieval time, we have to build the index in advance. The major steps in this are: 
1. Collect the documents to be indexed: 
Friends, Romans, countrymen. So let it be with Caesar . . . 
2. Tokenize the text, turning each document into a list of tokens: 
Friends Romans countrymen So . . . 
3. Some information retrieval researchers prefer the term inverted file, but expressions like in dex construction and index compression are much more common than inverted file construction and inverted file compression. For consistency, we use (inverted) index throughout this book. 
4. In a (non-positional) inverted index, a posting is just a document ID, but it is inherently associated with a term, via the postings list it is placed on; sometimes we will also talk of a (term, docID) pair as a posting.
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Brutus −→ 1 2 4 11 31 45 173 174 
Caesar −→ 1 2 4 5 6 16 57 132 . . . 
Calpurnia −→ 2 31 54 101 
... 
| {z } | {z } 
Dictionary Postings 
◮ Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept in memory, with pointers to each postings list, which is stored on disk. 
3. Do linguistic preprocessing, producing a list of normalized tokens, which are the indexing terms: friend roman countryman so . . . 
4. Index the documents that each term occurs in by creating an inverted in dex, consisting of a dictionary and postings. 
We will define and discuss the earlier stages of processing, that is, steps 1–3, in Section 2.2 (page 22). Until then you can think of tokens and normalized tokens as also loosely equivalent to words. Here, we assume that the first 3 steps have already been done, and we examine building a basic inverted index by sort-based indexing. 
Within a document collection, we assume that each document has a unique DOCID serial number, known as the document identifier (docID). During index con struction, we can simply assign successive integers to each new document when it is first encountered. The input to indexing is a list of normalized tokens for each document, which we can equally think of as a list of pairs of SORTING term and docID, as in Figure 1.4. The core indexing step is sorting this list so that the terms are alphabetical, giving us the representation in the middle column of Figure 1.4. Multiple occurrences of the same term from the same document are then merged.5Instances of the same term are then grouped, and the result is split into a dictionary and postings, as shown in the right column of Figure 1.4. Since a term generally occurs in a number of docu ments, this data organization already reduces the storage requirements of the index. The dictionary also records some statistics, such as the number of DOCUMENT documents which contain each term (the document frequency, which is here FREQUENCY also the length of each postings list). This information is not vital for a ba sic Boolean search engine, but it allows us to improve the efficiency of the 
5. Unix users can note that these steps are similar to use of the sort and then uniq commands.
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I did enact Julius Caesar: I was killed i’ the Capitol; Brutus killed me. 
So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious: 
term docID I 1 did 1 enact 1 julius 1 caesar 1 I 1 was 1 killed 1 i’ 1 the 1 capitol 1 brutus 1 killed 1 me 1 so 2 let 2 it 2 be 2 with 2 caesar 2 the 2 noble 2 brutus 2 hath 2 told 2 you 2 caesar 2 was 2 ambitious 2 
=⇒ 
term docID ambitious 2 be 2 brutus 1 brutus 2 capitol 1 caesar 1 caesar 2 caesar 2 did 1 enact 1 hath 1 I 1 I 1 i’ 1 it 2 julius 1 killed 1 killed 1 let 2 me 1 noble 2 so 2 the 1 the 2 told 2 you 2 was 1 was 2 with 2 
=⇒ 
term doc. freq. → postings lists ambitious 1 → 2 
be 1 → 2 
brutus 2 → 1 → 2 capitol 1 → 1 
caesar 2 → 1 → 2 did 1 → 1 
enact 1 → 1 
hath 1 → 2 
I 1 → 1 
i’ 1 → 1 
it 1 → 2 
julius 1 → 1 
killed 1 → 1 
let 1 → 2 
me 1 → 1 
noble 1 → 2 
so 1 → 2 
the 2 → 1 → 2 told 1 → 2 
you 1 → 2 
was 2 → 1 → 2 with 1 → 2 
◮ Figure 1.4 Building an index by sorting and grouping. The sequence of terms in each document, tagged by their documentID (left) is sorted alphabetically (mid dle). Instances of the same term are then grouped by word and then by documentID. The terms and documentIDs are then separated out (right). The dictionary stores the terms, and has a pointer to the postings list for each term. It commonly also stores other summary information such as, here, the document frequency of each term. We use this information for improving query time efficiency and, later, for weighting in ranked retrieval models. Each postings list stores the list of documents in which a term occurs, and may store other information such as the term frequency (the frequency of each term in each document) or the position(s) of the term in each document.
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search engine at query time, and it is a statistic later used in many ranked re trieval models. The postings are secondarily sorted by docID. This provides the basis for efficient query processing. This inverted index structure is es sentially without rivals as the most efficient structure for supporting ad hoc text search. 
In the resulting index, we pay for storage of both the dictionary and the postings lists. The latter are much larger, but the dictionary is commonly kept in memory, while postings lists are normally kept on disk, so the size of each is important, and in Chapter 5 we will examine how each can be optimized for storage and access efficiency. What data structure should be used for a postings list? A fixed length array would be wasteful as some words occur in many documents, and others in very few. For an in-memory postings list, two good alternatives are singly linked lists or variable length arrays. Singly linked lists allow cheap insertion of documents into postings lists (following updates, such as when recrawling the web for updated doc uments), and naturally extend to more advanced indexing strategies such as skip lists (Section 2.3), which require additional pointers. Variable length ar rays win in space requirements by avoiding the overhead for pointers and in time requirements because their use of contiguous memory increases speed on modern processors with memory caches. Extra pointers can in practice be encoded into the lists as offsets. If updates are relatively infrequent, variable length arrays will be more compact and faster to traverse. We can also use a hybrid scheme with a linked list of fixed length arrays for each term. When postings lists are stored on disk, they are stored (perhaps compressed) as a contiguous run of postings without explicit pointers (as in Figure 1.3), so as to minimize the size of the postings list and the number of disk seeks to read a postings list into memory. 
?Exercise 1.1 [⋆] 
Draw the inverted index that would be built for the following document collection. (See Figure 1.3 for an example.) 
Doc 1 new home sales top forecasts 
Doc 2 home sales rise in july 
Doc 3 increase in home sales in july 
Doc 4 july new home sales rise 
Exercise 1.2 [⋆] Consider these documents: 
Doc 1 breakthrough drug for schizophrenia 
Doc 2 new schizophrenia drug 
Doc 3 new approach for treatment of schizophrenia 
Doc 4 new hopes for schizophrenia patients 
a. Draw the term-document incidence matrix for this document collection.
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Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174 
Calpurnia −→ 2 → 31 → 54 → 101 
Intersection =⇒ 2 → 31 
◮ Figure 1.5 Intersecting the postings lists for Brutus and Calpurnia from Figure 1.3. 
b. Draw the inverted index representation for this collection, as in Figure 1.3 (page 7). 
Exercise 1.3 [⋆] 
For the document collection shown in Exercise 1.2, what are the returned results for these queries: 
a. schizophrenia AND drug 
b. for AND NOT(drug OR approach) 
1.3 Processing Boolean queries 
How do we process a query using an inverted index and the basic Boolean SIMPLE CONJUNCTIVE retrieval model? Consider processing the simple conjunctive query: 
QUERIES 
(1.1) Brutus AND Calpurnia 
over the inverted index partially shown in Figure 1.3 (page 7). We: 
1. Locate Brutus in the Dictionary 
2. Retrieve its postings 
3. Locate Calpurnia in the Dictionary 
4. Retrieve its postings 
5. Intersect the two postings lists, as shown in Figure 1.5. 
POSTINGS LIST The intersection operation is the crucial one: we need to efficiently intersect INTERSECTION postings lists so as to be able to quickly find documents that contain both POSTINGS MERGE terms. (This operation is sometimes referred to as merging postings lists: this slightly counterintuitive name reflects using the term merge algorithm for a general family of algorithms that combine multiple sorted lists by inter leaved advancing of pointers through each; here we are merging the lists with a logical AND operation.) 
There is a simple and effective method of intersecting postings lists using 
the merge algorithm (see Figure 1.6): we maintain pointers into both lists
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INTERSECT(p1, p2) 
1 answer ← h i 
2 while p1 6= NIL and p2 6= NIL 
3 do if docID(p1) = docID(p2) 
4 then ADD(answer, docID(p1)) 
5 p1 ← next(p1) 
6 p2 ← next(p2) 
7 else if docID(p1) < docID(p2) 
8 then p1 ← next(p1) 
9 else p2 ← next(p2) 
10 return answer 
◮ Figure 1.6 Algorithm for the intersection of two postings lists p1 and p2. 
and walk through the two postings lists simultaneously, in time linear in the total number of postings entries. At each step, we compare the docID pointed to by both pointers. If they are the same, we put that docID in the results list, and advance both pointers. Otherwise we advance the pointer pointing to the smaller docID. If the lengths of the postings lists are x and y, the intersection takes O(x + y) operations. Formally, the complexity of querying is Θ(N), where N is the number of documents in the collection.6 Our indexing methods gain us just a constant, not a difference in Θ time complexity compared to a linear scan, but in practice the constant is huge. To use this algorithm, it is crucial that postings be sorted by a single global ordering. Using a numeric sort by docID is one simple way to achieve this. 
We can extend the intersection operation to process more complicated queries like: 
(1.2) (Brutus OR Caesar) AND NOT Calpurnia 
QUERY OPTIMIZATION Query optimization is the process of selecting how to organize the work of an swering a query so that the least total amount of work needs to be done by the system. A major element of this for Boolean queries is the order in which postings lists are accessed. What is the best order for query processing? Con sider a query that is an AND of t terms, for instance: 
(1.3) Brutus AND Caesar AND Calpurnia 
For each of the t terms, we need to get its postings, then AND them together. The standard heuristic is to process terms in order of increasing document 
6. The notation Θ(·) is used to express an asymptotically tight bound on the complexity of an algorithm. Informally, this is often written as O(·), but this notation really expresses an asymptotic upper bound, which need not be tight (Cormen et al. 1990).
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INTERSECT(ht1, . . . , tni) 
1 terms ← SORTBYINCREASINGFREQUENCY(ht1, . . . , tni) 
2 result ← postings(f irst(terms)) 
3 terms ← rest(terms) 
4 while terms 6= NIL and result 6= NIL 
5 do result ← INTERSECT(result, postings(f irst(terms))) 
6 terms ← rest(terms) 
7 return result 
◮ Figure 1.7 Algorithm for conjunctive queries that returns the set of documents containing each term in the input list of terms. 
frequency: if we start by intersecting the two smallest postings lists, then all intermediate results must be no bigger than the smallest postings list, and we are therefore likely to do the least amount of total work. So, for the postings lists in Figure 1.3 (page 7), we execute the above query as: 
(1.4) (Calpurnia AND Brutus) AND Caesar 
This is a first justification for keeping the frequency of terms in the dictionary: it allows us to make this ordering decision based on in-memory data before accessing any postings list. 
Consider now the optimization of more general queries, such as: 
(1.5) (madding OR crowd) AND (ignoble OR strife) AND (killed OR slain) 
As before, we will get the frequencies for all terms, and we can then (con servatively) estimate the size of each OR by the sum of the frequencies of its disjuncts. We can then process the query in increasing order of the size of each disjunctive term. 
For arbitrary Boolean queries, we have to evaluate and temporarily store 
the answers for intermediate expressions in a complex expression. However, in many circumstances, either because of the nature of the query language, or just because this is the most common type of query that users submit, a query is purely conjunctive. In this case, rather than viewing merging post ings lists as a function with two inputs and a distinct output, it is more ef ficient to intersect each retrieved postings list with the current intermediate result in memory, where we initialize the intermediate result by loading the postings list of the least frequent term. This algorithm is shown in Figure 1.7. The intersection operation is then asymmetric: the intermediate results list is in memory while the list it is being intersected with is being read from disk. Moreover the intermediate results list is always at least as short as the other list, and in many cases it is orders of magnitude shorter. The postings
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intersection can still be done by the algorithm in Figure 1.6, but when the difference between the list lengths is very large, opportunities to use alter native techniques open up. The intersection can be calculated in place by destructively modifying or marking invalid items in the intermediate results list. Or the intersection can be done as a sequence of binary searches in the long postings lists for each posting in the intermediate results list. Another possibility is to store the long postings list as a hashtable, so that membership of an intermediate result item can be calculated in constant rather than linear or log time. However, such alternative techniques are difficult to combine with postings list compression of the sort discussed in Chapter 5. Moreover, standard postings list intersection operations remain necessary when both terms of a query are very common. 
?Exercise 1.4 [⋆] 
For the queries below, can we still run through the intersection in time O(x + y), where x and y are the lengths of the postings lists for Brutus and Caesar? If not, what can we achieve? 
a. Brutus AND NOT Caesar 
b. Brutus OR NOT Caesar 
Exercise 1.5 [⋆] 
Extend the postings merge algorithm to arbitrary Boolean query formulas. What is its time complexity? For instance, consider: 
c. (Brutus OR Caesar) AND NOT (Antony OR Cleopatra) 
Can we always merge in linear time? Linear in what? Can we do better than this? 
Exercise 1.6 [⋆⋆] We can use distributive laws for AND and OR to rewrite queries. 
a. Show how to rewrite the query in Exercise 1.5 into disjunctive normal form using the distributive laws. 
b. Would the resulting query be more or less efficiently evaluated than the original form of this query? 
c. Is this result true in general or does it depend on the words and the contents of the document collection? 
Exercise 1.7 [⋆] Recommend a query processing order for 
d. (tangerine OR trees) AND (marmalade OR skies) AND (kaleidoscope OR eyes) given the following postings list sizes:
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Term Postings size 
eyes 213312 
kaleidoscope 87009 
marmalade 107913 
skies 271658 
tangerine 46653 
trees 316812 
Exercise 1.8 [⋆] If the query is: 
e. friends AND romans AND (NOT countrymen) 
how could we use the frequency of countrymen in evaluating the best query evaluation order? In particular, propose a way of handling negation in determining the order of query processing. 
Exercise 1.9 [⋆⋆] 
For a conjunctive query, is processing postings lists in order of size guaranteed to be optimal? Explain why it is, or give an example where it isn’t. 
Exercise 1.10 [⋆⋆] 
Write out a postings merge algorithm, in the style of Figure 1.6 (page 11), for an x OR y query. 
Exercise 1.11 [⋆⋆] 
How should the Boolean query x AND NOT y be handled? Why is naive evaluation of this query normally very expensive? Write out a postings merge algorithm that evaluates this query efficiently. 
1.4 The extended Boolean model versus ranked retrieval 
RANKED RETRIEVAL The Boolean retrieval model contrasts with ranked retrieval models such as the MODEL vector space model (Section 6.3), in which users largely use free text queries, FREE TEXT QUERIES that is, just typing one or more words rather than using a precise language with operators for building up query expressions, and the system decides which documents best satisfy the query. Despite decades of academic re search on the advantages of ranked retrieval, systems implementing the Boo lean retrieval model were the main or only search option provided by large commercial information providers for three decades until the early 1990s (ap proximately the date of arrival of the World Wide Web). However, these systems did not have just the basic Boolean operations (AND, OR, and NOT) which we have presented so far. A strict Boolean expression over terms with an unordered results set is too limited for many of the information needs that people have, and these systems implemented extended Boolean retrieval models by incorporating additional operators such as term proximity oper PROXIMITY OPERATOR ators. A proximity operator is a way of specifying that two terms in a query
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must occur close to each other in a document, where closeness may be mea sured by limiting the allowed number of intervening words or by reference to a structural unit such as a sentence or paragraph. 
✎ Example 1.1: Commercial Boolean searching: Westlaw. Westlaw (http://www.westlaw.com/) 
is the largest commercial legal search service (in terms of the number of paying sub scribers), with over half a million subscribers performing millions of searches a day over tens of terabytes of text data. The service was started in 1975. In 2005, Boolean search (called “Terms and Connectors” by Westlaw) was still the default, and used by a large percentage of users, although ranked free text querying (called “Natural Language” by Westlaw) was added in 1992. Here are some example Boolean queries on Westlaw: 
Information need: Information on the legal theories involved in preventing the 
disclosure of trade secrets by employees formerly employed by a competing 
company. Query: "trade secret" /s disclos! /s prevent /s employe! 
Information need: Requirements for disabled people to be able to access a work 
place. 
Query: disab! /p access! /s work-site work-place (employment /3 place) 
Information need: Cases about a host’s responsibility for drunk guests. 
Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest 
Note the long, precise queries and the use of proximity operators, both uncommon in web search. Submitted queries average about ten words in length. Unlike web search conventions, a space between words represents disjunction (the tightest bind ing operator), & is AND and /s, /p, and /k ask for matches in the same sentence, same paragraph or within k words respectively. Double quotes give a phrase search (consecutive words); see Section 2.4 (page 39). The exclamation mark (!) gives a trail ing wildcard query (see Section 3.2, page 51); thus liab! matches all words starting with liab. Additionally work-site matches any of worksite, work-site or work site; see Section 2.2.1 (page 22). Typical expert queries are usually carefully defined and incre mentally developed until they obtain what look to be good results to the user. 
Many users, particularly professionals, prefer Boolean query models. Boolean queries are precise: a document either matches the query or it does not. This of fers the user greater control and transparency over what is retrieved. And some do mains, such as legal materials, allow an effective means of document ranking within a Boolean model: Westlaw returns documents in reverse chronological order, which is in practice quite effective. In 2007, the majority of law librarians still seem to rec ommend terms and connectors for high recall searches, and the majority of legal users think they are getting greater control by using them. However, this does not mean that Boolean queries are more effective for professional searchers. Indeed, ex perimenting on a Westlaw subcollection, Turtle (1994) found that free text queries produced better results than Boolean queries prepared by Westlaw’s own reference librarians for the majority of the information needs in his experiments. A general problem with Boolean search is that using AND operators tends to produce high pre cision but low recall searches, while using OR operators gives low precision but high recall searches, and it is difficult or impossible to find a satisfactory middle ground. 
In this chapter, we have looked at the structure and construction of a basic
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inverted index, comprising a dictionary and postings lists. We introduced the Boolean retrieval model, and examined how to do efficient retrieval via linear time merges and simple query optimization. In Chapters 2–7 we will consider in detail richer query models and the sort of augmented index struc tures that are needed to handle them efficiently. Here we just mention a few of the main additional things we would like to be able to do: 
1. We would like to better determine the set of terms in the dictionary and to provide retrieval that is tolerant to spelling mistakes and inconsistent 
choice of words. 
2. It is often useful to search for compounds or phrases that denote a concept such as “operating system”. As the Westlaw examples show, we might also 
wish to do proximity queries such as Gates NEAR Microsoft. To answer 
such queries, the index has to be augmented to capture the proximities of 
terms in documents. 
3. A Boolean model only records term presence or absence, but often we would like to accumulate evidence, giving more weight to documents that 
have a term several times as opposed to ones that contain it only once. To 
TERM FREQUENCY be able to do this we need term frequency information (the number of times a term occurs in a document) in postings lists. 
4. Boolean queries just retrieve a set of matching documents, but commonly we wish to have an effective method to order (or “rank”) the returned 
results. This requires having a mechanism for determining a document 
score which encapsulates how good a match a document is for a query. 
With these additional ideas, we will have seen most of the basic technol 
ogy that supports ad hoc searching over unstructured information. Ad hoc searching over documents has recently conquered the world, powering not only web search engines but the kind of unstructured search that lies behind the large eCommerce websites. Although the main web search engines differ by emphasizing free text querying, most of the basic issues and technologies of indexing and querying remain the same, as we will see in later chapters. Moreover, over time, web search engines have added at least partial imple mentations of some of the most popular operators from extended Boolean models: phrase search is especially popular and most have a very partial implementation of Boolean operators. Nevertheless, while these options are liked by expert searchers, they are little used by most people and are not the main focus in work on trying to improve web search engine performance. 
?Exercise 1.12 [⋆] 
Write a query using Westlaw syntax which would find any of the words professor, teacher, or lecturer in the same sentence as a form of the verb explain.
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Exercise 1.13 [⋆] 
Try using the Boolean search features on a couple of major web search engines. For instance, choose a word, such as burglar, and submit the queries (i) burglar, (ii) burglar AND burglar, and (iii) burglar OR burglar. Look at the estimated number of results and top hits. Do they make sense in terms of Boolean logic? Often they haven’t for major search engines. Can you make sense of what is going on? What about if you try different words? For example, query for (i) knight, (ii) conquer, and then (iii) knight OR conquer. What bound should the number of results from the first two queries place on the third query? Is this bound observed? 
1.5 References and further reading 
The practical pursuit of computerized information retrieval began in the late 1940s (Cleverdon 1991, Liddy 2005). A great increase in the production of scientific literature, much in the form of less formal technical reports rather than traditional journal articles, coupled with the availability of computers, led to interest in automatic document retrieval. However, in those days, doc ument retrieval was always based on author, title, and keywords; full-text search came much later. 
The article of Bush (1945) provided lasting inspiration for the new field: 
“Consider a future device for individual use, which is a sort of mech anized private file and library. It needs a name, and, to coin one at random, ‘memex’ will do. A memex is a device in which an individual stores all his books, records, and communications, and which is mech anized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory.” 
The term Information Retrieval was coined by Calvin Mooers in 1948/1950 (Mooers 1950). 
In 1958, much newspaper attention was paid to demonstrations at a con ference (see Taube and Wooster 1958) of IBM “auto-indexing” machines, based primarily on the work of H. P. Luhn. Commercial interest quickly gravitated towards Boolean retrieval systems, but the early years saw a heady debate over various disparate technologies for retrieval systems. For example Moo ers (1961) dissented: 
“It is a common fallacy, underwritten at this date by the investment of several million dollars in a variety of retrieval hardware, that the al gebra of George Boole (1847) is the appropriate formalism for retrieval system design. This view is as widely and uncritically accepted as it is wrong.” 
The observation of AND vs. OR giving you opposite extremes in a precision/ recall tradeoff, but not the middle ground comes from (Lee and Fox 1988).
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The book (Witten et al. 1999) is the standard reference for an in-depth com 
parison of the space and time efficiency of the inverted index versus other possible data structures; a more succinct and up-to-date presentation ap pears in Zobel and Moffat (2006). We further discuss several approaches in Chapter 5. 
REGULAR EXPRESSIONS Friedl (2006) covers the practical usage of regular expressions for searching. The underlying computer science appears in (Hopcroft et al. 2000).
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2The term vocabulary and postings lists 
Recall the major steps in inverted index construction: 
1. Collect the documents to be indexed. 
2. Tokenize the text. 
3. Do linguistic preprocessing of tokens. 
4. Index the documents that each term occurs in. 
In this chapter we first briefly mention how the basic unit of a document can be defined and how the character sequence that it comprises is determined (Section 2.1). We then examine in detail some of the substantive linguis tic issues of tokenization and linguistic preprocessing, which determine the vocabulary of terms which a system uses (Section 2.2). Tokenization is the process of chopping character streams into tokens, while linguistic prepro cessing then deals with building equivalence classes of tokens which are the set of terms that are indexed. Indexing itself is covered in Chapters 1 and 4. Then we return to the implementation of postings lists. In Section 2.3, we examine an extended postings list data structure that supports faster query ing, while Section 2.4 covers building postings data structures suitable for handling phrase and proximity queries, of the sort that commonly appear in both extended Boolean models and on the web. 
2.1 Document delineation and character sequence decoding 
2.1.1 Obtaining the character sequence in a document 
Digital documents that are the input to an indexing process are typically bytes in a file or on a web server. The first step of processing is to convert this byte sequence into a linear sequence of characters. For the case of plain En glish text in ASCII encoding, this is trivial. But often things get much more
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complex. The sequence of characters may be encoded by one of various sin gle byte or multibyte encoding schemes, such as Unicode UTF-8, or various national or vendor-specific standards. We need to determine the correct en coding. This can be regarded as a machine learning classification problem, as discussed in Chapter 13,1 but is often handled by heuristic methods, user selection, or by using provided document metadata. Once the encoding is determined, we decode the byte sequence to a character sequence. We might save the choice of encoding because it gives some evidence about what lan guage the document is written in. 
The characters may have to be decoded out of some binary representation 
like Microsoft Word DOC files and/or a compressed format such as zip files. Again, we must determine the document format, and then an appropriate decoder has to be used. Even for plain text documents, additional decoding may need to be done. In XML documents (Section 10.1, page 197), charac ter entities, such as &amp;, need to be decoded to give the correct character, namely & for &amp;. Finally, the textual part of the document may need to be extracted out of other material that will not be processed. This might be the desired handling for XML files, if the markup is going to be ignored; we would almost certainly want to do this with postscript or PDF files. We will not deal further with these issues in this book, and will assume henceforth that our documents are a list of characters. Commercial products usually need to support a broad range of document types and encodings, since users want things to just work with their data as is. Often, they just think of docu ments as text inside applications and are not even aware of how it is encoded on disk. This problem is usually solved by licensing a software library that handles decoding document formats and character encodings. 
The idea that text is a linear sequence of characters is also called into ques 
tion by some writing systems, such as Arabic, where text takes on some two dimensional and mixed order characteristics, as shown in Figures 2.1 and 2.2. But, despite some complicated writing system conventions, there is an underlying sequence of sounds being represented and hence an essen tially linear structure remains, and this is what is represented in the digital representation of Arabic, as shown in Figure 2.1. 
2.1.2 Choosing a document unit 
DOCUMENT UNIT The next phase is to determine what the document unit for indexing is. Thus far we have assumed that documents are fixed units for the purposes of in dexing. For example, we take each file in a folder as a document. But there 
1. A classifier is a function that takes objects of some sort and assigns them to one of a number of distinct classes (see Chapter 13). Usually classification is done by machine learning methods such as probabilistic models, but it can also be done by hand-written rules.
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 ك ِ ت ا ب ٌ ⇐ آِ َ بٌ 
 un b ā t i k  
/kitābun/ ‘a book’ 
◮ Figure 2.1 An example of a vocalized Modern Standard Arabic word. The writing is from right to left and letters undergo complex mutations as they are combined. The representation of short vowels (here, /i/ and /u/) and the final /n/ (nunation) de parts from strict linearity by being represented as diacritics above and below letters. Nevertheless, the represented text is still clearly a linear ordering of characters repre senting sounds. Full vocalization, as here, normally appears only in the Koran and children’s books. Day-to-day text is unvocalized (short vowels are not represented but the letter for a would still appear) or partially vocalized, with short vow ¯ els in serted in places where the writer perceives ambiguities. These choices add further complexities to indexing. 
ا          1962     132 ! "!"# ا    ل ا       . 
 ا 
 
ا     
 ← → ← → ← START 
‘Algeria achieved its independence in 1962 after 132 years of French occupation.’  
◮ Figure 2.2 The conceptual linear order of characters is not necessarily the order that you see on the page. In languages that are written right-to-left, such as Hebrew and Arabic, it is quite common to also have left-to-right text interspersed, such as numbers and dollar amounts. With modern Unicode representation concepts, the order of characters in files matches the conceptual order, and the reversal of displayed characters is handled by the rendering system, but this may not be true for documents in older encodings. 
are many cases in which you might want to do something different. A tra ditional Unix (mbox-format) email file stores a sequence of email messages (an email folder) in one file, but you might wish to regard each email mes sage as a separate document. Many email messages now contain attached documents, and you might then want to regard the email message and each contained attachment as separate documents. If an email message has an attached zip file, you might want to decode the zip file and regard each file it contains as a separate document. Going in the opposite direction, various pieces of web software (such as latex2html) take things that you might regard as a single document (e.g., a Powerpoint file or a LATEX document) and split them into separate HTML pages for each slide or subsection, stored as sep arate files. In these cases, you might want to combine multiple files into a single document. 
INDEXING More generally, for very long documents, the issue of indexing granularity GRANULARITY arises. For a collection of books, it would usually be a bad idea to index an
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entire book as a document. A search for Chinese toys might bring up a book that mentions China in the first chapter and toys in the last chapter, but this does not make it relevant to the query. Instead, we may well wish to index each chapter or paragraph as a mini-document. Matches are then more likely to be relevant, and since the documents are smaller it will be much easier for the user to find the relevant passages in the document. But why stop there? We could treat individual sentences as mini-documents. It becomes clear that there is a precision/recall tradeoff here. If the units get too small, we are likely to miss important passages because terms were distributed over several mini-documents, while if units are too large we tend to get spurious matches and the relevant information is hard for the user to find. 
The problems with large document units can be alleviated by use of ex 
plicit or implicit proximity search (Sections 2.4.2 and 7.2.2), and the trade offs in resulting system performance that we are hinting at are discussed in Chapter 8. The issue of index granularity, and in particular a need to simultaneously index documents at multiple levels of granularity, appears prominently in XML retrieval, and is taken up again in Chapter 10. An IR system should be designed to offer choices of granularity. For this choice to be made well, the person who is deploying the system must have a good understanding of the document collection, the users, and their likely infor mation needs and usage patterns. For now, we will henceforth assume that a suitable size document unit has been chosen, together with an appropriate way of dividing or aggregating files, if needed. 
2.2 Determining the vocabulary of terms 
2.2.1 Tokenization 
Given a character sequence and a defined document unit, tokenization is the task of chopping it up into pieces, called tokens, perhaps at the same time throwing away certain characters, such as punctuation. Here is an example of tokenization: 
Input: Friends, Romans, Countrymen, lend me your ears; 
Output: Friends Romans Countrymen lend me your ears 
These tokens are often loosely referred to as terms or words, but it is some TOKEN times important to make a type/token distinction. A token is an instance of a sequence of characters in some particular document that are grouped TYPE together as a useful semantic unit for processing. A type is the class of all TERM tokens containing the same character sequence. A term is a (perhaps nor malized) type that is included in the IR system’s dictionary. The set of index terms could be entirely distinct from the tokens, for instance, they could be
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semantic identifiers in a taxonomy, but in practice in modern IR systems they are strongly related to the tokens in the document. However, rather than be ing exactly the tokens that appear in the document, they are usually derived from them by various normalization processes which are discussed in Sec tion 2.2.3.2 For example, if the document to be indexed is to sleep perchance to dream, then there are 5 tokens, but only 4 types (since there are 2 instances of to). However, if to is omitted from the index (as a stop word, see Section 2.2.2 (page 27)), then there will be only 3 terms: sleep, perchance, and dream. 
The major question of the tokenization phase is what are the correct tokens to use? In this example, it looks fairly trivial: you chop on whitespace and throw away punctuation characters. This is a starting point, but even for English there are a number of tricky cases. For example, what do you do about the various uses of the apostrophe for possession and contractions? 
Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t amusing. 
For O’Neill, which of the following is the desired tokenization? 
neill 
oneill 
o’neill 
o’ neill 
o neill ? 
And for aren’t, is it: 
aren’t 
arent 
are n’t 
aren t ? 
A simple strategy is to just split on all non-alphanumeric characters, but while o neill looks okay, aren t looks intuitively bad. For all of them, the choices determine which Boolean queries will match. A query of neill AND capital will match in three cases but not the other two. In how many cases would a query of o’neill AND capital match? If no preprocessing of a query is done, then it would match in only one of the five cases. For either 
2. That is, as defined here, tokens that are not indexed (stop words) are not terms, and if mul tiple tokens are collapsed together via normalization, they are indexed as one term, under the normalized form. However, we later relax this definition when discussing classification and clustering in Chapters 13–18, where there is no index. In these chapters, we drop the require ment of inclusion in the dictionary. A term means a normalized word.
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Boolean or free text queries, you always want to do the exact same tokeniza 
tion of document and query words, generally by processing queries with the 
same tokenizer. This guarantees that a sequence of characters in a text will 
always match the same sequence typed in a query.3 
These issues of tokenization are language-specific. It thus requires the lan 
LANGUAGE guage of the document to be known. Language identification based on clas IDENTIFICATION sifiers that use short character subsequences as features is highly effective; most languages have distinctive signature patterns (see page 46 for refer 
ences). 
For most languages and particular domains within them there are unusual 
specific tokens that we wish to recognize as terms, such as the programming 
languages C++ and C#, aircraft names like B-52, or a T.V. show name such 
as M*A*S*H – which is sufficiently integrated into popular culture that you 
find usages such as M*A*S*H-style hospitals. Computer technology has in 
troduced new types of character sequences that a tokenizer should probably 
tokenize as a single token, including email addresses (jblack@mail.yahoo.com), 
web URLs (http://stuff.big.com/new/specials.html),numeric IP addresses (142.32.48.231), package tracking numbers (1Z9999W99845399981), and more. One possible 
solution is to omit from indexing tokens such as monetary amounts, num 
bers, and URLs, since their presence greatly expands the size of the vocab 
ulary. However, this comes at a large cost in restricting what people can 
search for. For instance, people might want to search in a bug database for 
the line number where an error occurs. Items such as the date of an email, 
which have a clear semantic type, are often indexed separately as document 
metadata (see Section 6.1, page 110). 
HYPHENS In English, hyphenation is used for various purposes ranging from split ting up vowels in words (co-education) to joining nouns as names (Hewlett 
Packard) to a copyediting device to show word grouping (the hold-him-back 
and-drag-him-away maneuver). It is easy to feel that the first example should be 
regarded as one token (and is indeed more commonly written as just coedu 
cation), the last should be separated into words, and that the middle case is 
unclear. Handling hyphens automatically can thus be complex: it can either 
be done as a classification problem, or more commonly by some heuristic 
rules, such as allowing short hyphenated prefixes on words, but not longer 
hyphenated forms. 
Conceptually, splitting on white space can also split what should be re 
garded as a single token. This occurs most commonly with names (San Fran 
cisco, Los Angeles) but also with borrowed foreign phrases (au fait) and com 
3. For the free text case, this is straightforward. The Boolean case is more complex: this tok 
enization may produce multiple terms from one query word. This can be handled by combining 
the terms with an AND or as a phrase query (see Section 2.4, page 39). It is harder for a system 
to handle the opposite case where the user entered as two terms something that was tokenized 
together in the document processing.
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pounds that are sometimes written as a single word and sometimes space separated (such as white space vs. whitespace). Other cases with internal spaces that we might wish to regard as a single token include phone numbers ((800) 234- 2333) and dates (Mar 11, 1983). Splitting tokens on spaces can cause bad retrieval results, for example, if a search for York University mainly returns documents containing New York University. The problems of hyphens and non-separating whitespace can even interact. Advertisements for air fares frequently contain items like San Francisco-Los Angeles, where simply doing whitespace splitting would give unfortunate results. In such cases, issues of tokenization interact with handling phrase queries (which we discuss in Sec tion 2.4 (page 39)), particularly if we would like queries for all of lowercase, lower-case and lower case to return the same results. The last two can be han dled by splitting on hyphens and using a phrase index. Getting the first case right would depend on knowing that it is sometimes written as two words and also indexing it in this way. One effective strategy in practice, which is used by some Boolean retrieval systems such as Westlaw and Lexis-Nexis (Example 1.1), is to encourage users to enter hyphens wherever they may be possible, and whenever there is a hyphenated form, the system will general ize the query to cover all three of the one word, hyphenated, and two word forms, so that a query for over-eager will search for over-eager OR “over eager” OR overeager. However, this strategy depends on user training, since if you query using either of the other two forms, you get no generalization. 
Each new language presents some new issues. For instance, French has a 
variant use of the apostrophe for a reduced definite article ‘the’ before a word beginning with a vowel (e.g., l’ensemble) and has some uses of the hyphen with postposed clitic pronouns in imperatives and questions (e.g., donne moi ‘give me’). Getting the first case correct will affect the correct indexing of a fair percentage of nouns and adjectives: you would want documents mentioning both l’ensemble and un ensemble to be indexed under ensemble. Other languages make the problem harder in new ways. German writes 
COMPOUNDS compound nouns without spaces (e.g., Computerlinguistik ‘computational lin guistics’; Lebensversicherungsgesellschaftsangestellter ‘life insurance company employee’). Retrieval systems for German greatly benefit from the use of a 
COMPOUND-SPLITTER compound-splitter module, which is usually implemented by seeing if a word can be subdivided into multiple words that appear in a vocabulary. This phe nomenon reaches its limit case with major East Asian Languages (e.g., Chi nese, Japanese, Korean, and Thai), where text is written without any spaces between words. An example is shown in Figure 2.3. One approach here is to 
WORD SEGMENTATION perform word segmentation as prior linguistic processing. Methods of word segmentation vary from having a large vocabulary and taking the longest vocabulary match with some heuristics for unknown words to the use of machine learning sequence models, such as hidden Markov models or condi tional random fields, trained over hand-segmented words (see the references
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◮ Figure 2.3 The standard unsegmented form of Chinese text using the simplified characters of mainland China. There is no whitespace between words, not even be tween sentences – the apparent space after the Chinese period (◦) is just a typograph ical illusion caused by placing the character on the left side of its square box. The first sentence is just words in Chinese characters with no spaces between them. The second and third sentences include Arabic numerals and punctuation breaking up the Chinese characters. 
◮ Figure 2.4 Ambiguities in Chinese word segmentation. The two characters can be treated as one word meaning ‘monk’ or as a sequence of two words meaning ‘and’ and ‘still’. 
a an and are as at be by for from has he in is it its of on that the to was were will with 
◮ Figure 2.5 A stop list of 25 semantically non-selective words which are common in Reuters-RCV1. 
in Section 2.5). Since there are multiple possible segmentations of character sequences (see Figure 2.4), all such methods make mistakes sometimes, and so you are never guaranteed a consistent unique tokenization. The other ap proach is to abandon word-based indexing and to do all indexing via just short subsequences of characters (character k-grams), regardless of whether particular sequences cross word boundaries or not. Three reasons why this approach is appealing are that an individual Chinese character is more like a syllable than a letter and usually has some semantic content, that most words are short (the commonest length is 2 characters), and that, given the lack of standardization of word breaking in the writing system, it is not always clear where word boundaries should be placed anyway. Even in English, some cases of where to put word boundaries are just orthographic conventions – think of notwithstanding vs. not to mention or into vs. on to – but people are educated to write the words with consistent use of spaces.
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Sometimes, some extremely common words which would appear to be of little value in helping select documents matching a user need are excluded STOP WORDS from the vocabulary entirely. These words are called stop words. The general COLLECTION strategy for determining a stop list is to sort the terms by collection frequency FREQUENCY (the total number of times each term appears in the document collection), and then to take the most frequent terms, often hand-filtered for their se mantic content relative to the domain of the documents being indexed, as STOP LIST a stop list, the members of which are then discarded during indexing. An example of a stop list is shown in Figure 2.5. Using a stop list significantly reduces the number of postings that a system has to store; we will present some statistics on this in Chapter 5 (see Table 5.1, page 87). And a lot of the time not indexing stop words does little harm: keyword searches with terms like the and by don’t seem very useful. However, this is not true for phrase searches. The phrase query “President of the United States”, which con tains two stop words, is more precise than President AND “United States”. The meaning of flights to London is likely to be lost if the word to is stopped out. A search for Vannevar Bush’s article As we may think will be difficult if the first three words are stopped out, and the system searches simply for documents containing the word think. Some special query types are disproportionately affected. Some song titles and well known pieces of verse consist entirely of words that are commonly on stop lists (To be or not to be, Let It Be, I don’t want to be, . . . ). 
The general trend in IR systems over time has been from standard use of quite large stop lists (200–300 terms) to very small stop lists (7–12 terms) to no stop list whatsoever. Web search engines generally do not use stop lists. Some of the design of modern IR systems has focused precisely on how we can exploit the statistics of language so as to be able to cope with common words in better ways. We will show in Section 5.3 (page 95) how good compression techniques greatly reduce the cost of storing the postings for common words. Section 6.2.1 (page 117) then discusses how standard term weighting leads to very common words having little impact on doc ument rankings. Finally, Section 7.1.5 (page 140) shows how an IR system with impact-sorted indexes can terminate scanning a postings list early when weights get small, and hence common words do not cause a large additional processing cost for the average query, even though postings lists for stop words are very long. So for most modern IR systems, the additional cost of including stop words is not that big – neither in terms of index size nor in terms of query processing time.
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Query term Terms in documents that should be matched 
Windows Windows 
windows Windows, windows, window 
window window, windows 
◮ Figure 2.6 An example of how asymmetric expansion of query terms can usefully model users’ expectations. 
2.2.3 Normalization (equivalence classing of terms) 
Having broken up our documents (and also our query) into tokens, the easy case is if tokens in the query just match tokens in the token list of the doc ument. However, there are many cases when two character sequences are not quite the same but you would like a match to occur. For instance, if you search for USA, you might hope to also match documents containing U.S.A. 
TOKEN Token normalization is the process of canonicalizing tokens so that matches NORMALIZATION occur despite superficial differences in the character sequences of the to kens.4 
EQUIVALENCE CLASSES The most standard way to normalize is to implicitly create equivalence classes, which are normally named after one member of the set. For instance, if the tokens anti-discriminatory and antidiscriminatory are both mapped onto the term antidiscriminatory, in both the document text and queries, then searches 
for one term will retrieve documents that contain either. 
The advantage of just using mapping rules that remove characters like hy 
phens is that the equivalence classing to be done is implicit, rather than being fully calculated in advance: the terms that happen to become identical as the result of these rules are the equivalence classes. It is only easy to write rules of this sort that remove characters. Since the equivalence classes are implicit, it is not obvious when you might want to add characters. For instance, it would be hard to know to turn antidiscriminatory into anti-discriminatory. 
An alternative to creating equivalence classes is to maintain relations be 
tween unnormalized tokens. This method can be extended to hand-constructed lists of synonyms such as car and automobile, a topic we discuss further in Chapter 9. These term relationships can be achieved in two ways. The usual way is to index unnormalized tokens and to maintain a query expansion list of multiple vocabulary entries to consider for a certain query term. A query term is then effectively a disjunction of several postings lists. The alterna tive is to perform the expansion during index construction. When the doc ument contains automobile, we index it under car as well (and, usually, also vice-versa). Use of either of these methods is considerably less efficient than equivalence classing, as there are more postings to store and merge. The first 
4. It is also often referred to as term normalization, but we prefer to reserve the name term for the output of the normalization process.
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method adds a query expansion dictionary and requires more processing at query time, while the second method requires more space for storing post ings. Traditionally, expanding the space required for the postings lists was seen as more disadvantageous, but with modern storage costs, the increased flexibility that comes from distinct postings lists is appealing. 
These approaches are more flexible than equivalence classes because the expansion lists can overlap while not being identical. This means there can be an asymmetry in expansion. An example of how such an asymmetry can be exploited is shown in Figure 2.6: if the user enters windows, we wish to allow matches with the capitalized Windows operating system, but this is not plausible if the user enters window, even though it is plausible for this query to also match lowercase windows. 
The best amount of equivalence classing or query expansion to do is a fairly open question. Doing some definitely seems a good idea. But doing a lot can easily have unexpected consequences of broadening queries in unin tended ways. For instance, equivalence-classing U.S.A. and USA to the latter by deleting periods from tokens might at first seem very reasonable, given the prevalent pattern of optional use of periods in acronyms. However, if I put in as my query term C.A.T., I might be rather upset if it matches every appearance of the word cat in documents.5 
Below we present some of the forms of normalization that are commonly employed and how they are implemented. In many cases they seem helpful, but they can also do harm. In fact, you can worry about many details of equivalence classing, but it often turns out that providing processing is done consistently to the query and to documents, the fine details may not have much aggregate effect on performance. 
Accents and diacritics. Diacritics on characters in English have a fairly marginal status, and we might well want cliché and cliche to match, or naive and naïve. This can be done by normalizing tokens to remove diacritics. In many other languages, diacritics are a regular part of the writing system and distinguish different sounds. Occasionally words are distinguished only by their accents. For instance, in Spanish, peña is ‘a cliff’, while pena is ‘sorrow’. Nevertheless, the important question is usually not prescriptive or linguistic but is a question of how users are likely to write queries for these words. In many cases, users will enter queries for words without diacritics, whether for reasons of speed, laziness, limited software, or habits born of the days when it was hard to use non-ASCII text on many computer systems. In these cases, it might be best to equate all words to a form without diacritics. 
5. At the time we wrote this chapter (Aug. 2005), this was actually the case on Google: the top result for the query C.A.T. was a site about cats, the Cat Fanciers Web Site http://www.fanciers.com/.
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CASE-FOLDING Capitalization/case-folding. A common strategy is to do case-folding by re ducing all letters to lower case. Often this is a good idea: it will allow in stances of Automobile at the beginning of a sentence to match with a query of automobile. It will also help on a web search engine when most of your users type in ferrari when they are interested in a Ferrari car. On the other hand, such case folding can equate words that might better be kept apart. Many proper nouns are derived from common nouns and so are distinguished only by case, including companies (General Motors, The Associated Press), govern ment organizations (the Fed vs. fed) and person names (Bush, Black). We al ready mentioned an example of unintended query expansion with acronyms, which involved not only acronym normalization (C.A.T. → CAT) but also case-folding (CAT → cat). 
For English, an alternative to making every token lowercase is to just make 
some tokens lowercase. The simplest heuristic is to convert to lowercase words at the beginning of a sentence and all words occurring in a title that is all uppercase or in which most or all words are capitalized. These words are usually ordinary words that have been capitalized. Mid-sentence capitalized words are left as capitalized (which is usually correct). This will mostly avoid case-folding in cases where distinctions should be kept apart. The same task can be done more accurately by a machine learning sequence model which uses more features to make the decision of when to case-fold. This is known 
TRUECASING as truecasing. However, trying to get capitalization right in this way probably doesn’t help if your users usually use lowercase regardless of the correct case of words. Thus, lowercasing everything often remains the most practical solution. 
Other issues in English. Other possible normalizations are quite idiosyn cratic and particular to English. For instance, you might wish to equate ne’er and never or the British spelling colour and the American spelling color. Dates, times and similar items come in multiple formats, presenting addi tional challenges. You might wish to collapse together 3/12/91 and Mar. 12, 1991. However, correct processing here is complicated by the fact that in the U.S., 3/12/91 is Mar. 12, 1991, whereas in Europe it is 3 Dec 1991. 
Other languages. English has maintained a dominant position on the WWW; approximately 60% of web pages are in English (Gerrand 2007). But that still leaves 40% of the web, and the non-English portion might be expected to grow over time, since less than one third of Internet users and less than 10% of the world’s population primarily speak English. And there are signs of change: Sifry (2007) reports that only about one third of blog posts are in English. 
Other languages again present distinctive issues in equivalence classing.
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◮ Figure 2.7 Japanese makes use of multiple intermingled writing systems and, like Chinese, does not segment words. The text is mainly Chinese characters with the hiragana syllabary for inflectional endings and function words. The part in latin letters is actually a Japanese expression, but has been taken up as the name of an environmental campaign by 2004 Nobel Peace Prize winner Wangari Maathai. His name is written using the katakana syllabary in the middle of the first line. The first four characters of the final line express a monetary amount that we would want to match with ¥500,000 (500,000 Japanese yen). 
The French word for the has distinctive forms based not only on the gender (masculine or feminine) and number of the following noun, but also depend ing on whether the following word begins with a vowel: le, la, l’, les. We may well wish to equivalence class these various forms of the. German has a con vention whereby vowels with an umlaut can be rendered instead as a two vowel digraph. We would want to treat Schütze and Schuetze as equivalent. 
Japanese is a well-known difficult writing system, as illustrated in Fig ure 2.7. Modern Japanese is standardly an intermingling of multiple alpha bets, principally Chinese characters, two syllabaries (hiragana and katakana) and western characters (Latin letters, Arabic numerals, and various sym bols). While there are strong conventions and standardization through the education system over the choice of writing system, in many cases the same word can be written with multiple writing systems. For example, a word may be written in katakana for emphasis (somewhat like italics). Or a word may sometimes be written in hiragana and sometimes in Chinese charac ters. Successful retrieval thus requires complex equivalence classing across the writing systems. In particular, an end user might commonly present a query entirely in hiragana, because it is easier to type, just as Western end users commonly use all lowercase. 
Document collections being indexed can include documents from many different languages. Or a single document can easily contain text from mul tiple languages. For instance, a French email might quote clauses from a contract document written in English. Most commonly, the language is de tected and language-particular tokenization and normalization rules are ap plied at a predetermined granularity, such as whole documents or individual paragraphs, but this still will not correctly deal with cases where language changes occur for brief quotations. When document collections contain mul-
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tiple languages, a single index may have to contain terms of several lan guages. One option is to run a language identification classifier on docu ments and then to tag terms in the vocabulary for their language. Or this tagging can simply be omitted, since it is relatively rare for the exact same character sequence to be a word in different languages. 
When dealing with foreign or complex words, particularly foreign names, 
the spelling may be unclear or there may be variant transliteration standards giving different spellings (for example, Chebyshev and Tchebycheff or Beijing and Peking). One way of dealing with this is to use heuristics to equiva lence class or expand terms with phonetic equivalents. The traditional and best known such algorithm is the Soundex algorithm, which we cover in Section 3.4 (page 63). 
2.2.4 Stemming and lemmatization 
For grammatical reasons, documents are going to use different forms of a word, such as organize, organizes, and organizing. Additionally, there are fami lies of derivationally related words with similar meanings, such as democracy, democratic, and democratization. In many situations, it seems as if it would be useful for a search for one of these words to return documents that contain another word in the set. 
The goal of both stemming and lemmatization is to reduce inflectional 
forms and sometimes derivationally related forms of a word to a common base form. For instance: 
am, are, is ⇒ be 
car, cars, car’s, cars’ ⇒ car 
The result of this mapping of text will be something like: 
the boy’s cars are different colors ⇒ 
the boy car be differ color 
STEMMING However, the two words differ in their flavor. Stemming usually refers to a crude heuristic process that chops off the ends of words in the hope of achieving this goal correctly most of the time, and often includes the re 
LEMMATIZATION moval of derivational affixes. Lemmatization usually refers to doing things properly with the use of a vocabulary and morphological analysis of words, normally aiming to remove inflectional endings only and to return the base 
LEMMA or dictionary form of a word, which is known as the lemma. If confronted with the token saw, stemming might return just s, whereas lemmatization would attempt to return either see or saw depending on whether the use of the token was as a verb or a noun. The two may also differ in that stemming most commonly collapses derivationally related words, whereas lemmatiza tion commonly only collapses the different inflectional forms of a lemma.
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Linguistic processing for stemming or lemmatization is often done by an ad ditional plug-in component to the indexing process, and a number of such components exist, both commercial and open-source. 
The most common algorithm for stemming English, and one that has re PORTER STEMMER peatedly been shown to be empirically very effective, is Porter’s algorithm (Porter 1980). The entire algorithm is too long and intricate to present here, but we will indicate its general nature. Porter’s algorithm consists of 5 phases of word reductions, applied sequentially. Within each phase there are var ious conventions to select rules, such as selecting the rule from each rule group that applies to the longest suffix. In the first phase, this convention is used with the following rule group: 
(2.1) Rule Example 
SSES → SS caresses → caress 
IES → I ponies → poni 
SS → SS caress → caress 
S → cats → cat 
Many of the later rules use a concept of the measure of a word, which loosely checks the number of syllables to see whether a word is long enough that it is reasonable to regard the matching portion of a rule as a suffix rather than as part of the stem of a word. For example, the rule: 
(m > 1) EMENT → 
would map replacement to replac, but not cement to c. The official site for the Porter Stemmer is: 
http://www.tartarus.org/˜martin/PorterStemmer/ 
Other stemmers exist, including the older, one-pass Lovins stemmer (Lovins 1968), and newer entrants like the Paice/Husk stemmer (Paice 1990); see: 
http://www.cs.waikato.ac.nz/˜eibe/stemmers/ 
http://www.comp.lancs.ac.uk/computing/research/stemming/ 
Figure 2.8 presents an informal comparison of the different behaviors of these stemmers. Stemmers use language-specific rules, but they require less know ledge than a lemmatizer, which needs a complete vocabulary and morpho logical analysis to correctly lemmatize words. Particular domains may also require special stemming rules. However, the exact stemmed form does not matter, only the equivalence classes it forms. 
LEMMATIZER Rather than using a stemmer, you can use a lemmatizer, a tool from Nat ural Language Processing which does full morphological analysis to accu rately identify the lemma for each word. Doing full morphological analysis produces at most very modest benefits for retrieval. It is hard to say more,
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Sample text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of 
expression that is more biologically transparent and accessible to 
interpretation 
Lovins stemmer: such an analys can reve featur that ar not eas vis from th 
vari in th individu gen and can lead to a pictur of expres that is mor 
biolog transpar and acces to interpres 
Porter stemmer: such an analysi can reveal featur that ar not easili visibl 
from the variat in the individu gene and can lead to a pictur of express 
that is more biolog transpar and access to interpret 
Paice stemmer: such an analys can rev feat that are not easy vis from the 
vary in the individ gen and can lead to a pict of express that is mor 
biolog transp and access to interpret 
◮ Figure 2.8 A comparison of three stemming algorithms on a sample text. 
because either form of normalization tends not to improve English informa tion retrieval performance in aggregate – at least not by very much. While it helps a lot for some queries, it equally hurts performance a lot for others. Stemming increases recall while harming precision. As an example of what can go wrong, note that the Porter stemmer stems all of the following words: 
operate operating operates operation operative operatives operational 
to oper. However, since operate in its various forms is a common verb, we would expect to lose considerable precision on queries such as the following with Porter stemming: 
operational AND research 
operating AND system 
operative AND dentistry 
For a case like this, moving to using a lemmatizer would not completely fix the problem because particular inflectional forms are used in particular col locations: a sentence with the words operate and system is not a good match for the query operating AND system. Getting better value from term normaliza tion depends more on pragmatic issues of word use than on formal issues of linguistic morphology. 
The situation is different for languages with much more morphology (such 
as Spanish, German, and Finnish). Results in the European CLEF evaluations have repeatedly shown quite large gains from the use of stemmers (and com pound splitting for languages like German); see the references in Section 2.5.
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2.2 Determining the vocabulary of terms 35 ?Exercise 2.1 [⋆] Are the following statements true or false? 
a. In a Boolean retrieval system, stemming never lowers precision. 
b. In a Boolean retrieval system, stemming never lowers recall. 
c. Stemming increases the size of the vocabulary. 
d. Stemming should be invoked at indexing time but not while processing a query. 
Exercise 2.2 [⋆] 
Suggest what normalized form should be used for these words (including the word itself as a possibility): 
a. ’Cos 
b. Shi’ite 
c. cont’d 
d. Hawai’i 
e. O’Rourke 
Exercise 2.3 [⋆] 
The following pairs of words are stemmed to the same form by the Porter stemmer. Which pairs would you argue shouldn’t be conflated. Give your reasoning. 
a. abandon/abandonment 
b. absorbency/absorbent 
c. marketing/markets 
d. university/universe 
e. volume/volumes 
Exercise 2.4 [⋆] For the Porter stemmer rule group shown in (2.1): 
a. What is the purpose of including an identity rule such as SS → SS? b. Applying just this rule group, what will the following words be stemmed to? circus canaries boss 
c. What rule should be added to correctly stem pony? 
d. The stemming for ponies and pony might seem strange. Does it have a deleterious effect on retrieval? Why or why not?
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36 2 The term vocabulary and postings lists ◮ Figure 2.9 [image: ]Postings lists with skip pointers. The postings intersection can use a skip pointer when the end point is still less than the item on the other list. 
2.3 Faster postings list intersection via skip pointers 
In the remainder of this chapter, we will discuss extensions to postings list data structures and ways to increase the efficiency of using postings lists. Re call the basic postings list intersection operation from Section 1.3 (page 10): we walk through the two postings lists simultaneously, in time linear in the total number of postings entries. If the list lengths are m and n, the intersec tion takes O(m + n) operations. Can we do better than this? That is, empiri cally, can we usually process postings list intersection in sublinear time? We can, if the index isn’t changing too fast. 
SKIP LIST One way to do this is to use a skip list by augmenting postings lists with skip pointers (at indexing time), as shown in Figure 2.9. Skip pointers are effectively shortcuts that allow us to avoid processing parts of the postings list that will not figure in the search results. The two questions are then where to place skip pointers and how to do efficient merging using skip pointers. 
Consider first efficient merging, with Figure 2.9 as an example. Suppose 
we’ve stepped through the lists in the figure until we have matched 8 on each list and moved it to the results list. We advance both pointers, giving us 16 on the upper list and 41 on the lower list. The smallest item is then the element 16 on the top list. Rather than simply advancing the upper pointer, we first check the skip list pointer and note that 28 is also less than 41. Hence we can follow the skip list pointer, and then we advance the upper pointer to 28 . We thus avoid stepping to 19 and 23 on the upper list. A number of variant versions of postings list intersection with skip pointers is possible depending on when exactly you check the skip pointer. One version is shown
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INTERSECTWITHSKIPS(p1, p2) 
1 answer ← h i 
2 while p1 6= NIL and p2 6= NIL 
3 do if docID(p1) = docID(p2) 
4 then ADD(answer, docID(p1)) 
5 p1 ← next(p1) 
6 p2 ← next(p2) 
7 else if docID(p1) < docID(p2) 
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2)) 9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2)) 10 do p1 ← skip(p1) 
11 else p1 ← next(p1) 
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1)) 13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1)) 14 do p2 ← skip(p2) 
15 else p2 ← next(p2) 
16 return answer 
◮ Figure 2.10 Postings lists intersection with skip pointers. 
in Figure 2.10. Skip pointers will only be available for the original postings lists. For an intermediate result in a complex query, the call hasSkip(p) will always return false. Finally, note that the presence of skip pointers only helps for AND queries, not for OR queries. 
Where do we place skips? There is a tradeoff. More skips means shorter skip spans, and that we are more likely to skip. But it also means lots of comparisons to skip pointers, and lots of space storing skip pointers. Fewer skips means few pointer comparisons, but then long skip spans which means that there will be fewer opportunities to skip. A simple heuristic for placing skips, which has been found to work well in practice, is that for a postings 
list of length P, use √P evenly-spaced skip pointers. This heuristic can be improved upon; it ignores any details of the distribution of query terms. Building effective skip pointers is easy if an index is relatively static; it is harder if a postings list keeps changing because of updates. A malicious deletion strategy can render skip lists ineffective. 
Choosing the optimal encoding for an inverted index is an ever-changing game for the system builder, because it is strongly dependent on underly ing computer technologies and their relative speeds and sizes. Traditionally, CPUs were slow, and so highly compressed techniques were not optimal. Now CPUs are fast and disk is slow, so reducing disk postings list size dom inates. However, if you’re running a search engine with everything in mem-
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ory then the equation changes again. We discuss the impact of hardware parameters on index construction time in Section 4.1 (page 68) and the im pact of index size on system speed in Chapter 5. 
?Exercise 2.5 [⋆] Why are skip pointers not useful for queries of the form x OR y? 
Exercise 2.6 [⋆] 
We have a two-word query. For one term the postings list consists of the following 16 entries: 
[4,6,10,12,14,16,18,20,22,32,47,81,120,122,157,180] 
and for the other it is the one entry postings list: 
[47]. 
Work out how many comparisons would be done to intersect the two postings lists with the following two strategies. Briefly justify your answers: 
a. Using standard postings lists 
b. Using postings lists stored with skip pointers, with a skip length of √P, as sug gested in Section 2.3. 
Exercise 2.7 [⋆] Consider a postings intersection between this postings list, with skip pointers: 
3 5 9 15 24 39 60 68 75 81 84 89 92 96 97 100 115 
and the following intermediate result postings list (which hence has no skip pointers): 3 5 89 95 97 99 100 101 
Trace through the postings intersection algorithm in Figure 2.10 (page 37). 
a. How often is a skip pointer followed (i.e., p1is advanced to skip(p1))? 
b. How many postings comparisons will be made by this algorithm while intersect ing the two lists? 
c. How many postings comparisons would be made if the postings lists are inter sected without the use of skip pointers?
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2.4 Positional postings and phrase queries 
Many complex or technical concepts and many organization and product names are multiword compounds or phrases. We would like to be able to pose a query such as Stanford University by treating it as a phrase so that a sentence in a document like The inventor Stanford Ovshinsky never went to uni versity. is not a match. Most recent search engines support a double quotes 
PHRASE QUERIES syntax (“stanford university”) for phrase queries, which has proven to be very easily understood and successfully used by users. As many as 10% of web queries are phrase queries, and many more are implicit phrase queries (such as person names), entered without use of double quotes. To be able to sup port such queries, it is no longer sufficient for postings lists to be simply lists of documents that contain individual terms. In this section we consider two approaches to supporting phrase queries and their combination. A search engine should not only support phrase queries, but implement them effi ciently. A related but distinct concept is term proximity weighting, where a document is preferred to the extent that the query terms appear close to each other in the text. This technique is covered in Section 7.2.2 (page 144) in the context of ranked retrieval. 
2.4.1 Biword indexes 
One approach to handling phrases is to consider every pair of consecutive terms in a document as a phrase. For example, the text Friends, Romans, BIWORD INDEX Countrymen would generate the biwords: 
friends romans 
romans countrymen 
In this model, we treat each of these biwords as a vocabulary term. Being able to process two-word phrase queries is immediate. Longer phrases can be processed by breaking them down. The query stanford university palo alto can be broken into the Boolean query on biwords: 
“stanford university” AND “university palo” AND “palo alto” 
This query could be expected to work fairly well in practice, but there can and will be occasional false positives. Without examining the documents, we cannot verify that the documents matching the above Boolean query do actually contain the original 4 word phrase. 
Among possible queries, nouns and noun phrases have a special status in describing the concepts people are interested in searching for. But related nouns can often be divided from each other by various function words, in phrases such as the abolition of slavery or renegotiation of the constitution. These needs can be incorporated into the biword indexing model in the following
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way. First, we tokenize the text and perform part-of-speech-tagging.6 We can then group terms into nouns, including proper nouns, (N) and function words, including articles and prepositions, (X), among other classes. Now deem any string of terms of the form NX*N to be an extended biword. Each such extended biword is made a term in the vocabulary. For example: 
renegotiation of the constitution 
N X X N 
To process a query using such an extended biword index, we need to also parse it into N’s and X’s, and then segment the query into extended biwords, which can be looked up in the index. 
This algorithm does not always work in an intuitively optimal manner 
when parsing longer queries into Boolean queries. Using the above algo rithm, the query 
cost overruns on a power plant 
is parsed into 
“cost overruns” AND “overruns power” AND “power plant” 
whereas it might seem a better query to omit the middle biword. Better results can be obtained by using more precise part-of-speech patterns that define which extended biwords should be indexed. 
The concept of a biword index can be extended to longer sequences of 
words, and if the index includes variable length word sequences, it is gen PHRASE INDEX erally referred to as a phrase index. Indeed, searches for a single term are not naturally handled in a biword index (you would need to scan the dic tionary for all biwords containing the term), and so we also need to have an index of single-word terms. While there is always a chance of false positive matches, the chance of a false positive match on indexed phrases of length 3 or more becomes very small indeed. But on the other hand, storing longer phrases has the potential to greatly expand the vocabulary size. Maintain ing exhaustive phrase indexes for phrases of length greater than two is a daunting prospect, and even use of an exhaustive biword dictionary greatly expands the size of the vocabulary. However, towards the end of this sec tion we discuss the utility of the strategy of using a partial phrase index in a compound indexing scheme. 
6. Part of speech taggers classify words as nouns, verbs, etc. – or, in practice, often as finer grained classes like “plural proper noun”. Many fairly accurate (c. 96% per-tag accuracy) part of-speech taggers now exist, usually trained by machine learning methods on hand-tagged text. See, for instance, Manning and Schütze (1999, ch. 10).
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to, 993427: 
h 1, 6: h7, 18, 33, 72, 86, 231i; 
2, 5: h1, 17, 74, 222, 255i; 
4, 5: h8, 16, 190, 429, 433i; 
5, 2: h363, 367i; 
7, 3: h13, 23, 191i; . . .i 
be, 178239: 
h 1, 2: h17, 25i; 
4, 5: h17, 191, 291, 430, 434i; 
5, 3: h14, 19, 101i; . . .i 
◮ Figure 2.11 Positional index example. The word to has a document frequency 993,477, and occurs 6 times in document 1 at positions 7, 18, 33, etc. 
2.4.2 Positional indexes 
For the reasons given, a biword index is not the standard solution. Rather, POSITIONAL INDEX a positional index is most commonly employed. Here, for each term in the vocabulary, we store postings of the form docID: hposition1, position2, . . .i, as shown in Figure 2.11, where each position is a token index in the docu ment. Each posting will also usually record the term frequency, for reasons discussed in Chapter 6. 
To process a phrase query, you still need to access the inverted index en tries for each distinct term. As before, you would start with the least frequent term and then work to further restrict the list of possible candidates. In the merge operation, the same general technique is used as before, but rather than simply checking that both terms are in a document, you also need to check that their positions of appearance in the document are compatible with the phrase query being evaluated. This requires working out offsets between the words. 
✎ Example 2.1: Satisfying phrase queries. Suppose the postings lists for to and 
be are as in Figure 2.11, and the query is “to be or not to be”. The postings lists to access are: to, be, or, not. We will examine intersecting the postings lists for to and be. We first look for documents that contain both terms. Then, we look for places in the lists where there is an occurrence of be with a token index one higher than a position of to, and then we look for another occurrence of each word with token index 4 higher than the first occurrence. In the above lists, the pattern of occurrences that is a possible match is: 
to: h. . . ; 4:h. . . ,429,433i; . . .i 
be: h. . . ; 4:h. . . ,430,434i; . . .i
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POSITIONALINTERSECT(p1, p2, k) 
1 answer ← h i 
2 while p1 6= NIL and p2 6= NIL 
3 do if docID(p1) = docID(p2) 
4 then l ← h i 
5 pp1 ← positions(p1) 
6 pp2 ← positions(p2) 
7 while pp1 6= NIL 
8 do while pp2 6= NIL 
9 do if |pos(pp1) − pos(pp2)| ≤ k 
10 then ADD(l, pos(pp2)) 
11 else if pos(pp2) > pos(pp1) 
12 then break 
13 pp2 ← next(pp2) 
14 while l 6= h i and |l[0] − pos(pp1)| > k 
15 do DELETE(l[0]) 
16 for each ps ∈ l 
17 do ADD(answer,hdocID(p1), pos(pp1), psi) 
18 pp1 ← next(pp1) 
19 p1 ← next(p1) 
20 p2 ← next(p2) 
21 else if docID(p1) < docID(p2) 
22 then p1 ← next(p1) 
23 else p2 ← next(p2) 
24 return answer 
◮ Figure 2.12 An algorithm for proximity intersection of postings lists p1 and p2. The algorithm finds places where the two terms appear within k words of each other and returns a list of triples giving docID and the term position in p1 and p2. 
The same general method is applied for within k word proximity searches, 
of the sort we saw in Example 1.1 (page 15): 
employment /3 place 
Here, /k means “within k words of (on either side)”. Clearly, positional in dexes can be used for such queries; biword indexes cannot. We show in Figure 2.12 an algorithm for satisfying within k word proximity searches; it is further discussed in Exercise 2.12. 
Positional index size. Adopting a positional index expands required post ings storage significantly, even if we compress position values/offsets as we
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will discuss in Section 5.3 (page 95). Indeed, moving to a positional index also changes the asymptotic complexity of a postings intersection operation, because the number of items to check is now bounded not by the number of documents but by the total number of tokens in the document collection T. That is, the complexity of a Boolean query is Θ(T) rather than Θ(N). How ever, most applications have little choice but to accept this, since most users now expect to have the functionality of phrase and proximity searches. 
Let’s examine the space implications of having a positional index. A post ing now needs an entry for each occurrence of a term. The index size thus depends on the average document size. The average web page has less than 1000 terms, but documents like SEC stock filings, books, and even some epic poems easily reach 100,000 terms. Consider a term with frequency 1 in 1000 terms on average. The result is that large documents cause an increase of two orders of magnitude in the space required to store the postings list: 
Expected Expected entries 
Document size postings in positional posting 
1000 1 1 
100,000 1 100 
While the exact numbers depend on the type of documents and the language being indexed, some rough rules of thumb are to expect a positional index to be 2 to 4 times as large as a non-positional index, and to expect a compressed positional index to be about one third to one half the size of the raw text (after removal of markup, etc.) of the original uncompressed documents. Specific numbers for an example collection are given in Table 5.1 (page 87) and Table 5.6 (page 103). 
2.4.3 Combination schemes 
The strategies of biword indexes and positional indexes can be fruitfully combined. If users commonly query on particular phrases, such as Michael Jackson, it is quite inefficient to keep merging positional postings lists. A combination strategy uses a phrase index, or just a biword index, for certain queries and uses a positional index for other phrase queries. Good queries to include in the phrase index are ones known to be common based on re cent querying behavior. But this is not the only criterion: the most expensive phrase queries to evaluate are ones where the individual words are com mon but the desired phrase is comparatively rare. Adding Britney Spears as a phrase index entry may only give a speedup factor to that query of about 3, since most documents that mention either word are valid results, whereas adding The Who as a phrase index entry may speed up that query by a factor of 1000. Hence, having the latter is more desirable, even if it is a relatively less common query.
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