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CHAPTER 
1Introduction 
La derniere chose qu’on trouve en faisant un ouvrage est de savoir celle qu’il faut ` mettre la premiere. ` 
[The last thing you figure out in writing a book is what to put first.] 
Pascal 
1
2 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE 
CHAPTER 
2Regular Expressions, Text Normalization, Edit Distance 
User: I am unhappy. 
ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY 
User: I need some help, that much seems certain. 
ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP 
User: Perhaps I could learn to get along with my mother. 
ELIZA: TELL ME MORE ABOUT YOUR FAMILY 
User: My mother takes care of me. 
ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU 
User: My father. 
ELIZA: YOUR FATHER 
User: You are like my father in some ways. 
Weizenbaum (1966) 
ELIZA The dialogue above is from ELIZA, an early natural language processing system that could carry on a limited conversation with a user by imitating the responses of a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple program that uses pattern matching to recognize phrases like “I need X” and translate them into suitable outputs like “What would it mean to you if you got X?”. This simple technique succeeds in this domain because ELIZA doesn’t actually need to know anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is one of the few dialogue genres where listeners can act as if they know nothing of the world. Eliza’s mimicry of human conversation was remarkably successful: many people who interacted with ELIZA came to believe that it really understood them and their problems, many continued to believe in ELIZA’s abilities even after the program’s operation was explained to them (Weizenbaum, 1976), and even today chatbots such chatbots are a fun diversion. 
Of course modern conversational agents are much more than a diversion; they can answer questions, book flights, or find restaurants, functions for which they rely on a much more sophisticated understanding of the user’s intent, as we will see in Chapter 24. Nonetheless, the simple pattern-based methods that powered ELIZA and other chatbots play a crucial role in natural language processing. 
We’ll begin with the most important tool for describing text patterns: the regular expression. Regular expressions can be used to specify strings we might want to extract from a document, from transforming “I need X” in Eliza above, to defining strings like $199 or $24.99 for extracting tables of prices from a document. 
We’ll then turn to a set of tasks collectively called text normalization, in which text normalizationregular expressions play an important part. Normalizing text means converting it to a more convenient, standard form. For example, most of what we are going to do with language relies on first separating out or tokenizing words from running tokenization text, the task of tokenization. English words are often separated from each other by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll are sometimes treated as large words despite the fact that they contain spaces, while sometimes we’ll need to separate I’m into the two words I and am. For processing tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.
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Some languages, like Japanese, don’t have spaces between words, so word tokeniza tion becomes more difficult. 
lemmatization Another part of text normalization is lemmatization, the task of determining that two words have the same root, despite their surface differences. For example, the words sang, sung, and sings are forms of the verb sing. The word sing is the common lemma of these words, and a lemmatizer maps from all of these to sing. Lemmatization is essential for processing morphologically complex languages like 
stemming Arabic. Stemming refers to a simpler version of lemmatization in which we mainly just strip suffixes from the end of the word. Text normalization also includes sen tence segmentation: breaking up a text into individual sentences, using cues like sentence 
segmentationperiods or exclamation points. 
Finally, we’ll need to compare words and other strings. We’ll introduce a metric called edit distance that measures how similar two strings are based on the number of edits (insertions, deletions, substitutions) it takes to change one string into the other. Edit distance is an algorithm with applications throughout language process ing, from spelling correction to speech recognition to coreference resolution. 
2.1 Regular Expressions 
One of the unsung successes in standardization in computer science has been the regular expression (RE), a language for specifying text search strings. This prac- regular 
expressiontical language is used in every computer language, word processor, and text pro cessing tools like the Unix tools grep or Emacs. Formally, a regular expression is an algebraic notation for characterizing a set of strings. They are particularly use 
corpus ful for searching in texts, when we have a pattern to search for and a corpus of texts to search through. A regular expression search function will search through the corpus, returning all texts that match the pattern. The corpus can be a single docu ment or a collection. For example, the Unix command-line tool grep takes a regular expression and returns every line of the input document that matches the expression. 
A search can be designed to return every match on a line, if there are more than one, or just the first match. In the following examples we generally underline the exact part of the pattern that matches the regular expression and show only the first match. We’ll show regular expressions delimited by slashes but note that slashes are not part of the regular expressions. 
Regular expressions come in many variants. We’ll be describing extended regu lar expressions; different regular expression parsers may only recognize subsets of these, or treat some expressions slightly differently. Using an online regular expres sion tester is a handy way to test out your expressions and explore these variations. 
2.1.1 Basic Regular Expression Patterns 
The simplest kind of regular expression is a sequence of simple characters. To search for woodchuck, we type /woodchuck/. The expression /Buttercup/ matches any string containing the substring Buttercup; grep with that expression would return the line I’m called little Buttercup. The search string can consist of a single character (like /!/) or a sequence of characters (like /urgl/). 
Regular expressions are case sensitive; lower case /s/ is distinct from upper case /S/ (/s/ matches a lower case s but not an upper case S). This means that the pattern /woodchucks/ will not match the string Woodchucks. We can solve this
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RE Example Patterns Matched 
/woodchucks/ “interesting links to woodchucks and lemurs” /a/ “Mary Ann stopped by Mona’s” 
/!/ “You’ve left the burglar behind again!” said Nori Figure 2.1 Some simple regex searches. 
problem with the use of the square braces [ and ]. The string of characters inside the braces specifies a disjunction of characters to match. For example, Fig. 2.2 shows that the pattern /[wW]/ matches patterns containing either w or W. 
RE Match Example Patterns 
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck” 
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati” /[1234567890]/ any digit “plenty of 7 to 5” 
Figure 2.2 The use of the brackets [] to specify a disjunction of characters. 
The regular expression /[1234567890]/ specifies any single digit. While such classes of characters as digits or letters are important building blocks in expressions, they can get awkward (e.g., it’s inconvenient to specify 
/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/ 
to mean “any capital letter”). In cases where there is a well-defined sequence asso ciated with a set of characters, the brackets can be used with the dash (-) to specify range any one character in a range. The pattern /[2-5]/ specifies any one of the charac ters 2, 3, 4, or 5. The pattern /[b-g]/ specifies one of the characters b, c, d, e, f, or g. Some other examples are shown in Fig. 2.3. 
RE Match Example Patterns Matched 
/[A-Z]/ an upper case letter “we should call it ‘Drenched Blossoms’ ” /[a-z]/ a lower case letter “my beans were impatient to be hoed!” /[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole” 
Figure 2.3 The use of the brackets [] plus the dash - to specify a range. 
The square braces can also be used to specify what a single character cannot be, by use of the caret ˆ. If the caret ˆ is the first symbol after the open square brace [, the resulting pattern is negated. For example, the pattern /[ˆa]/ matches any single character (including special characters) except a. This is only true when the caret is the first symbol after the open square brace. If it occurs anywhere else, it usually stands for a caret; Fig. 2.4 shows some examples. 
RE Match (single characters) Example Patterns Matched /[ˆA-Z]/ not an upper case letter “Oyfn pripetchik” /[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason for’t” /[ˆ.]/ not a period “our resident Djinn” /[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now” 
/aˆb/ the pattern ‘aˆb’ “look up aˆ b now” Figure 2.4 The caret ˆ for negation or just to mean ˆ. See below re: the backslash for escaping the period. 
How can we talk about optional elements, like an optional s in woodchuck and woodchucks? We can’t use the square brackets, because while they allow us to say “s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark /?/, which means “the preceding character or nothing”, as shown in Fig. 2.5.
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RE Match Example Patterns Matched /woodchucks?/ woodchuck or woodchucks “woodchuck” 
/colou?r/ color or colour “color” 
Figure 2.5 The question mark ? marks optionality of the previous expression. 
We can think of the question mark as meaning “zero or one instances of the previous character”. That is, it’s a way of specifying how many of something that we want, something that is very important in regular expressions. For example, consider the language of certain sheep, which consists of strings that look like the following: 
baa! 
baaa! 
baaaa! 
baaaaa! 
. . . 
This language consists of strings with a b, followed by at least two a’s, followed by an exclamation point. The set of operators that allows us to say things like “some Kleene * number of as” are based on the asterisk or *, commonly called the Kleene * (gen erally pronounced “cleany star”). The Kleene star means “zero or more occurrences of the immediately previous character or regular expression”. So /a*/ means “any string of zero or more as”. This will match a or aaaaaa, but it will also match Off Minor since the string Off Minor has zero a’s. So the regular expression for matching one or more a is /aa*/, meaning one a followed by zero or more as. More complex patterns can also be repeated. So /[ab]*/ means “zero or more a’s or b’s” (not “zero or more right square braces”). This will match strings like aaaa or ababab or bbbb. 
For specifying multiple digits (useful for finding prices) we can extend /[0-9]/, the regular expression for a single digit. An integer (a string of digits) is thus /[0-9][0-9]*/. (Why isn’t it just /[0-9]*/?) 
Sometimes it’s annoying to have to write the regular expression for digits twice, so there is a shorter way to specify “at least one” of some character. This is the Kleene + Kleene +, which means “one or more occurrences of the immediately preceding character or regular expression”. Thus, the expression /[0-9]+/ is the normal way to specify “a sequence of digits”. There are thus two ways to specify the sheep language: /baaa*!/ or /baa+!/. 
One very important special character is the period (/./), a wildcard expression that matches any single character (except a carriage return), as shown in Fig. 2.6. 
RE Match Example Matches /beg.n/ any character between beg and n begin, beg’n, begun 
Figure 2.6 The use of the period . to specify any character. 
The wildcard is often used together with the Kleene star to mean “any string of characters”. For example, suppose we want to find any line in which a particular word, for example, aardvark, appears twice. We can specify this with the regular expression /aardvark.*aardvark/. 
anchors Anchors are special characters that anchor regular expressions to particular places in a string. The most common anchors are the caret ˆ and the dollar sign $. The caret ˆ matches the start of a line. The pattern /ˆThe/ matches the word The only at the
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start of a line. Thus, the caret ˆ has three uses: to match the start of a line, to in dicate a negation inside of square brackets, and just to mean a caret. (What are the contexts that allow grep or Python to know which function a given caret is supposed to have?) The dollar sign $ matches the end of a line. So the pattern $ is a useful pattern for matching a space at the end of a line, and /ˆThe dog\.$/ matches a line that contains only the phrase The dog. (We have to use the backslash here since we want the . to mean “period” and not the wildcard.) 
RE Match 
ˆ start of line 
\$ end of line 
\b word boundary 
\B non-word boundary 
Figure 2.7 Anchors in regular expressions. 
There are also two other anchors: \b matches a word boundary, and \B matches a non-boundary. Thus, /\bthe\b/ matches the word the but not the word other. More technically, a “word” for the purposes of a regular expression is defined as any sequence of digits, underscores, or letters; this is based on the definition of “words” in programming languages. For example, /\b99\b/ will match the string 99 in There are 99 bottles of beer on the wall (because 99 follows a space) but not 99 in There are 299 bottles of beer on the wall (since 99 follows a number). But it will match 99 in $99 (since 99 follows a dollar sign ($), which is not a digit, underscore, or letter). 
2.1.2 Disjunction, Grouping, and Precedence 
Suppose we need to search for texts about pets; perhaps we are particularly interested in cats and dogs. In such a case, we might want to search for either the string cat or the string dog. Since we can’t use the square brackets to search for “cat or dog” (why 
disjunction can’t we say /[catdog]/?), we need a new operator, the disjunction operator, also called the pipe symbol |. The pattern /cat|dog/ matches either the string cat or the string dog. 
Sometimes we need to use this disjunction operator in the midst of a larger se quence. For example, suppose I want to search for information about pet fish for my cousin David. How can I specify both guppy and guppies? We cannot simply say /guppy|ies/, because that would match only the strings guppy and ies. This 
precedence is because sequences like guppy take precedence over the disjunction operator |. To make the disjunction operator apply only to a specific pattern, we need to use the parenthesis operators ( and ). Enclosing a pattern in parentheses makes it act like a single character for the purposes of neighboring operators like the pipe | and the Kleene*. So the pattern /gupp(y|ies)/ would specify that we meant the disjunc tion only to apply to the suffixes y and ies. 
The parenthesis operator ( is also useful when we are using counters like the Kleene*. Unlike the | operator, the Kleene* operator applies by default only to a single character, not to a whole sequence. Suppose we want to match repeated instances of a string. Perhaps we have a line that has column labels of the form Column 1 Column 2 Column 3. The expression /Column [0-9]+ */ will not match any number of columns; instead, it will match a single column followed by any number of spaces! The star here applies only to the space that precedes it, not to the whole sequence. With the parentheses, we could write the expression
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/(Column [0-9]+ *)*/ to match the word Column, followed by a number and optional spaces, the whole pattern repeated zero or more times. 
This idea that one operator may take precedence over another, requiring us to sometimes use parentheses to specify what we mean, is formalized by the operator precedence hierarchy for regular expressions. The following table gives the order operator 
precedenceof RE operator precedence, from highest precedence to lowest precedence. 
Parenthesis () 
Counters * + ? {} 
Sequences and anchors the ˆmy end$ 
Disjunction | 
Thus, because counters have a higher precedence than sequences, /the*/ matches theeeee but not thethe. Because sequences have a higher prece dence than disjunction, /the|any/ matches the or any but not thany or theny. 
Patterns can be ambiguous in another way. Consider the expression /[a-z]*/ when matching against the text once upon a time. Since /[a-z]*/ matches zero or more letters, this expression could match nothing, or just the first letter o, on, onc, or once. In these cases regular expressions always match the largest string they can; 
greedy we say that patterns are greedy, expanding to cover as much of a string as they can. non-greedy There are, however, ways to enforce non-greedy matching, using another mean- *? ing of the ? qualifier. The operator *? is a Kleene star that matches as little text as +? possible. The operator +? is a Kleene plus that matches as little text as possible. 
2.1.3 A Simple Example 
Suppose we wanted to write a RE to find cases of the English article the. A simple (but incorrect) pattern might be: 
/the/ 
One problem is that this pattern will miss the word when it begins a sentence and hence is capitalized (i.e., The). This might lead us to the following pattern: 
/[tT]he/ 
But we will still incorrectly return texts with the embedded in other words (e.g., other or theology). So we need to specify that we want instances with a word bound ary on both sides: 
/\b[tT]he\b/ 
Suppose we wanted to do this without the use of /\b/. We might want this since /\b/ won’t treat underscores and numbers as word boundaries; but we might want to find the in some context where it might also have underlines or numbers nearby (the or the25). We need to specify that we want instances in which there are no alphabetic letters on either side of the the: 
/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/ 
But there is still one more problem with this pattern: it won’t find the word the when it begins a line. This is because the regular expression [ˆa-zA-Z], which we used to avoid embedded instances of the, implies that there must be some single (although non-alphabetic) character before the the. We can avoid this by specify ing that before the the we require either the beginning-of-line or a non-alphabetic character, and the same at the end of the line:
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/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/ 
The process we just went through was based on fixing two kinds of errors: false false positives positives, strings that we incorrectly matched like other or there, and false nega false negatives tives, strings that we incorrectly missed, like The. Addressing these two kinds of errors comes up again and again in implementing speech and language processing systems. Reducing the overall error rate for an application thus involves two antag onistic efforts: 
• Increasing precision (minimizing false positives) 
• Increasing recall (minimizing false negatives) 
We’ll come back to precision and recall with more precise definitions in Chapter 4. 
2.1.4 More Operators 
Figure 2.8 shows some aliases for common ranges, which can be used mainly to save typing. Besides the Kleene * and Kleene + we can also use explicit numbers as counters, by enclosing them in curly brackets. The regular expression /{3}/ means “exactly 3 occurrences of the previous character or expression”. So /a\.{24}z/ will match a followed by 24 dots followed by z (but not a followed by 23 or 25 dots followed by a z). 
RE Expansion Match First Matches \d [0-9] any digit Party of 5 
\D [ˆ0-9] any non-digit Blue moon 
\w [a-zA-Z0-9_] any alphanumeric/underscore Daiyu 
\W [ˆ\w] a non-alphanumeric !!!! 
\s [ \r\t\n\f] whitespace (space, tab) 
\S [ˆ\s] Non-whitespace in Concord 
Figure 2.8 Aliases for common sets of characters. 
A range of numbers can also be specified. So /{n,m}/ specifies from n to m occurrences of the previous char or expression, and /{n,}/ means at least n occur rences of the previous expression. REs for counting are summarized in Fig. 2.9. 
RE Match 
* zero or more occurrences of the previous char or expression 
+ one or more occurrences of the previous char or expression 
? exactly zero or one occurrence of the previous char or expression {n} n occurrences of the previous char or expression 
{n,m} from n to m occurrences of the previous char or expression 
{n,} at least n occurrences of the previous char or expression 
{,m} up to m occurrences of the previous char or expression 
Figure 2.9 Regular expression operators for counting. 
Finally, certain special characters are referred to by special notation based on the newline backslash (\) (see Fig. 2.10). The most common of these are the newline character \n and the tab character \t. To refer to characters that are special themselves (like ., *, [, and \), precede them with a backslash, (i.e., /\./, /\*/, /\[/, and /\\/).
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RE Match First Patterns Matched 
\* an asterisk “*” “K*A*P*L*A*N” 
\. a period “.” “Dr. Livingston, I presume” 
\? a question mark “Why don’t they come and lend a hand?” \n a newline 
\t a tab 
Figure 2.10 Some characters that need to be backslashed. 
2.1.5 A More Complex Example 
Let’s try out a more significant example of the power of REs. Suppose we want to build an application to help a user buy a computer on the Web. The user might want “any machine with at least 6 GHz and 500 GB of disk space for less than $1000”. To do this kind of retrieval, we first need to be able to look for expressions like 6 GHz or 500 GB or Mac or $999.99. In the rest of this section we’ll work out some simple regular expressions for this task. 
First, let’s complete our regular expression for prices. Here’s a regular expres sion for a dollar sign followed by a string of digits: 
/$[0-9]+/ 
Note that the $ character has a different function here than the end-of-line function we discussed earlier. Most regular expression parsers are smart enough to realize that $ here doesn’t mean end-of-line. (As a thought experiment, think about how regex parsers might figure out the function of $ from the context.) 
Now we just need to deal with fractions of dollars. We’ll add a decimal point and two digits afterwards: 
/$[0-9]+\.[0-9][0-9]/ 
This pattern only allows $199.99 but not $199. We need to make the cents optional and to make sure we’re at a word boundary: 
/(ˆ|\W)$[0-9]+(\.[0-9][0-9])?\b/ 
One last catch! This pattern allows prices like $199999.99 which would be far too expensive! We need to limit the dollars: 
/(ˆ|\W)$[0-9]{0,3}(\.[0-9][0-9])?\b/ 
How about disk space? We’ll need to allow for optional fractions again (5.5 GB); note the use of ? for making the final s optional, and the of / */ to mean “zero or more spaces” since there might always be extra spaces lying around: 
/\b[0-9]+(\.[0-9]+)? *(GB|[Gg]igabytes?)\b/ 
Modifying this regular expression so that it only matches more than 500 GB is left as an exercise for the reader. 
2.1.6 Substitution, Capture Groups, and ELIZA 
substitution An important use of regular expressions is in substitutions. For example, the substi tution operator s/regexp1/pattern/ used in Python and in Unix commands like vim or sed allows a string characterized by a regular expression to be replaced by another string:
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s/colour/color/ 
It is often useful to be able to refer to a particular subpart of the string matching the first pattern. For example, suppose we wanted to put angle brackets around all integers in a text, for example, changing the 35 boxes to the <35> boxes. We’d like a way to refer to the integer we’ve found so that we can easily add the brackets. To do this, we put parentheses ( and ) around the first pattern and use the number operator \1 in the second pattern to refer back. Here’s how it looks: 
s/([0-9]+)/<\1>/ 
The parenthesis and number operators can also specify that a certain string or expression must occur twice in the text. For example, suppose we are looking for the pattern “the Xer they were, the Xer they will be”, where we want to constrain the two X’s to be the same string. We do this by surrounding the first X with the parenthesis operator, and replacing the second X with the number operator \1, as follows: 
/the (.*)er they were, the \1er they will be/ 
Here the \1 will be replaced by whatever string matched the first item in paren theses. So this will match the bigger they were, the bigger they will be but not the bigger they were, the faster they will be. 
capture group This use of parentheses to store a pattern in memory is called a capture group. Every time a capture group is used (i.e., parentheses surround a pattern), the re register sulting match is stored in a numbered register. If you match two different sets of parentheses, \2 means whatever matched the second capture group. Thus 
/the (.*)er they (.*), the \1er we \2/ 
will match the faster they ran, the faster we ran but not the faster they ran, the faster we ate. Similarly, the third capture group is stored in \3, the fourth is \4, and so on. Parentheses thus have a double function in regular expressions; they are used to group terms for specifying the order in which operators should apply, and they are used to capture something in a register. Occasionally we might want to use parenthe ses for grouping, but don’t want to capture the resulting pattern in a register. In that case we use a non-capturing group, which is specified by putting the commands non-capturing 
group?: after the open paren, in the form (?: pattern ). 
/(?:some|a few) (people|cats) like some \1/ 
will match some cats like some cats but not some cats like some a few. 
Substitutions and capture groups are very useful in implementing simple chat bots like ELIZA (Weizenbaum, 1966). Recall that ELIZA simulates a Rogerian psychologist by carrying on conversations like the following: 
User1: Men are all alike. 
ELIZA1: IN WHAT WAY 
User2: They’re always bugging us about something or other. 
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE 
User3: Well, my boyfriend made me come here. 
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE 
User4: He says I’m depressed much of the time. 
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED 
ELIZA works by having a series or cascade of regular expression substitutions each of which matches and changes some part of the input lines. Input lines are
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first uppercased. The first substitutions then change all instances of MY to YOUR, and I’M to YOU ARE, and so on. The next set of substitutions matches and replaces other patterns in the input. Here are some examples: 
s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/ s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/ 
s/.* all .*/IN WHAT WAY/ 
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/ 
Since multiple substitutions can apply to a given input, substitutions are assigned a rank and applied in order. Creating patterns is the topic of Exercise 2.3, and we return to the details of the ELIZA architecture in Chapter 24. 
2.1.7 Lookahead Assertions 
Finally, there will be times when we need to predict the future: look ahead in the text to see if some pattern matches, but not advance the match cursor, so that we can then deal with the pattern if it occurs. 
lookahead These lookahead assertions make use of the (? syntax that we saw in the previ ous section for non-capture groups. The operator (?= pattern) is true if pattern zero-width occurs, but is zero-width, i.e. the match pointer doesn’t advance. The operator (?! pattern) only returns true if a pattern does not match, but again is zero-width and doesn’t advance the cursor. Negative lookahead is commonly used when we are parsing some complex pattern but want to rule out a special case. For example suppose we want to match, at the beginning of a line, any single word that doesn’t start with “Volcano”. We can use negative lookahead to do this: 
/ˆ(?!Volcano)[A-Za-z]+/ 
2.2 Words 
Before we talk about processing words, we need to decide what counts as a word. corpus Let’s start by looking at one particular corpus (plural corpora), a computer-readable corpora collection of text or speech. For example the Brown corpus is a million-word col lection of samples from 500 written English texts from different genres (newspa per, fiction, non-fiction, academic, etc.), assembled at Brown University in 1963–64 (Kucera and Francis, 1967) ˇ . How many words are in the following Brown sentence? 
He stepped out into the hall, was delighted to encounter a water brother. 
This sentence has 13 words if we don’t count punctuation marks as words, 15 if we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as words depends on the task. Punctuation is critical for finding boundaries of things (commas, periods, colons) and for identifying some aspects of meaning (question marks, exclamation marks, quotation marks). For some tasks, like part-of-speech tagging or parsing or speech synthesis, we sometimes treat punctuation marks as if they were separate words. 
The Switchboard corpus of American English telephone conversations between strangers was collected in the early 1990s; it contains 2430 conversations averaging 6 minutes each, totaling 240 hours of speech and about 3 million words (Godfrey et al., 1992). Such corpora of spoken language don’t have punctuation but do intro-
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duce other complications with regard to defining words. Let’s look at one utterance utterance from Switchboard; an utterance is the spoken correlate of a sentence: 
I do uh main- mainly business data processing 
disfluency This utterance has two kinds of disfluencies. The broken-off word main- is fragment called a fragment. Words like uh and um are called fillers or filled pauses. Should filled pause we consider these to be words? Again, it depends on the application. If we are building a speech transcription system, we might want to eventually strip out the disfluencies. 
But we also sometimes keep disfluencies around. Disfluencies like uh or um are actually helpful in speech recognition in predicting the upcoming word, because they may signal that the speaker is restarting the clause or idea, and so for speech recognition they are treated as regular words. Because people use different disflu encies they can also be a cue to speaker identification. In fact Clark and Fox Tree (2002) showed that uh and um have different meanings. What do you think they are? 
Are capitalized tokens like They and uncapitalized tokens like they the same word? These are lumped together in some tasks (speech recognition), while for part of-speech or named-entity tagging, capitalization is a useful feature and is retained. 
How about inflected forms like cats versus cat? These two words have the same lemma lemma cat but are different wordforms. A lemma is a set of lexical forms having the same stem, the same major part-of-speech, and the same word sense. The word wordform form is the full inflected or derived form of the word. For morphologically complex languages like Arabic, we often need to deal with lemmatization. For many tasks in English, however, wordforms are sufficient. 
How many words are there in English? To answer this question we need to word type distinguish two ways of talking about words. Types are the number of distinct words in a corpus; if the set of words in the vocabulary is V, the number of types is the word token vocabulary size |V|. Tokens are the total number N of running words. If we ignore punctuation, the following Brown sentence has 16 tokens and 14 types: 
They picnicked by the pool, then lay back on the grass and looked at the stars. 
When we speak about the number of words in the language, we are generally referring to word types. 
Corpus Tokens = N Types = |V| Shakespeare 884 thousand 31 thousand Brown corpus 1 million 38 thousand Switchboard telephone conversations 2.4 million 20 thousand COCA 440 million 2 million Google N-grams 1 trillion 13 million 
Figure 2.11 Rough numbers of types and tokens for some English language corpora. The largest, the Google N-grams corpus, contains 13 million types, but this count only includes types appearing 40 or more times, so the true number would be much larger. 
Fig. 2.11 shows the rough numbers of types and tokens computed from some popular English corpora. The larger the corpora we look at, the more word types we find, and in fact this relationship between the number of types |V| and number 
Herdan’s Law of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978) Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown in Eq. 2.1, where k and β are positive constants, and 0 < β < 1. 
|V| = kNβ(2.1)
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The value of β depends on the corpus size and the genre, but at least for the large corpora in Fig. 2.11, β ranges from .67 to .75. Roughly then we can say that the vocabulary size for a text goes up significantly faster than the square root of its length in words. 
Another measure of the number of words in the language is the number of lem mas instead of wordform types. Dictionaries can help in giving lemma counts; dic tionary entries or boldface forms are a very rough upper bound on the number of lemmas (since some lemmas have multiple boldface forms). The 1989 edition of the Oxford English Dictionary had 615,000 entries. 
2.3 Corpora 
Words don’t appear out of nowhere. Any particular piece of text that we study is produced by one or more specific speakers or writers, in a specific dialect of a specific language, at a specific time, in a specific place, for a specific function. 
Perhaps the most important dimension of variation is the language. NLP algo rithms are most useful when they apply across many languages. The world has 7097 languages at the time of this writing, according to the online Ethnologue catalog (Simons and Fennig, 2018). It is important to test algorithms on more than one lan guage, and particularly on languages with different properties; by contrast there is an unfortunate current tendency for NLP algorithms to be developed or tested just on English (Bender, 2019). Even when algorithms are developed beyond English, they tend to be developed for the official languages of large industrialized nations (Chinese, Spanish, Japanese, German etc.), but we don’t want to limit tools to just these few languages. Furthermore, most languages also have multiple varieties, of ten spoken in different regions or by different social groups. Thus, for example, if 
AAL we’re processing text that uses features of African American Language (AAL) — the name for the many variations of language used by millions of people in African American communities (King 2020) — we must use NLP tools that function with features of those varieties. Twitter posts might use features often used by speakers of African American Language, such as constructions like iont (I don’t in Mainstream 
MAE American English (MAE)), or talmbout corresponding to MAE talking about, both examples that influence word segmentation (Blodgett et al. 2016, Jones 2015). It’s also quite common for speakers or writers to use multiple languages in a code switching single communicative act, a phenomenon called code switching. Code switch ing is enormously common across the world; here are examples showing Spanish and (transliterated) Hindi code switching with English (Solorio et al. 2014, Jurgens et al. 2017): 
(2.2) Por primera vez veo a @username actually being hateful! it was beautiful:) [For the first time I get to see @username actually being hateful! it was 
beautiful:) ] 
(2.3) dost tha or ra- hega ... dont wory ... but dherya rakhe 
[“he was and will remain a friend ... don’t worry ... but have faith”] 
Another dimension of variation is the genre. The text that our algorithms must process might come from newswire, fiction or non-fiction books, scientific articles, Wikipedia, or religious texts. It might come from spoken genres like telephone conversations, business meetings, police body-worn cameras, medical interviews, or transcripts of television shows or movies. It might come from work situations
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like doctors’ notes, legal text, or parliamentary or congressional proceedings. Text also reflects the demographic characteristics of the writer (or speaker): their age, gender, race, socioeconomic class can all influence the linguistic properties of the text we are processing. 
And finally, time matters too. Language changes over time, and for some lan guages we have good corpora of texts from different historical periods. 
Because language is so situated, when developing computational models for lan guage processing from a corpus, it’s important to consider who produced the lan guage, in what context, for what purpose. How can a user of a dataset know all these 
datasheet details? The best way is for the corpus creator to build a datasheet (Gebru et al., 2020) or data statement (Bender and Friedman, 2018) for each corpus. A datasheet specifies properties of a dataset like: 
Motivation: Why was the corpus collected, by whom, and who funded it? 
Situation: When and in what situation was the text written/spoken? For example, was there a task? Was the language originally spoken conversation, edited text, social media communication, monologue vs. dialogue? 
Language variety: What language (including dialect/region) was the corpus in? Speaker demographics: What was, e.g., age or gender of the authors of the text? Collection process: How big is the data? If it is a subsample how was it sampled? 
Was the data collected with consent? How was the data pre-processed, and what metadata is available? 
Annotation process: What are the annotations, what are the demographics of the annotators, how were they trained, how was the data annotated? 
Distribution: Are there copyright or other intellectual property restrictions? 2.4 Text Normalization 
Before almost any natural language processing of a text, the text has to be normal ized. At least three tasks are commonly applied as part of any normalization process: 
1. Tokenizing (segmenting) words 
2. Normalizing word formats 
3. Segmenting sentences 
In the next sections we walk through each of these tasks. 
2.4.1 Unix Tools for Crude Tokenization and Normalization 
Let’s begin with an easy, if somewhat naive version of word tokenization and nor malization (and frequency computation) that can be accomplished for English solely in a single UNIX command-line, inspired by Church (1994). We’ll make use of some Unix commands: tr, used to systematically change particular characters in the in put; sort, which sorts input lines in alphabetical order; and uniq, which collapses and counts adjacent identical lines. 
For example let’s begin with the ‘complete words’ of Shakespeare in one textfile, sh.txt. We can use tr to tokenize the words by changing every sequence of non alphabetic characters to a newline (’A-Za-z’ means alphabetic, the -c option com plements to non-alphabet, and the -s option squeezes all sequences into a single character):
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tr -sc ’A-Za-z’ ’\n’ < sh.txt 
The output of this command will be: 
THE 
SONNETS 
by 
William 
Shakespeare 
From 
fairest 
creatures 
We 
... 
Now that there is one word per line, we can sort the lines, and pass them to uniq -c which will collapse and count them: 
tr -sc ’A-Za-z’ ’\n’ < sh.txt | sort | uniq -c 
with the following output: 
1945 A 
72 AARON 
19 ABBESS 
25 Aaron 
6 Abate 
1 Abates 
5 Abbess 
6 Abbey 
3 Abbot 
... 
Alternatively, we can collapse all the upper case to lower case: 
tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c whose output is 
14725 a 
97 aaron 
1 abaissiez 
10 abandon 
2 abandoned 
2 abase 
1 abash 
14 abate 
3 abated 
3 abatement 
... 
Now we can sort again to find the frequent words. The -n option to sort means to sort numerically rather than alphabetically, and the -r option means to sort in reverse order (highest-to-lowest): 
tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c | sort -n -r 
The results show that the most frequent words in Shakespeare, as in any other corpus, are the short function words like articles, pronouns, prepositions:
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27378 the 
26084 and 
22538 i 
19771 to 
17481 of 
14725 a 
13826 you 
12489 my 
11318 that 
11112 in 
... 
Unix tools of this sort can be very handy in building quick word count statistics for any corpus. 
2.4.2 Word Tokenization 
The simple UNIX tools above were fine for getting rough word statistics but more tokenization sophisticated algorithms are generally necessary for tokenization, the task of seg menting running text into words. 
While the Unix command sequence just removed all the numbers and punctu ation, for most NLP applications we’ll need to keep these in our tokenization. We often want to break off punctuation as a separate token; commas are a useful piece of information for parsers, periods help indicate sentence boundaries. But we’ll often want to keep the punctuation that occurs word internally, in examples like m.p.h., Ph.D., AT&T, and cap’n. Special characters and numbers will need to be kept in prices ($45.55) and dates (01/02/06); we don’t want to segment that price into sep arate tokens of “45” and “55”. And there are URLs (http://www.stanford.edu), Twitter hashtags (#nlproc), or email addresses (someone@cs.colorado.edu). 
Number expressions introduce other complications as well; while commas nor mally appear at word boundaries, commas are used inside numbers in English, every three digits: 555,500.50. Languages, and hence tokenization requirements, differ on this; many continental European languages like Spanish, French, and German, by contrast, use a comma to mark the decimal point, and spaces (or sometimes periods) where English puts commas, for example, 555 500,50. 
clitic A tokenizer can also be used to expand clitic contractions that are marked by apostrophes, for example, converting what’re to the two tokens what are, and we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only occur when it is attached to another word. Some such contractions occur in other alphabetic languages, including articles and pronouns in French (j’ai, l’homme). 
Depending on the application, tokenization algorithms may also tokenize mul tiword expressions like New York or rock ’n’ roll as a single token, which re quires a multiword expression dictionary of some sort. Tokenization is thus inti mately tied up with named entity recognition, the task of detecting names, dates, and organizations (Chapter 8). 
One commonly used tokenization standard is known as the Penn Treebank to kenization standard, used for the parsed corpora (treebanks) released by the Lin- Penn Treebank tokenizationguistic Data Consortium (LDC), the source of many useful datasets. This standard separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to gether, and separates out all punctuation (to save space we’re showing visible spaces ‘ ’ between tokens, although newlines is a more common output):
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Input: "The San Francisco-based restaurant," they said, "doesn’t charge $10". 
Output: " The San Francisco-based restaurant , " they said , " does n’t charge $ 10 " . 
In practice, since tokenization needs to be run before any other language pro cessing, it needs to be very fast. The standard method for tokenization is therefore to use deterministic algorithms based on regular expressions compiled into very ef ficient finite state automata. For example, Fig. 2.12 shows an example of a basic regular expression that can be used to tokenize with the nltk.regexp tokenize function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009; http://www.nltk.org). 
	>>> text = ’That U.S.A. poster-print costs $12.40...’ 
>>> pattern = r’’’(?x) # set flag to allow verbose regexps ... ([A-Z]\.)+ # abbreviations, e.g. U.S.A. ... | \w+(-\w+)* # words with optional internal hyphens ... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82% ... | \.\.\. # ellipsis 
... | [][.,;"’?():-_‘] # these are separate tokens; includes ], [ ... ’’’ 
>>> nltk.regexp_tokenize(text, pattern) 
[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]




Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x) verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird et al. (2009). 
Carefully designed deterministic algorithms can deal with the ambiguities that arise, such as the fact that the apostrophe needs to be tokenized differently when used as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she said, or in clitics like they’re. 
Word tokenization is more complex in languages like written Chinese, Japanese, and Thai, which do not use spaces to mark potential word-boundaries. In Chinese, hanzi for example, words are composed of characters (called hanzi in Chinese). Each character generally represents a single unit of meaning (called a morpheme) and is pronounceable as a single syllable. Words are about 2.4 characters long on average. But deciding what counts as a word in Chinese is complex. For example, consider the following sentence: 
(2.4) 姚明进入总决赛 
“Yao Ming reaches the finals” 
As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’ segmentation): 
(2.5) 姚明 
YaoMing 
进入 
reaches 
总决赛 finals 
or as 5 words (‘Peking University’ segmentation): 
(2.6) 姚 Yao 
明 
Ming 
进入 
reaches 
总 
overall 
决赛 finals 
Finally, it is possible in Chinese simply to ignore words altogether and use characters as the basic elements, treating the sentence as a series of 7 characters:
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(2.7) 姚 Yao 
明 
Ming 
进 
enter 
入 
enter 
总 
overall 
决 
decision 
赛 
game 
In fact, for most Chinese NLP tasks it turns out to work better to take characters rather than words as input, since characters are at a reasonable semantic level for most applications, and since most word standards, by contrast, result in a huge vo cabulary with large numbers of very rare words (Li et al., 2019). 
However, for Japanese and Thai the character is too small a unit, and so algo rithms for word segmentation are required. These can also be useful for Chinese word 
segmentationin the rare situations where word rather than character boundaries are required. The standard segmentation algorithms for these languages use neural sequence mod els trained via supervised machine learning on hand-segmented training sets; we’ll introduce sequence models in Chapter 8 and Chapter 9. 
2.4.3 Byte-Pair Encoding for Tokenization 
There is a third option to tokenizing text. Instead of defining tokens as words (whether delimited by spaces or more complex algorithms), or as characters (as in Chinese), we can use our data to automatically tell us what the tokens should be. This is especially useful in dealing with unknown words, an important problem in language processing. As we will see in the next chapter, NLP algorithms often learn some facts about language from one corpus (a training corpus) and then use these facts to make decisions about a separate test corpus and its language. Thus if our training corpus contains, say the words low, new, newer, but not lower, then if the word lower appears in our test corpus, our system will not know what to do with it. 
To deal with this unknown word problem, modern tokenizers often automati subwords cally induce sets of tokens that include tokens smaller than words, called subwords. Subwords can be arbitrary substrings, or they can be meaning-bearing units like the morphemes -est or -er. (A morpheme is the smallest meaning-bearing unit of a lan guage; for example the word unlikeliest has the morphemes un-, likely, and -est.) In modern tokenization schemes, most tokens are words, but some tokens are fre quently occurring morphemes or other subwords like -er. Every unseen words like lower can thus be represented by some sequence of known subword units, such as low and er, or even as a sequence of individual letters if necessary. 
Most tokenization schemes have two parts: a token learner, and a token seg menter. The token learner takes a raw training corpus (sometimes roughly pre separated into words, for example by whitespace) and induces a vocabulary, a set of tokens. The token segmenter takes a raw test sentence and segments it into the tokens in the vocabulary. Three algorithms are widely used: byte-pair encoding (Sennrich et al., 2016), unigram language modeling (Kudo, 2018), and WordPiece (Schuster and Nakajima, 2012); there is also a SentencePiece library that includes implementations of the first two of the three (Kudo and Richardson, 2018). 
In this section we introduce the simplest of the three, the byte-pair encoding or BPE BPE algorithm (Sennrich et al., 2016); see Fig. 2.13. The BPE token learner begins with a vocabulary that is just the set of all individual characters. It then examines the training corpus, chooses the two symbols that are most frequently adjacent (say ‘A’, ‘B’), adds a new merged symbol ‘AB’ to the vocabulary, and replaces every adjacent ’A’ ’B’ in the corpus with the new ‘AB’. It continues to count and merge, creating new longer and longer character strings, until k merges have been done creating k novel tokens; k is thus is a parameter of the algorithm. The resulting vocabulary consists of the original set of characters plus k new symbols.
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The algorithm is usually run inside words (not merging across word boundaries), so the input corpus is first white-space-separated to give a set of strings, each corre sponding to the characters of a word, plus a special end-of-word symbol , and its counts. Let’s see its operation on the following tiny input corpus of 18 word tokens with counts for each word (the word low appears 5 times, the word newer 6 times, and so on), which would have a starting vocabulary of 11 letters: 
corpus vocabulary 
5 l o w , d, e, i, l, n, o, r, s, t, w 2 l o w e s t 
6 n e w e r 
3 w i d e r 
2 n e w 
The BPE algorithm first count all pairs of adjacent symbols: the most frequent is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of 3) for a total of 9 occurrences1. We then merge these symbols, treating er as one symbol, and count again: 
corpus vocabulary 
5 l o w , d, e, i, l, n, o, r, s, t, w, er 2 l o w e s t 
6 n e w er 
3 w i d er 
2 n e w 
Now the most frequent pair is er , which we merge; our system has learned that there should be a token for word-final er, represented as er : 
corpus vocabulary 
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er 2 l o w e s t 
6 n e w er 
3 w i d er 
2 n e w 
Next n e (total count of 8) get merged to ne: 
corpus vocabulary 
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne 2 l o w e s t 
6 ne w er 
3 w i d er 
2 ne w 
If we continue, the next merges are: 
Merge Current Vocabulary 
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new 
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo 
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low (new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer (low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low 
Once we’ve learned our vocabulary, the token parser is used to tokenize a test sentence. The token parser just runs on the test data the merges we have learned 
1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a frequency of 9.
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	function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V 
V←all unique characters in C # initial set of tokens is characters for i = 1 to k do # merge tokens til k times tL, tR ←Most frequent pair of adjacent tokens in C 
tNEW ←tL + tR # make new token by concatenating V←V + tNEW # update the vocabulary 
Replace each occurrence of tL, tR in C with tNEW # and update the corpus return V




Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up into individual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure adapted from Bostrom and Durrett (2020). 
from the training data, greedily, in the order we learned them. (Thus the frequencies in the test data don’t play a role, just the frequencies in the training data). So first we segment each test sentence word into characters. Then we apply the first rule: replace every instance of e r in the test corpus with r, and then the second rule: replace every instance of er in the test corpus with er , and so on. By the end, if the test corpus contained the word n e w e r , it would be tokenized as a full word. But a new (unknown) word like l o w e r would be merged into the two tokens low er . 
Of course in real algorithms BPE is run with many thousands of merges on a very large input corpus. The result is that most words will be represented as full symbols, and only the very rare words (and unknown words) will have to be represented by their parts. 
2.4.4 Word Normalization, Lemmatization and Stemming 
normalization Word normalization is the task of putting words/tokens in a standard format, choos ing a single normal form for words with multiple forms like USA and US or uh-huh and uhhuh. This standardization may be valuable, despite the spelling information that is lost in the normalization process. For information retrieval or information extraction about the US, we might want to see information from documents whether they mention the US or the USA. 
case folding Case folding is another kind of normalization. Mapping everything to lower case means that Woodchuck and woodchuck are represented identically, which is very helpful for generalization in many tasks, such as information retrieval or speech recognition. For sentiment analysis and other text classification tasks, information extraction, and machine translation, by contrast, case can be quite helpful and case folding is generally not done. This is because maintaining the difference between, for example, US the country and us the pronoun can outweigh the advantage in generalization that case folding would have provided for other words. 
For many natural language processing situations we also want two morpholog ically different forms of a word to behave similarly. For example in web search, someone may type the string woodchucks but a useful system might want to also return pages that mention woodchuck with no s. This is especially common in mor phologically complex languages like Russian, where for example the word Moscow has different endings in the phrases Moscow, of Moscow, to Moscow, and so on. 
Lemmatization is the task of determining that two words have the same root, despite their surface differences. The words am, are, and is have the shared lemma
2.4 • TEXT NORMALIZATION 21 
be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of these forms to the same lemma will let us find all mentions of words in Russian like Moscow. The lemmatized form of a sentence like He is reading detective stories would thus be He be read detective story. 
How is lemmatization done? The most sophisticated methods for lemmatization involve complete morphological parsing of the word. Morphology is the study of morpheme the way words are built up from smaller meaning-bearing units called morphemes. stem Two broad classes of morphemes can be distinguished: stems—the central mor affix pheme of the word, supplying the main meaning— and affixes—adding “additional” meanings of various kinds. So, for example, the word fox consists of one morpheme (the morpheme fox) and the word cats consists of two: the morpheme cat and the morpheme -s. A morphological parser takes a word like cats and parses it into the two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future they would love’) into the morpheme amar ‘to love’, and the morphological features 3PL and future subjunctive. 
The Porter Stemmer 
Lemmatization algorithms can be complex. For this reason we sometimes make use of a simpler but cruder method, which mainly consists of chopping off word-final stemming affixes. This naive version of morphological analysis is called stemming. One of Porter stemmer the most widely used stemming algorithms is the Porter (1980). The Porter stemmer applied to the following paragraph: 
This was not the map we found in Billy Bones’s chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes. 
produces the following stemmed output: 
Thi wa not the map we found in Billi Bone s chest but an 
accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note 
cascade The algorithm is based on series of rewrite rules run in series, as a cascade, in which the output of each pass is fed as input to the next pass; here is a sampling of the rules: 
ATIONAL → ATE (e.g., relational → relate) 
ING →   if stem contains vowel (e.g., motoring → motor) 
SSES → SS (e.g., grasses → grass) 
Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.) can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980). Simple stemmers can be useful in cases where we need to collapse across differ ent variants of the same lemma. Nonetheless, they do tend to commit errors of both over- and under-generalizing, as shown in the table below (Krovetz, 1993): 
Errors of Commission Errors of Omission 
organization organ European Europe 
doing doe analysis analyzes 
numerical numerous noise noisy 
policy police sparse sparsity
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2.4.5 Sentence Segmentation 
Sentence segmentation is another important step in text processing. The most use- sentence segmentationful cues for segmenting a text into sentences are punctuation, like periods, question marks, and exclamation points. Question marks and exclamation points are rela tively unambiguous markers of sentence boundaries. Periods, on the other hand, are more ambiguous. The period character “.” is ambiguous between a sentence bound ary marker and a marker of abbreviations like Mr. or Inc. The previous sentence that you just read showed an even more complex case of this ambiguity, in which the final period of Inc. marked both an abbreviation and the sentence boundary marker. For 
this reason, sentence tokenization and word tokenization may be addressed jointly. In general, sentence tokenization methods work by first deciding (based on rules or machine learning) whether a period is part of the word or is a sentence-boundary marker. An abbreviation dictionary can help determine whether the period is part of a commonly used abbreviation; the dictionaries can be hand-built or machine learned (Kiss and Strunk, 2006), as can the final sentence splitter. In the Stan ford CoreNLP toolkit (Manning et al., 2014), for example sentence splitting is rule-based, a deterministic consequence of tokenization; a sentence ends when a sentence-ending punctuation (., !, or ?) is not already grouped with other charac ters into a token (such as for an abbreviation or number), optionally followed by additional final quotes or brackets. 
2.5 Minimum Edit Distance 
Much of natural language processing is concerned with measuring how similar two strings are. For example in spelling correction, the user typed some erroneous string—let’s say graffe–and we want to know what the user meant. The user prob ably intended a word that is similar to graffe. Among candidate similar words, the word giraffe, which differs by only one letter from graffe, seems intuitively to be more similar than, say grail or graf, which differ in more letters. Another example comes from coreference, the task of deciding whether two strings such as the following refer to the same entity: 
Stanford President Marc Tessier-Lavigne 
Stanford University President Marc Tessier-Lavigne 
Again, the fact that these two strings are very similar (differing by only one word) seems like useful evidence for deciding that they might be coreferent. 
Edit distance gives us a way to quantify both of these intuitions about string sim ilarity. More formally, the minimum edit distance between two strings is defined minimum edit distanceas the minimum number of editing operations (operations like insertion, deletion, substitution) needed to transform one string into another. 
The gap between intention and execution, for example, is 5 (delete an i, substi tute e for n, substitute x for t, insert c, substitute u for n). It’s much easier to see alignment this by looking at the most important visualization for string distances, an alignment between the two strings, shown in Fig. 2.14. Given two sequences, an alignment is a correspondence between substrings of the two sequences. Thus, we say I aligns with the empty string, N with E, and so on. Beneath the aligned strings is another representation; a series of symbols expressing an operation list for converting the top string into the bottom string: d for deletion, s for substitution, i for insertion.
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Figure 2.14 Representing the minimum edit distance between two strings as an alignment. The final row gives the operation list for converting the top string into the bottom string: d for deletion, s for substitution, i for insertion. 
We can also assign a particular cost or weight to each of these operations. The Levenshtein distance between two sequences is the simplest weighting factor in which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume that the substitution of a letter for itself, for example, t for t, has zero cost. The Lev enshtein distance between intention and execution is 5. Levenshtein also proposed an alternative version of his metric in which each insertion or deletion has a cost of 1 and substitutions are not allowed. (This is equivalent to allowing substitution, but giving each substitution a cost of 2 since any substitution can be represented by one insertion and one deletion). Using this version, the Levenshtein distance between intention and execution is 8. 
2.5.1 The Minimum Edit Distance Algorithm 
How do we find the minimum edit distance? We can think of this as a search task, in which we are searching for the shortest path—a sequence of edits—from one string to another. 
	i n t e n t i o n
del ins subst 
n t e n t i o n i n t e c n t i o n i n x e n t i o n 




Figure 2.15 Finding the edit distance viewed as a search problem 
The space of all possible edits is enormous, so we can’t search naively. However, lots of distinct edit paths will end up in the same state (string), so rather than recom puting all those paths, we could just remember the shortest path to a state each time we saw it. We can do this by using dynamic programming. Dynamic programming dynamic 
programmingis the name for a class of algorithms, first introduced by Bellman (1957), that apply a table-driven method to solve problems by combining solutions to sub-problems. Some of the most commonly used algorithms in natural language processing make use of dynamic programming, such as the Viterbi algorithm (Chapter 8) and the CKY algorithm for parsing (Chapter 13). 
The intuition of a dynamic programming problem is that a large problem can be solved by properly combining the solutions to various sub-problems. Consider the shortest path of transformed words that represents the minimum edit distance between the strings intention and execution shown in Fig. 2.16. 
Imagine some string (perhaps it is exention) that is in this optimal path (whatever it is). The intuition of dynamic programming is that if exention is in the optimal operation list, then the optimal sequence must also include the optimal path from intention to exention. Why? If there were a shorter path from intention to exention,
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	i n t e n t i o n 
delete i 
n t e n t i o n 
substitute n by e 
e t e n t i o n 
substitute t by x 
e x e n t i o n 
insert u 
e x e n u t i o n 
substitute n by c
e x e c u t i o n 




Figure 2.16 Path from intention to execution. 
then we could use it instead, resulting in a shorter overall path, and the optimal 
minimum edit distance 
sequence wouldn’t be optimal, thus leading to a contradiction. 
The minimum edit distance algorithm algorithm was named by Wagner and 
algorithm Fischer (1974) but independently discovered by many people (see the Historical Notes section of Chapter 8). 
Let’s first define the minimum edit distance between two strings. Given two strings, the source string X of length n, and target string Y of length m, we’ll define D[i, j] as the edit distance between X[1..i] and Y[1.. j], i.e., the first i characters of X and the first j characters of Y. The edit distance between X and Y is thus D[n,m]. 
We’ll use dynamic programming to compute D[n,m] bottom up, combining so lutions to subproblems. In the base case, with a source substring of length i but an empty target string, going from i characters to 0 requires i deletes. With a target substring of length j but an empty source going from 0 characters to j characters requires j inserts. Having computed D[i, j] for small i, j we then compute larger D[i, j] based on previously computed smaller values. The value of D[i, j] is com puted by taking the minimum of the three possible paths through the matrix which arrive there: 
D[i, j] = min 
 
D[i−1, j] +del-cost(source[i]) 
D[i, j −1] +ins-cost(target[ j]) 
 
D[i−1, j −1] +sub-cost(source[i],target[ j]) 
If we assume the version of Levenshtein distance in which the insertions and dele tions each have a cost of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have a cost of 2 (except substitution of identical letters have zero cost), the computation for D[i, j] becomes: 
D[i, j] = min 
  
D[i−1, j] +1 D[i, j −1] +1 
D[i−1, j −1] +
 2; if source[i] 6= target[ j] 0; if source[i] = target[ j] 
(2.8) 
The algorithm is summarized in Fig. 2.17; Fig. 2.18 shows the results of applying the algorithm to the distance between intention and execution with the version of Levenshtein in Eq. 2.8. 
Knowing the minimum edit distance is useful for algorithms like finding poten tial spelling error corrections. But the edit distance algorithm is important in another way; with a small change, it can also provide the minimum cost alignment between two strings. Aligning two strings is useful throughout speech and language process ing. In speech recognition, minimum edit distance alignment is used to compute the word error rate (Chapter 26). Alignment plays a role in machine translation, in
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	function MIN-EDIT-DISTANCE(source, target) returns min-distance 
n←LENGTH(source) 
m←LENGTH(target) 
Create a distance matrix distance[n+1,m+1] 
# Initialization: the zeroth row and column is the distance from the empty string D[0,0] = 0 
for each row i from 1 to n do 
D[i,0]←D[i-1,0] + del-cost(source[i]) 
for each column j from 1 to m do 
D[0,j]←D[0, j-1] + ins-cost(target[j]) 
# Recurrence relation: 
for each row i from 1 to n do 
for each column j from 1 to m do 
D[i, j]←MIN( D[i−1, j] + del-cost(source[i]), 
D[i−1, j−1] + sub-cost(source[i], target[j]), 
D[i, j−1] + ins-cost(target[j])) 
# Termination 
return D[n,m]




Figure 2.17 The minimum edit distance algorithm, an example of the class of dynamic programming algorithms. The various costs can either be fixed (e.g., ∀x,ins-cost(x) = 1) or can be specific to the letter (to model the fact that some letters are more likely to be in serted than others). We assume that there is no cost for substituting a letter for itself (i.e., sub-cost(x, x) = 0). 
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Figure 2.18 Computation of minimum edit distance between intention and execution with the algorithm of Fig. 2.17, using Levenshtein distance with cost of 1 for insertions or dele tions, 2 for substitutions. 
which sentences in a parallel corpus (a corpus with a text in two languages) need to be matched to each other. 
To extend the edit distance algorithm to produce an alignment, we can start by visualizing an alignment as a path through the edit distance matrix. Figure 2.19 shows this path with the boldfaced cell. Each boldfaced cell represents an alignment of a pair of letters in the two strings. If two boldfaced cells occur in the same row, there will be an insertion in going from the source to the target; two boldfaced cells in the same column indicate a deletion. 
Figure 2.19 also shows the intuition of how to compute this alignment path. The
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computation proceeds in two steps. In the first step, we augment the minimum edit distance algorithm to store backpointers in each cell. The backpointer from a cell points to the previous cell (or cells) that we came from in entering the current cell. We’ve shown a schematic of these backpointers in Fig. 2.19. Some cells have mul tiple backpointers because the minimum extension could have come from multiple 
backtrace previous cells. In the second step, we perform a backtrace. In a backtrace, we start from the last cell (at the final row and column), and follow the pointers back through the dynamic programming matrix. Each complete path between the final cell and the initial cell is a minimum distance alignment. Exercise 2.7 asks you to modify the minimum edit distance algorithm to store the pointers and compute the backtrace to output an alignment. 
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Figure 2.19 When entering a value in each cell, we mark which of the three neighboring cells we came from with up to three arrows. After the table is full we compute an alignment (minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and following the arrows back. The sequence of bold cells represents one possible minimum cost alignment between the two strings. Diagram design after Gusfield (1997). 
While we worked our example with simple Levenshtein distance, the algorithm in Fig. 2.17 allows arbitrary weights on the operations. For spelling correction, for example, substitutions are more likely to happen between letters that are next to each other on the keyboard. The Viterbi algorithm is a probabilistic extension of minimum edit distance. Instead of computing the “minimum edit distance” between two strings, Viterbi computes the “maximum probability alignment” of one string with another. We’ll discuss this more in Chapter 8. 
2.6 Summary 
This chapter introduced a fundamental tool in language processing, the regular ex pression, and showed how to perform basic text normalization tasks including word segmentation and normalization, sentence segmentation, and stemming. We also introduced the important minimum edit distance algorithm for comparing strings. Here’s a summary of the main points we covered about these ideas: 
• The regular expression language is a powerful tool for pattern-matching. • Basic operations in regular expressions include concatenation of symbols, disjunction of symbols ([], |, and .), counters (*, +, and {n,m}), anchors (ˆ, $) and precedence operators ((,)).
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• Word tokenization and normalization are generally done by cascades of simple regular expression substitutions or finite automata. 
• The Porter algorithm is a simple and efficient way to do stemming, stripping off affixes. It does not have high accuracy but may be useful for some tasks. 
• The minimum edit distance between two strings is the minimum number of operations it takes to edit one into the other. Minimum edit distance can be computed by dynamic programming, which also results in an alignment of the two strings. 
Bibliographical and Historical Notes 
Kleene (1951, 1956) first defined regular expressions and the finite automaton, based on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build regular expressions compilers into editors for text searching (Thompson, 1968). His edi tor ed included a command “g/regular expression/p”, or Global Regular Expression Print, which later became the Unix grep utility. 
Text normalization algorithms have been applied since the beginning of the field. One of the earliest widely used stemmers was Lovins (1968). Stemming was also applied early to the digital humanities, by Packard (1973), who built an affix-stripping morphological parser for Ancient Greek. Currently a wide vari ety of code for tokenization and normalization is available, such as the Stanford Tokenizer (http://nlp.stanford.edu/software/tokenizer.shtml) or spe cialized tokenizers for Twitter (O’Connor et al., 2010), or for sentiment (http: //sentiment.christopherpotts.net/tokenizing.html). See Palmer (2012) for a survey of text preprocessing. NLTK is an essential tool that offers both useful Python libraries (http://www.nltk.org) and textbook descriptions (Bird et al., 2009) of many algorithms including text normalization and corpus interfaces. 
For more on Herdan’s law and Heaps’ Law, see Herdan (1960, p. 28), Heaps (1978), Egghe (2007) and Baayen (2001); Yasseri et al. (2012) discuss the relation ship with other measures of linguistic complexity. For more on edit distance, see the excellent Gusfield (1997). Our example measuring the edit distance from ‘intention’ to ‘execution’ was adapted from Kruskal (1983). There are various publicly avail able packages to compute edit distance, including Unix diff and the NIST sclite program (NIST, 2005). 
In his autobiography Bellman (1984) explains how he originally came up with the term dynamic programming: 
“...The 1950s were not good years for mathematical research. [the] 
Secretary of Defense ...had a pathological fear and hatred of the word, 
research... I decided therefore to use the word, “programming”. I 
wanted to get across the idea that this was dynamic, this was multi 
stage... I thought, let’s ... take a word that has an absolutely precise 
meaning, namely dynamic... it’s impossible to use the word, dynamic, 
in a pejorative sense. Try thinking of some combination that will pos 
sibly give it a pejorative meaning. It’s impossible. Thus, I thought 
dynamic programming was a good name. It was something not even a 
Congressman could object to.”
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Exercises 
2.1 Write regular expressions for the following languages. 
1. the set of all alphabetic strings; 
2. the set of all lower case alphabetic strings ending in a b; 
3. the set of all strings from the alphabet a,b such that each a is immedi 
ately preceded by and immediately followed by a b; 
2.2 Write regular expressions for the following languages. By “word”, we mean an alphabetic string separated from other words by whitespace, any relevant punctuation, line breaks, and so forth. 
1. the set of all strings with two consecutive repeated words (e.g., “Hum 
bert Humbert” and “the the” but not “the bug” or “the big bug”); 
2. all strings that start at the beginning of the line with an integer and that 
end at the end of the line with a word; 
3. all strings that have both the word grotto and the word raven in them 
(but not, e.g., words like grottos that merely contain the word grotto); 
4. write a pattern that places the first word of an English sentence in a 
register. Deal with punctuation. 
2.3 Implement an ELIZA-like program, using substitutions such as those described on page 11. You might want to choose a different domain than a Rogerian psy chologist, although keep in mind that you would need a domain in which your program can legitimately engage in a lot of simple repetition. 
2.4 Compute the edit distance (using insertion cost 1, deletion cost 1, substitution cost 1) of “leda” to “deal”. Show your work (using the edit distance grid). 
2.5 Figure out whether drive is closer to brief or to divers and what the edit dis tance is to each. You may use any version of distance that you like. 
2.6 Now implement a minimum edit distance algorithm and use your hand-computed results to check your code. 
2.7 Augment the minimum edit distance algorithm to output an alignment; you will need to store pointers and add a stage to compute the backtrace.
CHAPTER 
3N-gram Language Models 
“You are uniformly charming!” cried he, with a smile of associating and now and then I bowed and they perceived a chaise and four to wish for. 
Random sentence generated from a Jane Austen trigram model 
Predicting is difficult—especially about the future, as the old quip goes. But how about predicting something that seems much easier, like the next few words someone is going to say? What word, for example, is likely to follow 
Please turn your homework ... 
Hopefully, most of you concluded that a very likely word is in, or possibly over, but probably not refrigerator or the. In the following sections we will formalize this intuition by introducing models that assign a probability to each possible next word. The same models will also serve to assign a probability to an entire sentence. Such a model, for example, could predict that the following sequence has a much higher probability of appearing in a text: 
all of a sudden I notice three guys standing on the sidewalk 
than does this same set of words in a different order: 
on guys all I of notice sidewalk three a sudden standing the 
Why would you want to predict upcoming words, or assign probabilities to sen tences? Probabilities are essential in any task in which we have to identify words in noisy, ambiguous input, like speech recognition. For a speech recognizer to realize that you said I will be back soonish and not I will be bassoon dish, it helps to know that back soonish is a much more probable sequence than bassoon dish. For writing tools like spelling correction or grammatical error correction, we need to find and correct errors in writing like Their are two midterms, in which There was mistyped as Their, or Everything has improve, in which improve should have been improved. The phrase There are will be much more probable than Their are, and has improved than has improve, allowing us to help users by detecting and correcting these errors. 
Assigning probabilities to sequences of words is also essential in machine trans lation. Suppose we are translating a Chinese source sentence: 
他 向 记者 介绍了 主要 内容 
He to reporters introduced main content 
As part of the process we might have built the following set of potential rough English translations: 
he introduced reporters to the main contents of the statement 
he briefed to reporters the main contents of the statement 
he briefed reporters on the main contents of the statement
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A probabilistic model of word sequences could suggest that briefed reporters on is a more probable English phrase than briefed to reporters (which has an awkward to after briefed) or introduced reporters to (which uses a verb that is less fluent English in this context), allowing us to correctly select the boldfaced sentence above. 
Probabilities are also important for augmentative and alternative communi AAC cation systems (Trnka et al. 2007, Kane et al. 2017). People often use such AAC devices if they are physically unable to speak or sign but can instead use eye gaze or other specific movements to select words from a menu to be spoken by the system. Word prediction can be used to suggest likely words for the menu. 
Models that assign probabilities to sequences of words are called language mod language model els or LMs. In this chapter we introduce the simplest model that assigns probabil LM ities to sentences and sequences of words, the n-gram. An n-gram is a sequence n-gram of n words: a 2-gram (which we’ll call bigram) is a two-word sequence of words like “please turn”, “turn your”, or ”your homework”, and a 3-gram (a trigram) is a three-word sequence of words like “please turn your”, or “turn your homework”. We’ll see how to use n-gram models to estimate the probability of the last word of an n-gram given the previous words, and also to assign probabilities to entire se quences. In a bit of terminological ambiguity, we usually drop the word “model”, and use the term n-gram (and bigram, etc.) to mean either the word sequence itself or the predictive model that assigns it a probability. In later chapters we’ll introduce more sophisticated language models like the RNN LMs of Chapter 9. 
3.1 N-Grams 
Let’s begin with the task of computing P(w|h), the probability of a word w given some history h. Suppose the history h is “its water is so transparent that” and we want to know the probability that the next word is the: 
P(the|its water is so transparent that). (3.1) 
One way to estimate this probability is from relative frequency counts: take a very large corpus, count the number of times we see its water is so transparent that, and count the number of times this is followed by the. This would be answering the question “Out of the times we saw the history h, how many times was it followed by the word w”, as follows: 
P(the|its water is so transparent that) = 
C(its water is so transparent that the) 
C(its water is so transparent that)(3.2) 
With a large enough corpus, such as the web, we can compute these counts and estimate the probability from Eq. 3.2. You should pause now, go to the web, and compute this estimate for yourself. 
While this method of estimating probabilities directly from counts works fine in many cases, it turns out that even the web isn’t big enough to give us good estimates in most cases. This is because language is creative; new sentences are created all the time, and we won’t always be able to count entire sentences. Even simple extensions of the example sentence may have counts of zero on the web (such as “Walden Pond’s water is so transparent that the”; well, used to have counts of zero).
3.1 • N-GRAMS 31 
Similarly, if we wanted to know the joint probability of an entire sequence of words like its water is so transparent, we could do it by asking “out of all possible sequences of five words, how many of them are its water is so transparent?” We would have to get the count of its water is so transparent and divide by the sum of the counts of all possible five word sequences. That seems rather a lot to estimate! 
For this reason, we’ll need to introduce more clever ways of estimating the prob ability of a word w given a history h, or the probability of an entire word sequence W. Let’s start with a little formalizing of notation. To represent the probability of a particular random variable Xitaking on the value “the”, or P(Xi = “the”), we will use the simplification P(the). We’ll represent a sequence of N words either as w1 ...wn or w1:n (so the expression w1:n−1 means the string w1,w2,...,wn−1). For the joint probability of each word in a sequence having a particular value P(X = w1,Y = w2,Z = w3,...,W = wn) we’ll use P(w1,w2,...,wn). 
Now how can we compute probabilities of entire sequences like P(w1,w2,...,wn)? One thing we can do is decompose this probability using the chain rule of proba bility: 
P(X1...Xn) = P(X1)P(X2|X1)P(X3|X1:2)...P(Xn|X1:n−1) 
=Yn k=1 
P(Xk|X1:k−1) (3.3) 
Applying the chain rule to words, we get 
P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2)...P(wn|w1:n−1) 
=Yn k=1 
P(wk|w1:k−1) (3.4) 
The chain rule shows the link between computing the joint probability of a sequence and computing the conditional probability of a word given previous words. Equa tion 3.4 suggests that we could estimate the joint probability of an entire sequence of words by multiplying together a number of conditional probabilities. But using the chain rule doesn’t really seem to help us! We don’t know any way to compute the exact probability of a word given a long sequence of preceding words, P(wn|wn−1 
1). 
As we said above, we can’t just estimate by counting the number of times every word occurs following every long string, because language is creative and any particular context might have never occurred before! 
The intuition of the n-gram model is that instead of computing the probability of a word given its entire history, we can approximate the history by just the last few words. 
bigram The bigram model, for example, approximates the probability of a word given all the previous words P(wn|w1:n−1) by using only the conditional probability of the preceding word P(wn|wn−1). In other words, instead of computing the probability 
P(the|Walden Pond’s water is so transparent that) (3.5) 
we approximate it with the probability 
P(the|that) (3.6) 
When we use a bigram model to predict the conditional probability of the next word, we are thus making the following approximation: 
P(wn|w1:n−1) ≈ P(wn|wn−1) (3.7)
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The assumption that the probability of a word depends only on the previous word is Markov called a Markov assumption. Markov models are the class of probabilistic models that assume we can predict the probability of some future unit without looking too far into the past. We can generalize the bigram (which looks one word into the past) n-gram to the trigram (which looks two words into the past) and thus to the n-gram (which looks n−1 words into the past). 
Thus, the general equation for this n-gram approximation to the conditional probability of the next word in a sequence is 
P(wn|w1:n−1) ≈ P(wn|wn−N+1:n−1) (3.8) 
Given the bigram assumption for the probability of an individual word, we can com pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4: 
P(w1:n) ≈Yn k=1 
P(wk|wk−1) (3.9) 
maximum likelihood 
How do we estimate these bigram or n-gram probabilities? An intuitive way to estimate probabilities is called maximum likelihood estimation or MLE. We get 
estimation the MLE estimate for the parameters of an n-gram model by getting counts from a 
normalize 
corpus, and normalizing the counts so that they lie between 0 and 1.1 For example, to compute a particular bigram probability of a word y given a previous word x, we’ll compute the count of the bigram C(xy) and normalize by the sum of all the bigrams that share the same first word x: 
P(wn|wn−1) = C(wn−1wn) 
P 
wC(wn−1w)(3.10) 
We can simplify this equation, since the sum of all bigram counts that start with a given word wn−1 must be equal to the unigram count for that word wn−1 (the reader should take a moment to be convinced of this): 
P(wn|wn−1) = C(wn−1wn) 
C(wn−1)(3.11) 
Let’s work through an example using a mini-corpus of three sentences. We’ll first need to augment each sentence with a special symbol <s> at the beginning of the sentence, to give us the bigram context of the first word. We’ll also need a special end-symbol. </s>2 
<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I do not like green eggs and ham </s> 
Here are the calculations for some of the bigram probabilities from this corpus 
P(I|<s>) = 23 = .67 P(Sam|<s>) = 13 = .33 P(am|I) = 23 = .67 P(</s>|Sam) = 12 = 0.5 P(Sam|am) = 12 = .5 P(do|I) = 13 = .33 
1 For probabilistic models, normalizing means dividing by some total count so that the resulting proba bilities fall legally between 0 and 1. 
2 We need the end-symbol to make the bigram grammar a true probability distribution. Without an end-symbol, the sentence probabilities for all sentences of a given length would sum to one. This model would define an infinite set of probability distributions, with one distribution per sentence length. See Exercise 3.5.
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For the general case of MLE n-gram parameter estimation: 
P(wn|wn−N+1:n−1) = C(wn−N+1:n−1 wn) 
C(wn−N+1:n−1)(3.12) 
Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the observed frequency of a particular sequence by the observed frequency of a prefix. This ratio is called a relative frequency. We said above that this use of relative relative 
frequencyfrequencies as a way to estimate probabilities is an example of maximum likelihood estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood of the training set T given the model M (i.e., P(T|M)). For example, suppose the word Chinese occurs 400 times in a corpus of a million words like the Brown corpus. What is the probability that a random word selected from some other text of, say, a million words will be the word Chinese? The MLE of its probability is 400 
1000000 
or .0004. Now .0004 is not the best possible estimate of the probability of Chinese occurring in all situations; it might turn out that in some other corpus or context Chinese is a very unlikely word. But it is the probability that makes it most likely that Chinese will occur 400 times in a million-word corpus. We present ways to modify the MLE estimates slightly to get better probability estimates in Section 3.4. 
Let’s move on to some examples from a slightly larger corpus than our 14-word example above. We’ll use data from the now-defunct Berkeley Restaurant Project, a dialogue system from the last century that answered questions about a database of restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some text normalized sample user queries (a sample of 9332 sentences is on the website): 
can you tell me about any good cantonese restaurants close by 
mid priced thai food is what i’m looking for 
tell me about chez panisse 
can you give me a listing of the kinds of food that are available 
i’m looking for a good place to eat breakfast 
when is caffe venezia open during the day 
Figure 3.1 shows the bigram counts from a piece of a bigram grammar from the Berkeley Restaurant Project. Note that the majority of the values are zero. In fact, we have chosen the sample words to cohere with each other; a matrix selected from a random set of seven words would be even more sparse. 
i want to eat chinese food lunch spend 
i 5 827 0 9 0 0 0 2 want 2 0 608 1 6 6 5 1 to 2 0 4 686 2 0 6 211 eat 0 0 2 0 16 2 42 0 chinese 1 0 0 0 0 82 1 0 food 15 0 15 0 1 4 0 0 lunch 2 0 0 0 0 1 0 0 spend 1 0 1 0 0 0 0 0 
Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau rant Project corpus of 9332 sentences. Zero counts are in gray. 
Figure 3.2 shows the bigram probabilities after normalization (dividing each cell in Fig. 3.1 by the appropriate unigram for its row, taken from the following set of unigram probabilities):
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i want to eat chinese food lunch spend 
2533 927 2417 746 158 1093 341 278 
i want to eat chinese food lunch spend 
i 0.002 0.33 0 0.0036 0 0 0 0.00079 want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011 to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087 eat 0 0 0.0027 0 0.021 0.0027 0.056 0 
chinese 0.0063 0 0 0 0 0.52 0.0063 0 
food 0.014 0 0.014 0 0.00092 0.0037 0 0 
lunch 0.0059 0 0 0 0 0.0029 0 0 
spend 0.0036 0 0.0036 0 0 0 0 0 
Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus of 9332 sentences. Zero probabilities are in gray. 
Here are a few other useful probabilities: 
P(i|<s>) = 0.25 P(english|want) = 0.0011 
P(food|english) = 0.5 P(</s>|food) = 0.68 
Now we can compute the probability of sentences like I want English food or I want Chinese food by simply multiplying the appropriate bigram probabilities to gether, as follows: 
P(<s> i want english food </s>) 
= P(i|<s>)P(want|i)P(english|want) 
P(food|english)P(</s>|food) 
= .25×.33×.0011×0.5×0.68 
= .000031 
We leave it as Exercise 3.2 to compute the probability of i want chinese food. What kinds of linguistic phenomena are captured in these bigram statistics? Some of the bigram probabilities above encode some facts that we think of as strictly syntactic in nature, like the fact that what comes after eat is usually a noun or an adjective, or that what comes after to is usually a verb. Others might be a fact about the personal assistant task, like the high probability of sentences beginning with the words I. And some might even be cultural rather than linguistic, like the higher probability that people are looking for Chinese versus English food. 
Some practical issues: Although for pedagogical purposes we have only described trigram bigram models, in practice it’s more common to use trigram models, which con 4-gram dition on the previous two words rather than the previous word, or 4-gram or even 5-gram 5-gram models, when there is sufficient training data. Note that for these larger n 
grams, we’ll need to assume extra contexts to the left and right of the sentence end. For example, to compute trigram probabilities at the very beginning of the sentence, we use two pseudo-words for the first trigram (i.e., P(I|<s><s>). 
We always represent and compute language model probabilities in log format as log probabilities. Since probabilities are (by definition) less than or equal to log 
probabilities1, the more probabilities we multiply together, the smaller the product becomes. Multiplying enough n-grams together would result in numerical underflow. By using log probabilities instead of raw probabilities, we get numbers that are not as small.
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Adding in log space is equivalent to multiplying in linear space, so we combine log probabilities by adding them. The result of doing all computation and storage in log space is that we only need to convert back into probabilities if we need to report them at the end; then we can just take the exp of the logprob: 
p1 × p2 × p3 × p4 = exp(log p1 +log p2 +log p3 +log p4) (3.13) 
3.2 Evaluating Language Models 
The best way to evaluate the performance of a language model is to embed it in an application and measure how much the application improves. Such end-to-end evaluation is called extrinsic evaluation. Extrinsic evaluation is the only way to extrinsic evaluationknow if a particular improvement in a component is really going to help the task at hand. Thus, for speech recognition, we can compare the performance of two language models by running the speech recognizer twice, once with each language model, and seeing which gives the more accurate transcription. 
Unfortunately, running big NLP systems end-to-end is often very expensive. In stead, it would be nice to have a metric that can be used to quickly evaluate potential improvements in a language model. An intrinsic evaluation metric is one that mea- intrinsic evaluationsures the quality of a model independent of any application. 
For an intrinsic evaluation of a language model we need a test set. As with many of the statistical models in our field, the probabilities of an n-gram model come from training set the corpus it is trained on, the training set or training corpus. We can then measure the quality of an n-gram model by its performance on some unseen data called the test set test set or test corpus. We will also sometimes call test sets and other datasets that held out are not in our training sets held out corpora because we hold them out from the training data. 
So if we are given a corpus of text and want to compare two different n-gram models, we divide the data into training and test sets, train the parameters of both models on the training set, and then compare how well the two trained models fit the test set. 
But what does it mean to “fit the test set”? The answer is simple: whichever model assigns a higher probability to the test set—meaning it more accurately predicts the test set—is a better model. Given two probabilistic models, the better model is the one that has a tighter fit to the test data or that better predicts the details of the test data, and hence will assign a higher probability to the test data. 
Since our evaluation metric is based on test set probability, it’s important not to let the test sentences into the training set. Suppose we are trying to compute the probability of a particular “test” sentence. If our test sentence is part of the training corpus, we will mistakenly assign it an artificially high probability when it occurs in the test set. We call this situation training on the test set. Training on the test set introduces a bias that makes the probabilities all look too high, and causes huge inaccuracies in perplexity, the probability-based metric we introduce below. 
Sometimes we use a particular test set so often that we implicitly tune to its characteristics. We then need a fresh test set that is truly unseen. In such cases, we call the initial test set the development test set or, devset. How do we divide our development testdata into training, development, and test sets? We want our test set to be as large as possible, since a small test set may be accidentally unrepresentative, but we also want as much training data as possible. At the minimum, we would want to pick
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the smallest test set that gives us enough statistical power to measure a statistically significant difference between two potential models. In practice, we often just divide our data into 80% training, 10% development, and 10% test. Given a large corpus that we want to divide into training and test, test data can either be taken from some continuous sequence of text inside the corpus, or we can remove smaller “stripes” of text from randomly selected parts of our corpus and combine them into a test set. 
3.2.1 Perplexity 
In practice we don’t use raw probability as our metric for evaluating language mod perplexity els, but a variant called perplexity. The perplexity (sometimes called PP for short) of a language model on a test set is the inverse probability of the test set, normalized by the number of words. For a test set W = w1w2 ...wN,: 
PP(W) = P(w1w2 ...wN)−1N (3.14) 
s 
= N 
1 
P(w1w2 ...wN) 
We can use the chain rule to expand the probability of W: 
vuutYN 
PP(W) = N i=1 
1 
P(wi|w1 ...wi−1)(3.15) 
Thus, if we are computing the perplexity of W with a bigram language model, we get: 
vuutYN 
PP(W) = N i=1 
1 
P(wi|wi−1)(3.16) 
Note that because of the inverse in Eq. 3.15, the higher the conditional probabil ity of the word sequence, the lower the perplexity. Thus, minimizing perplexity is equivalent to maximizing the test set probability according to the language model. What we generally use for word sequence in Eq. 3.15 or Eq. 3.16 is the entire se quence of words in some test set. Since this sequence will cross many sentence boundaries, we need to include the begin- and end-sentence markers <s> and </s> in the probability computation. We also need to include the end-of-sentence marker </s> (but not the beginning-of-sentence marker <s>) in the total count of word to kens N. 
There is another way to think about perplexity: as the weighted average branch ing factor of a language. The branching factor of a language is the number of possi ble next words that can follow any word. Consider the task of recognizing the digits in English (zero, one, two,..., nine), given that (both in some training set and in some test set) each of the 10 digits occurs with equal probability P =110 . The perplexity of this mini-language is in fact 10. To see that, imagine a test string of digits of length N, and assume that in the training set all the digits occurred with equal probability. By Eq. 3.15, the perplexity will be
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PP(W) = P(w1w2 ...wN)−1N 
= ( 110N)−1N 
=110−1 
= 10 (3.17) 
But suppose that the number zero is really frequent and occurs far more often than other numbers. Let’s say that 0 occur 91 times in the training set, and each of the other digits occurred 1 time each. Now we see the following test set: 0 0 0 0 0 3 0 0 0 0. We should expect the perplexity of this test set to be lower since most of the time the next number will be zero, which is very predictable, i.e. has a high probability. Thus, although the branching factor is still 10, the perplexity or weighted branching factor is smaller. We leave this exact calculation as exercise 12. 
We see in Section 3.7 that perplexity is also closely related to the information theoretic notion of entropy. 
Finally, let’s look at an example of how perplexity can be used to compare dif ferent n-gram models. We trained unigram, bigram, and trigram grammars on 38 million words (including start-of-sentence tokens) from the Wall Street Journal, us ing a 19,979 word vocabulary. We then computed the perplexity of each of these models on a test set of 1.5 million words with Eq. 3.16. The table below shows the perplexity of a 1.5 million word WSJ test set according to each of these grammars. 
Unigram Bigram Trigram 
Perplexity 962 170 109 
As we see above, the more information the n-gram gives us about the word sequence, the lower the perplexity (since as Eq. 3.15 showed, perplexity is related inversely to the likelihood of the test sequence according to the model). 
Note that in computing perplexities, the n-gram model P must be constructed without any knowledge of the test set or any prior knowledge of the vocabulary of the test set. Any kind of knowledge of the test set can cause the perplexity to be artificially low. The perplexity of two language models is only comparable if they use identical vocabularies. 
An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) im provement in the performance of a language processing task like speech recognition or machine translation. Nonetheless, because perplexity often correlates with such improvements, it is commonly used as a quick check on an algorithm. But a model’s improvement in perplexity should always be confirmed by an end-to-end evaluation of a real task before concluding the evaluation of the model. 
3.3 Generalization and Zeros 
The n-gram model, like many statistical models, is dependent on the training corpus. One implication of this is that the probabilities often encode specific facts about a given training corpus. Another implication is that n-grams do a better and better job of modeling the training corpus as we increase the value of N.
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We can visualize both of these facts by borrowing the technique of Shannon (1951) and Miller and Selfridge (1950) of generating random sentences from dif ferent n-gram models. It’s simplest to visualize how this works for the unigram case. Imagine all the words of the English language covering the probability space between 0 and 1, each word covering an interval proportional to its frequency. We choose a random value between 0 and 1 and print the word whose interval includes this chosen value. We continue choosing random numbers and generating words until we randomly generate the sentence-final token </s>. We can use the same technique to generate bigrams by first generating a random bigram that starts with <s> (according to its bigram probability). Let’s say the second word of that bigram is w. We next chose a random bigram starting with w (again, drawn according to its bigram probability), and so on. 
To give an intuition for the increasing power of higher-order n-grams, Fig. 3.3 shows random sentences generated from unigram, bigram, trigram, and 4-gram models trained on Shakespeare’s works. 
	1–To him swallowed confess hear both. Which. Of save on trail for are ay device and 
rote life have 
gram –Hill he late speaks; or! a more to leg less first you enter 
2–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live 
king. Follow. 
gram –What means, sir. I confess she? then all sorts, he is trim, captain. 3–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 
’tis done. 
gram –This shall forbid it should be branded, if renown made it empty. 
4–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A 
great banquet serv’d in; 
gram –It cannot be but so.




Figure 3.3 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected for capitalization to improve readability. 
The longer the context on which we train the model, the more coherent the sen tences. In the unigram sentences, there is no coherent relation between words or any sentence-final punctuation. The bigram sentences have some local word-to-word coherence (especially if we consider that punctuation counts as a word). The tri gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a careful investigation of the 4-gram sentences shows that they look a little too much like Shakespeare. The words It cannot be but so are directly from King John. This is because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora go (N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously sparse. There are V2 = 844,000,000 possible bigrams alone, and the number of pos sible 4-grams is V4 = 7×1017. Thus, once the generator has chosen the first 4-gram (It cannot be but), there are only five possible continuations (that, I, he, thou, and so); indeed, for many 4-grams, there is only one continuation. 
To get an idea of the dependence of a grammar on its training set, let’s look at an n-gram grammar trained on a completely different corpus: the Wall Street Journal (WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so we might expect some overlap between our n-grams for the two genres. Fig. 3.4
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shows sentences generated by unigram, bigram, and trigram grammars trained on 40 million words from WSJ. 
	1Months the my and issue of year foreign new exchange’s september 
were recession exchange new endorsed a acquire to six executives gram 
2Last December through the way to preserve the Hudson corporation N. 
B. E. C. Taylor would seem to complete the major central planners one gram point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her 
3They also point to ninety nine point six billion dollars from two hundred 
four oh six three percent of the rates of interest stores as Mexico and gram Brazil on market conditions




Figure 3.4 Three sentences randomly generated from three n-gram models computed from 40 million words of the Wall Street Journal, lower-casing all characters and treating punctua tion as words. Output was then hand-corrected for capitalization to improve readability. 
Compare these examples to the pseudo-Shakespeare in Fig. 3.3. While they both model “English-like sentences”, there is clearly no overlap in generated sentences, and little overlap even in small phrases. Statistical models are likely to be pretty use less as predictors if the training sets and the test sets are as different as Shakespeare and WSJ. 
How should we deal with this problem when we build n-gram models? One step is to be sure to use a training corpus that has a similar genre to whatever task we are trying to accomplish. To build a language model for translating legal documents, we need a training corpus of legal documents. To build a language model for a question-answering system, we need a training corpus of questions. 
It is equally important to get training data in the appropriate dialect or variety, especially when processing social media posts or spoken transcripts. For example some tweets will use features of African American Language (AAL)— the name for the many variations of language used in African American communities (King, 2020). Such features include words like finna—an auxiliary verb that marks imme diate future tense —that don’t occur in other varieties, or spellings like den for then, in tweets like this one (Blodgett and O’Connor, 2017): 
(3.18) Bored af den my phone finna die!!! 
while tweets from varieties like Nigerian English have markedly different vocabu lary and n-gram patterns from American English (Jurgens et al., 2017): 
(3.19) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter 
Matching genres and dialects is still not sufficient. Our models may still be subject to the problem of sparsity. For any n-gram that occurred a sufficient number of times, we might have a good estimate of its probability. But because any corpus is limited, some perfectly acceptable English word sequences are bound to be missing from it. That is, we’ll have many cases of putative “zero probability n-grams” that should really have some non-zero probability. Consider the words that follow the bigram denied the in the WSJ Treebank3 corpus, together with their counts: 
denied the allegations: 5 
denied the speculation: 2 
denied the rumors: 1 
denied the report: 1
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But suppose our test set has phrases like: 
denied the offer 
denied the loan 
Our model will incorrectly estimate that the P(offer|denied the) is 0! 
zeros These zeros— things that don’t ever occur in the training set but do occur in the test set—are a problem for two reasons. First, their presence means we are underestimating the probability of all sorts of words that might occur, which will hurt the performance of any application we want to run on this data. 
Second, if the probability of any word in the test set is 0, the entire probability of the test set is 0. By definition, perplexity is based on the inverse probability of the test set. Thus if some words have zero probability, we can’t compute perplexity at all, since we can’t divide by 0! 
3.3.1 Unknown Words 
The previous section discussed the problem of words whose bigram probability is zero. But what about words we simply have never seen before? 
Sometimes we have a language task in which this can’t happen because we know all the words that can occur. In such a closed vocabulary system the test set can closed 
vocabularyonly contain words from this lexicon, and there will be no unknown words. This is a reasonable assumption in some domains, such as speech recognition or machine translation, where we have a pronunciation dictionary or a phrase table that are fixed in advance, and so the language model can only use the words in that dictionary or phrase table. 
In other cases we have to deal with words we haven’t seen before, which we’ll OOV call unknown words, or out of vocabulary (OOV) words. The percentage of OOV words that appear in the test set is called the OOV rate. An open vocabulary system open 
vocabulary 
is one in which we model these potential unknown words in the test set by adding a pseudo-word called <UNK>. 
There are two common ways to train the probabilities of the unknown word model <UNK>. The first one is to turn the problem back into a closed vocabulary one by choosing a fixed vocabulary in advance: 
1. Choose a vocabulary (word list) that is fixed in advance. 
2. Convert in the training set any word that is not in this set (any OOV word) to the unknown word token <UNK> in a text normalization step. 
3. Estimate the probabilities for <UNK> from its counts just like any other regular word in the training set. 
The second alternative, in situations where we don’t have a prior vocabulary in ad vance, is to create such a vocabulary implicitly, replacing words in the training data by <UNK> based on their frequency. For example we can replace by <UNK> all words that occur fewer than n times in the training set, where n is some small number, or equivalently select a vocabulary size V in advance (say 50,000) and choose the top V words by frequency and replace the rest by UNK. In either case we then proceed to train the language model as before, treating <UNK> like a regular word. 
The exact choice of <UNK> model does have an effect on metrics like perplexity. A language model can achieve low perplexity by choosing a small vocabulary and assigning the unknown word a high probability. For this reason, perplexities should only be compared across language models with the same vocabularies (Buck et al., 2014).
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3.4 Smoothing 
What do we do with words that are in our vocabulary (they are not unknown words) but appear in a test set in an unseen context (for example they appear after a word they never appeared after in training)? To keep a language model from assigning zero probability to these unseen events, we’ll have to shave off a bit of probability mass from some more frequent events and give it to the events we’ve never seen. 
smoothing This modification is called smoothing or discounting. In this section and the fol discounting lowing ones we’ll introduce a variety of ways to do smoothing: Laplace (add-one) smoothing, add-k smoothing, stupid backoff, and Kneser-Ney smoothing. 
3.4.1 Laplace Smoothing 
The simplest way to do smoothing is to add one to all the bigram counts, before we normalize them into probabilities. All the counts that used to be zero will now have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called Laplace smoothing. Laplace smoothing does not perform well enough to be used Laplace 
smoothingin modern n-gram models, but it usefully introduces many of the concepts that we see in other smoothing algorithms, gives a useful baseline, and is also a practical smoothing algorithm for other tasks like text classification (Chapter 4). 
Let’s start with the application of Laplace smoothing to unigram probabilities. Recall that the unsmoothed maximum likelihood estimate of the unigram probability of the word wiis its count ci normalized by the total number of word tokens N: 
P(wi) = ciN 
Laplace smoothing merely adds one to each count (hence its alternate name add add-one one smoothing). Since there are V words in the vocabulary and each one was incre mented, we also need to adjust the denominator to take into account the extra V observations. (What happens to our P values if we don’t increase the denominator?) 
PLaplace(wi) = ci +1 
N +V(3.20) 
Instead of changing both the numerator and denominator, it is convenient to describe how a smoothing algorithm affects the numerator, by defining an adjusted count c∗. This adjusted count is easier to compare directly with the MLE counts and can be turned into a probability like an MLE count by normalizing by N. To define this count, since we are only changing the numerator in addition to adding 1 we’ll also need to multiply by a normalization factor N 
N+V: 
c∗i = (ci +1)N 
N +V(3.21) 
We can now turn c∗iinto a probability P∗iby normalizing by N. 
discounting A related way to view smoothing is as discounting (lowering) some non-zero counts in order to get the probability mass that will be assigned to the zero counts. Thus, instead of referring to the discounted counts c∗, we might describe a smooth 
discount ing algorithm in terms of a relative discount dc, the ratio of the discounted counts to the original counts:
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dc =c∗c 
Now that we have the intuition for the unigram case, let’s smooth our Berkeley Restaurant Project bigrams. Figure 3.5 shows the add-one smoothed counts for the bigrams in Fig. 3.1. 
i want to eat chinese food lunch spend 
i 6 828 1 10 1 1 1 3 want 3 1 609 2 7 7 6 2 to 3 1 5 687 3 1 7 212 eat 1 1 3 1 17 3 43 1 chinese 2 1 1 1 1 83 2 1 food 16 1 16 1 2 5 1 1 lunch 3 1 1 1 1 2 1 1 spend 2 1 2 1 1 1 1 1 
Figure 3.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray. 
Figure 3.6 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2. Recall that normal bigram probabilities are computed by normalizing each row of counts by the unigram count: 
P(wn|wn−1) = C(wn−1wn) 
C(wn−1)(3.22) 
For add-one smoothed bigram counts, we need to augment the unigram count by the number of total word types in the vocabulary V: 
w(C(wn−1w) +1)=C(wn−1wn) +1 
P∗Laplace(wn|wn−1) = C(wn−1wn) +1 
P 
C(wn−1) +V(3.23) 
Thus, each of the unigram counts given in the previous section will need to be augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.6. 
i want to eat chinese food lunch spend i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075 want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084 to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055 eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046 chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062 food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039 lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056 spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058 Figure 3.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero probabilities are in gray. 
It is often convenient to reconstruct the count matrix so we can see how much a smoothing algorithm has changed the original counts. These adjusted counts can be computed by Eq. 3.24. Figure 3.7 shows the reconstructed counts. 
c∗(wn−1wn) = [C(wn−1wn) +1]×C(wn−1) 
C(wn−1) +V(3.24)
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i want to eat chinese food lunch spend 
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9 want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78 to 1.9 0.63 3.1 430 1.9 0.63 4.4 133 eat 0.34 0.34 1 0.34 5.8 1 15 0.34 chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098 food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43 lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19 spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16 Figure 3.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero counts are in gray. 
Note that add-one smoothing has made a very big change to the counts. C(want to) changed from 609 to 238! We can see this in probability space as well: P(to|want) decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the discount d (the ratio between new and old counts) shows us how strikingly the counts for each prefix word have been reduced; the discount for the bigram want to is .39, while the discount for Chinese food is .10, a factor of 10! 
The sharp change in counts and probabilities occurs because too much probabil ity mass is moved to all the zeros. 
3.4.2 Add-k smoothing 
One alternative to add-one smoothing is to move a bit less of the probability mass from the seen to the unseen events. Instead of adding 1 to each count, we add a frac add-k tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing. 
P∗Add-k(wn|wn−1) = C(wn−1wn) +k 
C(wn−1) +kV(3.25) 
Add-k smoothing requires that we have a method for choosing k; this can be done, for example, by optimizing on a devset. Although add-k is useful for some tasks (including text classification), it turns out that it still doesn’t work well for language modeling, generating counts with poor variances and often inappropriate discounts (Gale and Church, 1994). 
3.4.3 Backoff and Interpolation 
The discounting we have been discussing so far can help solve the problem of zero frequency n-grams. But there is an additional source of knowledge we can draw on. If we are trying to compute P(wn|wn−2wn−1) but we have no examples of a particular trigram wn−2wn−1wn, we can instead estimate its probability by using the bigram probability P(wn|wn−1). Similarly, if we don’t have counts to compute P(wn|wn−1), we can look to the unigram P(wn). 
In other words, sometimes using less context is a good thing, helping to general ize more for contexts that the model hasn’t learned much about. There are two ways backoff to use this n-gram “hierarchy”. In backoff, we use the trigram if the evidence is sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we only “back off” to a lower-order n-gram if we have zero evidence for a higher-order interpolation n-gram. By contrast, in interpolation, we always mix the probability estimates from all the n-gram estimators, weighing and combining the trigram, bigram, and unigram counts.
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In simple linear interpolation, we combine different order n-grams by linearly in terpolating all the models. Thus, we estimate the trigram probability P(wn|wn−2wn−1) by mixing together the unigram, bigram, and trigram probabilities, each weighted by a λ: 
Pˆ(wn|wn−2wn−1) = λ1P(wn|wn−2wn−1) 
+λ2P(wn|wn−1) 
+λ3P(wn) (3.26) 
such that the λs sum to 1:X i 
λi = 1 (3.27) 
In a slightly more sophisticated version of linear interpolation, each λ weight is computed by conditioning on the context. This way, if we have particularly accurate counts for a particular bigram, we assume that the counts of the trigrams based on this bigram will be more trustworthy, so we can make the λs for those trigrams higher and thus give that trigram more weight in the interpolation. Equation 3.28 shows the equation for interpolation with context-conditioned weights: 
Pˆ(wn|wn−2wn−1) = λ1(wn−2:n−1)P(wn|wn−2wn−1) 
+λ2(wn−2:n−1)P(wn|wn−1) 
+λ3(wn−2:n−1)P(wn) (3.28) 
How are these λ values set? Both the simple interpolation and conditional inter held-out polation λs are learned from a held-out corpus. A held-out corpus is an additional training corpus that we use to set hyperparameters like these λ values, by choosing the λ values that maximize the likelihood of the held-out corpus. That is, we fix the n-gram probabilities and then search for the λ values that—when plugged into Eq. 3.26—give us the highest probability of the held-out set. There are various ways to find this optimal set of λs. One way is to use the EM algorithm, an iterative learning algorithm that converges on locally optimal λs (Jelinek and Mercer, 1980). In a backoff n-gram model, if the n-gram we need has zero counts, we approxi mate it by backing off to the (N-1)-gram. We continue backing off until we reach a history that has some counts. 
In order for a backoff model to give a correct probability distribution, we have discount to discount the higher-order n-grams to save some probability mass for the lower order n-grams. Just as with add-one smoothing, if the higher-order n-grams aren’t discounted and we just used the undiscounted MLE probability, then as soon as we replaced an n-gram which has zero probability with a lower-order n-gram, we would be adding probability mass, and the total probability assigned to all possible strings by the language model would be greater than 1! In addition to this explicit discount factor, we’ll need a function α to distribute this probability mass to the lower order n-grams. 
Katz backoff This kind of backoff with discounting is also called Katz backoff. In Katz back off we rely on a discounted probability P∗if we’ve seen this n-gram before (i.e., if we have non-zero counts). Otherwise, we recursively back off to the Katz probabil ity for the shorter-history (N-1)-gram. The probability for a backoff n-gram PBO is
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thus computed as follows: 
PBO(wn|wn−N+1:n−1) = 
 
P∗(wn|wn−N+1:n−1), if C(wn−N+1:n) > 0 α(wn−N+1:n−1)PBO(wn|wn−N+2:n−1), otherwise. (3.29) 
 
Good-Turing Katz backoff is often combined with a smoothing method called Good-Turing. The combined Good-Turing backoff algorithm involves quite detailed computation for estimating the Good-Turing smoothing and the P∗and α values. 
3.5 Kneser-Ney Smoothing 
One of the most commonly used and best performing n-gram smoothing methods Kneser-Ney is the interpolated Kneser-Ney algorithm (Kneser and Ney 1995, Chen and Good man 1998). 
Kneser-Ney has its roots in a method called absolute discounting. Recall that discounting of the counts for frequent n-grams is necessary to save some probability mass for the smoothing algorithm to distribute to the unseen n-grams. 
To see this, we can use a clever idea from Church and Gale (1991). Consider an n-gram that has count 4. We need to discount this count by some amount. But how much should we discount it? Church and Gale’s clever idea was to look at a held-out corpus and just see what the count is for all those bigrams that had count 4 in the training set. They computed a bigram grammar from 22 million words of AP newswire and then checked the counts of each of these bigrams in another 22 million words. On average, a bigram that occurred 4 times in the first 22 million words occurred 3.23 times in the next 22 million words. Fig. 3.8 from Church and Gale (1991) shows these counts for bigrams with c from 0 to 9. 
Bigram count in Bigram count in 
training set heldout set 
0 0.0000270 
1 0.448 
2 1.25 
3 2.24 
4 3.23 
5 4.21 
6 5.23 
7 6.21 
8 7.21 
9 8.26 
Figure 3.8 For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the counts of these bigrams in a held-out corpus also of 22 million words. 
Notice in Fig. 3.8 that except for the held-out counts for 0 and 1, all the other bigram counts in the held-out set could be estimated pretty well by just subtracting 0.75 from the count in the training set! Absolute discounting formalizes this intu- Absolute 
discountingition by subtracting a fixed (absolute) discount d from each count. The intuition is that since we have good estimates already for the very high counts, a small discount d won’t affect them much. It will mainly modify the smaller counts, for which we
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don’t necessarily trust the estimate anyway, and Fig. 3.8 suggests that in practice this discount is actually a good one for bigrams with counts 2 through 9. The equation for interpolated absolute discounting applied to bigrams: 
PAbsoluteDiscounting(wi|wi−1) = C(wi−1wi)−d 
P 
vC(wi−1 v)+λ(wi−1)P(wi) (3.30) 
The first term is the discounted bigram, and the second term is the unigram with an interpolation weight λ. We could just set all the d values to .75, or we could keep a separate discount value of 0.5 for the bigrams with counts of 1. 
Kneser-Ney discounting (Kneser and Ney, 1995) augments absolute discount ing with a more sophisticated way to handle the lower-order unigram distribution. Consider the job of predicting the next word in this sentence, assuming we are inter polating a bigram and a unigram model. 
I can’t see without my reading . 
The word glasses seems much more likely to follow here than, say, the word Kong, so we’d like our unigram model to prefer glasses. But in fact it’s Kong that is more common, since Hong Kong is a very frequent word. A standard unigram model will assign Kong a higher probability than glasses. We would like to capture the intuition that although Kong is frequent, it is mainly only frequent in the phrase Hong Kong, that is, after the word Hong. The word glasses has a much wider distribution. 
In other words, instead of P(w), which answers the question “How likely is w?”, we’d like to create a unigram model that we might call PCONTINUATION, which answers the question “How likely is w to appear as a novel continuation?”. How can we estimate this probability of seeing the word w as a novel continuation, in a new unseen context? The Kneser-Ney intuition is to base our estimate of PCONTINUATION on the number of different contexts word w has appeared in, that is, the number of bigram types it completes. Every bigram type was a novel continuation the first time it was seen. We hypothesize that words that have appeared in more contexts in the past are more likely to appear in some new context as well. The number of times a word w appears as a novel continuation can be expressed as: 
PCONTINUATION(w) ∝ |{v : C(vw) > 0}| (3.31) 
To turn this count into a probability, we normalize by the total number of word bigram types. In summary: 
PCONTINUATION(w) = |{v : C(vw) > 0}| 
|{(u0,w0) : C(u0w0) > 0}| (3.32) 
An equivalent formulation based on a different metaphor is to use the number of word types seen to precede w (Eq. 3.31 repeated): 
PCONTINUATION(w) ∝ |{v : C(vw) > 0}| (3.33) 
normalized by the number of words preceding all words, as follows: PCONTINUATION(w) = |{v : C(vw) > 0}| 
P 
w0 |{v : C(vw0) > 0}| (3.34) 
A frequent word (Kong) occurring in only one context (Hong) will have a low continuation probability.
3.6 • HUGE LANGUAGE MODELS AND STUPID BACKOFF 47 
The final equation for Interpolated Kneser-Ney smoothing for bigrams is then: Interpolated Kneser-Ney 
PKN(wi|wi−1) = max(C(wi−1wi)−d,0) 
C(wi−1)+λ(wi−1)PCONTINUATION(wi) (3.35) 
The λ is a normalizing constant that is used to distribute the probability mass we’ve discounted.: 
λ(wi−1) = d 
P 
vC(wi−1v)|{w : C(wi−1w) > 0}| (3.36) 
The first term, d 
P 
vC(wi−1v), is the normalized discount. The second term, 
|{w : C(wi−1w) > 0}|, is the number of word types that can follow wi−1 or, equiva lently, the number of word types that we discounted; in other words, the number of times we applied the normalized discount. 
The general recursive formulation is as follows: 
PKN(wi|wi−n+1:i−1) = max(cKN(wi−n+1:i)−d,0) 
P 
vcKN(wi−n+1:i−1 v)+λ(wi−n+1:i−1)PKN(wi|wi−n+2:i−1) (3.37) 
where the definition of the count cKN depends on whether we are counting the highest-order n-gram being interpolated (for example trigram if we are interpolating trigram, bigram, and unigram) or one of the lower-order n-grams (bigram or unigram if we are interpolating trigram, bigram, and unigram): 
cKN(·) = 
 count(·) for the highest order 
continuationcount(·) for lower orders (3.38) 
The continuation count is the number of unique single word contexts for ·. At the termination of the recursion, unigrams are interpolated with the uniform distribution, where the parameter   is the empty string: 
PKN(w) = max(cKN(w)−d,0) 
P 
w0 cKN(w0)+λ( )1V(3.39) 
If we want to include an unknown word <UNK>, it’s just included as a regular vo cabulary entry with count zero, and hence its probability will be a lambda-weighted uniform distribution λ( ) 
V. 
The best performing version of Kneser-Ney smoothing is called modified Kneser Ney smoothing, and is due to Chen and Goodman (1998). Rather than use a single modified 
Kneser-Neyfixed discount d, modified Kneser-Ney uses three different discounts d1, d2, and d3+ for n-grams with counts of 1, 2 and three or more, respectively. See Chen and Goodman (1998, p. 19) or Heafield et al. (2013) for the details. 
3.6 Huge Language Models and Stupid Backoff 
By using text from the web or other enormous collections, it is possible to build extremely large language models. The Web 1 Trillion 5-gram corpus released by Google includes various large sets of n-grams, including 1-grams through 5-grams from all the five-word sequences that appear in at least 40 distinct books from
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1,024,908,267,229 words of text from publicly accessible Web pages in English (Franz and Brants, 2006). Google has also released Google Books Ngrams cor pora with n-grams drawn from their book collections, including another 800 billion tokens of of n-grams from Chinese, English, French, German, Hebrew, Italian, Rus sian, and Spanish (Lin et al., 2012a). Smaller but more carefully curated n-gram cor pora for English include the million most frequent n-grams drawn from the COCA (Corpus of Contemporary American English) 1 billion word corpus of American English (Davies, 2020). COCA is a balanced corpora, meaning that it has roughly equal numbers of words from different genres: web, newspapers, spoken conversa tion transcripts, fiction, and so on, drawn from the period 1990-2019, and has the context of each n-gram as well as labels for genre and provenance). 
Some example 4-grams from the Google Web corpus: 
4-gram Count 
serve as the incoming 92 
serve as the incubator 99 
serve as the independent 794 
serve as the index 223 
serve as the indication 72 
serve as the indicator 120 
serve as the indicators 45 
Efficiency considerations are important when building language models that use such large sets of n-grams. Rather than store each word as a string, it is generally represented in memory as a 64-bit hash number, with the words themselves stored on disk. Probabilities are generally quantized using only 4-8 bits (instead of 8-byte floats), and n-grams are stored in reverse tries. 
N-grams can also be shrunk by pruning, for example only storing n-grams with counts greater than some threshold (such as the count threshold of 40 used for the Google n-gram release) or using entropy to prune less-important n-grams (Stolcke, 1998). Another option is to build approximate language models using techniques 
Bloom filters like Bloom filters (Talbot and Osborne 2007, Church et al. 2007). Finally, effi cient language model toolkits like KenLM (Heafield 2011, Heafield et al. 2013) use sorted arrays, efficiently combine probabilities and backoffs in a single value, and use merge sorts to efficiently build the probability tables in a minimal number of passes through a large corpus. 
Although with these toolkits it is possible to build web-scale language models using full Kneser-Ney smoothing, Brants et al. (2007) show that with very large lan guage models a much simpler algorithm may be sufficient. The algorithm is called 
stupid backoff stupid backoff. Stupid backoff gives up the idea of trying to make the language model a true probability distribution. There is no discounting of the higher-order probabilities. If a higher-order n-gram has a zero count, we simply backoff to a lower order n-gram, weighed by a fixed (context-independent) weight. This algo rithm does not produce a probability distribution, so we’ll follow Brants et al. (2007) in referring to it as S: 
S(wi|wi−1 
i−k+1) = 
 
count(wii−k+1) 
i−k+1)if count(wii−k+1) > 0 
count(wi−1 
 
λS(wi|wi−1 
i−k+2) otherwise 
(3.40) 
The backoff terminates in the unigram, which has probability S(w) = count(w) 
et al. (2007) find that a value of 0.4 worked well for λ.
N. Brants 
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3.7 Advanced: Perplexity’s Relation to Entropy 
We introduced perplexity in Section 3.2.1 as a way to evaluate n-gram models on a test set. A better n-gram model is one that assigns a higher probability to the test data, and perplexity is a normalized version of the probability of the test set. The perplexity measure actually arises from the information-theoretic concept of cross-entropy, which explains otherwise mysterious properties of perplexity (why 
Entropy the inverse probability, for example?) and its relationship to entropy. Entropy is a measure of information. Given a random variable X ranging over whatever we are predicting (words, letters, parts of speech, the set of which we’ll call χ) and with a particular probability function, call it p(x), the entropy of the random variable X is: 
H(X) = −X x∈χ 
p(x)log2p(x) (3.41) 
The log can, in principle, be computed in any base. If we use log base 2, the resulting value of entropy will be measured in bits. 
One intuitive way to think about entropy is as a lower bound on the number of bits it would take to encode a certain decision or piece of information in the optimal coding scheme. 
Consider an example from the standard information theory textbook Cover and Thomas (1991). Imagine that we want to place a bet on a horse race but it is too far to go all the way to Yonkers Racetrack, so we’d like to send a short message to the bookie to tell him which of the eight horses to bet on. One way to encode this message is just to use the binary representation of the horse’s number as the code; thus, horse 1 would be 001, horse 2 010, horse 3 011, and so on, with horse 8 coded as 000. If we spend the whole day betting and each horse is coded with 3 bits, on average we would be sending 3 bits per race. 
Can we do better? Suppose that the spread is the actual distribution of the bets placed and that we represent it as the prior probability of each horse as follows: 
Horse 1 12 Horse 5 164 
Horse 2 14 Horse 6 164 
Horse 3 18 Horse 7 164 
Horse 4 116 Horse 8 164 
The entropy of the random variable X that ranges over horses gives us a lower bound on the number of bits and is 
i=8 
H(X) = −X i=1 
p(i)log p(i) 
= −12log 12 −14log 14 −18log 18 −116 log 116 −4(164 log 164 ) 
= 2 bits (3.42) 
A code that averages 2 bits per race can be built with short encodings for more probable horses, and longer encodings for less probable horses. For example, we could encode the most likely horse with the code 0, and the remaining horses as 10, then 110, 1110, 111100, 111101, 111110, and 111111.
50 CHAPTER 3 • N-GRAM LANGUAGE MODELS 
What if the horses are equally likely? We saw above that if we used an equal length binary code for the horse numbers, each horse took 3 bits to code, so the average was 3. Is the entropy the same? In this case each horse would have a probability of 18. The entropy of the choice of horses is then 
i=8 
H(X) = −X i=1 
1 
8log 18= −log 18= 3 bits (3.43) 
Until now we have been computing the entropy of a single variable. But most of what we will use entropy for involves sequences. For a grammar, for example, we will be computing the entropy of some sequence of words W = {w0,w1,w2,...,wn}. One way to do this is to have a variable that ranges over sequences of words. For example we can compute the entropy of a random variable that ranges over all finite sequences of words of length n in some language L as follows: 
H(w1,w2,...,wn) = −X Wn1∈L 
p(Wn1)log p(Wn1) (3.44) 
entropy rate We could define the entropy rate (we could also think of this as the per-word entropy) as the entropy of this sequence divided by the number of words: 
nH(Wn1) = −1nX 
1 
Wn1∈L 
p(Wn1)log p(Wn1) (3.45) 
But to measure the true entropy of a language, we need to consider sequences of infinite length. If we think of a language as a stochastic process L that produces a sequence of words, and allow W to represent the sequence of words w1,...,wn, then L’s entropy rate H(L) is defined as 
H(L) = lim n→∞ 
1 
nH(w1,w2,...,wn) 
= − lim n→∞ 
1 n 
X W∈L 
p(w1,...,wn)log p(w1,...,wn) (3.46) 
The Shannon-McMillan-Breiman theorem (Algoet and Cover 1988, Cover and Thomas 1991) states that if the language is regular in certain ways (to be exact, if it is both stationary and ergodic), 
n→∞−1nlog p(w1w2 ...wn) (3.47) 
H(L) = lim 
That is, we can take a single sequence that is long enough instead of summing over all possible sequences. The intuition of the Shannon-McMillan-Breiman the orem is that a long-enough sequence of words will contain in it many other shorter sequences and that each of these shorter sequences will reoccur in the longer se quence according to their probabilities. 
Stationary A stochastic process is said to be stationary if the probabilities it assigns to a sequence are invariant with respect to shifts in the time index. In other words, the probability distribution for words at time t is the same as the probability distribution at time t + 1. Markov models, and hence n-grams, are stationary. For example, in a bigram, Piis dependent only on Pi−1. So if we shift our time index by x, Pi+x is still dependent on Pi+x−1. But natural language is not stationary, since as we show
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in Chapter 12, the probability of upcoming words can be dependent on events that were arbitrarily distant and time dependent. Thus, our statistical models only give an approximation to the correct distributions and entropies of natural language. 
To summarize, by making some incorrect but convenient simplifying assump tions, we can compute the entropy of some stochastic process by taking a very long sample of the output and computing its average log probability. 
cross-entropy Now we are ready to introduce cross-entropy. The cross-entropy is useful when we don’t know the actual probability distribution p that generated some data. It allows us to use some m, which is a model of p (i.e., an approximation to p). The cross-entropy of m on p is defined by 
n→∞−1nX 
H(p,m) = lim 
W∈L 
p(w1,...,wn)logm(w1,...,wn) (3.48) 
That is, we draw sequences according to the probability distribution p, but sum the log of their probabilities according to m. 
Again, following the Shannon-McMillan-Breiman theorem, for a stationary er godic process: 
n→∞−1nlogm(w1w2 ...wn) (3.49) 
H(p,m) = lim 
This means that, as for entropy, we can estimate the cross-entropy of a model m on some distribution p by taking a single sequence that is long enough instead of summing over all possible sequences. 
What makes the cross-entropy useful is that the cross-entropy H(p,m) is an up per bound on the entropy H(p). For any model m: 
H(p) ≤ H(p,m) (3.50) 
This means that we can use some simplified model m to help estimate the true en tropy of a sequence of symbols drawn according to probability p. The more accurate m is, the closer the cross-entropy H(p,m) will be to the true entropy H(p). Thus, the difference between H(p,m) and H(p) is a measure of how accurate a model is. Between two models m1 and m2, the more accurate model will be the one with the lower cross-entropy. (The cross-entropy can never be lower than the true entropy, so a model cannot err by underestimating the true entropy.) 
We are finally ready to see the relation between perplexity and cross-entropy as we saw it in Eq. 3.49. Cross-entropy is defined in the limit as the length of the observed word sequence goes to infinity. We will need an approximation to cross entropy, relying on a (sufficiently long) sequence of fixed length. This approxima tion to the cross-entropy of a model M = P(wi|wi−N+1...wi−1) on a sequence of words W is 
H(W) = −1NlogP(w1w2 ...wN) (3.51) 
perplexity The perplexity of a model P on a sequence of words W is now formally defined as the exp of this cross-entropy:
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Perplexity(W) = 2H(W) 
= P(w1w2 ...wN)−1N 
s 
= N 
1 
P(w1w2 ...wN) 
1 
P(wi|w1 ...wi−1)(3.52) 
3.8 Summary 
vuutYN 
=N 
i=1 
This chapter introduced language modeling and the n-gram, one of the most widely used tools in language processing. 
• Language models offer a way to assign a probability to a sentence or other sequence of words, and to predict a word from preceding words. 
• n-grams are Markov models that estimate words from a fixed window of pre vious words. n-gram probabilities can be estimated by counting in a corpus and normalizing (the maximum likelihood estimate). 
• n-gram language models are evaluated extrinsically in some task, or intrinsi cally using perplexity. 
• The perplexity of a test set according to a language model is the geometric mean of the inverse test set probability computed by the model. 
• Smoothing algorithms provide a more sophisticated way to estimate the prob ability of n-grams. Commonly used smoothing algorithms for n-grams rely on lower-order n-gram counts through backoff or interpolation. 
• Both backoff and interpolation require discounting to create a probability dis tribution. 
• Kneser-Ney smoothing makes use of the probability of a word being a novel continuation. The interpolated Kneser-Ney smoothing algorithm mixes a discounted probability with a lower-order continuation probability. 
Bibliographical and Historical Notes 
The underlying mathematics of the n-gram was first proposed by Markov (1913), who used what are now called Markov chains (bigrams and trigrams) to predict whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a con sonant. Markov classified 20,000 letters as V or C and computed the bigram and trigram probability that a given letter would be a vowel given the previous one or two letters. Shannon (1948) applied n-grams to compute approximations to English word sequences. Based on Shannon’s work, Markov models were commonly used in engineering, linguistic, and psychological work on modeling word sequences by the 1950s. In a series of extremely influential papers starting with Chomsky (1956) and including Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued that “finite-state Markov processes”, while a possibly useful engineering heuristic,
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were incapable of being a complete cognitive model of human grammatical knowl edge. These arguments led many linguists and computational linguists to ignore work in statistical modeling for decades. 
The resurgence of n-gram models came from Jelinek and colleagues at the IBM Thomas J. Watson Research Center, who were influenced by Shannon, and Baker at CMU, who was influenced by the work of Baum and colleagues. Independently these two labs successfully used n-grams in their speech recognition systems (Baker 1975b, 
Jelinek 1976, Baker 1975a, Bahl et al. 1983, Jelinek 1990). 
Add-one smoothing derives from Laplace’s 1812 law of succession and was first applied as an engineering solution to the zero frequency problem by Jeffreys (1948) based on an earlier Add-K suggestion by Johnson (1932). Problems with the add one algorithm are summarized in Gale and Church (1994). 
A wide variety of different language modeling and smoothing techniques were proposed in the 80s and 90s, including Good-Turing discounting—first applied to the n-gram smoothing at IBM by Katz (Nadas 1984 ´ , Church and Gale 1991)— Witten-Bell discounting (Witten and Bell, 1991), and varieties of class-based n gram models that used information about word classes. class-based 
n-gramStarting in the late 1990s, Chen and Goodman performed a number of carefully controlled experiments comparing different discounting algorithms, cache models, class-based models, and other language model parameters (Chen and Goodman 1999, Goodman 2006, inter alia). They showed the advantages of Modified Interpolated Kneser-Ney, which became the standard baseline for n-gram language modeling, especially because they showed that caches and class-based models provided only minor additional improvement. These papers are recommended for any reader with further interest in n-gram language modeling. SRILM (Stolcke, 2002) and KenLM (Heafield 2011, Heafield et al. 2013) are publicly available toolkits for building n gram language models. 
Modern language modeling is more commonly done with neural network lan guage models, which solve the major problems with n-grams: the number of param eters increases exponentially as the n-gram order increases, and n-grams have no way to generalize from training to test set. Neural language models instead project words into a continuous space in which words with similar contexts have simi lar representations. We’ll introduce both feedforward language models (Bengio et al. 2006, Schwenk 2007) in Chapter 7, and recurrent language models (Mikolov, 2012) in Chapter 9. 
Exercises 
3.1 Write out the equation for trigram probability estimation (modifying Eq. 3.11). Now write out all the non-zero trigram probabilities for the I am Sam corpus 
on page 32. 
3.2 Calculate the probability of the sentence i want chinese food. Give two probabilities, one using Fig. 3.2 and the ‘useful probabilities’ just below it on 
page 34, and another using the add-1 smoothed table in Fig. 3.6. Assume the 
additional add-1 smoothed probabilities P(i|<s>) = 0.19 and P(</s>|food) = 
0.40. 
3.3 Which of the two probabilities you computed in the previous exercise is higher, unsmoothed or smoothed? Explain why. 
3.4 We are given the following corpus, modified from the one in the chapter:
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<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I am Sam </s> 
<s> I do not like green eggs and Sam </s> 
Using a bigram language model with add-one smoothing, what is P(Sam | am)? Include <s> and </s> in your counts just like any other token. 
3.5 Suppose we didn’t use the end-symbol </s>. Train an unsmoothed bigram grammar on the following training corpus without using the end-symbol </s>: 
<s> a b 
<s> b b 
<s> b a 
<s> a a 
Demonstrate that your bigram model does not assign a single probability dis tribution across all sentence lengths by showing that the sum of the probability of the four possible 2 word sentences over the alphabet {a,b} is 1.0, and the sum of the probability of all possible 3 word sentences over the alphabet {a,b} is also 1.0. 
3.6 Suppose we train a trigram language model with add-one smoothing on a given corpus. The corpus contains V word types. Express a formula for esti mating P(w3|w1,w2), where w3 is a word which follows the bigram (w1,w2), in terms of various N-gram counts and V. Use the notation c(w1,w2,w3) to denote the number of times that trigram (w1,w2,w3) occurs in the corpus, and so on for bigrams and unigrams. 
3.7 We are given the following corpus, modified from the one in the chapter: 
<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I am Sam </s> 
<s> I do not like green eggs and Sam </s> 
If we use linear interpolation smoothing between a maximum-likelihood bi gram model and a maximum-likelihood unigram model with λ1 =12and λ2 = 12, what is P(Sam|am)? Include <s> and </s> in your counts just like any other token. 
3.8 Write a program to compute unsmoothed unigrams and bigrams. 
3.9 Run your n-gram program on two different small corpora of your choice (you might use email text or newsgroups). Now compare the statistics of the two corpora. What are the differences in the most common unigrams between the two? How about interesting differences in bigrams? 
3.10 Add an option to your program to generate random sentences. 
3.11 Add an option to your program to compute the perplexity of a test set. 
3.12 You are given a training set of 100 numbers that consists of 91 zeros and 1 each of the other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0 0 0. What is the unigram perplexity?
CHAPTER 
4Naive Bayes and Sentiment Classification 
Classification lies at the heart of both human and machine intelligence. Deciding what letter, word, or image has been presented to our senses, recognizing faces or voices, sorting mail, assigning grades to homeworks; these are all examples of assigning a category to an input. The potential challenges of this task are highlighted by the fabulist Jorge Luis Borges (1964), who imagined classifying animals into: 
(a) those that belong to the Emperor, (b) embalmed ones, (c) those that 
are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray 
dogs, (h) those that are included in this classification, (i) those that 
tremble as if they were mad, (j) innumerable ones, (k) those drawn with 
a very fine camel’s hair brush, (l) others, (m) those that have just broken 
a flower vase, (n) those that resemble flies from a distance. 
Many language processing tasks involve classification, although luckily our classes are much easier to define than those of Borges. In this chapter we introduce the naive Bayes algorithm and apply it to text categorization, the task of assigning a label or text 
categorizationcategory to an entire text or document. 
We focus on one common text categorization task, sentiment analysis, the ex- sentiment analysistraction of sentiment, the positive or negative orientation that a writer expresses toward some object. A review of a movie, book, or product on the web expresses the author’s sentiment toward the product, while an editorial or political text expresses sentiment toward a candidate or political action. Extracting consumer or public sen timent is thus relevant for fields from marketing to politics. 
The simplest version of sentiment analysis is a binary classification task, and the words of the review provide excellent cues. Consider, for example, the follow ing phrases extracted from positive and negative reviews of movies and restaurants. Words like great, richly, awesome, and pathetic, and awful and ridiculously are very informative cues: 
+ ...zany characters and richly applied satire, and some great plot twists 
− It was pathetic. The worst part about it was the boxing scenes... 
+ ...awesome caramel sauce and sweet toasty almonds. I love this place! 
− ...awful pizza and ridiculously overpriced... 
spam detection Spam detection is another important commercial application, the binary clas sification task of assigning an email to one of the two classes spam or not-spam. Many lexical and other features can be used to perform this classification. For ex ample you might quite reasonably be suspicious of an email containing phrases like “online pharmaceutical” or “WITHOUT ANY COST” or “Dear Winner”. 
Another thing we might want to know about a text is the language it’s written in. Texts on social media, for example, can be in any number of languages and language id we’ll need to apply different processing. The task of language id is thus the first step in most language processing pipelines. Related text classification tasks like au thorship attribution— determining a text’s author— are also relevant to the digital authorship attributionhumanities, social sciences, and forensic linguistics.
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Finally, one of the oldest tasks in text classification is assigning a library sub ject category or topic label to a text. Deciding whether a research paper concerns epidemiology or instead, perhaps, embryology, is an important component of infor mation retrieval. Various sets of subject categories exist, such as the MeSH (Medical Subject Headings) thesaurus. In fact, as we will see, subject category classification is the task for which the naive Bayes algorithm was invented in 1961. 
Classification is essential for tasks below the level of the document as well. We’ve already seen period disambiguation (deciding if a period is the end of a sen tence or part of a word), and word tokenization (deciding if a character should be a word boundary). Even language modeling can be viewed as classification: each word can be thought of as a class, and so predicting the next word is classifying the context-so-far into a class for each next word. A part-of-speech tagger (Chapter 8) classifies each occurrence of a word in a sentence as, e.g., a noun or a verb. 
The goal of classification is to take a single observation, extract some useful features, and thereby classify the observation into one of a set of discrete classes. One method for classifying text is to use handwritten rules. There are many areas of language processing where handwritten rule-based classifiers constitute a state-of the-art system, or at least part of it. 
Rules can be fragile, however, as situations or data change over time, and for some tasks humans aren’t necessarily good at coming up with the rules. Most cases 
supervised machine 
of classification in language processing are instead done via supervised machine learning, and this will be the subject of the remainder of this chapter. In supervised 
learning learning, we have a data set of input observations, each associated with some correct output (a ‘supervision signal’). The goal of the algorithm is to learn how to map from a new observation to a correct output. 
Formally, the task of supervised classification is to take an input x and a fixed set of output classes Y = y1, y2,..., yM and return a predicted class y ∈ Y. For text classification, we’ll sometimes talk about c (for “class”) instead of y as our output variable, and d (for “document”) instead of x as our input variable. In the supervised situation we have a training set of N documents that have each been hand-labeled with a class: (d1, c1),....,(dN, cN). Our goal is to learn a classifier that is capable of mapping from a new document d to its correct class c ∈C. A probabilistic classifier additionally will tell us the probability of the observation being in the class. This full distribution over the classes can be useful information for downstream decisions; avoiding making discrete decisions early on can be useful when combining systems. 
Many kinds of machine learning algorithms are used to build classifiers. This chapter introduces naive Bayes; the following one introduces logistic regression. These exemplify two ways of doing classification. Generative classifiers like naive Bayes build a model of how a class could generate some input data. Given an ob servation, they return the class most likely to have generated the observation. Dis criminative classifiers like logistic regression instead learn what features from the input are most useful to discriminate between the different possible classes. While discriminative systems are often more accurate and hence more commonly used, generative classifiers still have a role. 
4.1 Naive Bayes Classifiers 
In this section we introduce the multinomial naive Bayes classifier, so called be- naive Bayes classifiercause it is a Bayesian classifier that makes a simplifying (naive) assumption about
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how the features interact. 
The intuition of the classifier is shown in Fig. 4.1. We represent a text document bag-of-words as if it were a bag-of-words, that is, an unordered set of words with their position ignored, keeping only their frequency in the document. In the example in the figure, instead of representing the word order in all the phrases like “I love this movie” and “I would recommend it”, we simply note that the word I occurred 5 times in the entire excerpt, the word it 6 times, the words love, recommend, and movie once, and so on. 
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Figure 4.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the words is ignored (the bag of words assumption) and we make use of the frequency of each word. 
Naive Bayes is a probabilistic classifier, meaning that for a document d, out of all classes c ∈ C the classifier returns the class ˆc which has the maximum posterior ˆ probability given the document. In Eq. 4.1 we use the hat notation ˆ to mean “our estimate of the correct class”. 
cˆ = argmax c∈C 
P(c|d) (4.1) 
Bayesian 
This idea of Bayesian inference has been known since the work of Bayes (1763), 
inferenceand was first applied to text classification by Mosteller and Wallace (1964). The intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 4.1 into other probabilities that have some useful properties. Bayes’ rule is presented in Eq. 4.2; it gives us a way to break down any conditional probability P(x|y) into three other probabilities: 
P(x|y) = P(y|x)P(x) 
P(y)(4.2) 
We can then substitute Eq. 4.2 into Eq. 4.1 to get Eq. 4.3: 
P(d|c)P(c) 
cˆ = argmax c∈C 
P(c|d) = argmax c∈C 
P(d)(4.3)
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We can conveniently simplify Eq. 4.3 by dropping the denominator P(d). This is possible because we will be computing P(d|c)P(c) 
P(d)for each possible class. But P(d) 
doesn’t change for each class; we are always asking about the most likely class for the same document d, which must have the same probability P(d). Thus, we can choose the class that maximizes this simpler formula: 
cˆ = argmax c∈C 
P(c|d) = argmax c∈C 
P(d|c)P(c) (4.4) 
prior 
probability likelihood 
We call Naive Bayes a generative model because we can read Eq. 4.4 as stating a kind of implicit assumption about how a document is generated: first a class is sampled from P(c), and then the words are generated by sampling from P(d|c). (In fact we could imagine generating artificial documents, or at least their word counts, by following this process). We’ll say more about this intuition of generative models in Chapter 5. 
To return to classification: we compute the most probable class ˆc given some document d by choosing the class which has the highest product of two probabilities: the prior probability of the class P(c) and the likelihood of the document P(d|c): 
prior 
likelihood 
cˆ = argmax c∈C 
z }| { P(d|c) 
z}|{ 
P(c) (4.5) 
Without loss of generalization, we can represent a document d as a set of features f1, f2,..., fn: 
cˆ = argmax c∈C 
likelihood 
z }| { P(f1, f2,...., fn|c) 
prior 
z}|{ 
P(c) (4.6) 
Unfortunately, Eq. 4.6 is still too hard to compute directly: without some sim plifying assumptions, estimating the probability of every possible combination of features (for example, every possible set of words and positions) would require huge numbers of parameters and impossibly large training sets. Naive Bayes classifiers therefore make two simplifying assumptions. 
The first is the bag of words assumption discussed intuitively above: we assume position doesn’t matter, and that the word “love” has the same effect on classification whether it occurs as the 1st, 20th, or last word in the document. Thus we assume that the features f1, f2,..., fn only encode word identity and not position. 
The second is commonly called the naive Bayes assumption: this is the condi- naive Bayes assumptiontional independence assumption that the probabilities P(fi|c) are independent given the class c and hence can be ‘naively’ multiplied as follows: 
P(f1, f2,...., fn|c) = P(f1|c)·P(f2|c)· ... ·P(fn|c) (4.7) 
The final equation for the class chosen by a naive Bayes classifier is thus: 
cNB = argmax c∈C 
P(c)Y f∈F 
P(f |c) (4.8) 
To apply the naive Bayes classifier to text, we need to consider word positions, by simply walking an index through every word position in the document: 
positions ← all word positions in test document 
cNB = argmax c∈C 
P(c)Y i∈positions 
P(wi|c) (4.9)
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Naive Bayes calculations, like calculations for language modeling, are done in log space, to avoid underflow and increase speed. Thus Eq. 4.9 is generally instead expressed as 
cNB = argmax c∈C 
logP(c) + X i∈positions 
logP(wi|c) (4.10) 
linear 
classifiers 
By considering features in log space, Eq. 4.10 computes the predicted class as a lin ear function of input features. Classifiers that use a linear combination of the inputs to make a classification decision —like naive Bayes and also logistic regression— are called linear classifiers. 
4.2 Training the Naive Bayes Classifier 
How can we learn the probabilities P(c) and P(fi|c)? Let’s first consider the maxi mum likelihood estimate. We’ll simply use the frequencies in the data. For the class prior P(c) we ask what percentage of the documents in our training set are in each class c. Let Nc be the number of documents in our training data with class c and Ndoc be the total number of documents. Then: 
Pˆ(c) = Nc 
Ndoc(4.11) 
To learn the probability P(fi|c), we’ll assume a feature is just the existence of a word in the document’s bag of words, and so we’ll want P(wi|c), which we compute as the fraction of times the word wi appears among all words in all documents of topic c. We first concatenate all documents with category c into one big “category c” text. Then we use the frequency of wiin this concatenated document to give a maximum likelihood estimate of the probability: 
Pˆ(wi|c) = count(wi, c) 
P 
w∈Vcount(w, c)(4.12) 
Here the vocabulary V consists of the union of all the word types in all classes, not just the words in one class c. 
There is a problem, however, with maximum likelihood training. Imagine we are trying to estimate the likelihood of the word “fantastic” given class positive, but suppose there are no training documents that both contain the word “fantastic” and are classified as positive. Perhaps the word “fantastic” happens to occur (sarcasti cally?) in the class negative. In such a case the probability for this feature will be zero: 
Pˆ(“fantastic”|positive) = count(“fantastic”,positive) 
P 
w∈Vcount(w,positive)= 0 (4.13) 
But since naive Bayes naively multiplies all the feature likelihoods together, zero probabilities in the likelihood term for any class will cause the probability of the class to be zero, no matter the other evidence! 
The simplest solution is the add-one (Laplace) smoothing introduced in Chap ter 3. While Laplace smoothing is usually replaced by more sophisticated smoothing
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algorithms in language modeling, it is commonly used in naive Bayes text catego rization: 
Pˆ(wi|c) = count(wi, c) +1 
w∈V(count(w, c) +1)=count(wi, c) +1 
P 
P 
w∈Vcount(w, c) +|V|(4.14) 
Note once again that it is crucial that the vocabulary V consists of the union of all the word types in all classes, not just the words in one class c (try to convince yourself why this must be true; see the exercise at the end of the chapter). 
What do we do about words that occur in our test data but are not in our vocab ulary at all because they did not occur in any training document in any class? The unknown word solution for such unknown words is to ignore them—remove them from the test document and not include any probability for them at all. 
Finally, some systems choose to completely ignore another class of words: stop stop words words, very frequent words like the and a. This can be done by sorting the vocabu lary by frequency in the training set, and defining the top 10–100 vocabulary entries as stop words, or alternatively by using one of the many predefined stop word list available online. Then every instance of these stop words are simply removed from both training and test documents as if they had never occurred. In most text classi fication applications, however, using a stop word list doesn’t improve performance, and so it is more common to make use of the entire vocabulary and not use a stop word list. 
Fig. 4.2 shows the final algorithm. 
	function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w|c) 
for each class c ∈ C # Calculate P(c) terms 
Ndoc = number of documents in D 
Nc = number of documents from D in class c 
logprior[c]← log Nc 
Ndoc 
V←vocabulary of D 
bigdoc[c]←append(d) for d ∈ D with class c 
for each word w in V # Calculate P(w|c) terms 
count(w,c)←# of occurrences of w in bigdoc[c] 
loglikelihood[w,c]← log count(w, c) + 1 
P 
w0in V (count (w0, c) + 1) 
return logprior, loglikelihood, V 
function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best c 
for each class c ∈ C 
sum[c]← logprior[c] 
for each position i in testdoc 
word←testdoc[i] 
if word ∈ V 
sum[c]←sum[c]+ loglikelihood[word,c] 
return argmaxcsum[c]




Figure 4.2 The naive Bayes algorithm, using add-1 smoothing. To use add-α smoothing instead, change the +1 to +α for loglikelihood counts in training.
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4.3 Worked example 
Let’s walk through an example of training and testing naive Bayes with add-one smoothing. We’ll use a sentiment analysis domain with the two classes positive (+) and negative (-), and take the following miniature training and test documents simplified from actual movie reviews. 
Cat Documents 
Training - just plain boring 
- entirely predictable and lacks energy 
- no surprises and very few laughs 
+ very powerful 
+ the most fun film of the summer 
Test ? predictable with no fun 
The prior P(c) for the two classes is computed via Eq. 4.11 as Nc 
Ndoc: 
P(−) = 35P(+) = 25 
The word with doesn’t occur in the training set, so we drop it completely (as mentioned above, we don’t use unknown word models for naive Bayes). The like lihoods from the training set for the remaining three words “predictable”, “no”, and “fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder of the words in the training set is left as an exercise for the reader): 
P(“predictable”|−) = 1+1 
14+20P(“predictable”|+) = 0+1 
9+20 
P(“no”|−) = 1+1 
14+20P(“no”|+) = 0+1 
9+20 
P(“fun”|−) = 0+1 
14+20P(“fun”|+) = 1+1 
9+20 
For the test sentence S = “predictable with no fun”, after removing the word ‘with’, the chosen class, via Eq. 4.9, is therefore computed as follows: 
P(−)P(S|−) = 35×2×2×1 
343= 6.1×10−5 
P(+)P(S|+) = 25×1×1×2 
293= 3.2×10−5 
The model thus predicts the class negative for the test sentence. 
4.4 Optimizing for Sentiment Analysis 
While standard naive Bayes text classification can work well for sentiment analysis, some small changes are generally employed that improve performance. 
First, for sentiment classification and a number of other text classification tasks, whether a word occurs or not seems to matter more than its frequency. Thus it often improves performance to clip the word counts in each document at 1 (see the end of the chapter for pointers to these results). This variant is called binary
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binary NB multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 except that for each document we remove all duplicate words before concatenating them into the single big document. Fig. 4.3 shows an example in which a set of four documents (shortened and text-normalized for this example) are remapped to binary, with the modified counts shown in the table on the right. The example is worked without add-1 smoothing to make the differences clearer. Note that the results counts need not be 1; the word great has a count of 2 even for Binary NB, because it appears in multiple documents. 
	NB Binary 
Counts Counts 
Four original documents: 
+ − + − 
and 2 0 1 0 
− it was pathetic the worst part was the 
boxing 0 1 0 1 
boxing scenes 
film 1 0 1 0 
− no plot twists or great scenes 
great 3 1 2 1 
+ and satire and great plot twists 
it 0 1 0 1 
no 0 1 0 1 
+ great scenes great film 
or 0 1 0 1 
After per-document binarization: 
part 0 1 0 1 
pathetic 0 1 0 1 
− it was pathetic the worst part boxing 
plot 1 1 1 1 
scenes 
satire 1 0 1 0 
− no plot twists or great scenes 
scenes 1 2 1 2 
+ and satire great plot twists 
the 0 2 0 1 
twists 1 1 1 1 
+ great scenes film 
was 0 2 0 1 
worst 0 1 0 1




Figure 4.3 An example of binarization for the binary naive Bayes algorithm. 
A second important addition commonly made when doing text classification for sentiment is to deal with negation. Consider the difference between I really like this movie (positive) and I didn’t like this movie (negative). The negation expressed by didn’t completely alters the inferences we draw from the predicate like. Similarly, negation can modify a negative word to produce a positive review (don’t dismiss this film, doesn’t let us get bored). 
A very simple baseline that is commonly used in sentiment analysis to deal with negation is the following: during text normalization, prepend the prefix NOT to every word after a token of logical negation (n’t, not, no, never) until the next punc tuation mark. Thus the phrase 
didn’t like this movie , but I 
becomes 
didn’t NOT_like NOT_this NOT_movie , but I 
Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of ten in negative document and act as cues for negative sentiment, while words like NOT bored, NOT dismiss will acquire positive associations. We will return in Chap ter 16 to the use of parsing to deal more accurately with the scope relationship be tween these negation words and the predicates they modify, but this simple baseline works quite well in practice. 
Finally, in some situations we might have insufficient labeled training data to train accurate naive Bayes classifiers using all words in the training set to estimate positive and negative sentiment. In such cases we can instead derive the positive
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and negative word features from sentiment lexicons, lists of words that are pre- sentiment lexiconsannotated with positive or negative sentiment. Four popular lexicons are the General Inquirer (Stone et al., 1966), LIWC (Pennebaker et al., 2007), the opinion lexicon General 
Inquirer 
LIWC of Hu and Liu (2004a) and the MPQA Subjectivity Lexicon (Wilson et al., 2005). For example the MPQA subjectivity lexicon has 6885 words, 2718 positive and 4912 negative, each marked for whether it is strongly or weakly biased. Some sam ples of positive and negative words from the MPQA lexicon include: 
+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great 
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate 
A common way to use lexicons in a naive Bayes classifier is to add a feature that is counted whenever a word from that lexicon occurs. Thus we might add a feature called ‘this word occurs in the positive lexicon’, and treat all instances of words in the lexicon as counts for that one feature, instead of counting each word separately. Similarly, we might add as a second feature ‘this word occurs in the negative lexicon’ of words in the negative lexicon. If we have lots of training data, and if the test data matches the training data, using just two features won’t work as well as using all the words. But when training data is sparse or not representative of the test set, using dense lexicon features instead of sparse individual-word features may generalize better. 
We’ll return to this use of lexicons in Chapter 20, showing how these lexicons can be learned automatically, and how they can be applied to many other tasks be yond sentiment classification. 
4.5 Naive Bayes for other text classification tasks 
In the previous section we pointed out that naive Bayes doesn’t require that our classifier use all the words in the training data as features. In fact features in naive Bayes can express any property of the input text we want. 
spam detection Consider the task of spam detection, deciding if a particular piece of email is an example of spam (unsolicited bulk email) — and one of the first applications of naive Bayes to text classification (Sahami et al., 1998). 
A common solution here, rather than using all the words as individual features, is to predefine likely sets of words or phrases as features, combined with features that are not purely linguistic. For example the open-source SpamAssassin tool1 predefines features like the phrase “one hundred percent guaranteed”, or the feature mentions millions of dollars, which is a regular expression that matches suspiciously large sums of money. But it also includes features like HTML has a low ratio of text to image area, that aren’t purely linguistic and might require some sophisticated computation, or totally non-linguistic features about, say, the path that the email took to arrive. More sample SpamAssassin features: 
• Email subject line is all capital letters 
• Contains phrases of urgency like “urgent reply” 
• Email subject line contains “online pharmaceutical” 
• HTML has unbalanced “head” tags 
• Claims you can be removed from the list 
language ID For other tasks, like language ID—determining what language a given piece 1 https://spamassassin.apache.org
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of text is written in—the most effective naive Bayes features are not words at all, but character n-grams, 2-grams (‘zw’) 3-grams (‘nya’, ‘ Vo’), or 4-grams (‘ie z’, ‘thei’), or, even simpler byte n-grams, where instead of using the multibyte Unicode character representations called codepoints, we just pretend everything is a string of raw bytes. Because spaces count as a byte, byte n-grams can model statistics about the beginning or ending of words. A widely used naive Bayes system, langid.py (Lui and Baldwin, 2012) begins with all possible n-grams of lengths 1-4, using fea ture selection to winnow down to the most informative 7000 final features. 
Language ID systems are trained on multilingual text, such as Wikipedia (Wiki pedia text in 68 different languages were used in (Lui and Baldwin, 2011)), or newswire. To make sure that this multilingual text correctly reflects different re gions, dialects, and socioeconomic classes, systems also add Twitter text in many languages geotagged to many regions (important for getting world English dialects from countries with large Anglophone populations like Nigeria or India), Bible and Quran translations, slang websites like Urban Dictionary, corpora of African Amer ican Vernacular English (Blodgett et al., 2016), and so on (Jurgens et al., 2017). 
4.6 Naive Bayes as a Language Model 
As we saw in the previous section, naive Bayes classifiers can use any sort of fea ture: dictionaries, URLs, email addresses, network features, phrases, and so on. But if, as in the previous section, we use only individual word features, and we use all of the words in the text (not a subset), then naive Bayes has an important similar ity to language modeling. Specifically, a naive Bayes model can be viewed as a set of class-specific unigram language models, in which the model for each class instantiates a unigram language model. 
Since the likelihood features from the naive Bayes model assign a probability to each word P(word|c), the model also assigns a probability to each sentence: 
P(s|c) = Y i∈positions 
P(wi|c) (4.15) 
Thus consider a naive Bayes model with the classes positive (+) and negative (-) and the following model parameters: 
w P(w|+) P(w|-) 
I 0.1 0.2 
love 0.1 0.001 
this 0.01 0.01 
fun 0.05 0.005 
film 0.1 0.1 
... ... ... 
Each of the two columns above instantiates a language model that can assign a probability to the sentence “I love this fun film”: 
P(“I love this fun film”|+) = 0.1×0.1×0.01×0.05×0.1 = 0.0000005 P(“I love this fun film”|−) = 0.2×0.001×0.01×0.005×0.1 = .0000000010
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As it happens, the positive model assigns a higher probability to the sentence: P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes model; once we multiply in the prior a full naive Bayes model might well make a different classification decision. 
4.7 Evaluation: Precision, Recall, F-measure 
To introduce the methods for evaluating text classification, let’s first consider some simple binary detection tasks. For example, in spam detection, our goal is to label every text as being in the spam category (“positive”) or not in the spam category (“negative”). For each item (email document) we therefore need to know whether our system called it spam or not. We also need to know whether the email is actually spam or not, i.e. the human-defined labels for each document that we are trying to gold labels match. We will refer to these human labels as the gold labels. 
Or imagine you’re the CEO of the Delicious Pie Company and you need to know what people are saying about your pies on social media, so you build a system that detects tweets concerning Delicious Pie. Here the positive class is tweets about Delicious Pie and the negative class is all other tweets. 
In both cases, we need a metric for knowing how well our spam detector (or pie-tweet-detector) is doing. To evaluate any system for detecting things, we start by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrix confusion matrixis a table for visualizing how an algorithm performs with respect to the human gold labels, using two dimensions (system output and gold labels), and each cell labeling a set of possible outcomes. In the spam detection case, for example, true positives are documents that are indeed spam (indicated by human-created gold labels) that our system correctly said were spam. False negatives are documents that are indeed spam but our system incorrectly labeled as non-spam. 
To the bottom right of the table is the equation for accuracy, which asks what percentage of all the observations (for the spam or pie examples that means all emails or tweets) our system labeled correctly. Although accuracy might seem a natural metric, we generally don’t use it for text classification tasks. That’s because accuracy doesn’t work well when the classes are unbalanced (as indeed they are with spam, which is a large majority of email, or with tweets, which are mainly not about pie). 
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Figure 4.4 A confusion matrix for visualizing how well a binary classification system per forms against gold standard labels. 
To make this more explicit, imagine that we looked at a million tweets, and let’s say that only 100 of them are discussing their love (or hatred) for our pie,
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while the other 999,900 are tweets about something completely unrelated. Imagine a simple classifier that stupidly classified every tweet as “not about pie”. This classifier would have 999,900 true negatives and only 100 false negatives for an accuracy of 999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should be happy with this classifier? But of course this fabulous ‘no pie’ classifier would be completely useless, since it wouldn’t find a single one of the customer comments we are looking for. In other words, accuracy is not a good metric when the goal is to discover something that is rare, or at least not completely balanced in frequency, which is a very common situation in the world. 
That’s why instead of accuracy we generally turn to two other metrics shown in precision Fig. 4.4: precision and recall. Precision measures the percentage of the items that the system detected (i.e., the system labeled as positive) that are in fact positive (i.e., are positive according to the human gold labels). Precision is defined as 
Precision =true positives 
true positives + false positives 
recall Recall measures the percentage of items actually present in the input that were correctly identified by the system. Recall is defined as 
Recall =true positives 
true positives + false negatives 
Precision and recall will help solve the problem with the useless “nothing is pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has a terrible recall of 0 (since there are no true positives, and 100 false negatives, the recall is 0/100). You should convince yourself that the precision at finding relevant tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize true positives: finding the things that we are supposed to be looking for. 
There are many ways to define a single metric that incorporates aspects of both F-measure precision and recall. The simplest of these combinations is the F-measure (van Rijsbergen, 1975) , defined as: 
Fβ =(β2 +1)PR 
β2P+R 
The β parameter differentially weights the importance of recall and precision, based perhaps on the needs of an application. Values of β > 1 favor recall, while values of β < 1 favor precision. When β = 1, precision and recall are equally bal F1 anced; this is the most frequently used metric, and is called Fβ=1 or just F1: 
F1 =2PR 
P+R(4.16) 
F-measure comes from a weighted harmonic mean of precision and recall. The harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip rocals: 
HarmonicMean(a1, a2, a3, a4,..., an) = n 
1a1+1a2+1a3+...+1an(4.17) 
and hence F-measure is 
F =1 
α1P + (1−α)1Ror
  
with β2 =1−α α 
  
F =(β2 +1)PR 
β2P+R(4.18)
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Harmonic mean is used because it is a conservative metric; the harmonic mean of two values is closer to the minimum of the two values than the arithmetic mean is. Thus it weighs the lower of the two numbers more heavily. 
4.7.1 Evaluating with more than two classes 
Up to now we have been describing text classification tasks with only two classes. But lots of classification tasks in language processing have more than two classes. For sentiment analysis we generally have 3 classes (positive, negative, neutral) and even more classes are common for tasks like part-of-speech tagging, word sense disambiguation, semantic role labeling, emotion detection, and so on. Luckily the naive Bayes algorithm is already a multi-class classification algorithm. 
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Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of classes (c1, c2), how many documents from c1 were (in)correctly assigned to c2 
But we’ll need to slightly modify our definitions of precision and recall. Con sider the sample confusion matrix for a hypothetical 3-way one-of email catego rization decision (urgent, normal, spam) shown in Fig. 4.5. The matrix shows, for example, that the system mistakenly labeled one spam document as urgent, and we have shown how to compute a distinct precision and recall value for each class. In order to derive a single metric that tells us how well the system is doing, we can com 
macroaveraging bine these values in two ways. In macroaveraging, we compute the performance microaveraging for each class, and then average over classes. In microaveraging, we collect the de cisions for all classes into a single confusion matrix, and then compute precision and recall from that table. Fig. 4.6 shows the confusion matrix for each class separately, 
and shows the computation of microaveraged and macroaveraged precision. As the figure shows, a microaverage is dominated by the more frequent class (in this case spam), since the counts are pooled. The macroaverage better reflects the statistics of the smaller classes, and so is more appropriate when performance on all the classes is equally important. 
4.8 Test sets and Cross-validation 
The training and testing procedure for text classification follows what we saw with language modeling (Section 3.2): we use the training set to train the model, then use the development test set (also called a devset) to perhaps tune some parameters, development 
test set 
devset
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Figure 4.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confu sion matrix and the microaveraged and macroaveraged precision. 
and in general decide what the best model is. Once we come up with what we think is the best model, we run it on the (hitherto unseen) test set to report its performance. While the use of a devset avoids overfitting the test set, having a fixed train ing set, devset, and test set creates another problem: in order to save lots of data for training, the test set (or devset) might not be large enough to be representative. Wouldn’t it be better if we could somehow use all our data for training and still use cross-validation all our data for test? We can do this by cross-validation: we randomly choose a training and test set division of our data, train our classifier, and then compute the error rate on the test set. Then we repeat with a different randomly selected training set and test set. We do this sampling process 10 times and average these 10 runs to 
10-fold 
get an average error rate. This is called 10-fold cross-validation. 
cross-validationThe only problem with cross-validation is that because all the data is used for testing, we need the whole corpus to be blind; we can’t examine any of the data to suggest possible features and in general see what’s going on, because we’d be peeking at the test set, and such cheating would cause us to overestimate the perfor mance of our system. However, looking at the corpus to understand what’s going on is important in designing NLP systems! What to do? For this reason, it is com mon to create a fixed training set and test set, then do 10-fold cross-validation inside the training set, but compute error rate the normal way in the test set, as shown in Fig. 4.7. 
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Figure 4.7 10-fold cross-validation
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4.9 Statistical Significance Testing 
In building systems we often need to compare the performance of two systems. How can we know if the new system we just built is better than our old one? Or better than the some other system described in the literature? This is the domain of statistical hypothesis testing, and in this section we introduce tests for statistical significance for NLP classifiers, drawing especially on the work of Dror et al. (2020) and Berg Kirkpatrick et al. (2012). 
Suppose we’re comparing the performance of classifiers A and B on a metric M such as F1, or accuracy. Perhaps we want to know if our logistic regression senti ment classifier A (Chapter 5) gets a higher F1 score than our naive Bayes sentiment classifier B on a particular test set x. Let’s call M(A, x) the score that system A gets on test set x, and δ(x) the performance difference between A and B on x: 
δ(x) = M(A, x)− M(B, x) (4.19) 
We would like to know if δ(x) > 0, meaning that our logistic regression classifier effect size has a higher F1 than our naive Bayes classifier on X. δ(x) is called the effect size; a bigger δ means that A seems to be way better than B; a small δ means A seems to be only a little better. 
Why don’t we just check if δ(x) is positive? Suppose we do, and we find that the F1 score of A is higher than Bs by .04. Can we be certain that A is better? We cannot! That’s because A might just be accidentally better than B on this particular x. We need something more: we want to know if A’s superiority over B is likely to hold again if we checked another test set x0, or under some other set of circumstances. 
In the paradigm of statistical hypothesis testing, we test this by formalizing two hypotheses. 
H0 : δ(x) ≤ 0 
H1 : δ(x) > 0 (4.20) 
null hypothesis The hypothesis H0, called the null hypothesis, supposes that δ(x) is actually nega tive or zero, meaning that A is not better than B. We would like to know if we can confidently rule out this hypothesis, and instead support H1, that A is better. 
We do this by creating a random variable X ranging over all test sets. Now we ask how likely is it, if the null hypothesis H0 was correct, that among these test sets we would encounter the value of δ(x) that we found. We formalize this likelihood 
p-value as the p-value: the probability, assuming the null hypothesis H0 is true, of seeing the δ(x) that we saw or one even greater 
P(δ(X) ≥ δ(x)|H0 is true) (4.21) 
So in our example, this p-value is the probability that we would see δ(x) assuming A is not better than B. If δ(x) is huge (let’s say A has a very respectable F1 of .9 and B has a terrible F1 of only .2 on x), we might be surprised, since that would be extremely unlikely to occur if H0 were in fact true, and so the p-value would be low (unlikely to have such a large δ if A is in fact not better than B). But if δ(x) is very small, it might be less surprising to us even if H0 were true and A is not really better than B, and so the p-value would be higher. 
A very small p-value means that the difference we observed is very unlikely under the null hypothesis, and we can reject the null hypothesis. What counts as very
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small? It is common to use values like .05 or .01 as the thresholds. A value of .01 means that if the p-value (the probability of observing the δ we saw assuming H0 is true) is less than .01, we reject the null hypothesis and assume that A is indeed better than B. We say that a result (e.g., “A is better than B”) is statistically significant if statistically 
significantthe δ we saw has a probability that is below the threshold and we therefore reject this null hypothesis. 
How do we compute this probability we need for the p-value? In NLP we gen erally don’t use simple parametric tests like t-tests or ANOVAs that you might be familiar with. Parametric tests make assumptions about the distributions of the test statistic (such as normality) that don’t generally hold in our cases. So in NLP we usually use non-parametric tests based on sampling: we artificially create many ver sions of the experimental setup. For example, if we had lots of different test sets x0 we could just measure all the δ(x0) for all the x0. That gives us a distribution. Now we set a threshold (like .01) and if we see in this distribution that 99% or more of those deltas are smaller than the delta we observed, i.e. that p-value(x)—the proba bility of seeing a δ(x) as big as the one we saw, is less than .01, then we can reject the null hypothesis and agree that δ(x) was a sufficiently surprising difference and A is really a better algorithm than B. 
There are two common non-parametric tests used in NLP: approximate ran domization (Noreen, 1989). and the bootstrap test. We will describe bootstrap approximate randomizationbelow, showing the paired version of the test, which again is most common in NLP. paired Paired tests are those in which we compare two sets of observations that are aligned: each observation in one set can be paired with an observation in another. This hap pens naturally when we are comparing the performance of two systems on the same test set; we can pair the performance of system A on an individual observation xi with the performance of system B on the same xi. 
4.9.1 The Paired Bootstrap Test 
bootstrap test The bootstrap test (Efron and Tibshirani, 1993) can apply to any metric; from pre cision, recall, or F1 to the BLEU metric used in machine translation. The word bootstrapping bootstrapping refers to repeatedly drawing large numbers of smaller samples with replacement (called bootstrap samples) from an original larger sample. The intu ition of the bootstrap test is that we can create many virtual test sets from an observed test set by repeatedly sampling from it. The method only makes the assumption that the sample is representative of the population. 
Consider a tiny text classification example with a test set x of 10 documents. The first row of Fig. 4.8 shows the results of two classifiers (A and B) on this test set, with each document labeled by one of the four possibilities: (A and B both right, both wrong, A right and B wrong, A wrong and B right); a slash through a letter (✓B) means that that classifier got the answer wrong. On the first document both A and B get the correct class (AB), while on the second document A got it right but B got it wrong (A✓B). If we assume for simplicity that our metric is accuracy, A has an accuracy of .70 and B of .50, so δ(x) is .20. 
Now we create a large number b (perhaps 105) of virtual test sets x(i), each of size n = 10. Fig. 4.8 shows a couple examples. To create each virtual test set x(i), we repeatedly (n = 10 times) select a cell from row x with replacement. For example, to create the first cell of the first virtual test set x(1), if we happened to randomly select the second cell of the x row; we would copy the value A✓B into our new cell, and move on to create the second cell of x(1), each time sampling (randomly choosing) from the original x with replacement.
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Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with replacement; thus an individual sample is a single cell, a document with its gold label and the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have only 10 examples, and b needs to be large as well. 
Now that we have the b test sets, providing a sampling distribution, we can do statistics on how often A has an accidental advantage. There are various ways to compute this advantage; here we follow the version laid out in Berg-Kirkpatrick et al. (2012). Assuming H0 (A isn’t better than B), we would expect that δ(X), esti mated over many test sets, would be zero; a much higher value would be surprising, since H0 specifically assumes A isn’t better than B. To measure exactly how surpris ing is our observed δ(x) we would in other circumstances compute the p-value by counting over many test sets how often δ(x(i)) exceeds the expected zero value by δ(x) or more: 
p-value(x) =Xb i=1 
  
1 
δ(x(i))−δ(x) ≥ 0  
However, although it’s generally true that the expected value of δ(X) over many test sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped test sets we created. That’s because we didn’t draw these samples from a distribution with 0 mean; we happened to create them from the original test set x, which happens to be biased (by .20) in favor of A. So to measure how surprising is our observed δ(x), we actually compute the p-value by counting over many test sets how often δ(x(i)) exceeds the expected value of δ(x) by δ(x) or more: 
p-value(x) = Xb i=1 
=Xb 
i=1 
1 1 
  
δ(x(i))−δ(x) ≥ δ(x)  
  
δ(x(i)) ≥ 2δ(x) (4.22) 
So if for example we have 10,000 test sets x(i)and a threshold of .01, and in only 47 of the test sets do we find that δ(x(i)) ≥ 2δ(x), the resulting p-value of .0047 is smaller than .01, indicating δ(x) is indeed sufficiently surprising, and we can reject the null hypothesis and conclude A is better than B. 
The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a number of samples b, and counts the percentage of the b bootstrap test sets in which δ(x∗(i)) > 2δ(x). This percentage then acts as a one-sided empirical p-value
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	function BOOTSTRAP(test set x, num of samples b) returns p-value(x) 
Calculate δ(x) # how much better does algorithm A do than B on x 
s = 0 
for i = 1 to b do 
for j = 1 to n do # Draw a bootstrap sample x(i) of size n 
Select a member of x at random and add it to x(i) 
Calculate δ(x(i)) # how much better does algorithm A do than B on x(i) s←s + 1 if δ(x(i)) > 2δ(x) 
p-value(x) ≈sb# on what % of the b samples did algorithm A beat expectations? return p-value(x) # if very few did, our observed δ is probably not accidental




Figure 4.9 A version of the paired bootstrap algorithm after Berg-Kirkpatrick et al. (2012). 4.10 Avoiding Harms in Classification 
It is important to avoid harms that may result from classifiers, harms that exist both for naive Bayes classifiers and for the other classification algorithms we introduce in later chapters. 
One class of harms is representational harms(Crawford 2017, Blodgett et al. 2020), representational harmsharms caused by a system that demeans a social group, for example by perpetuating negative stereotypes about them. For example Kiritchenko and Mohammad (2018) examined the performance of 200 sentiment analysis systems on pairs of sentences that were identical except for containing either a common African American first name (like Shaniqua) or a common European American first name (like Stephanie), chosen from the Caliskan et al. (2017) study discussed in Chapter 6. They found that most systems assigned lower sentiment and more negative emotion to sentences with African American names, reflecting and perpetuating stereotypes that associate African Americans with negative emotions (Popp et al., 2003). 
In other tasks classifiers may lead to both representational harms and other harms, such as censorship. For example the important text classification task of toxicity detection is the task of detecting hate speech, abuse, harassment, or other toxicity detectionkinds of toxic language. While the goal of such classifiers is to help reduce soci etal harm, toxicity classifiers can themselves cause harms. For example, researchers have shown that some widely used toxicity classifiers incorrectly flag as being toxic sentences that are non-toxic but simply mention minority identities like women (Park et al., 2018), blind people (Hutchinson et al., 2020) or gay people (Dixon et al., 2018), or simply use linguistic features characteristic of varieties like African American Vernacular English (Sap et al. 2019, Davidson et al. 2019). Such false positive errors, if employed by toxicity detection systems without human oversight, could lead to the censoring of discourse by or about these groups. 
These model problems can be caused by biases or other problems in the training data; in general, machine learning systems replicate and even amplify the biases in their training data. But these problems can also be caused by the labels (for exam ple caused by biases in the human labelers) by the resources used (like lexicons, or model components like pretrained embeddings), or even by model architecture (like what the model is trained to optimized). While the mitigation of these biases (for example by carefully considering the training data sources) is an important area of research, we currently don’t have general solutions. For this reason it’s impor-
