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! An ensemble X is a triple (x, AX, PX ), where the outcome x is the value of a random variable, 

which takes on one of a set of possible values, AX  = {a1, a2, …, ai, …,  aI}, having 

probabilities PX ={p1, p2, …, pI}, with P(x = ai) = pi, pi ≥ 0 and 

! AX is the alphabet of X

! P(x = ai) may be written as P(ai) or as P(x).
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Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the
random variable, and the proposition that asserts that the random variable
has a particular value. In any particular chapter, however, I will use the most
simple and friendly notation possible, at the risk of upsetting pure-minded
readers. For example, if something is ‘true with probability 1’, I will usually
simply say that it is ‘true’.

2.1 Probabilities and ensembles

An ensemble X is a triple (x,AX ,PX), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
AX = {a1, a2, . . . , ai, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI},
with P (x=ai) = pi, pi ≥ 0 and

∑
ai∈AX

P (x=ai) = 1.

The name A is mnemonic for ‘alphabet’. One example of an ensemble is a
letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a–z, and a space
character ‘-’.

i ai pi

1 a 0.0575
2 b 0.0128
3 c 0.0263
4 d 0.0285
5 e 0.0913
6 f 0.0173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 l 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
25 y 0.0164
26 z 0.0007
27 – 0.1928

a
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s
t
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v
w
x
y
z
–

Figure 2.1. Probability
distribution over the 27 outcomes
for a randomly selected letter in
an English language document
(estimated from The Frequently
Asked Questions Manual for
Linux ). The picture shows the
probabilities by the areas of white
squares.

Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.
We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.

22
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! the two variables are not necessarily independent. 
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x ∈Ax = {a1,...,aI} y∈Ay = {b1,...,aJ}
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a b c d e f g h i j k l m n o p q r s t u v w x y z – y

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
–

x Figure 2.2. The probability
distribution over the 27×27
possible bigrams xy in an English
language document, The
Frequently Asked Questions
Manual for Linux.

Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given
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letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a–z, and a space
character ‘-’.

i ai pi

1 a 0.0575
2 b 0.0128
3 c 0.0263
4 d 0.0285
5 e 0.0913
6 f 0.0173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 l 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
25 y 0.0164
26 z 0.0007
27 – 0.1928
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Figure 2.1. Probability
distribution over the 27 outcomes
for a randomly selected letter in
an English language document
(estimated from The Frequently
Asked Questions Manual for
Linux ). The picture shows the
probabilities by the areas of white
squares.

Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.
We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.
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! Marginal probability P(y) from the joint probability P(x, y) 

! This joint ensemble has the special 

property that its two marginal distributions,  

P(x) and P(y), are identical.

Marginal Probability 
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P(x = ai ) = P(x = ai , y)
y∈AY
∑ P(x) = P(x, y)

y∈AY
∑

P(y) = P(x, y)
x∈AX
∑
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Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given
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Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the
random variable, and the proposition that asserts that the random variable
has a particular value. In any particular chapter, however, I will use the most
simple and friendly notation possible, at the risk of upsetting pure-minded
readers. For example, if something is ‘true with probability 1’, I will usually
simply say that it is ‘true’.

2.1 Probabilities and ensembles

An ensemble X is a triple (x,AX ,PX), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
AX = {a1, a2, . . . , ai, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI},
with P (x=ai) = pi, pi ≥ 0 and

∑
ai∈AX

P (x=ai) = 1.

The name A is mnemonic for ‘alphabet’. One example of an ensemble is a
letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a–z, and a space
character ‘-’.

i ai pi

1 a 0.0575
2 b 0.0128
3 c 0.0263
4 d 0.0285
5 e 0.0913
6 f 0.0173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 l 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
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Figure 2.1. Probability
distribution over the 27 outcomes
for a randomly selected letter in
an English language document
(estimated from The Frequently
Asked Questions Manual for
Linux ). The picture shows the
probabilities by the areas of white
squares.

Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.
We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.
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! From P(x, y) we can obtain P(x | y) and P(y | x)
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! To obtain P(y | x) we normalize the rows by dividing each P(x, y) in a row by P(x).
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Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given
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Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given
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Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the
random variable, and the proposition that asserts that the random variable
has a particular value. In any particular chapter, however, I will use the most
simple and friendly notation possible, at the risk of upsetting pure-minded
readers. For example, if something is ‘true with probability 1’, I will usually
simply say that it is ‘true’.

2.1 Probabilities and ensembles

An ensemble X is a triple (x,AX ,PX), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
AX = {a1, a2, . . . , ai, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI},
with P (x=ai) = pi, pi ≥ 0 and

∑
ai∈AX

P (x=ai) = 1.

The name A is mnemonic for ‘alphabet’. One example of an ensemble is a
letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a–z, and a space
character ‘-’.

i ai pi

1 a 0.0575
2 b 0.0128
3 c 0.0263
4 d 0.0285
5 e 0.0913
6 f 0.0173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 l 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
25 y 0.0164
26 z 0.0007
27 – 0.1928
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Figure 2.1. Probability
distribution over the 27 outcomes
for a randomly selected letter in
an English language document
(estimated from The Frequently
Asked Questions Manual for
Linux ). The picture shows the
probabilities by the areas of white
squares.

Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.
We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.
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Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given

P(x, y)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

24 2 — Probability, Entropy, and Inference

abcdefghijklmnopqrstuvwxyz– y

a
b
c
d
e
fg
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
–

x

abcdefghijklmnopqrstuvwxyz– y

a
b
c
d
e
fg
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
–

x

(a) P (y |x) (b) P (x | y)

Figure 2.3. Conditional
probability distributions. (a)
P (y |x): Each row shows the
conditional distribution of the
second letter, y, given the first
letter, x, in a bigram xy. (b)
P (x | y): Each column shows the
conditional distribution of the
first letter, x, given the second
letter, y.

that the first letter x is q are u and -. (The space is common after q
because the source document makes heavy use of the word FAQ.)

The probability P (x | y =u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y =u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule – obtained from the definition of conditional probability:

P (x, y |H) = P (x | y,H)P (y |H) = P (y |x,H)P (x |H). (2.6)

This rule is also known as the chain rule.

Sum rule – a rewriting of the marginal probability definition:

P (x |H) =
∑

y

P (x, y |H) (2.7)

=
∑

y

P (x | y,H)P (y |H). (2.8)

Bayes’ theorem – obtained from the product rule:

P (y |x,H) =
P (x | y,H)P (y |H)

P (x |H)
(2.9)

=
P (x | y,H)P (y |H)∑
y′ P (x | y′,H)P (y′ |H)

. (2.10)

Independence. Two random variables X and Y are independent (sometimes
written X⊥Y ) if and only if

P (x, y) = P (x)P (y). (2.11)

Exercise 2.2.[1, p.40] Are the random variables X and Y in the joint ensemble
of figure 2.2 independent?

P(y | x)
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Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.
We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.
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Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given

P(x, y)
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Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given
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Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) "= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given

P(x, y)
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abcdefghijklmnopqrstuvwxyz– y

a
b
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e
fg
h
i
j
k
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o
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t
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w
x
y
z
–

x

abcdefghijklmnopqrstuvwxyz– y

a
b
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e
fg
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
–

x

(a) P (y |x) (b) P (x | y)

Figure 2.3. Conditional
probability distributions. (a)
P (y |x): Each row shows the
conditional distribution of the
second letter, y, given the first
letter, x, in a bigram xy. (b)
P (x | y): Each column shows the
conditional distribution of the
first letter, x, given the second
letter, y.

that the first letter x is q are u and -. (The space is common after q
because the source document makes heavy use of the word FAQ.)

The probability P (x | y =u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y =u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule – obtained from the definition of conditional probability:

P (x, y |H) = P (x | y,H)P (y |H) = P (y |x,H)P (x |H). (2.6)

This rule is also known as the chain rule.

Sum rule – a rewriting of the marginal probability definition:

P (x |H) =
∑

y

P (x, y |H) (2.7)

=
∑

y

P (x | y,H)P (y |H). (2.8)

Bayes’ theorem – obtained from the product rule:

P (y |x,H) =
P (x | y,H)P (y |H)

P (x |H)
(2.9)

=
P (x | y,H)P (y |H)∑
y′ P (x | y′,H)P (y′ |H)

. (2.10)

Independence. Two random variables X and Y are independent (sometimes
written X⊥Y ) if and only if

P (x, y) = P (x)P (y). (2.11)

Exercise 2.2.[1, p.40] Are the random variables X and Y in the joint ensemble
of figure 2.2 independent?

P(x | y)
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Figure 2.3. Conditional
probability distributions. (a)
P (y |x): Each row shows the
conditional distribution of the
second letter, y, given the first
letter, x, in a bigram xy. (b)
P (x | y): Each column shows the
conditional distribution of the
first letter, x, given the second
letter, y.

that the first letter x is q are u and -. (The space is common after q
because the source document makes heavy use of the word FAQ.)

The probability P (x | y =u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y =u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule – obtained from the definition of conditional probability:

P (x, y |H) = P (x | y,H)P (y |H) = P (y |x,H)P (x |H). (2.6)

This rule is also known as the chain rule.

Sum rule – a rewriting of the marginal probability definition:

P (x |H) =
∑

y

P (x, y |H) (2.7)

=
∑

y

P (x | y,H)P (y |H). (2.8)

Bayes’ theorem – obtained from the product rule:

P (y |x,H) =
P (x | y,H)P (y |H)

P (x |H)
(2.9)

=
P (x | y,H)P (y |H)∑
y′ P (x | y′,H)P (y′ |H)

. (2.10)

Independence. Two random variables X and Y are independent (sometimes
written X⊥Y ) if and only if

P (x, y) = P (x)P (y). (2.11)

Exercise 2.2.[1, p.40] Are the random variables X and Y in the joint ensemble
of figure 2.2 independent?

Condicional Probability: Example 
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A B C

D E F

! P(A) + …. P(F) = 1

! P(E) is the most probable event

! P(B) is the less probable event

! Now lets get a new evidence. 

! Z happen !

! What are now the new probabilities?

Z
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Z
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! Now, We just have to scale those 

probabilities such that P(Z) = 1, i.e, such that  
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! If we now that Z happen, then P(Z) = 1

! So nothing else outside Z matters !

Bayes’ Theorem: a geometric interpretation 
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P(A | Z) P(B | Z) P(C | Z)

P(E | Z)
P(F | Z)

! P(A, Z) -> P(A | Z) = P(A, Z) / P(Z)  

! P(B, Z) -> P(B | Z) = P(B, Z) / P(Z)

! P(C, Z) -> P(C | Z) = P(C, Z) / P(Z)

! P(E, Z) -> P(E | Z) = P(E, Z) / P(Z)

! P(F, Z) -> P(F | Z) = P(F, Z) / P(Z)

! P(D | Z ) = 0
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2.2: The meaning of probability 25

I said that we often define an ensemble in terms of a collection of condi-
tional probabilities. The following example illustrates this idea.

Example 2.3. Jo has a test for a nasty disease. We denote Jo’s state of health
by the variable a and the test result by b.

a = 1 Jo has the disease
a = 0 Jo does not have the disease. (2.12)

The result of the test is either ‘positive’ (b = 1) or ‘negative’ (b = 0);
the test is 95% reliable: in 95% of cases of people who really have the
disease, a positive result is returned, and in 95% of cases of people who
do not have the disease, a negative result is obtained. The final piece of
background information is that 1% of people of Jo’s age and background
have the disease.

OK – Jo has the test, and the result is positive. What is the probability
that Jo has the disease?

Solution. We write down all the provided probabilities. The test reliability
specifies the conditional probability of b given a:

P (b=1 | a=1) = 0.95 P (b=1 | a=0) = 0.05
P (b=0 | a=1) = 0.05 P (b=0 | a=0) = 0.95; (2.13)

and the disease prevalence tells us about the marginal probability of a:

P (a=1) = 0.01 P (a=0) = 0.99. (2.14)

From the marginal P (a) and the conditional probability P (b | a) we can deduce
the joint probability P (a, b) = P (a)P (b | a) and any other probabilities we are
interested in. For example, by the sum rule, the marginal probability of b=1
– the probability of getting a positive result – is

P (b=1) = P (b=1 | a=1)P (a=1) + P (b=1 | a=0)P (a=0). (2.15)

Jo has received a positive result b=1 and is interested in how plausible it is
that she has the disease (i.e., that a=1). The man in the street might be
duped by the statement ‘the test is 95% reliable, so Jo’s positive result implies
that there is a 95% chance that Jo has the disease’, but this is incorrect. The
correct solution to an inference problem is found using Bayes’ theorem.

P (a=1 | b=1) =
P (b=1 | a=1)P (a= 1)

P (b=1 | a= 1)P (a=1) + P (b=1 | a=0)P (a= 0)
(2.16)

=
0.95 × 0.01

0.95 × 0.01 + 0.05 × 0.99
(2.17)

= 0.16. (2.18)

So in spite of the positive result, the probability that Jo has the disease is only
16%. !

2.2 The meaning of probability

Probabilities can be used in two ways.
Probabilities can describe frequencies of outcomes in random experiments,

but giving noncircular definitions of the terms ‘frequency’ and ‘random’ is a
challenge – what does it mean to say that the frequency of a tossed coin’s
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a = 0 Jo does not have the disease. (2.12)
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do not have the disease, a negative result is obtained. The final piece of
background information is that 1% of people of Jo’s age and background
have the disease.

OK – Jo has the test, and the result is positive. What is the probability
that Jo has the disease?

Solution. We write down all the provided probabilities. The test reliability
specifies the conditional probability of b given a:

P (b=1 | a=1) = 0.95 P (b=1 | a=0) = 0.05
P (b=0 | a=1) = 0.05 P (b=0 | a=0) = 0.95; (2.13)

and the disease prevalence tells us about the marginal probability of a:

P (a=1) = 0.01 P (a=0) = 0.99. (2.14)

From the marginal P (a) and the conditional probability P (b | a) we can deduce
the joint probability P (a, b) = P (a)P (b | a) and any other probabilities we are
interested in. For example, by the sum rule, the marginal probability of b=1
– the probability of getting a positive result – is

P (b=1) = P (b=1 | a=1)P (a=1) + P (b=1 | a=0)P (a=0). (2.15)

Jo has received a positive result b=1 and is interested in how plausible it is
that she has the disease (i.e., that a=1). The man in the street might be
duped by the statement ‘the test is 95% reliable, so Jo’s positive result implies
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An example: compute the joint probabilities … etc.

! Variables (a - Jo’s state of the health; b - Result of the test)
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P(b | a) a = 1 a = 0

b = 1 0.95 0.05
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An example: compute the joint probabilities … etc.

! Variables (a - Jo’s state of the health; b - Result of the test)

27

P(b | a) a = 1 a = 0

b = 1 0.95 0.05

b = 0 0.05 0.95

P(a = 1) P(a = 0)

0.01 0.99

P(a, b) a = 1 a = 0

b = 1 0.0095 0.0495

b = 0 0.0005 0.9405

P(a, b) = P(b | a) P(a)

P(b = 1) 0.059

P(b = 0) 0.941

P(b) = P(a,b)
a
∑ P(a | b) a = 1 a = 0

b = 1 0.161 0.839

b = 0 0.001 0.999

P(a | b) = P(a, b) / P(b)
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An example: answer the question

! Jo has the test, and the result is positive. What is the probability that Jo has the 

disease?

" We are looking for P(a = 1 | b = 1)

28

P(a = 1| b = 1) = P(a = 1,b = 1)
P(b = 1)

P(a = 1| b = 1) = P(b = 1| a = 1)P(a = 1)
P(b = 1,a = 1)+ P(b = 1,a = 0)

P(a = 1| b = 1) = P(b = 1| a = 1)P(a = 1)
P(b = 1| a = 1)P(a = 1)+ P(b = 1| a = 0)P(a = 0)

P(a = 1| b = 1) = 0.95 × 0.01
0.95 × 0.01+ 0.05 × 0.99

= 0.16 P(a = 1) = 0.01
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Probabilities and Inference -

! Two random variables X and Y are independent if and only if

! In general:

! When X and Y are independent

Statistical Independence 

29

P(x, y) = p(x)p(y)

P(x, y) = p(x | y)p(y) P(x, y) = p(y | x)p(x)

P(x | y) = p(x) P(y | x) = p(y)
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! When X and Y are independent

Statistical Independence 

30

P(x | y) = p(x)

P(y | x) = p(y)
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(a) P (y |x) (b) P (x | y)

Figure 2.3. Conditional
probability distributions. (a)
P (y |x): Each row shows the
conditional distribution of the
second letter, y, given the first
letter, x, in a bigram xy. (b)
P (x | y): Each column shows the
conditional distribution of the
first letter, x, given the second
letter, y.

that the first letter x is q are u and -. (The space is common after q
because the source document makes heavy use of the word FAQ.)

The probability P (x | y =u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y =u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule – obtained from the definition of conditional probability:

P (x, y |H) = P (x | y,H)P (y |H) = P (y |x,H)P (x |H). (2.6)

This rule is also known as the chain rule.

Sum rule – a rewriting of the marginal probability definition:

P (x |H) =
∑

y

P (x, y |H) (2.7)

=
∑

y

P (x | y,H)P (y |H). (2.8)

Bayes’ theorem – obtained from the product rule:

P (y |x,H) =
P (x | y,H)P (y |H)

P (x |H)
(2.9)

=
P (x | y,H)P (y |H)∑
y′ P (x | y′,H)P (y′ |H)

. (2.10)

Independence. Two random variables X and Y are independent (sometimes
written X⊥Y ) if and only if

P (x, y) = P (x)P (y). (2.11)

Exercise 2.2.[1, p.40] Are the random variables X and Y in the joint ensemble
of figure 2.2 independent?

P(y | x)

Are they independent?
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! Probabilities can describe frequencies of outcomes in random experiments. 

! Probabilities can also be used to describe degrees of belief in propositions that do not 

involve random variables.

! Degrees of belief can be mapped onto probabilities if they satisfy simple consistency rules:

! Axiom 1: Degrees of belief can be ordered; if B(x) is ‘greater’ than B(y), and B(y) is ‘greater’ 

than B(z), then B(x) is ‘greater’ than B(z). 

! Axiom 2: There is a function f such that B(x) = f[ B(~x) ]

! Axiom 3: There is a function g such that B(x, y) = g[ B(x|y), B(y) ]

The Meaning of Probabilities 

31



Probabilities and Inference - 

Information Theory

Forward Probabilities and Inverse Probabilities

32



Probabilities and Inference -

! Probability calculations often fall into one of two categories: 

! Forward probability

! Inverse probability. 

Forward Probabilities and Inverse Probabilities 

33



Probabilities and Inference -

! Probability calculations often fall into one of two categories: 

! Forward probability

! Inverse probability. 

! Forward probability problems involve a generative model that describes a process that is assumed 

to give rise to some data; The task is to compute the probability distribution or expectation of 

some quantity that depends on the data.

Forward Probabilities and Inverse Probabilities 

33



Probabilities and Inference -

! Probability calculations often fall into one of two categories: 

! Forward probability

! Inverse probability. 

! Forward probability problems involve a generative model that describes a process that is assumed 

to give rise to some data; The task is to compute the probability distribution or expectation of 

some quantity that depends on the data.

! Inverse probability problems involve a generative model of a process, but instead of computing the 

probability distribution of some quantity produced by the process, we compute the conditional 

probability of one or more of the unobserved variables in the process, given the observed 

variables.  This invariably requires the use of Bayes’ theorem

Forward Probabilities and Inverse Probabilities 

33
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Probabilities and Inference -

! An urn contains K balls, of which B are black and W = K - B are white.

! Fred draws a ball at random from the urn and replaces it, N times. 

! What is the probability distribution of the number of times a black ball is drawn, nB? 

! nB has a binomial distribution:

Forward Probability Example: N draws with replacement 

34

K balls

W White balls

B Black balls

? ? ?…
N times

(with replacement)

fB = B / K - the fraction of black balls

P(nB | fB ,N ) = nB
N( ) fBnB (1− fB )

N−nB



Probabilities and Inference -

! Lets f be the probability of one outcome of a random experiment.  Let r be a random variable 

that represents the number of times the outcome occurs in N independent experiments.

! The Mean

! The Variance 

Binomial Distribution 

35

P(r | f ,N ) = r
N( ) f r (1− f )N−r

E(r) = r.P(r | f ,N )
r=0

N

∑ = Nf

Var(r) = E((r − E(r))2 ) = Nf (1− f )

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
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About Chapter 1

In the first chapter, you will need to be familiar with the binomial distribution.
And to solve the exercises in the text – which I urge you to do – you will need
to know Stirling’s approximation for the factorial function, x! ! xx e−x, and
be able to apply it to

(N
r

)
= N !

(N−r)! r!
. These topics are reviewed below. Unfamiliar notation?

See Appendix A, p.598.

The binomial distribution

Example 1.1. A bent coin has probability f of coming up heads. The coin is
tossed N times. What is the probability distribution of the number of
heads, r? What are the mean and variance of r?

0
0.05

0.1
0.15

0.2
0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

r

Figure 1.1. The binomial
distribution P (r | f = 0.3, N =10).

Solution. The number of heads has a binomial distribution.

P (r | f,N) =
(

N

r

)
f r(1 − f)N−r. (1.1)

The mean, E [r], and variance, var[r], of this distribution are defined by

E [r] ≡
N∑

r=0

P (r | f,N) r (1.2)

var[r] ≡ E
[
(r − E [r])2

]
(1.3)

= E [r2] − (E [r])2 =
N∑

r=0

P (r | f,N)r2 − (E [r])2 . (1.4)

Rather than evaluating the sums over r in (1.2) and (1.4) directly, it is easiest
to obtain the mean and variance by noting that r is the sum of N independent
random variables, namely, the number of heads in the first toss (which is either
zero or one), the number of heads in the second toss, and so forth. In general,

E [x + y] = E [x] + E [y] for any random variables x and y;
var[x + y] = var[x] + var[y] if x and y are independent. (1.5)

So the mean of r is the sum of the means of those random variables, and the
variance of r is the sum of their variances. The mean number of heads in a
single toss is f × 1 + (1− f)× 0 = f , and the variance of the number of heads
in a single toss is

[
f × 12 + (1 − f) × 02

]
− f2 = f − f 2 = f(1 − f), (1.6)

so the mean and variance of r are:

E [r] = Nf and var[r] = Nf(1 − f). ! (1.7)

1

f = 0.3, N = 10

E(r) = 3

Var(r) = 2.1

σ(r) = 1.45
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! What is the probability distribution of the number of times a black ball is drawn, nB? 

! What is the expectation of nB? What is the variance of nB? What is the standard deviation of 

nB?

! Give numerical answers for the cases N = 5 and N = 400, when B = 2 and K = 10.
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Probabilities and Inference -

! What is the probability distribution of the number of times a black ball is drawn, nB? 

! What is the expectation of nB? What is the variance of nB? What is the standard deviation of 

nB?

! Give numerical answers for the cases N = 5 and N = 400, when B = 2 and K = 10.

! N = 5

! N = 400

Forward Probability Example: N draws with replacement 

36

E(nB ) = NfB Var(nB ) = NfB(1− fB ) σ (nB ) = NfB(1− fB )

fB = B /K = 1
5

E(nB ) = 1 Var(nB ) = 4
5 σ (nB ) = 0.89

E(nB ) = 80 Var(nB ) = 64 σ (nB ) = 8
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38

P(u,nB | N ) = ?

P(u,nB | N ) = P(nB | u,N )P(u)

P(u | nB ,N ) = ?
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Inverse Probability Example: joint probability

39
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Figure 2.5. Joint probability of u
and nB for Bill and Fred’s urn
problem, after N = 10 draws.

The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)

P (nB |N)
(2.25)

=
1

P (nB |N)
1
11

(
N

nB

)
fnB

u (1 − fu)N−nB . (2.26)
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Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.

P(u) = 1
11

N = 10
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Figure 2.5. Joint probability of u
and nB for Bill and Fred’s urn
problem, after N = 10 draws.

The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)

P (nB |N)
(2.25)

=
1

P (nB |N)
1
11

(
N

nB

)
fnB

u (1 − fu)N−nB . (2.26)
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Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.

P(u) = 1
11

N = 10
nB = 3
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and nB for Bill and Fred’s urn
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The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)
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=
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Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.

P(u,nB | N = 10)
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! If the chosen urn is u = 0, all balls are white and nB has to 0
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The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)
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Figure 2.6. Conditional
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This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.

P(u,nB | N = 10)



Probabilities and Inference -

! If the chosen urn is u = 0, all balls are white and nB has to 0

! P(u = 0, nB ≠ 0) = 0 and we can say that P(nB = 0 | u = 0) = 1;

Inverse Probability Example: joint probability
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The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)

P (nB |N)
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Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.

P(u,nB | N = 10)



Probabilities and Inference -

! If the chosen urn is u = 0, all balls are white and nB has to 0

! P(u = 0, nB ≠ 0) = 0 and we can say that P(nB = 0 | u = 0) = 1;

! If the chosen urn is u = 10, all balls are black and nB has to the number of draws (N = 10) 

Inverse Probability Example: joint probability

40
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and nB for Bill and Fred’s urn
problem, after N = 10 draws.

The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)

P (nB |N)
(2.25)

=
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Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.

P(u,nB | N = 10)
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! If the chosen urn is u = 0, all balls are white and nB has to 0

! P(u = 0, nB ≠ 0) = 0 and we can say that P(nB = 0 | u = 0) = 1;

! If the chosen urn is u = 10, all balls are black and nB has to the number of draws (N = 10) 

! P(u = 10, nB ≠ 10) = 0 and we can say  

that P(nB = 10 | u = 10) = 1; 

Inverse Probability Example: joint probability
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Figure 2.5. Joint probability of u
and nB for Bill and Fred’s urn
problem, after N = 10 draws.

The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)

P (nB |N)
(2.25)

=
1

P (nB |N)
1
11
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)
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u (1 − fu)N−nB . (2.26)
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Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.

P(u,nB | N = 10)



Probabilities and Inference -

! Fred’s friend, Bill, looks on. If after N = 10 draws nB = 3 blacks have been drawn, what is 

the probability that the urn Fred is using is urn u, from Bill’s point of view?
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! For nB = 3 (and N = 10) the normalizing constant, the the marginal probability of nB, 

! The posteriori probability P(u | nB = 3, N = 10)
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1
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Figure 2.5. Joint probability of u
and nB for Bill and Fred’s urn
problem, after N = 10 draws.

The marginal probability of u is P (u) = 1
11 for all u. You wrote down the

probability of nB given u and N , P (nB |u,N), when you solved exercise 2.4
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we
define fu ≡ u/10 then

P (nB |u,N) =
(

N

nB

)
fnB

u (1 − fu)N−nB . (2.23)

What about the denominator, P (nB |N)? This is the marginal probability of
nB, which we can obtain using the sum rule:

P (nB |N) =
∑

u

P (u, nB |N) =
∑

u

P (u)P (nB |u,N). (2.24)

So the conditional probability of u given nB is

P (u |nB ,N) =
P (u)P (nB |u,N)
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Figure 2.6. Conditional
probability of u given nB =3 and
N =10.

This conditional distribution can be found by normalizing column 3 of
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal
probability of nB, is P (nB =3 |N =10) = 0.083. The posterior probability
(2.26) is correct for all u, including the end-points u=0 and u=10, where
fu = 0 and fu = 1 respectively. The posterior probability that u=0 given
nB =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u=10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, . . . u=9 all have non-zero posterior probability. !

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P (u) the prior probability of u, and P (nB |u,N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P (nB |u,N) is a function of both nB and
u. For fixed u, P (nB |u,N) defines a probability over nB. For fixed nB,
P (nB |u,N) defines the likelihood of u.
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Probabilities and Inference -

! In general 𝛳 represents the unknown parameters

! D represents the data

! H the overall hypothesis

Terminology of inverse Probability

47

P(θ |D,H) = P(D |θ ,H)P(θ | H)
P(D | H)

posterior = likelihood × prior
evidence
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32 2 — Probability, Entropy, and Inference

What do you notice about your solutions? Does each answer depend on the
detailed contents of each urn?

The details of the other possible outcomes and their probabilities are ir-
relevant. All that matters is the probability of the outcome that actually
happened (here, that the ball drawn was black) given the different hypothe-
ses. We need only to know the likelihood, i.e., how the probability of the data
that happened varies with the hypothesis. This simple rule about inference is
known as the likelihood principle.

The likelihood principle: given a generative model for data d given
parameters θ, P (d |θ), and having observed a particular outcome
d1, all inferences and predictions should depend only on the function
P (d1 |θ).

In spite of the simplicity of this principle, many classical statistical methods
violate it.

2.4 Definition of entropy and related functions

The Shannon information content of an outcome x is defined to be

h(x) = log2
1

P (x)
. (2.34)

It is measured in bits. [The word ‘bit’ is also used to denote a variable
whose value is 0 or 1; I hope context will always make clear which of the
two meanings is intended.]

In the next few chapters, we will establish that the Shannon information
content h(ai) is indeed a natural measure of the information content
of the event x = ai. At that point, we will shorten the name of this
quantity to ‘the information content’.

i ai pi h(pi)

1 a .0575 4.1
2 b .0128 6.3
3 c .0263 5.2
4 d .0285 5.1
5 e .0913 3.5
6 f .0173 5.9
7 g .0133 6.2
8 h .0313 5.0
9 i .0599 4.1
10 j .0006 10.7
11 k .0084 6.9
12 l .0335 4.9
13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
16 p .0192 5.7
17 q .0008 10.3
18 r .0508 4.3
19 s .0567 4.1
20 t .0706 3.8
21 u .0334 4.9
22 v .0069 7.2
23 w .0119 6.4
24 x .0073 7.1
25 y .0164 5.9
26 z .0007 10.4
27 - .1928 2.4

∑

i

pi log2
1
pi

4.1

Table 2.9. Shannon information
contents of the outcomes a–z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
, (2.35)

with the convention for P (x) = 0 that 0 × log 1/0 ≡ 0, since
limθ→0+ θ log 1/θ = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1, p2, . . . , pI). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/pi (shown in the fourth col-
umn) under the probability distribution pi (shown in the third column).
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2.3: Forward probabilities and inverse probabilities 31

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fH with making an initial guess of the value of the parameter.
But the prior over fH , P (fH), is not a simple statement like ‘initially, I would
guess fH = 1/2’. The prior is a probability density over fH which specifies the
prior degree of belief that fH lies in any interval (f, f + δf). It may well be
the case that our prior for fH is symmetric about 1/2, so that the mean of fH

under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

P (x1 =head) =
∫

dfH P (fH)P (x1 =head | fH) =
∫

dfH P (fH)fH = 1/2.

(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:
0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000
1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and

...

...

...
g p

c

y

s

g
p

Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?
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The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and
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Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?



Probabilities and Inference -

! Urn A contains three balls: one black, and two white; urn B contains three balls: two black, 

and one white. 

! One of the urns is selected at random and one ball is drawn. 

The ball is black. 

! What is the probability that the selected urn is urn A? 

The likelihood principle 
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2.3: Forward probabilities and inverse probabilities 31

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fH with making an initial guess of the value of the parameter.
But the prior over fH , P (fH), is not a simple statement like ‘initially, I would
guess fH = 1/2’. The prior is a probability density over fH which specifies the
prior degree of belief that fH lies in any interval (f, f + δf). It may well be
the case that our prior for fH is symmetric about 1/2, so that the mean of fH

under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

P (x1 =head) =
∫

dfH P (fH)P (x1 =head | fH) =
∫

dfH P (fH)fH = 1/2.

(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:
0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000
1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and

...

...

...
g p

c

y

s

g
p

Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?

P(u = A | b = bl) = ?



Probabilities and Inference -

! Urn A contains three balls: one black, and two white; urn B contains three balls: two black, 

and one white. 

! One of the urns is selected at random and one ball is drawn. 

The ball is black. 

! What is the probability that the selected urn is urn A? 

! u = {A, B}; P(u = A) = P(u = B) = 1/2

The likelihood principle 
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2.3: Forward probabilities and inverse probabilities 31

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fH with making an initial guess of the value of the parameter.
But the prior over fH , P (fH), is not a simple statement like ‘initially, I would
guess fH = 1/2’. The prior is a probability density over fH which specifies the
prior degree of belief that fH lies in any interval (f, f + δf). It may well be
the case that our prior for fH is symmetric about 1/2, so that the mean of fH

under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

P (x1 =head) =
∫

dfH P (fH)P (x1 =head | fH) =
∫

dfH P (fH)fH = 1/2.

(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:
0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000
1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and
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Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?

P(u = A | b = bl) = ?



Probabilities and Inference -

! Urn A contains three balls: one black, and two white; urn B contains three balls: two black, 

and one white. 

! One of the urns is selected at random and one ball is drawn. 

The ball is black. 

! What is the probability that the selected urn is urn A? 

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

The likelihood principle 
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2.3: Forward probabilities and inverse probabilities 31

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fH with making an initial guess of the value of the parameter.
But the prior over fH , P (fH), is not a simple statement like ‘initially, I would
guess fH = 1/2’. The prior is a probability density over fH which specifies the
prior degree of belief that fH lies in any interval (f, f + δf). It may well be
the case that our prior for fH is symmetric about 1/2, so that the mean of fH

under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

P (x1 =head) =
∫

dfH P (fH)P (x1 =head | fH) =
∫

dfH P (fH)fH = 1/2.

(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:
0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000
1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and
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Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?

P(u = A | b = bl) = ?



Probabilities and Inference -

! Urn A contains three balls: one black, and two white; urn B contains three balls: two black, 

and one white. 

! One of the urns is selected at random and one ball is drawn. 

The ball is black. 

! What is the probability that the selected urn is urn A? 

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

The likelihood principle 
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2.3: Forward probabilities and inverse probabilities 31

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fH with making an initial guess of the value of the parameter.
But the prior over fH , P (fH), is not a simple statement like ‘initially, I would
guess fH = 1/2’. The prior is a probability density over fH which specifies the
prior degree of belief that fH lies in any interval (f, f + δf). It may well be
the case that our prior for fH is symmetric about 1/2, so that the mean of fH

under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

P (x1 =head) =
∫

dfH P (fH)P (x1 =head | fH) =
∫

dfH P (fH)fH = 1/2.

(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:
0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000
1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and
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Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?

P(u = A | b = bl) = ?



Probabilities and Inference -

! Urn A contains three balls: one black, and two white; urn B contains three balls: two black, 

and one white. 

! One of the urns is selected at random and one ball is drawn. 

The ball is black. 

! What is the probability that the selected urn is urn A? 

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

! P(b = bl | u = B) = 2/3; P(b = wh | u = A) = 1/3

The likelihood principle 
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2.3: Forward probabilities and inverse probabilities 31

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fH with making an initial guess of the value of the parameter.
But the prior over fH , P (fH), is not a simple statement like ‘initially, I would
guess fH = 1/2’. The prior is a probability density over fH which specifies the
prior degree of belief that fH lies in any interval (f, f + δf). It may well be
the case that our prior for fH is symmetric about 1/2, so that the mean of fH

under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

P (x1 =head) =
∫

dfH P (fH)P (x1 =head | fH) =
∫

dfH P (fH)fH = 1/2.

(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:
0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000
1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n1 = 29 1s and n0 = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit 0s than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 1?’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in
Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B

A B

Figure 2.7. Urns for example 2.10.

contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A?

Example 2.11. Urn A contains five balls: one black, two white, one green and
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Figure 2.8. Urns for example 2.11.

one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?

P(u = A | b = bl) = ?



Probabilities and Inference -

! One of the urns is selected at random and one ball is drawn. 

The ball is black

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

! P(b = bl | u = B) = 2/3; P(b = wh | u = A) = 1/3

The likelihood principle 
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Probabilities and Inference -

! One of the urns is selected at random and one ball is drawn. 

The ball is black

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

! P(b = bl | u = B) = 2/3; P(b = wh | u = A) = 1/3

The likelihood principle 

56

P(u = A | b = bl) = P(u = A,b = bl)
P(b = bl)

= P(b = bl | u = A)P(u = A)
P(b = bl)



Probabilities and Inference -

! One of the urns is selected at random and one ball is drawn. 

The ball is black

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

! P(b = bl | u = B) = 2/3; P(b = wh | u = A) = 1/3

The likelihood principle 

56

P(u = A | b = bl) = P(u = A,b = bl)
P(b = bl)

= P(b = bl | u = A)P(u = A)
P(b = bl)

P(u = A | b = bl) = P(b = bl | u = A)P(u = A)
P(b = bl | u = A)P(u = A)+ P(b = bl | u = B)P(u = B)



Probabilities and Inference -

! The details of the other possible outcomes and their probabilities are irrelevant. 

! All that matters is the probability of the outcome that actually happened given the different 

hypotheses. 

! We need only to know the likelihood, i.e., how the probability of the data that happened 

varies with the hypothesis. 

The likelihood principle 
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32 2 — Probability, Entropy, and Inference

What do you notice about your solutions? Does each answer depend on the
detailed contents of each urn?

The details of the other possible outcomes and their probabilities are ir-
relevant. All that matters is the probability of the outcome that actually
happened (here, that the ball drawn was black) given the different hypothe-
ses. We need only to know the likelihood, i.e., how the probability of the data
that happened varies with the hypothesis. This simple rule about inference is
known as the likelihood principle.

The likelihood principle: given a generative model for data d given
parameters θ, P (d |θ), and having observed a particular outcome
d1, all inferences and predictions should depend only on the function
P (d1 |θ).

In spite of the simplicity of this principle, many classical statistical methods
violate it.

2.4 Definition of entropy and related functions

The Shannon information content of an outcome x is defined to be

h(x) = log2
1

P (x)
. (2.34)

It is measured in bits. [The word ‘bit’ is also used to denote a variable
whose value is 0 or 1; I hope context will always make clear which of the
two meanings is intended.]

In the next few chapters, we will establish that the Shannon information
content h(ai) is indeed a natural measure of the information content
of the event x = ai. At that point, we will shorten the name of this
quantity to ‘the information content’.

i ai pi h(pi)

1 a .0575 4.1
2 b .0128 6.3
3 c .0263 5.2
4 d .0285 5.1
5 e .0913 3.5
6 f .0173 5.9
7 g .0133 6.2
8 h .0313 5.0
9 i .0599 4.1
10 j .0006 10.7
11 k .0084 6.9
12 l .0335 4.9
13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
16 p .0192 5.7
17 q .0008 10.3
18 r .0508 4.3
19 s .0567 4.1
20 t .0706 3.8
21 u .0334 4.9
22 v .0069 7.2
23 w .0119 6.4
24 x .0073 7.1
25 y .0164 5.9
26 z .0007 10.4
27 - .1928 2.4

∑

i

pi log2
1
pi

4.1

Table 2.9. Shannon information
contents of the outcomes a–z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
, (2.35)

with the convention for P (x) = 0 that 0 × log 1/0 ≡ 0, since
limθ→0+ θ log 1/θ = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1, p2, . . . , pI). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/pi (shown in the fourth col-
umn) under the probability distribution pi (shown in the third column).



Probabilities and Inference -

! One of the urns is selected at random and one ball is drawn. 

The ball is black

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

! P(b = bl | u = B) = 2/3; P(b = wh | u = A) = 1/3

The likelihood principle 
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P(u = A | b = bl) = P(u = A,b = bl)
P(b = bl)

= P(b = bl | u = A)P(u = A)
P(b = bl)

P(u = A | b = bl) = P(b = bl | u = A)P(u = A)
P(b = bl | u = A)P(u = A)+ P(b = bl | u = B)P(u = B)



Probabilities and Inference -

how the probability of the 
data that happened varies 

with the hypothesis

! One of the urns is selected at random and one ball is drawn. 

The ball is black

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

! P(b = bl | u = B) = 2/3; P(b = wh | u = A) = 1/3

The likelihood principle 

58

P(u = A | b = bl) = P(u = A,b = bl)
P(b = bl)

= P(b = bl | u = A)P(u = A)
P(b = bl)

P(u = A | b = bl) = P(b = bl | u = A)P(u = A)
P(b = bl | u = A)P(u = A)+ P(b = bl | u = B)P(u = B)



Probabilities and Inference -

how the probability of the 
data that happened varies 

with the hypothesis

! One of the urns is selected at random and one ball is drawn. 

The ball is black

! u = {A, B}; P(u = A) = P(u = B) = 1/2

! b = {bl, wh} (black; white).

! P(b = bl | u = A) = 1/3; P(b = wh | u = A) = 2/3

! P(b = bl | u = B) = 2/3; P(b = wh | u = A) = 1/3

The likelihood principle 
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Probabilities and Inference - 

Information Theory

Further Reading and Summary
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Q&A



Probabilities and Inference -

Further Reading
! Recommend Readings 

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, 

pages 22 - 32. 

! Supplemental readings:
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Probabilities and Inference -

What you should know
! Joint Probability; Marginal Probability; Condicional Probability. 

! Product and Sum rules. 

! Bayes’ Theorem 

! Statistical Independence 

! The two common but different interpretations for the meaning of Probabilities 

! Forward Probabilities and Inverse Probabilities 

! Terminology of inverse Probability: prior probability; likelihood; likelihood; evidence 

! The likelihood principle 

! To address Inverse probability problems 

61



 Probabilities and Inference - 

Further Reading and Summary
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