
Aprendizagem AutomáticaAprendizagem AutomáticaAprendizagem AutomáticaAprendizagem AutomáticaAprendizagem AutomáticaAprendizagem AutomáticaAprendizagem AutomáticaAprendizagem AutomáticaAprendizagem Automática

Ensemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble Methods

Ludwig Krippahl

1

Ensemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble Methods

Summary
■ Ensemble methods
■ Bagging and bragging
■ Boosting and stumping

2

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

Ensemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble MethodsEnsemble Methods

3

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

Ensemble methods
■ Combining groups of classifiers to improve classification
We'll focus on two different aproaches:
■ Bootstrap aggregating : bootstrapping to train, combine predictions

to reduce variance
■ Boosting : training a linear combination of weak classifiers (mainly)

to reduce bias

4

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

Bagging
■ Bootstrap aggregating
• Use bootstrapping to generate replicas of training set

• Train model once per replica

• Aggregate the output of the hypotheses. Example: for regression, average the
predictions

5

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Example: regression

6

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Example: regression, mean

def bootstrap(samples,data):
 train_sets = np.zeros((samples,data.shape[0],data.shape[1]))
 for sample in range(samples):
 ix = np.random.randint(data.shape[0],size=data.shape[0])
 train_sets[sample,:] = data[ix,:]
 return train_sets

train_sets = bootstrap(replicas,data)
px = np.linspace(ax_lims[0],ax_lims[1],points)
preds = np.zeros((replicas,points))
for ix in range(replicas):
 coefs = np.polyfit(train_sets[ix,:,0],
 train_sets[ix,:,1],degree)
 preds[ix,:] = np.polyval(coefs,px)
mean = np.mean(preds,axis=0)

7

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Example: regression, mean

8

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Variation: median instead of mean

9

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Classification example: SVM

10

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Classification example: SVM (majority vote)

train_sets = bootstrap(replicas,data)
gamma = 2
C=10000
svs = []
pX,pY = np.meshgrid(pxs,pys)
pZ = np.zeros((len(pxs),len(pys)))
for ix in range(replicas):
 sv = svm.SVC(kernel='rbf', gamma=gamma,C=C)
 sv.fit(train_sets[ix,:,:-1],train_sets[ix,:,-1])
 svs.append(sv)
 preds = sv.predict(np.c_[pX.ravel(),pY.ravel()]).reshape(pZ.shape)
 pZ = pZ + preds
pZ = np.round(pZ/float(replicas))

11

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ 50 SVM, trained with bootstrapping

12

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Majority class of 50 SVM

13

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

Bagging (Bootstrap aggregating)
■ Averaging reduces variance and overfitting, increasing probability of

correct classification as number of classifiers increases

() (1 − p∑
k=T/2+1

T
T

k
pk)T−k

14

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

Bagging (Bootstrap aggregating)
■ Bootstrap aggregating classifiers

■ This assumes classifiers are independent
■ If classifiers are correlated, this does not work so well
■ Bagging is best for unstable algorithms
• (susceptible to input variations)

() (1 − p∑
k=T/2+1

T
T

k
pk)T−k

15

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

16

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

Boosting
■ Learn a linear combination of weak classifiers
■ Individual classifiers must have error rate below 0.5
■ Combination of classifiers has a lower bias and better classification

power

17

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

AdaBoost
■ Initialize sample weights:
■ Fit classifier by minimizing weighted error

■ Compute weighted error on training set:

= 1/Nwn

(x)ym

= I(() ≠)Jm ∑
n=1

N

wn
m ym xn tn

=ϵm

I(() ≠)∑
n=1

N

wn
m ym xn tn

∑
n=1

N

wn
m

18

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Compute classifier weight:

• Original (Freund and Schapire,2003):

■ Compute new sample weights (and normalize):

■ Increases weight of misclassified points
■ Stop when is zero or greater than 0.5
■ Output of the boosted classifier is weighted sum of classifiers:

= lnαm

1 − ϵm

ϵm

= lnαm
1
2

1−ϵm

ϵm

= exp(I(() ≠))wn
m+1

wn
m αm ym xn tn

ϵm

f (x) = sign (x)∑
m=1

M

αmym

19

(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)

Decision tree algorithm
■ Split data into 2 subsets according to some feature and rule
• e.g.

■ Use some measure of information gain to evaluate the split
• Classification error: assuming most common class in each subset

• Gini Index:

• Information Entropy:

■ Choose one feature and rule that optimizes information gain
■ Repeat for each subset with mixed classes

≤ 1x1

G = 1 − ∑c p2
c

Entropy = log∑c pc pc

20

(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)

Decision tree algorithm
■ Example:

21

(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)

Decision tree algorithm
■ Example:

22

(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)(Decision Tree)

Decision tree algorithm
■ Example:

23

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

■ Stumping: AdaBoost with decision stumps (level 1 decision tree)
• Choose one feature, split at one point
• Use DecisionTreeClassifier

from sklearn.tree import DecisionTreeClassifier
hyps = []
hyp_ws = []
point_ws = np.ones(data.shape[0])/float(data.shape[0])
max_hyp = 50
for ix in range(max_hyp):
 stump = DecisionTreeClassifier(max_depth=1)
 stump.fit(data[:,:-1], data[:,-1], sample_weight = point_ws)
 pred = stump.predict(data[:,:-1])
 errs = (pred != data[:,-1]).astype(int)
 err = np.sum(errs*point_ws)
 alpha = np.log((1-err)/err)
 point_ws = point_ws*np.exp(alpha*errs)
 point_ws = point_ws/np.sum(point_ws)
 hyps.append(stump)
 hyp_ws.append(alpha)

24

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

■ Stumping: AdaBoost with decision stumps (level 1 decision tree)

25

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

■ Stumping: AdaBoost with decision stumps (level 1 decision tree)

26

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

■ Stumping: AdaBoost with decision stumps (level 1 decision tree)

27

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

■ Stumping: AdaBoost with decision stumps (level 1 decision tree)
■ Classifying data and computing error

net_pred = np.zeros(data.shape[0])
for ix in range(len(hyps)):
 pred_n = hyps[ix].predict(data[:,:-1])
 preds = preds+pred_n*hyp_ws[ix]
net_pred[preds<0] = -1
net_pred[preds>=0] = 1
errors = np.sum((net_pred !=data[:,-1]).astype(int))

28

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

AdaBoost, derivation
■ We can see AdaBoost as a sequential mimization of the exponential

error function:

■ Where is the weighted classification of the classifiers:

■ All are assumed constant
■ Minimize only for the last one,

E = exp(− ())∑
n=1

N

tn fm xn

(x)fm m

(x) = (x)fm
1

2 ∑
j=1

m

αjyj

. . .f1 fm−1

(x)αmym

29

BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting

■ We can decompose the error in correctly and incorrectly classified:

• Minimizing with respect to :

• Minimizing with respect to :

■ AdaBoost minimizes the exponential error of the linear combination
of the base classifiers with a sequential optimization.

E = exp(− ()) = +∑
n=1

N

wn
m

1

2
tn αmym xn e− /2αm

∑
n∈

wn
m e /2αm

∑
n∈

wn
m

= + (−) I(() ≠)e− /2αm

∑
n=1

N

wn
m e /2αm e− /2αm

∑
n=1

N

wn
m ym xn tn

ym

= I(() ≠)Jm ∑
n=1

N

wn
m ym xn tn

αm

= ln = I(() ≠) /αm+1

1 − ϵm

ϵm

ϵm ∑
n=1

N

wn
m ym xn tn

∑
n=1

N

wn
m

30

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Two examples, to illustrate solutions to different problems.
Bagging
■ Averages predictions based on different datasets (bootstrapping)
■ Good for models with low bias and high variance (overfitting)
Boosting
■ Computes linear combination of weak classifiers (changing example

weights)
■ Good for models with high bias and low variance (underfitting)

31

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

First testFirst testFirst testFirst testFirst testFirst testFirst testFirst testFirst test

32

First TestFirst TestFirst TestFirst TestFirst TestFirst TestFirst TestFirst TestFirst Test

First test
■ Lectures 1-12 (this one).
■ Next 2 session (lectures 13-16) not for first test.
■ Session of November 5 for questions and revisions
■ You can bring 1 handwritten A4 sheet, written on both sides
• With identification (name and number).

■ Exam will be scored in two independent parts.
■ Test will include questions for Assignment 1

33

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

SummarySummarySummarySummarySummarySummarySummarySummarySummary

34

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

Summary
■ Bagging: reduce variance by averaging
• Useful for models with large variance
• Useful for unstable models, otherwise there is too much correlation

■ Boosting: reduce bias by linear combination of classifiers
• Useful for combining weak classifiers (large bias)
• Note: must be able to weigh samples

Further reading
■ Alpaydin, Sections 17.6, 17.7
■ Marsland, Chapter 7
■ Bishop, Sections 14.2, 14.3

