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Summary
■ Ensemble methods
■ Bagging and bragging
■ Boosting and stumping
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Ensemble methods
■ Combining groups of classifiers to improve classification
We'll focus on two different aproaches:
■ Bootstrap aggregating : bootstrapping to train, combine predictions

to reduce variance
■ Boosting : training a linear combination of weak classifiers (mainly)

to reduce bias
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Bagging
■ Bootstrap aggregating
• Use bootstrapping to generate replicas of training set

• Train model once per replica

• Aggregate the output of the hypotheses. Example: for regression, average the
predictions
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■ Example: regression
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■ Example: regression, mean

def bootstrap(samples,data): 
    train_sets = np.zeros((samples,data.shape[0],data.shape[1])) 
    for sample in range(samples): 
        ix = np.random.randint(data.shape[0],size=data.shape[0]) 
        train_sets[sample,:] = data[ix,:] 
    return train_sets 
 
train_sets = bootstrap(replicas,data) 
px = np.linspace(ax_lims[0],ax_lims[1],points) 
preds = np.zeros((replicas,points)) 
for ix in range(replicas): 
    coefs = np.polyfit(train_sets[ix,:,0], 
                 train_sets[ix,:,1],degree) 
    preds[ix,:] = np.polyval(coefs,px) 
mean = np.mean(preds,axis=0)
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■ Example: regression, mean
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■ Variation: median instead of mean
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■ Classification example: SVM
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■ Classification example: SVM (majority vote)

train_sets = bootstrap(replicas,data) 
gamma = 2 
C=10000 
svs = [] 
pX,pY = np.meshgrid(pxs,pys) 
pZ = np.zeros((len(pxs),len(pys))) 
for ix in range(replicas): 
    sv = svm.SVC(kernel='rbf', gamma=gamma,C=C) 
    sv.fit(train_sets[ix,:,:-1],train_sets[ix,:,-1]) 
    svs.append(sv) 
    preds = sv.predict(np.c_[pX.ravel(),pY.ravel()]).reshape(pZ.shape) 
    pZ = pZ + preds 
pZ = np.round(pZ/float(replicas))
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■ 50 SVM, trained with bootstrapping



12

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

■ Majority class of 50 SVM
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Bagging (Bootstrap aggregating)
■ Averaging reduces variance and overfitting, increasing probability of

correct classification as number of classifiers increases
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Bagging (Bootstrap aggregating)
■ Bootstrap aggregating classifiers

■ This assumes classifiers are independent
■ If classifiers are correlated, this does not work so well
■ Bagging is best for unstable  algorithms
• (susceptible to input variations)
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BoostingBoostingBoostingBoostingBoostingBoostingBoostingBoostingBoosting
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Boosting
■ Learn a linear combination of weak classifiers
■ Individual classifiers must have error rate below 0.5
■ Combination of classifiers has a lower bias and better classification

power
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AdaBoost
■ Initialize sample weights: 
■ Fit classifier  by minimizing weighted error

■ Compute weighted error on training set:
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■ Compute classifier weight:

• Original (Freund and Schapire,2003): 

■ Compute new sample weights (and normalize):

■ Increases weight of misclassified points
■ Stop when  is zero or greater than 0.5
■ Output of the boosted classifier is weighted sum of classifiers:
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Decision tree algorithm
■ Split data into 2 subsets according to some feature and rule
• e.g. 

■ Use some measure of information gain to evaluate the split
• Classification error: assuming most common class in each subset

• Gini Index: 

• Information Entropy: 

■ Choose one feature and rule that optimizes information gain
■ Repeat for each subset with mixed classes

≤ 1x1

G = 1 − ∑c p2
c

Entropy = log∑c pc pc
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Decision tree algorithm
■ Example:
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Decision tree algorithm
■ Example:
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Decision tree algorithm
■ Example:
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■ Stumping: AdaBoost with decision stumps (level 1 decision tree)
• Choose one feature, split at one point
• Use DecisionTreeClassifier

from sklearn.tree import DecisionTreeClassifier 
hyps = [] 
hyp_ws = [] 
point_ws = np.ones(data.shape[0])/float(data.shape[0]) 
max_hyp = 50
for ix in range(max_hyp): 
    stump = DecisionTreeClassifier(max_depth=1) 
    stump.fit(data[:,:-1], data[:,-1], sample_weight = point_ws) 
    pred = stump.predict(data[:,:-1]) 
    errs = (pred != data[:,-1]).astype(int) 
    err = np.sum(errs*point_ws) 
    alpha = np.log((1-err)/err) 
    point_ws = point_ws*np.exp(alpha*errs) 
    point_ws = point_ws/np.sum(point_ws) 
    hyps.append(stump) 
    hyp_ws.append(alpha)
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■ Stumping: AdaBoost with decision stumps (level 1 decision tree)
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■ Stumping: AdaBoost with decision stumps (level 1 decision tree)
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■ Stumping: AdaBoost with decision stumps (level 1 decision tree)
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■ Stumping: AdaBoost with decision stumps (level 1 decision tree)
■ Classifying data and computing error

net_pred = np.zeros(data.shape[0]) 
for ix in range(len(hyps)): 
    pred_n = hyps[ix].predict(data[:,:-1]) 
    preds = preds+pred_n*hyp_ws[ix] 
net_pred[preds<0] = -1 
net_pred[preds>=0] = 1 
errors = np.sum((net_pred !=data[:,-1]).astype(int))
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AdaBoost, derivation
■ We can see AdaBoost as a sequential mimization of the exponential

error function:

■ Where  is the weighted classification of the  classifiers:

■ All  are assumed constant
■ Minimize only for the last one, 
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■ We can decompose the error in correctly and incorrectly classified:

• Minimizing with respect to :

• Minimizing with respect to :

■ AdaBoost minimizes the exponential error of the linear combination
of the base classifiers with a sequential optimization.
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■ Two examples, to illustrate solutions to different problems.
Bagging
■ Averages predictions based on different datasets (bootstrapping)
■ Good for models with low bias and high variance (overfitting)
Boosting
■ Computes linear combination of weak classifiers (changing example

weights)
■ Good for models with high bias and low variance (underfitting)
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First testFirst testFirst testFirst testFirst testFirst testFirst testFirst testFirst test
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First test
■ Lectures 1-12 (this one).
■ Next 2 session (lectures 13-16) not for first test.
■ Session of November 5 for questions and revisions
■ You can bring 1 handwritten A4 sheet, written on both sides
• With identification (name and number).

■ Exam will be scored in two independent parts.
■ Test will include questions for Assignment 1



33

Ensemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methodsEnsemble methods

SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Bagging: reduce variance by averaging
• Useful for models with large variance
• Useful for unstable models, otherwise there is too much correlation

■ Boosting: reduce bias by linear combination of classifiers
• Useful for combining weak classifiers (large bias)
• Note: must be able to weigh samples

Further reading
■ Alpaydin, Sections 17.6, 17.7
■ Marsland, Chapter 7
■ Bishop, Sections 14.2, 14.3




