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Summary

® Empirical Risk Minimization

m Probably Approximately Correct Learning

m Shattering

® VC Dimension

Previously, we saw Bias-Variance tradeoff
®m High bias, underfitting; high variance, overfitting
® How to select? Empirically (cross-validation)
Today:

m Understand these problems more formally
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ERM

Empirical Risk Minimization

m Loss: how bad our predictions are

- Quadratic error, Brier score, 1-Accuracy, ...

B Risk: the expected (average) loss

m Empirical Risk: the measured average loss
® Empirical Risk Minimization

« Minimize the average loss on the training set

m True risk: average loss over all data

m Empirical risk underestimates true risk (true error)
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Empirical Risk and True Risk

®m (Union bound|i Ay, A»,...,A; are random events
P(A{ UAU...Ay) < P(Ay) + P(Ay))+...+P(Ay)
m |Hoeffding's inequality|: if By, By, ..., B, are i.i.d. Bernoulli(¢)

N
PB=1)=¢ $=—) B
i=1

Pp—p>p <™ Pp-¢p>p <™
P(p — @l > y) < 275
m The probability of average over m {0,1} events deviating y from the
true probability ¢ decreases with m
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Empirical Risk Minimization
m Consider binary classifiers, h : X — {0, 1}

® Given S with m examples from X with dist. D

m The

m The

empirical error

(training error) is:

. l -« . .
Es(n) = — Y 1{h(x') # c(x))]
i=1

true error| IS:

E(h) = Py.p (h(x) # c(x))
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Empirical Risk Minimization

m Suppose binary classifier with parameters 6

m Best parameters can be found by:

0 = arg min E(h@)

0

m This is |empirical risk minimization

can be approximated
® And can bound the true error with

, which is NP-Hard in general but

Hoeffding's inequality
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PAC Learning
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Definitions
m X set of possible examples (instances)

m c: X — {0,1}: target function to learn

m  H: hypothesis class learner considers

m D: distribution of examples over X

= S: training sample

Learning

m Learner receives S from X with dist. D

= Selects / from H minimizing the empirical error:

h = arg min E s(h)
heH

FACULDADE DE
CIENI’.IAS E TECNDLI’JEI.&



PAC Leaining
[

m True error of /1 is

E(h) = Py.p (W(x) # c(x))
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True error
m True error of /1 is

E(h) = Py.p (h(x) # c(x))
m The [true error|is not directly observable

m Learner can only measure the [empirical error

R 1 « . .
Es(n) = —  1{h(x?) # cx))
i=1

® We cannot reasonably demand zero true error

« Not all possible examples in training, so multiple hypotheses seem correct

- Examples may be misleading in their correlation to the classes.
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Probably Approximately Correct Learning
m Weaker requirements:

® Approximately correct: E(iAz) <e€

®m Probably Approximately Correct:
P(Eh)<e)21-0
e < 1/2 o< 1/2

m Efficient PAC learning: polynomial in 1/¢, 1/6

Assumptions:
® Hypothesis class H is finite

m  H contains hypotheses with E(h) < €

® Train and test examples from ~ D
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Probably Approximately Correct Learning
m Consistent hypothesis: classifies training set with no error

Version space V: set of i s.t. Eg(h) = 0
A consistent hypothesis minimizes empirical error

N
N
® A consistent learner outputs hypotheses in V
m Version space is |e-exausted| if
Vh e VY E(h) < €

m The V is not e-exausted if
dh eV E(h) > €
m (Learner cannot tell this since it only encounters the training set)
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Probably Approximately Correct Learning
m Probability thatno & € V has E(h) > €?

m Consider iy, hy, ..., h with E(h) > €
- Probability of /2 consistent with one example < 1 — €
- Probability of /2 consistent with 71 examples < (1 — €)™

m P atleast one E(h) > ¢ consistent with m examples < k(1 — ¢)™
P(A; UALU. .. Ay) < P(A)) + P(Ay)+. .. +P(A)
= We don't know k, but since k < |H|
k(1 — ey" < IHI(1 = €)™
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Probably Approximately Correct Learning

m Since(l —¢)<effor0<e<1:
k(1 —e)" <IHI(1 —¢e)" < |Hle™™

P(EheV:EHh) >e¢e) <IHle ™

® Upper bound on probability of not discarding all i with E£(h) > ¢

® Lower bound on the number of examples for a consistent learner to
learn an hypothesis with error below € with a probability of 1 — o

P(E(fz)ﬁe)Zl—é PELeEYV)>e)<o mZ%(ln%)
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Probably Approximately Correct Learning
m Upper bound on the error w.r.t. m with probability of 1 — o

. 1/ IH 1/ IH
P(Ethy<e)=>1-56 mZ—(ln—)@eS—(ln—
€ ) m

A A A
This assumes E¢(/1) = 0. Extending for Eg¢ > 0O
m Training error is the mean of Bernoulli variables:

E(h;) = % Y H{AGED # c(x?)) = % D 7
i=1 i=1

® We can use Hoeffding inequalities:
Pp—>y)<e ™ Pp—¢>y) <e ™
P (E(h) > Ex(h) + €> < e

)
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Probably Approximately Correct Learning
P <E(h) > Eg(h) + €> < o2
m But this is for one hypothesis. For all 7 € H:
P (Elh e H: EMh) > Es(h) + e) < [Hle™2me

m Calling this 6 and solving for m:

- Lower bound on [S] to ensure generalization error below ¢ with confidence 1 — 6

- Increases quadratically with 1/e and linearly with log of | H]|
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Inductive bias

B We mentioned that all learning algorithms must assume something
about the function to learn (inductive bias). What if they don't?

m Example: let H be the set of all subsets of X, so no inductive bias
as it can represent any function 2 : X — {0, 1}

m Thus, [H| = 2%

> : > (1 lHl)@ > : —(1 ZM)@ : X1 1 =
—(n — n— — n—
mzoaingemzszingemz 53 5
m This requires that m be larger than [X|, making generalization

Impossible.
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Bias-Variance tradeoff

® What is the bound on |generalization error| for ERM hypothesis?
Eh) — E(h) h = arg min E(h)
heH
m Let 4" be the best possible hypothesis from H:

h* = arg min E(h)
heH

= We know that P(E(h) < E(h) +¢) > 1 = 6
= And also that £(h) < E(h*) and E(h*) < E(h), so

PEW) <EW)Y+e)>1-6

P(Eh) < EW)+2¢)>1-=5
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Bias-Variance tradeoff
® Replacing, with P = 1 — §:

E(}AL) < <m1n E(h) + 2\/—ln i

® High bias, large 21;171{1 E(h)

« If this term dominates, we have underfitting

® High variance, large |H| and 2\/ In 'H'

- If this term dominates, we have overfitting
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Probably Approximately Correct Learning
m This assumes |H]| is finite:

1 |H|
m> — <ln —)
2e? )

® True in some cases (e.g. limited-depth decision trees with
categorical features) but false in general

m If [Hlis infinite (e.g. discriminants with continuous parameters) then
these limits are uninformative and we need a different approach
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Shattering
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B Many hypotheses may be equivalent:

55 Gene activity profile
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Shattering

m [nstead of the total (infinite) number of hypotheses, we need some
measure of how many hypotheses with different classification
results the learner can generate

Shattering

m Hypothesis class H shatters set S if, for any labelling S, there is a
h € H consistent with S (classifies without errors)

m Example: linear classifier in 2D shatters 3 points
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Shattering

m Example: linear classifier in 2D cannot shatter 4 points

m There is no way to place 4 points such that all label combinations
can be classified without error
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V-C dimension
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® The Vapnik-Chervonenkis dimension of H, or VC(H), is the size of
the largest set S that H can shatter.

® There may be sets of size less than VC(H) that cannot be
shattered (e.g. two overlapping points, three points in a line, etc) but
VC(H) is the size of the largest that can be shattered

m From VC(H), Vapnik et. al. demonstrated that, with P > 1 — 0
n A ' | |
E(h) < E(h) + O <\/ U, _m —In —>
m

VC(H) %)
®= Roughly, size of training set must increase with VC(H)
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Linear discriminants

® We saw that we could increase the power of linear discriminants by
Increasing the number of dimensions

m We did this explicitely with logistic regression and saw how SVM do
this implicitely with the kernel trick

® Linear discriminants of dimension D shatter D+1 points, so

VC(H) =D + 1
® Thus we can improve classification by increasing D

m But this also requires more data for training, otherwise overfitting
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Summary
B A solid statistical foundation provides useful intuitions

« Although not used in practice; validation and test provide better estimates

® Inductive bias: necessary for generalization, so |H| not too large

m Bias-Variance tradeoff: best hypothesis vs | H|

m Shattering and VC dimension for continuous models

B Results are not guaranteed, but only probably approximately correct

Further reading
m Mitchell, Chapter 7 up to section 7.4 (but outdated)

m Alpaydin, 2.1 - 2.3
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