Aprendizagem Automática

Decisions

Ludwig Krippahl

Summary

- Bayesian Learning
- Maximum Likelihood vs Maximom A Posteriori
- Monte Carlo and computing prior probability distributions
- Decisions and costs

Bayesian Learning

Bayesian vs Frequentist probabilities

To find parameters in some cases (E.g. regression, logistic regression) we maximized the likelihood:

$$\hat{\theta}_{ML} = \underset{\theta}{\text{arg max}} \prod_{t=1}^{n} p(x^{t}, y^{t}; \theta)$$

Rewriting as conditional probabilities, and since $p(x^t)$ is constant:

$$\prod_{t=1}^{n} p(x^t, y^t) = \prod_{t=1}^{n} p(y^t | x^t) \times \prod_{t=1}^{n} p(x^t) \qquad \hat{\theta}_{ML} = \arg\max_{\theta} \prod_{t=1}^{n} p(y^t | x^t; \theta)$$

- Under a frequentist interpretation, probability is the frequency in the limit of infinite trials.
- Vector θ is unknown but not a random variable.

Bayesian vs Frequentist probabilities

- Under a bayesian interpretation, probability is a measure of knowledge and uncertainty and θ can be seen as another random variable with its own probability distribution
- Given prior $p(\theta)$ and sample S, update posterior $p(\theta|S)$:

$$p(\theta|S) = \frac{p(S|\theta)p(\theta)}{p(S)}$$

where p(S) is the marginal probability of S (the evidence) and $p(S|\theta)$ is the likelihood of θ

$$p(\theta|S) = \frac{p(S|\theta)p(\theta)}{p(S)} \Leftrightarrow p(\theta|S) = \frac{\prod_{t=1}^{n} p(y^{t}|x^{t}, \theta)p(\theta)}{p(S)}$$

Bayesian vs Frequentist probabilities

■ Since p(S) is generally unknown and constant, we approximate the posterior with the Maximum A Posteriori (MAP) estimate:

$$\hat{\theta}_{MAP} = \underset{\theta}{\text{arg max}} \prod_{t=1}^{n} p(y^{t}|x^{t}, \theta)p(\theta)$$

ML and MAP are similar but with a significant difference:

$$\hat{\theta}_{ML} = \underset{\theta}{\operatorname{arg max}} \prod_{t=1}^{n} p(y^{t}|x^{t};\theta)$$

- Treating the parameters as a probability distribution leads naturally to regularization due to the inclusion of the prior probability distribution of the parameters $p(\theta)$
- (e.g. Bayesian logistic regression)

Computing priors

- Uninformative Priors: the prior probability has little impact on the posterior, and MAP becomes similar to ML
- In some cases, a uniform distribution can suffice.
- In other cases, we need different distributions. E.g. line slope on linear regression
- We may also want to include prior information about the parameters
- Often results in probability distributions for which we have no analytical expression for expected values
- Bayesian learning generally requires numerical sampling methods (Monte Carlo), which can make it computationally more demanding
- But we can explicitly use prior probability distributions instead of ad-hoc regularization

Decisions and costs

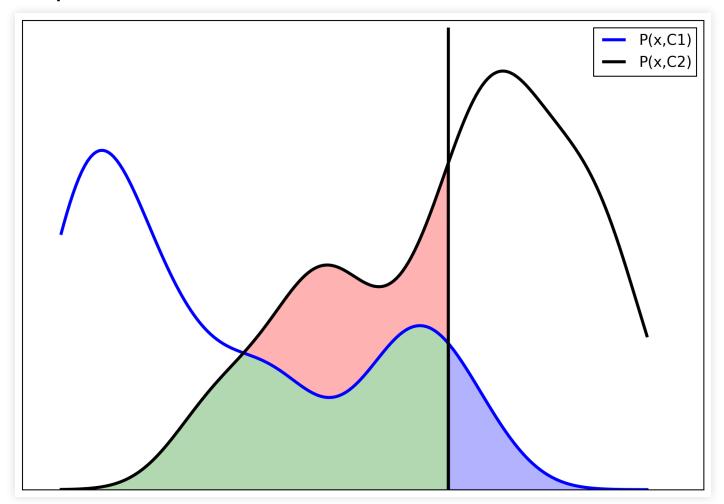
Measuring error

- So far, the loss functions we used were all measures or error
- But sometimes, the error may not be the best loss function

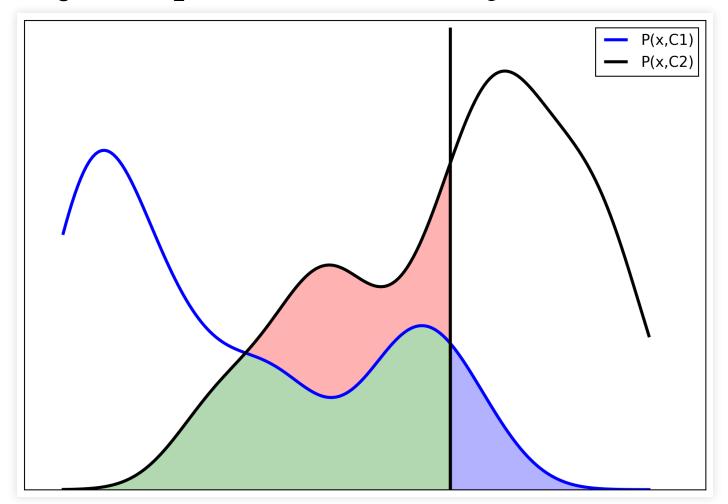
Loss functions

- Suppose we have the joint probability distributions $P(x, C_1)$ and $P(x, C_2)$
- We also have a classifier that classifies an example as C_2 if $x > \hat{x}$ or C_1 otherwise

lacksquare Errors depend on the choice of \hat{x}



lacktriangle Red and green: C_2 misclassified; Blue: C_1 misclassified

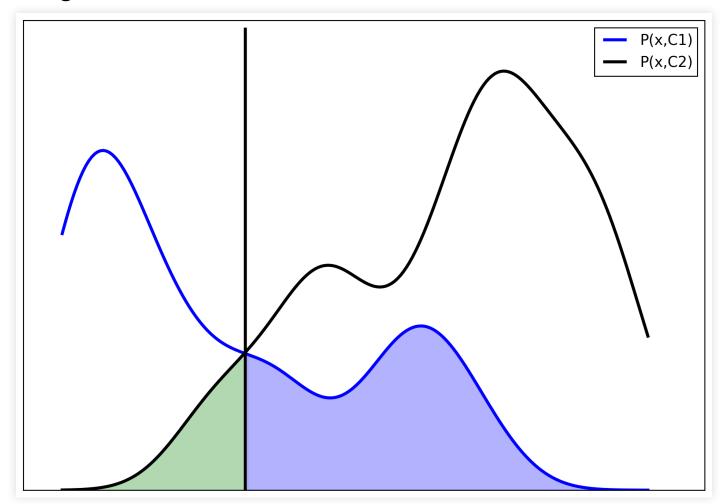


- Minimizing the misclassification rate is equivalent to maximizing the probability of x corresponding to the predicted class
- This can be done by choosing \hat{x} such that

$$P(C_1|x) > P(C_2|x)$$
 for $x < \hat{x}$

$$P(C_2|x) > P(C_1|x)$$
 for $x > \hat{x}$

Minimizing classification error:



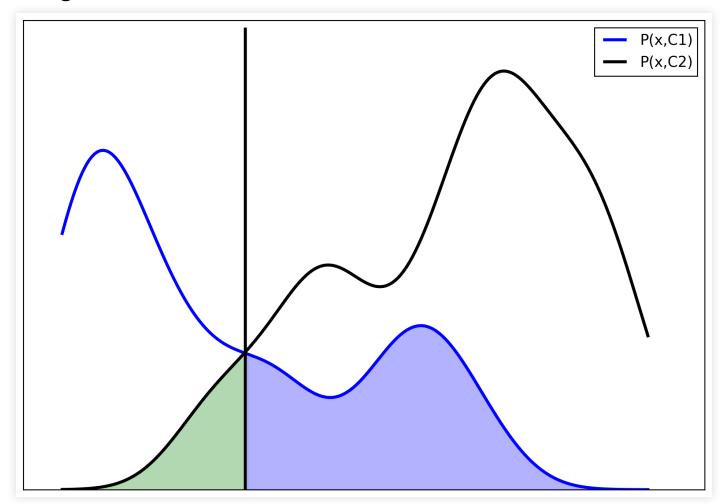
- Suppose C_1 is cancer patient and C_2 is healthy. It may be more costly to mistake C_1 for C_2 than vice-versa.
- We can consider the following loss matrix:

	Predict cancer	Predict healthy
Is cancer	0	5
Is healthy	1	0

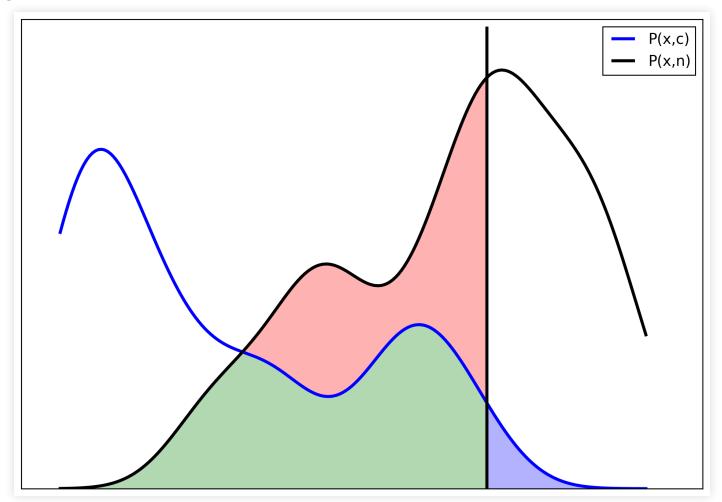
Now we classify minimizing this loss function:

$$\sum_{k} L_{k,j} p(C_k | x)$$

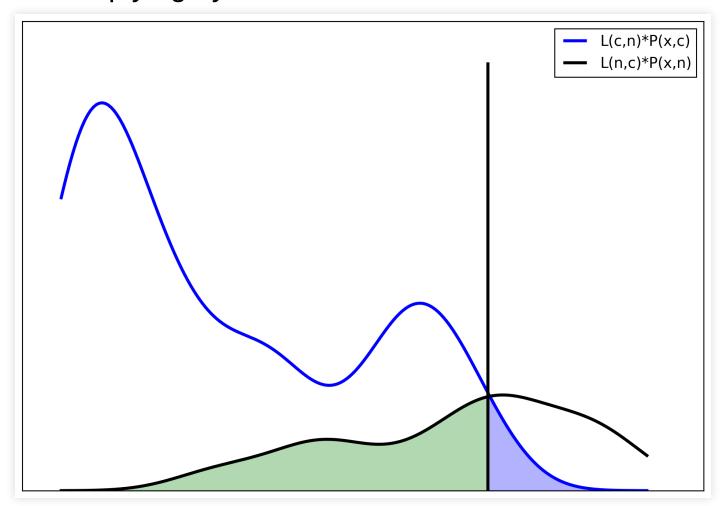
Minimizing classification error:



■ Taking loss into account:



Intuition: Multiplying by misclassification cost:



Utility and Loss

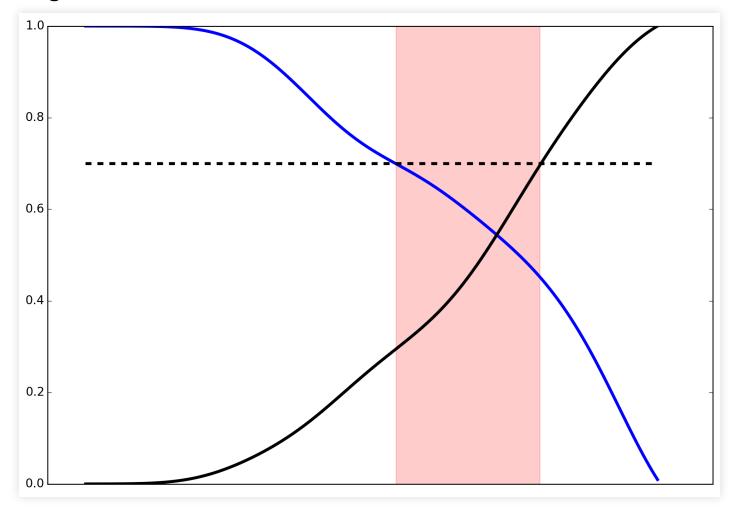
- Utility: decision literature often mentions a utility function instead of a loss function
- The idea is the same, but maximize instead of minimize

Decision confidence

- Rejection option
- Misclassification often occurs when probabilities are similar
- We can reject classification in those cases (e.g. warn user)

$$p(C_k|x) \le \phi \quad \forall k$$

Rejecting classification below 0.7



Summary

Summary

- Bayesian interpretation
- MAP vs ML: importancen of priors
- Decision: misclassification, cost, rejection

Further reading

- Alpaydin, Chapter 3 up to 3.5
- Bishop, Section 1.5

