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Summary
■ Bayesian Learning
■ Maximum Likelihood vs Maximom A Posteriori
■ Monte Carlo and computing prior probability distributions
■ Decisions and costs
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Bayesian vs Frequentist probabilities
■ To find parameters in some cases (E.g. regression, logistic

regression) we maximized the likelihood:

■ Rewriting as conditional probabilities, and since  is constant:

■ Under a frequentist interpretation, probability is the frequency in the
limit of infinite trials.

■ Vector  is unknown but not a random variable.

=   p( , ; θ)θ ̂ 
ML arg max

θ
∏
t=1

n

xt yt

p( )xt

p( , ) = p( | ) × p( ) =   p( | ; θ)∏
t=1

n

xt yt

∏
t=1

n

yt xt

∏
t=1

n

xt θ ̂ 
ML arg max

θ
∏
t=1

n

yt xt

θ



4

Bayesian LearningBayesian LearningBayesian LearningBayesian LearningBayesian LearningBayesian LearningBayesian LearningBayesian LearningBayesian Learning

Bayesian vs Frequentist probabilities
■ Under a bayesian interpretation, probability is a measure of

knowledge and uncertainty and  can be seen as another random
variable with its own probability distribution

■ Given prior   and sample , update posterior  :

■ where  is the marginal probability of  (the evidence  ) and 
 is the likelihood  of 
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Bayesian vs Frequentist probabilities
■ Since  is generally unknown and constant, we approximate the

posterior with the Maximum A Posteriori (MAP) estimate:

■ ML and MAP are similar but with a significant difference:

■ Treating the parameters as a probability distribution leads naturally
to regularization due to the inclusion of the prior probability
distribution of the parameters 

• (e.g. Bayesian logistic regression)
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Computing priors
■  Uninformative Priors : the prior probability has little impact on the

posterior, and MAP becomes similar to ML
• In some cases, a uniform distribution can suffice.

• In other cases, we need different distributions. E.g. line slope on linear regression

■ We may also want to include prior information about the parameters
■ Often results in probability distributions for which we have no

analytical expression for expected values
■ Bayesian learning generally requires numerical sampling methods

(Monte Carlo), which can make it computationally more demanding
• But we can explicitly use prior probability distributions instead of ad-hoc

regularization
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Measuring error
■ So far, the loss functions we used were all measures or error
■ But sometimes, the error may not be the best loss function
Loss functions
■ Suppose we have the joint probability distributions  and

■ We also have a classifier that classifies an example as  if 
or  otherwise

P(x, )C1

P(x, )C2

C2 x > x ̂ 
C1
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■ Errors depend on the choice of x ̂ 
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■ Red and green:  misclassified; Blue:  misclassifiedC2 C1
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■ Minimizing the misclassification rate is equivalent to maximizing the
probability of x corresponding to the predicted class

■ This can be done by choosing  such thatx ̂ 

P( |x) > P( |x)  f or  x <C1 C2 x ̂ 

P( |x) > P( |x)  f or  x >C2 C1 x ̂ 
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■ Minimizing classification error:
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■ Suppose  is cancer patient and  is healthy. It may be more
costly to mistake  for  than vice-versa.

■ We can consider the following loss matrix :

Predict cancer Predict healthy

Is cancer 0 5

Is healthy 1 0

■ Now we classify minimizing this loss function :

C1 C2

C1 C2

p( |x)∑
k

Lk,j Ck
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■ Minimizing classification error:
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■ Taking loss into account:
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■ Intuition:Multiplying by misclassification cost:
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Utility and Loss
■  Utility : decision literature often mentions a utility function instead of

a loss function
• The idea is the same, but maximize instead of minimize

Decision confidence
■ Rejection option
■ Misclassification often occurs when probabilities are similar
■ We can reject classification in those cases (e.g. warn user)

p( |x) ≤ ϕ ∀kCk
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■ Rejecting classification below 0.7
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Summary
■ Bayesian interpretation
• MAP vs ML: importancen of priors

■ Decision: misclassification, cost, rejection
Further reading
■ Alpaydin, Chapter 3 up to 3.5
■ Bishop, Section 1.5




