Aprendizagem Automática

1 - Introduction

Ludwig Krippahl

Summary

- Course formalities
- Machine learning
- Course objectives and outline

Formalities

Formalities

Instructors

- Lectures, P1, P5, P6: Ludwig Krippahl
- P2, P3, P4: Joaquim Ferreira da Silva

Course site: aa.ssdi.di.fct.unl.pt

Slides, notes, lecture videos

Classes

- Lectures: 2 x 1h per week, ~70% exposition, ~30% discussion
- Streaming on YouTube, Zoom meeting afterwards
- Tutorials: 1 x 2h per week
- Questions about exercises and assignments (Hangouts)
- Some lectures reserved for revisions and assigments

Formalities

Assessment

- Theoretical: 2 written tests or final exam.
- Online, timed questions with long answers
- Exam scored in two independent parts
- Practical: 2 assignments, groups of 2 students in same class.
- Plus individual defense question during the test (so must attend test)
- Groups formed by October 18
- All submission to praticasice@gmail.com using official FCT address
- NOTE: this address is for automated processing only
- Evaluation
- Required: minimum of 9.5 in each component.
- Final grade: simple average of the two components.
- If frequency from 2016/17 20, do not enroll in practical classes

Formalities

Recommended Software

- Python 3.x, Spyder IDE
- Several libraries needed: NumPy, Matplotlib, Scikit-Learn, ...
- Simple instalation: Anaconda
- https://www.anaconda.com/products/individual

Bibliography

- Lecture notes, available on web site
- Bishop, Pattern Recognition and ML 2006
- Alpaydin, Introduction to ML (2nd ed.) 2010
- Marsland, Machine Learning, 2009
- Mitchell, Machine Learning, 1997

Machine Learning

Making sense of data.

"Field of study that gives computers the ability to learn without being explicitly programmed"

(Samuel, 1959)

More formal, operational, definition:

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

(Mitchell, 1997)

Machine Learning problem

- A task that the system must perform.
- A measure of its performance
- The data used to improve its performance.

Example: automated flight ticketing

- Task: identify requests for flight information and tickets.
- Performance measure: correctly identified expressions.
- Data: Annotated voice records.

```
<book_flight> please book me on </book_flight>
<numflt> flight twenty one </numflt>

<i_want_to_go> i would like to fly </i_want_to_go>
<city_from> from philadelphia </city_from>
<city_to> to dallas </city_to>

<request1> could you please list the </request1> flights
<city_from> from boston </city_from> <city_to> to denver </city_to>
on <date> july twenty eighth </date>
```

Source: Erdogan, Using semantic analysis to improve speech recognition performance

Machine Learning problems

- Predicting prices (Regression)
- Classifying spam emails (Classification)
- Products purchased together (Association Rules)
- Grouping similar images (Clustering)
- Distributions in diagnosis (Density Estimation)

Relations to other disciplines

- Computer Science
- Statistics and Probability
- Mathematics
- Neuroscience
- Philosophy

What is Machine Learning for?

Using ML

Solve problems without explicit rules

Example: identify handwritten digits

44151

14310

Using ML

Solve problems without explicit rules

Train with labelled data

- Find a function for classifying
- Partition the input space into the 10 classes (0..9)

Using ML

Data mining

- Large volumes of data
- Google searches
- Facebook relations graph
- Credit card fraud

Adaptive systems

- Need to respond to changing conditions
- Personalization (e.g. Facebook feed)
- Spam filtering (email and comments)

ML is good for tasks we do not have a recipe for...

... if we have the right data.

Basic Concepts

Hypothesis class

- The set of possible hypotheses
- We need to assume something about the solution

Hypothesis class

Example: we want to separate red from blue

Hypothesis class: horizontal lines

■ Model: $y \le \theta_1$

Hypothesis class: circles of radius 1

■ Model: $(x - \theta_1)^2 + (y - \theta_2)^2 \le 1$

Hypothesis class

Set of all hypotheses

Model

Represents the set of hypotheses (with parameters)

Hypothesis

- One element of the hypothesis class set
- One instance of the Model (e.g. instantiating parameters)
- One line: $\theta_1 = 0$ $y \le 0$
- One circle: $\theta_1 = \theta_2 = -1$ $(x+1)^2 + (y+1)^2 \le 1$

Goal: find the best hypothesis

Inductive Bias

- We are biased by what we assume from the start.
- Hypothesis class
 - But we must assume something.
- we cannot proceed without a hypothesis class
- There is no learning without inductive bias.
- Without inductive bias it is not possible to extrapolate from known data to unknown events (will gravity still work tomorrow?)
- Since we want to infer something outside known data we must assume some constraints

Machine learning problems

Four basic kinds of ML problems

- Unsupervised learning
- All data is unlabelled
- Find structure in data

Example: clustering images

Group searches with features from image and HTML (Cai et al, Clustering of WWW Image Search Results, 2004)

Four basic kinds of ML problems

- Unsupervised learning
- Data is unlabelled
- Find structure in data
- Allows us to obtain new features from the data
- Can be used as a step in broader learning tasks
- (preprocessing, visualization, deep learning)

Four basic kinds of ML problems

- Supervised learning
- Training data is labelled
- Predict value correctly

- Continuous values: Regression
- Discrete classes: Classification

Supervised learning

Example: face identification

Valenti et al, Machine Learning Techniques for Face Analysis, 2008

Four basic kinds of ML problems

- Unsupervised learning
- Supervised learning
- Reinforcement learning
- Optimize some output
- But no direct feedback for each case

Reinforcement learning

- Optimize some output
- But no direct feedback for each case

Examples

- Learn to play a game
- Must learn to predict cost and benefit of each move.
- But can only know final result at the end of the game.
- Robotics: locomotion, manipulation
- Control of autonomous vehicles
- Operations research: pricing, marketing, routing

Four basic kinds of ML problems

- Unsupervised learning
- Supervised learning
- Reinforcement learning
- Semi-supervised learning
- Some data labelled, most unlabelled
- Mixes the two approaches
- Structure of unlabelled data helps choose hypothesis

Four basic kinds of ML problems

- Unsupervised learning
- Supervised learning
- Reinforcement learning
- Semi-supervised learning

Our focus in this course:

- Supervised learning
- Unsupervised learning

Course Goals

Course Goals

Objectives for this course

- Understand the foundations of ML problems and solutions
- Experience with useful ML techniques and applications
- Learn to understand the literature
- Learn to understand the mathematical formulations

Course outline

- Introduction and Supervised Learning
- Regression, Classification
- Learning Theory
- Unsupervised Learning

Summary

Summary

- Learn from data, without explicit rules
- Hypothesis class, model and hypothesis
- Inductive bias and learning
- Supervised, unsupervised, reinforcement, semi-supervised

Further reading

- Alpaydin, Chapter 1
- Mitchell, Chapter 1
- Marsland, Sections 1.1 through 1.4.

