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Summary
■ Supervised learning, basic concepts
■ Regression and classification
■ Fitting curves with Least Mean Squares
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Basic conceptsBasic conceptsBasic conceptsBasic conceptsBasic conceptsBasic conceptsBasic conceptsBasic conceptsBasic concepts
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Basic idea
■ We have a set of labelled data

■ We assume there is some function

■ The goal of Supervised Learning  is to find (from the examples)

■ such that  approximates 
■ Supervised because we can compare  to 

{( , ), . . . , ( , )}x1 y1 xn yn

F(X) : X → Y

g(θ, X) : X → Y

g(θ, X) F(X)

g(θ, X) Y
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Training (Supervised learning)
■ Ideally, we want to approximate  for all 
■ But, for now, we'll consider only our Training Set

■ Training Set
• The data we use to adjust the parameters  in our model.
• More generally: data used to choose a hypothesis

■ Training Error or Empirical Error
• The error on the training set for each instance of .
• (Sample Error in Mitchell 1997)

F(X) : X → Y X

{( , ), . . . , ( , )}x1 y1 xn yn

θ

θ
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Our ML problem for today:
■ Goal: Predict the  values in our training set
■ Performance: minimise training error
■ Data: 

Y

{( , ), . . . , ( , )}x1 y1 xn yn

Classification and Regression
■ In Classification  is discrete.
• Examples: SPAM detection, predict if mushrooms are poisonous
• Find function to split data in differente sets

■ In Regression  is continuous.
• Examples: predicting trends, prices, purchase probabilities
• Find function that approximates 

Y

Y

Y
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RegressionRegressionRegressionRegressionRegressionRegressionRegressionRegressionRegression
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Regression example
■ Polynomial fitting: a simple example of linear regression.

■ Example: we have a set of  points and want to fit the best line:

■ How to find the best line?

y = + +. . . +θ1x1 θ2x2 θn+1

(x, y)
y = x +θ1 θ2
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■ How to find the best line?
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Finding the best line
■ Assume  is a function of  plus some error:

■ We want to approximate  with some .

■ Assuming  and , then:

■ Given  and

■ knowing that 

y x
y = F(x) + ϵ

F(x) g(x, θ)

ϵ ∼ N(0, )σ
2 g(x, θ) ∼ F(x)

p(y|x) ∼ (g(x, θ), )σ
2

 = { ,xt yt}N
t=1

p(x, y) = p(y|x)p(x)

p(X, Y) = p( , ) = p( | ) × p( )∏
t=1

n

xt yt

∏
t=1

n

yt xt

∏
t=1

n

xt
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Finding the best line
■ The probability of  given some  is the
■ likelihood of parameters :

(X, Y) g(x, θ)

θ

l(θ|) = p( , ) = p( | ) × p( )∏
t=1

n

xt yt

∏
t=1

n

yt xt

∏
t=1

n

xt

Likelihood
■ Data points  are randomly sampled from all possible values.
■ But  is not a random variable.
■ Find the  that, if true, would make the data is most probable
■ In other words, find the  of maximum likelihood

(x, y)

θ

θ

θ
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Maximum likelihood

l(θ|) = p( , ) = p( | ) × p( )∏
t=1

n

xt yt

∏
t=1

n

yt xt

∏
t=1

n

xt

■ First, take the logarithm (same maximum)

■ We ignore , since it's independent of 

■ Replace the expression for the normal:

L(θ|) = log( p( | ) × p( ))∏
t=1

n

yt xt

∏
t=1

n

xt

p(X) θ

L(θ|) ∝ log( p( | ))∏
t=1

n

yt xt

(θ|) ∝ log ∏
t=1

n
1

σ 2π‾‾‾√
e−[ −g( |θ) /2yt x t ]2

σ
2
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Maximum likelihood
■ Replace the expression for the normal:

■ Simplify:

(θ|) ∝ log ∏
t=1

n
1

σ 2π‾‾‾√
e−[ −g( |θ) /2yt x t ]2

σ
2

(θ|) ∝ log ∏
t=1

n

e−[ −g( |θ)yt x t ]2

(θ|) ∝ − [ − g( |θ)∑
t=1

n

yt xt ]2
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Maximum likelihood

(θ|) ∝ − [ − g( |θ)∑
t=1

n

yt xt ]2

Under our assumptions:
■ Max(likelihood) = Min(squared error):

■ Note: the squared error is often written

• (but this is just for convenience in computing the derivative)

E(θ|) = [ − g( |θ)∑
t=1

n

yt xt ]2

E(θ|) = [ − g( |θ)
1

2 ∑
t=1

n

yt xt ]2



14

Supervised LearningSupervised LearningSupervised LearningSupervised LearningSupervised LearningSupervised LearningSupervised LearningSupervised LearningSupervised Learning

Least Mean Squares MinimizationLeast Mean Squares MinimizationLeast Mean Squares MinimizationLeast Mean Squares MinimizationLeast Mean Squares MinimizationLeast Mean Squares MinimizationLeast Mean Squares MinimizationLeast Mean Squares MinimizationLeast Mean Squares Minimization
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How to find the best line?
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How to find the best line?
■ We find the parameters for

■ that minimize the squared error

■ Let's visualise this surface wrt 

g(x) = x +θ1 θ2

E(θ|) = [ − g( )∑
t=1

n

yt xt ]2

θ
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■ This allows us to find the best  (not a very good model...),θ1 θ2
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CurvesCurvesCurvesCurvesCurvesCurvesCurvesCurvesCurves
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Linear Regression
■ How to fit curves with something straight?
■ We can change the data:
•  , where  and 

■ Using a nonlinear transformation we project the data into a curved
surface

= { , , }2 xt
1

xt
2

yt =x1 x2 = xx2
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Linear Regression
■ Now we fit our new data set

■ With the (linear) model in three dimensions
= { , , }2 xt

1
xt

2
yt

y = + +θ1x1 θ2x2 θ3
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■ Then we project it back using  and =x1 x2 = xx2



27

CurvesCurvesCurvesCurvesCurvesCurvesCurvesCurvesCurves



28

CurvesCurvesCurvesCurvesCurvesCurvesCurvesCurvesCurves

Linear Regression
■ This is the equivalent of fitting a second degree polynomial

y = + x +θ1x2
θ2 θ3

import numpy as np 
import matplotlib.pyplot as plt 
 
mat = np.loadtxt('polydata.csv',delimiter=';') 
x = mat[:,0] 
y = mat[:,1] 
coefs = np.polyfit(x,y,2) 
 
pxs = np.linspace(0,max(x),100) 
poly = np.polyval(coefs,pxs) 
 
plt.figure(figsize=(12, 8)) 
plt.plot(x,y,'or') 
plt.plot(pxs,poly,'-') 
plt.axis([0,max(x),-1.5,1.5]) 
plt.title('Degree: 2') 
plt.savefig('testplot.png') 
plt.close()
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Linear Regression
■ How to fit curves with something straight?
■ Important idea:
• Add dimensions with nonlinear transformations
• Use something straight in this higher dimension space

Assumption (Inductive Bias)
■ We can adjust the data with polynomials
• (or hyperplanes in higher dimensions after expansion)

Hypothesis Classes
■ Polynomials of some degree
• (or straight surfaces in higher dimensions)
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Curve More!Curve More!Curve More!Curve More!Curve More!Curve More!Curve More!Curve More!Curve More!
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■ Improving the fit with higher polynomials, degree 3
y = + + x +θ1x3

θ2x2
θ3 θ4
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■ Improving the fit with higher polynomials, degree 5
y = + +. . . + x +θ1x5

θ2x4
θ5 θ6



34

Curve moreCurve moreCurve moreCurve moreCurve moreCurve moreCurve moreCurve moreCurve more

■ Improving the fit with higher polynomials, degree 15
y = + +. . . + x +θ1x15

θ2x14
θ15 θ16
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Improving the fit?
■ Degree 15 is probably not a good idea...
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Improving the fit?
■ Degree 15 is probably not a good idea...
Overfitting
■ The hypothesis adjusts too much to the data
■ Training error is small, but increases error outside
■ How can we prevent getting carried away?
■ Next lecture: overfitting
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Supervised learning: Classification and Regression
■ Linear regression: maximum likelihood and least mean squares
■ Polynomial regression is linear regression
• (nonlinear transformation to higher dimensions)

■ Overfitting:
• Nonlinear expansion can go too far

Further reading
■ Bishop, Chapter 1
■ Alpaydin, Section 2.6
■ Marsland, Sections 1.4 and 2.4




