Aprendizagem Automática

2. Introduction to Supervised Learning

Ludwig Krippahl

Summary

- Supervised learning, basic concepts
- Regression and classification
- Fitting curves with Least Mean Squares

Basic concepts

Basic idea

We have a set of labelled data

$$\{(x^1, y^1), \dots, (x^n, y^n)\}$$

We assume there is some function

$$F(X): X \to Y$$

■ The goal of Supervised Learning is to find (from the examples)

$$g(\theta, X): X \to Y$$

- such that $g(\theta, X)$ approximates F(X)
- Supervised because we can compare $g(\theta, X)$ to Y

Training (Supervised learning)

- Ideally, we want to approximate $F(X): X \to Y$ for all X
- But, for now, we'll consider only our Training Set

$$\{(x^1, y^1), \dots, (x^n, y^n)\}$$

- Training Set
- The data we use to adjust the parameters θ in our model.
- More generally: data used to choose a hypothesis
 - Training Error or Empirical Error
- The error on the training set for each instance of θ .
- (Sample Error in Mitchell 1997)

Our ML problem for today:

- \blacksquare Goal: Predict the Y values in our training set
- Performance: minimise training error
- Data: $\{(x_1, y_1), \dots, (x_n, y_n)\}$

Classification and Regression

- In Classification Y is discrete.
- Examples: SPAM detection, predict if mushrooms are poisonous
- Find function to split data in differente sets
- lacktriangle In Regression Y is continuous.
- Examples: predicting trends, prices, purchase probabilities
- ullet Find function that approximates Y

Regression

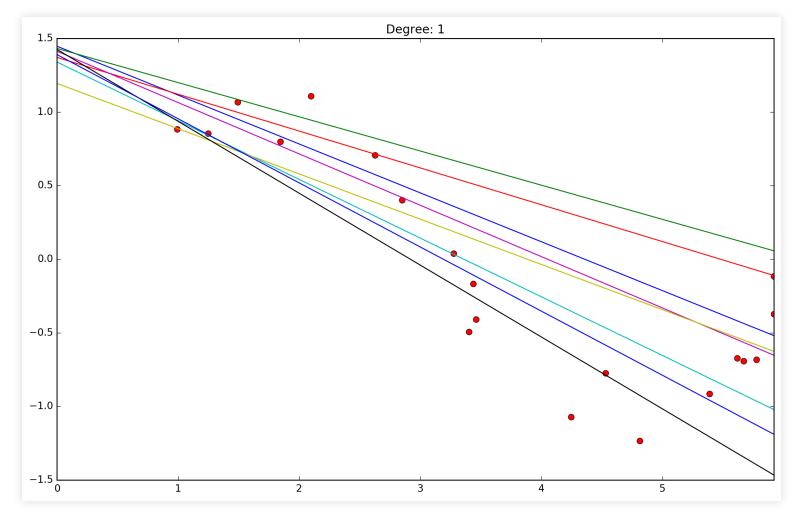
Regression example

Polynomial fitting: a simple example of linear regression.

$$y = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_{n+1}$$

- Example: we have a set of (x, y) points and want to fit the best line: $y = \theta_1 x + \theta_2$
- How to find the best line?

■ How to find the best line?



Finding the best line

Assume y is a function of x plus some error:

$$y = F(x) + \epsilon$$

- We want to approximate F(x) with some $g(x, \theta)$.
- Assuming $\epsilon \sim N(0, \sigma^2)$ and $g(x, \theta) \sim F(x)$, then:

$$p(y|x) \sim \mathcal{N}(g(x,\theta), \sigma^2)$$

- Given $\mathcal{X} = \{x^t, y^t\}_{t=1}^N$ and
- knowing that p(x, y) = p(y|x)p(x)

$$p(X, Y) = \prod_{t=1}^{n} p(x^{t}, y^{t}) = \prod_{t=1}^{n} p(y^{t}|x^{t}) \times \prod_{t=1}^{n} p(x^{t})$$

Finding the best line

- The probability of (X, Y) given some $g(x, \theta)$ is the
- Iikelihood of parameters θ :

$$l(\theta|\mathcal{X}) = \prod_{t=1}^{n} p(x^{t}, y^{t}) = \prod_{t=1}^{n} p(y^{t}|x^{t}) \times \prod_{t=1}^{n} p(x^{t})$$

Likelihood

- Data points (x, y) are randomly sampled from all possible values.
- lacksquare But heta is not a random variable.
- lacktriangle Find the heta that, if true, would make the data is most probable
- In other words, find the heta of maximum likelihood

Maximum likelihood

$$l(\theta|\mathcal{X}) = \prod_{t=1}^{n} p(x^{t}, y^{t}) = \prod_{t=1}^{n} p(y^{t}|x^{t}) \times \prod_{t=1}^{n} p(x^{t})$$

First, take the logarithm (same maximum)

$$L(\theta|\mathcal{X}) = log\left(\prod_{t=1}^{n} p(y^{t}|x^{t}) \times \prod_{t=1}^{n} p(x^{t})\right)$$

• We ignore p(X), since it's independent of θ

$$L(\theta|\mathcal{X}) \propto log \left(\prod_{t=1}^{n} p(y^t|x^t)\right)$$

Replace the expression for the normal:

$$\mathcal{L}(\theta|\mathcal{X}) \propto \log \prod_{t=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-[y^t - g(x^t|\theta)]^2/2\sigma^2}$$

Maximum likelihood

Replace the expression for the normal:

$$\mathcal{L}(\theta|\mathcal{X}) \propto \log \prod_{t=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-[y^t - g(x^t|\theta)]^2/2\sigma^2}$$

Simplify:

$$\mathcal{L}(\theta|\mathcal{X}) \propto \log \prod_{t=1}^{n} e^{-[y^t - g(x^t|\theta)]^2}$$

$$\mathcal{L}(\theta|\mathcal{X}) \propto -\sum_{t=1}^{n} [y^t - g(x^t|\theta)]^2$$

Maximum likelihood

$$\mathcal{L}(\theta|\mathcal{X}) \propto -\sum_{t=1}^{n} [y^t - g(x^t|\theta)]^2$$

Under our assumptions:

Max(likelihood) = Min(squared error):

$$E(\theta|\mathcal{X}) = \sum_{t=1}^{n} [y^{t} - g(x^{t}|\theta)]^{2}$$

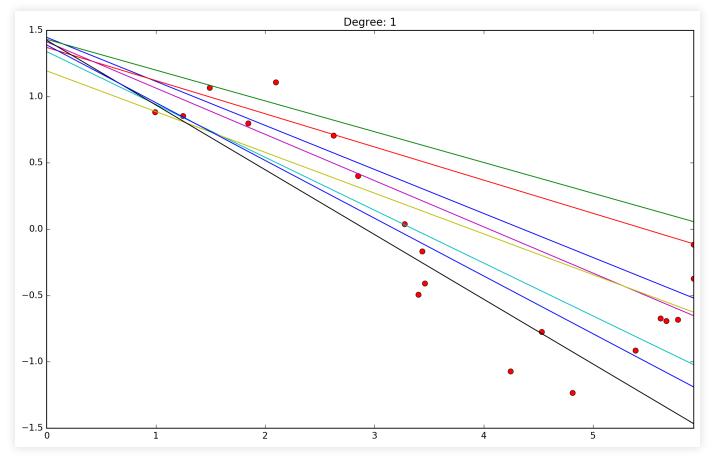
Note: the squared error is often written

$$E(\theta|\mathcal{X}) = \frac{1}{2} \sum_{t=1}^{n} [y^t - g(x^t|\theta)]^2$$

(but this is just for convenience in computing the derivative)

Least Mean Squares Minimization

How to find the best line?



How to find the best line?

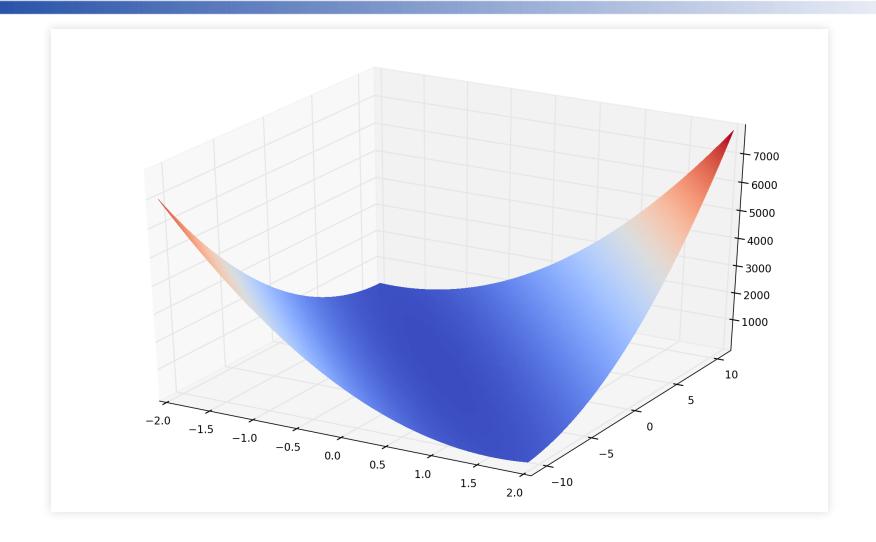
We find the parameters for

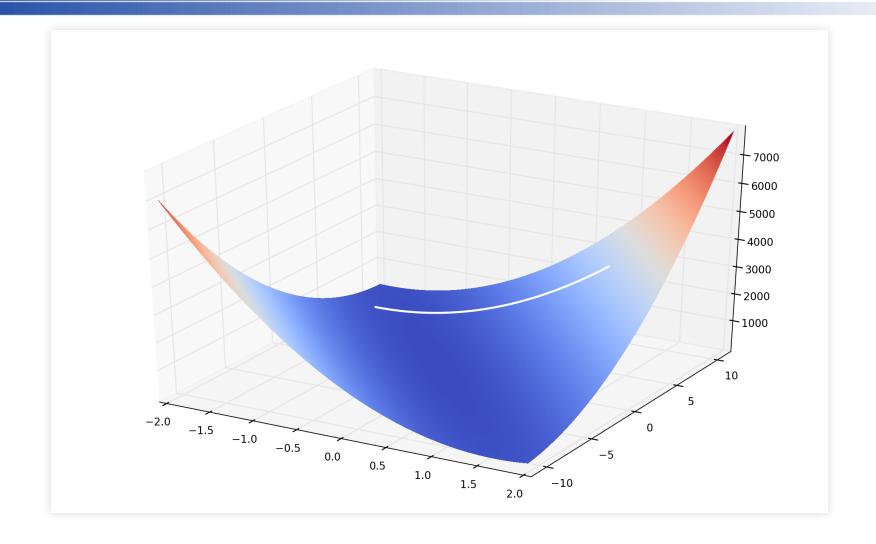
$$g(x) = x\theta_1 + \theta_2$$

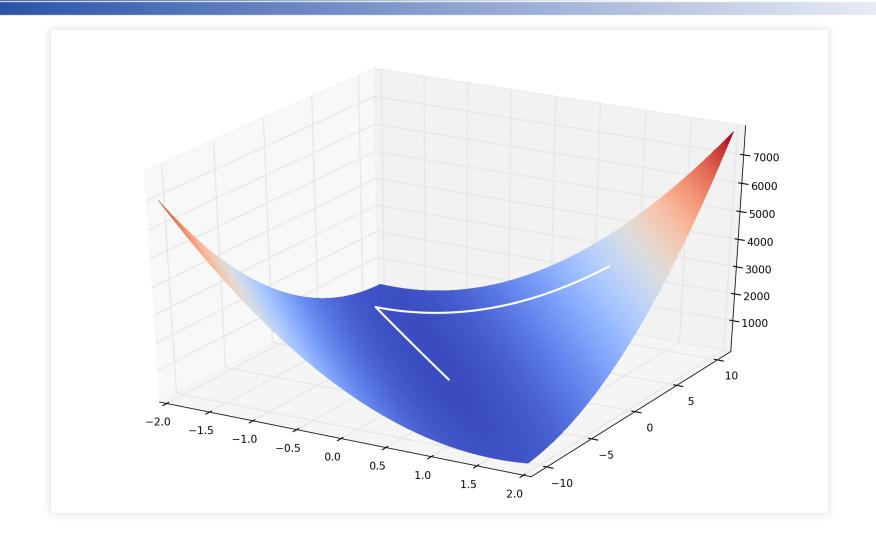
that minimize the squared error

$$E(\theta|\mathcal{X}) = \sum_{t=1}^{n} [y^t - g(x^t)]^2$$

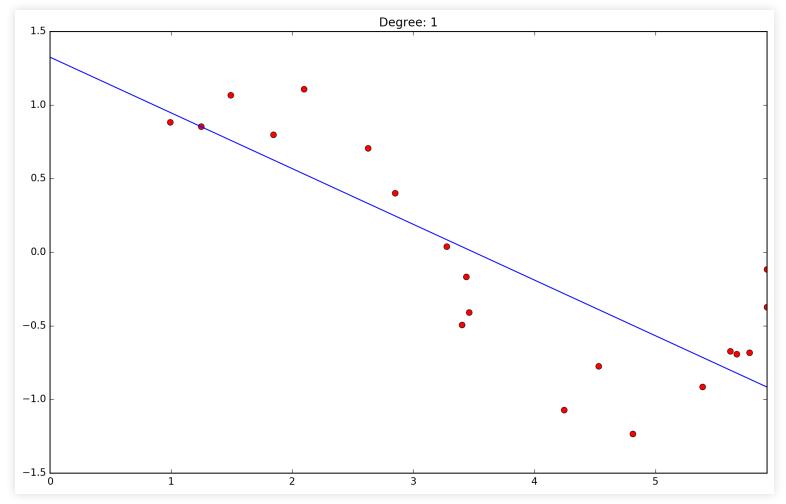
lacktriangle Let's visualise this surface wrt heta







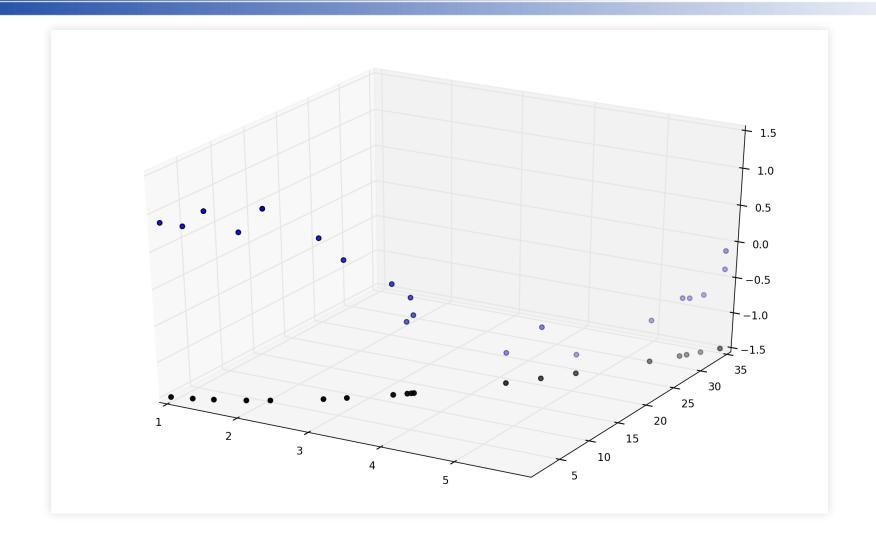
■ This allows us to find the best θ_1 , θ_2 (not a very good model...)



Curves

Linear Regression

- How to fit curves with something straight?
- We can change the data:
- $\mathcal{X}_2 = \{x_1^t, x_2^t, y^t\}$, where $x_1 = x^2$ and $x_2 = x$
 - Using a nonlinear transformation we project the data into a curved surface



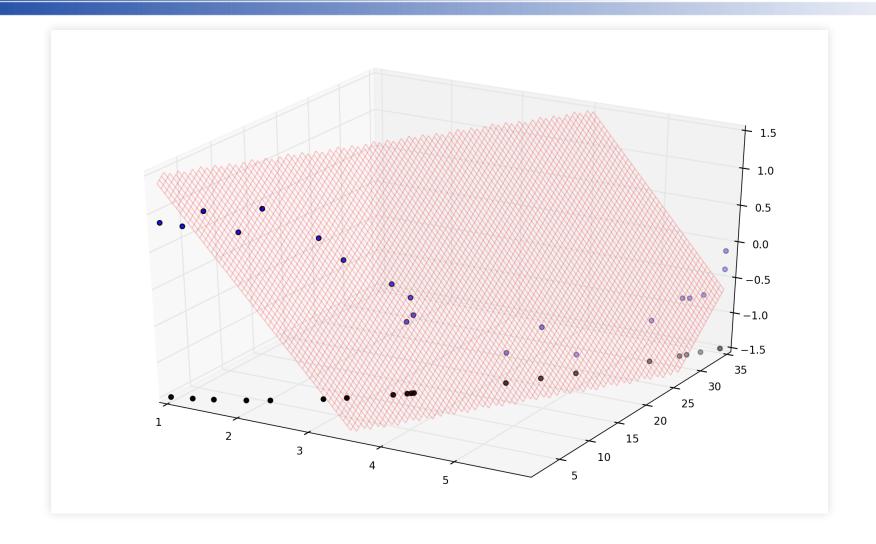
Linear Regression

Now we fit our new data set

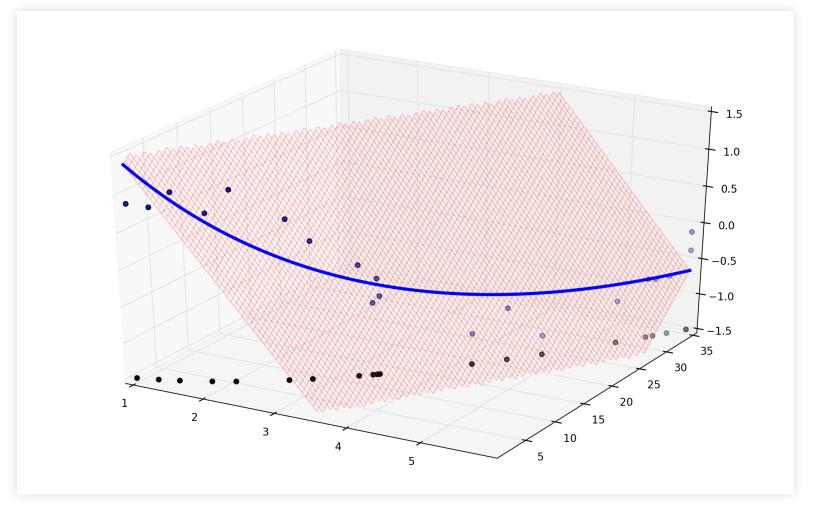
$$\mathcal{X}_2 = \{x_1^t, x_2^t, y^t\}$$

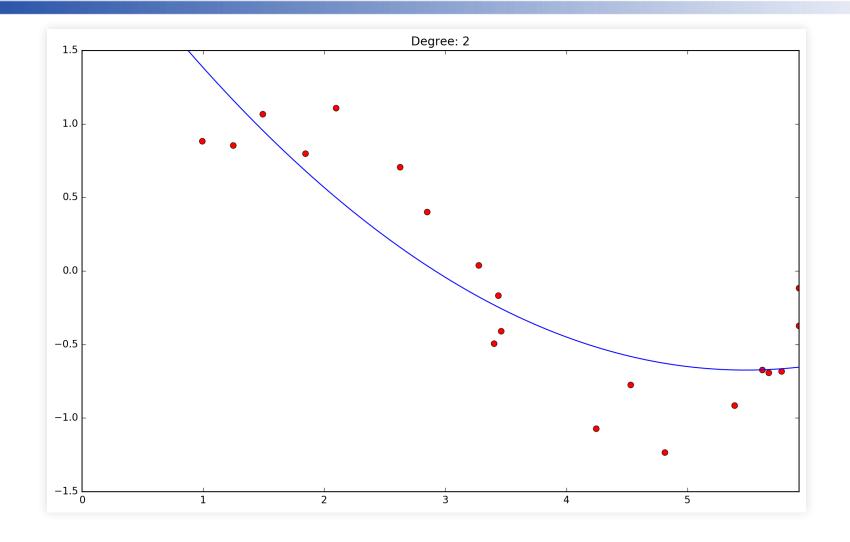
■ With the (linear) model in three dimensions

$$y = \theta_1 x_1 + \theta_2 x_2 + \theta_3$$



■ Then we project it back using $x_1 = x^2$ and $x_2 = x$



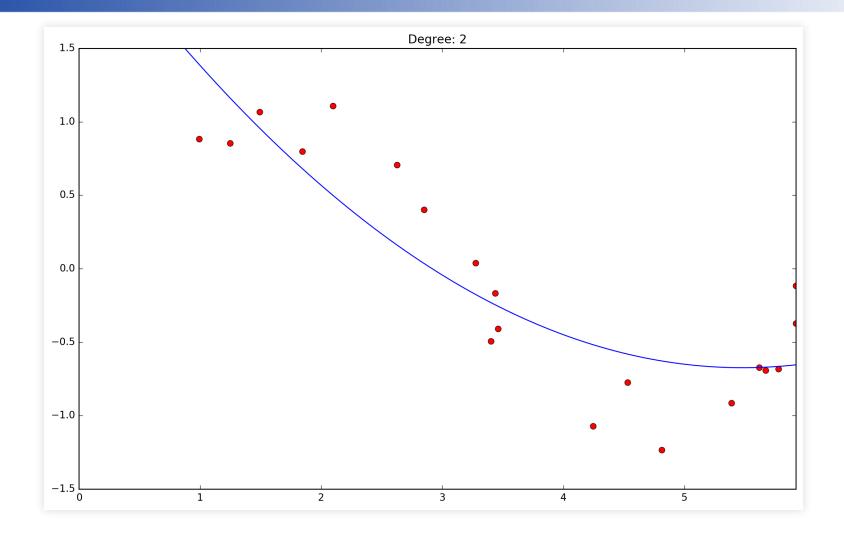


Linear Regression

This is the equivalent of fitting a second degree polynomial

$$y = \theta_1 x^2 + \theta_2 x + \theta_3$$

```
import numpy as np
import matplotlib.pyplot as plt
mat = np.loadtxt('polydata.csv', delimiter=';')
x = mat[:,0]
y = mat[:,1]
coefs = np.polyfit(x,y,2)
pxs = np.linspace(0, max(x), 100)
poly = np.polyval(coefs, pxs)
plt.figure(figsize=(12, 8))
plt.plot(x,y,'or')
plt.plot(pxs,poly,'-')
plt.axis([0, max(x), -1.5, 1.5])
plt.title('Degree: 2')
plt.savefig('testplot.png')
plt.close()
```

Linear Regression

- How to fit curves with something straight?
- Important idea:
- Add dimensions with nonlinear transformations
- Use something straight in this higher dimension space

Assumption (Inductive Bias)

- We can adjust the data with polynomials
- (or hyperplanes in higher dimensions after expansion)

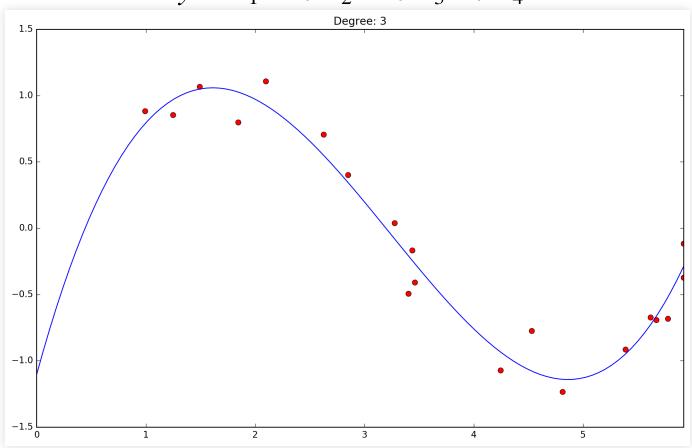
Hypothesis Classes

- Polynomials of some degree
- (or straight surfaces in higher dimensions)

Curve More!

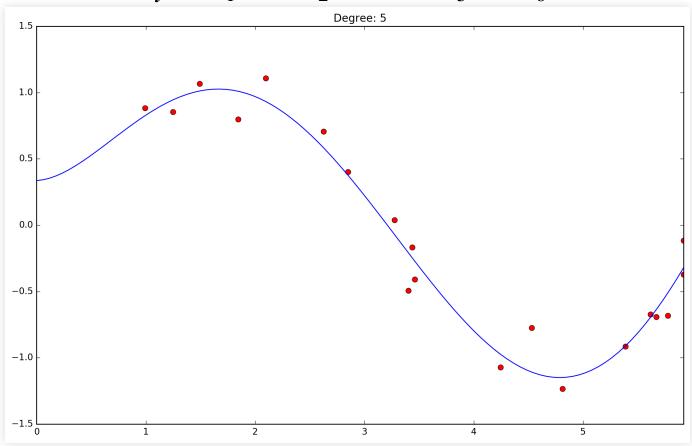
Improving the fit with higher polynomials, degree 3

$$y = \theta_1 x^3 + \theta_2 x^2 + \theta_3 x + \theta_4$$



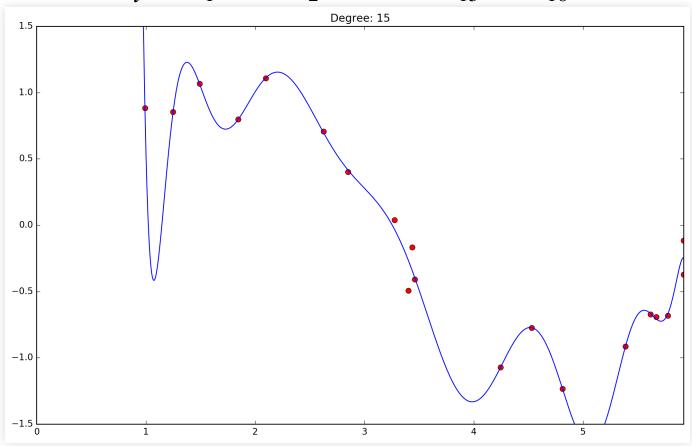
Improving the fit with higher polynomials, degree 5

$$y = \theta_1 x^5 + \theta_2 x^4 + \ldots + \theta_5 x + \theta_6$$



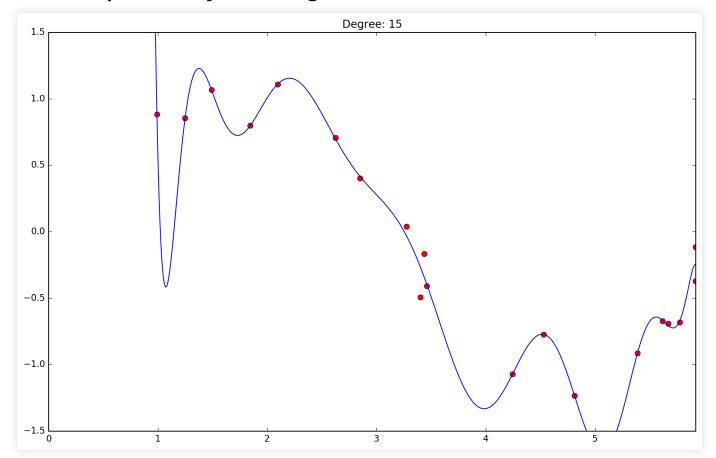
Improving the fit with higher polynomials, degree 15

$$y = \theta_1 x^{15} + \theta_2 x^{14} + \dots + \theta_{15} x + \theta_{16}$$



Improving the fit?

■ Degree 15 is probably not a good idea...



Improving the fit?

Degree 15 is probably not a good idea...

Overfitting

- The hypothesis adjusts too much to the data
- Training error is small, but increases error outside
- How can we prevent getting carried away?
- Next lecture: overfitting

Summary

Summary

- Supervised learning: Classification and Regression
- Linear regression: maximum likelihood and least mean squares
- Polynomial regression is linear regression
- (nonlinear transformation to higher dimensions)
- Overfitting:
- Nonlinear expansion can go too far

Further reading

- Bishop, Chapter 1
- Alpaydin, Section 2.6
- Marsland, Sections 1.4 and 2.4

