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Summary
■ Empirical Risk Minimization
■ Probably Approximately Correct Learning
■ Shattering
■ VC Dimension
Previously, we saw Bias-Variance tradeoff
■ High bias, underfitting; high variance, overfitting
■ How to select? Empirically (cross-validation)
Today:
■ Understand these problems more formally
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Empirical Risk Minimization
■ Loss: how bad our predictions are
• Quadratic error, Brier score, 1-Accuracy, ...

■ Risk: the expected (average) loss
■ Empirical Risk: the measured average loss
■ Empirical Risk Minimization
• Minimize the average loss on the training set

■ True risk: average loss over all data
■ Empirical risk underestimates true risk (true error)
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Empirical Risk and True Risk
■  Union bound :  are random events

■  Hoeffding's inequality : if  are i.i.d. Bernoulli( )

■ The probability of average over  {0,1} events deviating  from the
true probability  decreases with 

, , . . . ,A1 A2 Ak

P( ∪ ∪. . . ) ≤ P( ) + P( )+. . . +P( )A1 A2 Ak A1 A2 Ak

, , . . . ,B1 B2 Bm ϕ

P( = 1) = ϕ =Bi ϕ̂  1

m ∑
i=1

m

Bi

P(ϕ − > γ) ≤ P( − ϕ > γ) ≤ϕ̂  e
−2 mγ2

ϕ̂  e
−2 mγ2

P(|ϕ − | > γ) ≤ 2ϕ̂  e
−2 mγ2

m γ
ϕ m
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Empirical Risk Minimization
■ Consider binary classifiers, 
■ Given  with  examples from  with dist. 
■ The empirical error  (training error) is:

■ The true error  is:

h :  → {0, 1}

S m  

(h) = 1{h( ) ≠ c( )}Ê 
S

1

m ∑
i=1

m

x
i

x
i

E(h) = (h(x) ≠ c(x))Px∼
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Empirical Risk Minimization
■ Suppose binary classifier with parameters 
■ Best parameters can be found by:

■ This is empirical risk minimization  , which is NP-Hard in general but
can be approximated

■ And can bound the true error with Hoeffding's inequality

θ

=   ( )θ ̂  arg min
θ

Ê hθ
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Definitions
■  : set of possible examples (instances)
■  : target function to learn
■  : hypothesis class learner considers
■  : distribution of examples over 
■  : training sample



c :  → {0, 1}



 

S

Learning
■ Learner receives  from  with dist. 

■ Selects  from  minimizing the empirical error:

S  

ĥ  

=   (h)ĥ  arg min
h∈

ES

^
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■ True error of  ish

E(h) = (h(x) ≠ c(x))Px∼D
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True error
■ True error of  is

■ The true error  is not directly observable
■ Learner can only measure the empirical error

■ We cannot reasonably demand zero true error
• Not all possible examples in training, so multiple hypotheses seem correct

• Examples may be misleading in their correlation to the classes.

h

E(h) = (h(x) ≠ c(x))Px∼D

(h) = 1{h( ) ≠ c( )}Ê 
S

1

m ∑
i=1

m

x
(i)

x
(i)
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Probably Approximately Correct Learning
■ Weaker requirements:

■ Approximately correct: 
■ Probably Approximately Correct:

■ Efficient PAC learning: polynomial in , 

E( ) ≤ ϵĥ 

P (E( ) ≤ ϵ) ≥ 1 − δĥ 

ϵ < 1/2 δ < 1/2

1/ϵ 1/δ

Assumptions:
■ Hypothesis class  is finite
■    contains hypotheses with 
■ Train and test examples from 



 E(h) ≤ ϵ

∼ 
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Probably Approximately Correct Learning
■ Consistent hypothesis: classifies training set with no error

■ Version space : set of  s.t. 
■ A consistent hypothesis minimizes empirical error
■ A consistent learner outputs hypotheses in 
■ Version space is -exausted  if

■ The  is not -exausted if

■ (Learner cannot tell this since it only encounters the training set)

 h (h) = 0Ê 
S



ϵ
∀h ∈  E(h) < ϵ

 ϵ
∃h ∈  E(h) ≥ ϵ
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Probably Approximately Correct Learning
■ Probability that no  has ?
■ Consider  with 
• Probability of  consistent with one example 
• Probability of  consistent with  examples 

■ P at least one  consistent with  examples 

■ We don't know , but since 

h ∈  E(h) > ϵ

, , . . . ,h1 h2 hk E(h) > ϵ

h < 1 − ϵ

h m < (1 − ϵ)m

E(h) > ϵ m ≤ k(1 − ϵ)m

P( ∪ ∪. . . ) ≤ P( ) + P( )+. . . +P( )A1 A2 Ak A1 A2 Ak

k k ≤ ||
k(1 − ϵ ≤ ||(1 − ϵ)m )m
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Probably Approximately Correct Learning
■ Since  for :

 

 

■ Upper bound on probability of not discarding all  with 
■ Lower bound on the number of examples for a consistent learner to

learn an hypothesis with error below  with a probability of 

(1 − ϵ) ≤ e
−ϵ 0 < ϵ < 1

k(1 − ϵ ≤ ||(1 − ϵ ≤ ||)m )m
e

−ϵm

P (∃h ∈  : E(h) ≥ ϵ) ≤ ||e−ϵm

h E(h) > ϵ

ϵ 1 − δ

P (E( ) ≤ ϵ) ≥ 1 − δ P (E(h ∈ ) > ϵ) ≤ δ m ≥ (ln )ĥ  1

ϵ

||

δ
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Probably Approximately Correct Learning
■ Upper bound on the error w.r.t.  with probability of m 1 − δ

P (E( ) ≤ ϵ) ≥ 1 − δ m ≥ (ln ) ⇔ ϵ ≤ (ln )ĥ  1

ϵ

||

δ

1

m

||

δ

This assumes . Extending for ( ) = 0ES
^

ĥ  ≥ 0ES
^

■ Training error is the mean of Bernoulli variables:

■ We can use Hoeffding inequalities:

( ) = 1{h( ≠ c( )} =Ê hi

1

m ∑
i=1

m

x
(i)

x
(i) 1

m ∑
i=1

m

Zi

P(ϕ − > γ) ≤ P( − ϕ > γ) ≤ϕ̂  e
−2 mγ2

ϕ̂  e
−2 mγ2

P (E(h) > (h) + ϵ) ≤ES
^

e
−2mϵ2
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Probably Approximately Correct Learning
P (E(h) > (h) + ϵ) ≤ES

^
e

−2mϵ2

■ But this is for one hypothesis. For all :

■ Calling this  and solving for :

• Lower bound on  to ensure generalization error below  with confidence 

• Increases quadratically with  and linearly with log of 

h ∈ 

P (∃h ∈  : E(h) > (h) + ϵ) ≤ ||ES
^

e
−2mϵ2

δ m

m ≥ (ln )
1

2ϵ2

||

δ

|S| ϵ 1 − δ

1/ϵ ||
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Inductive bias
■ We mentioned that all learning algorithms must assume something

about the function to learn (inductive bias). What if they don't?
■ Example: let  be the set of all subsets of , so no inductive bias

as it can represent any function 

■ Thus, 

■ This requires that  be larger than , making generalization
impossible.

 

h :  → {0, 1}

|| = 2||

m ≥ (ln ) ⇔ m ≥ (ln ) ⇔ m ≥ || ln
1

2ϵ2

||

δ

1

2ϵ2

2||

δ

1

2ϵ2

2

δ

m ||
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Bias-Variance tradeoff
■ What is the bound on generalization error  for ERM hypothesis?

■ Let  be the best possible hypothesis from :

■ We know that 

■ And also that  and , so
 

 

E( ) − ( ) =   (h)ĥ  Ê ĥ  ĥ  arg min
h∈

Ê 

h
∗



=  E(h)h
∗ arg min

h∈

P(E( ) ≤ ( ) + ϵ) ≥ 1 − δĥ  Ê  ĥ 

( ) ≤ ( )Ê  ĥ  Ê  h
∗

E( ) ≤ E( )h
∗

ĥ 

P(E( ) ≤ ( ) + ϵ) ≥ 1 − δh
∗

Ê h∗

P(E( ) ≤ E( ) + 2ϵ) ≥ 1 − δĥ  h
∗
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Bias-Variance tradeoff
■ Replacing, with :

■ High bias, large 

• If this term dominates, we have underfitting

■ High variance, large  and 

• If this term dominates, we have overfitting

P = 1 − δ

E( ) ≤ (  E(h)) + 2ĥ  min
h∈

ln
1

2m

||

δ

‾ ‾‾‾‾‾‾‾‾‾√
 E(h)min

h∈

|| 2 ln1
2m

||
δ

‾ ‾‾‾‾‾‾‾√
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Probably Approximately Correct Learning
■ This assumes  is finite:

■ True in some cases (e.g. limited-depth decision trees with
categorical features) but false in general

■ If  is infinite (e.g. discriminants with continuous parameters) then
these limits are uninformative and we need a different approach

||

m ≥ (ln )1

2ϵ2

||

δ

||
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ShatteringShatteringShatteringShatteringShatteringShatteringShatteringShatteringShattering
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■ Many hypotheses may be equivalent:
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■ Instead of the total (infinite) number of hypotheses, we need some
measure of how many hypotheses with different classification
results the learner can generate

Shattering
■ Hypothesis class  shatters set  if, for any labelling , there is a 

 consistent with  (classifies without errors)
■ Example: linear classifier in 2D shatters 3 points

  S

h ∈  S
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■ Example: linear classifier in 2D cannot shatter 4 points
■ There is no way to place 4 points such that all label combinations

can be classified without error
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V-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimension



26

V-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimensionV-C dimension

■ The Vapnik-Chervonenkis dimension of , or , is the size of
the largest set  that  can shatter.

■ There may be sets of size less than  that cannot be
shattered (e.g. two overlapping points, three points in a line, etc) but

 is the size of the largest that can be shattered
■ From , Vapnik et. al. demonstrated that, with 

■ Roughly, size of training set must increase with 

 VC()
 

VC()

VC()

VC() P ≥ 1 − δ

E( ) ≤ ( ) + ( )ĥ  Ê ĥ  ln + ln
VC()

m

m

VC()

1

m

1

δ

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
VC()
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Linear discriminants
■ We saw that we could increase the power of linear discriminants by

increasing the number of dimensions
■ We did this explicitely with logistic regression and saw how SVM do

this implicitely with the kernel trick
■ Linear discriminants of dimension D shatter D+1 points, so 

■ Thus we can improve classification by increasing D
■ But this also requires more data for training, otherwise overfitting

VC() = D + 1
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Summary
■ A solid statistical foundation provides useful intuitions
• Although not used in practice; validation and test provide better estimates

■ Inductive bias: necessary for generalization, so  not too large
■ Bias-Variance tradeoff: best hypothesis vs 
■ Shattering and VC dimension for continuous models
■ Results are not guaranteed, but only probably approximately correct

||

||

Further reading
■ Mitchell, Chapter 7 up to section 7.4 (but outdated)
■ Alpaydin, 2.1 - 2.3




