
Chapter 4

Logistic Regression

Classification and linear separability. Normalization and standardization. The logistic
regression classifier. Linear separability and dimensionality

4.1 Linear separability
In two dimensions, a pair of sets of points is linearly separable if there exists a line that can separate
the two sets. Figure 4.3 shows two pairs of sets of points. These are the plots of the activity of gene
pairs in tumour (red) and normal tissue (blue). The data is from [1]. In the first panel, the sets are
linearly separable, as shown by the line dividing them (the decision boundary). In the second panel
they are not linearly separable, as there is no straight line that can divide the two sets.

Figure 4.1: The left panel shows a linearly separable pair of point sets. The pair of sets shown on the
right is not linearly separable.

In the previous chapters we saw that we can define a straight line with two parameters, in two
dimensions. However, for classification we also need to distinguish between the two sides of the line,
since we want to separate sets of points with the line as a frontier. We can do this by defining the line
with a vector. In this way, the line will consist of all vectors perpendicular to our chosen vector and
the vector will indicate a "positive" side of the line. Generalizing for N dimensions, given a vector ~w
perpendicular to the desired plane and a constant w0, the points belonging to the plane can be found by
this equation:

~wT~x+ w0 = 0
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32 CHAPTER 4. LOGISTIC REGRESSION

Figure 4.2 shows a plane separating two sets of points and the corresponding ~w, plotted on the
plane. Note that the different axis scales make it appear that the vector is not perpendicular to the plane
(but it is).

Figure 4.2: A plane separating the two sets of points. The arrow shows the vector normal to the plane
(note the distortion due to the different axis scales).

The function
y(~x) = ~wT~x+ w0

has a positive value on one side of the dividing hyperplane and a negative value on the opposite side.
This gives us a way to model a linear discriminant separating the two classes. Now we need to find a
way to determine the coordinates for ~w and the constant w0.

4.2 The wrong way: least mean squares
Since the function y(~x) = ~wT~x + w0 is positive on one side of the hyperplane and negative on the
other, if we assign a value of 1 to one class and −1 to the other, we can try to find the place of the best
dividing hyperplane by minimizing the squared error:

E =
N∑
j=1

(y(~xj)− tj)2
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where ~xj are the points in our training set and tj the respective class of each point (1 or -1). Note that
this is the wrong way to solve this problem. However, the result teaches an important lesson about a
difference between regression and classification.

To simplify the computation of y(~x) = ~wT~x+ w0, we can include w0 in ~w and simply add a 1 to
each ~x:

w̃ = (w0, ~w), x̃ = (1, ~x), y(~x) = w̃T x̃

We will use the data set shown in Figure 4.3, which shows a plot of the activity of the guanylate
cyclase activator 2A gene (M97496) versus the activity of the carbonic anhydrase IV gene (M83670)
in normal cells (blue) and tumour cells (red) [1]. Our goal is to find the best frontier between these two
linearly separable sets.

Figure 4.3: Data set for the two classes, tumour and normal, plotting the activity of genes M83670 and
M97496 (standardized, see text).

These data is given in a text file, with the activity of each gene and the class, with 0 for normal and
1 for tumour cells:

-81 10 1

-30 60 1

...

320 1231 0

172 700 0

...

First we read the data and adjust the range of the input values. This is important to bring all values
into similar scales in order to prevent the solver from having to deal with different scales. There are two
main methods of preprocessing data. Normalization is a linear transformation that brings the values of
features into the range [0,1]:

xnew =
x−min(X)

max(X)−min(X)
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where X is the set of all values.
Standardization is a linear transformation that sets the average of the values of features to zero and

the standard deviation of these values to 1:

xnew =
x− µ(X)

σ(X)

When using real data, we should always do some preprocessing. In this case, we will standardize
the data. Note that in real applications we must retain these values because we need to process any
future examples in exactly the same way as we process the training set, using the same scaling factors.

1 import numpy as np

2
3 mat = np.loadtxt(input_data,delimiter=’\t’)

4 Ys = mat[:,[-1]]

5 Xs = mat[:,:-1]

6 means = np.mean(Xs,0)

7 stdevs = np.std(Xs,0)

8 Xs = (Xs-means)/stdevs

Now we create that function that adds the column of ones to the input vector, which originally
contains two columns for the gene activity. We add this column of ones at the end instead of at the
beginning, but the exact placement is indifferent as long as we remember it.

1 import numpy as np

2
3 def expand_features(X):

4 """append a columns of 1

5 """

6 X_exp = np.ones((X.shape[0],X.shape[1]+1))

7 X_exp[:,:-1] = X

8 return X_exp

Then the function that computes the quadratic error comparing the signed distance to a frontier
line and the classes of the examples. Since we want class values of -1 and 1 but the data originally has
classes of 0 for normal and 1 for tumour cells, we need to do some simple algebra to convert this in the
last line. Otherwise, we simply compute the inner (dot) product of the two vectors and compute the
mean squared error from the result.

1 def quad_cost(theta,X,y):

2 """return error value comparing signed distance with y

3 theta is a column of coefficients

4 X is a matrix with one example per row, and a 1 in the last column

5 y is a vector of classes 0 or 1

6 """

7 coefs = np.zeros((len(theta),1))

8 coefs[:,0] = theta

9 vals = np.dot(X,coefs)

10 return np.mean((vals-(2*y-1))**2)

Now we just add the column of ones and minimize the quadratic error:

1 from scipy.optimize import minimize
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2 import matplotlib.pyplot as plt

3
4 X_exp = expand_features(Xs)

5 coefs = np.ones(X_exp.shape[1])

6 opt = minimize(quad_cost,coefs,(X_exp,Ys),tol=0.00001)

7 coefs = opt.x

8 # plot the chart

The result, however, is less than ideal, as shown in Figure 4.4. The reason for this is that point
farther from the decision line will have a larger distance value. Since we are minimizing the squared
error, the learning algorithm will try to reduce the distance between the decision line and the farthest
points. This displaces the decision line away from the actual frontier between the two sets, resulting in
some points being misclassified.

Figure 4.4: Tentative decision line between these two sets computed by minimizing the squared error
between the signed distance and the class label. Note how the decision line is incorrectly placed due to
the effect of the farthest points.

This is a fundamental difference between regression and classification. In regression problems, it
is not desirable to have points distant from the prediction. In classification problems, having points
distant from the decision surface (or line, in two dimensions) is not a problem as long as they fall on
the correct side of the frontier. So for classification we need a different approach.

4.3 Classification by Logistic Regression
We will be using logistic regression as a classifier, with the purpose of obtaining a decision hyperplane
that separates different classes. However, logistic regression is, at heart, a regression model too, as we
will see below.

Let us assume we can find a function of our parameters w̃1 and the features ~x that can tell us the
1Remember that w̃ = (w0, ~w).
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probability of an example with features ~x belonging to class C1:

g(~x, w̃) = P (C1|~x)

We want to find a decision hyperplane where the probability of finding an example of class C1 equals
the probability of finding an example of class C0, assuming there are only these two classes.

P (C1|~x) = P (C0|~x) = 1− P (C1|~x)

which is equivalent to:

ln
P (C1|~x)

1− P (C1|~x)
= 0

Thus, we can write

ln
P (C1|~x)

1− P (C1|~x)
= ln

g(~x, w̃)

1− g(~x, w̃)
= ~wT~x+ w0

Rearranging, we obtain

g(~x, w̃) =
1

1 + e−(~wT ~x+w0)

The function
f(x) =

1

1 + e−k(x−x0)

is called the logistic function and is represented on the right panel of Figure 4.5, for x0 = 0 and k = 1.

Figure 4.5: Comparing the quadratic and the logistic functions.

This function has the useful feature of varying around a threshold value but being nearly constant
away from this threshold. This is what we need to solve the problem we had with the minimization of
the squared error, in which the points farther away were having an undesired effect on the decision
boundary. Note also that this function attempts to approximate the probability of each point ~x being in
class C1. This is why logistic regression is a regression model; when fitting the model we are trying to
approximate this continuous probability function. However, because we also choose a cut-off value
where we separate the two classes — where P (C1|~x) = P (C0|~x)—we turn this regression model into
a classifier. This is a common occurrence in classification, with the classifier model being trained, at
bottom, as a regression model. Since the class of hypotheses we are considering in logistic regression
to separate the classes is the set of all hyperplanes (or planes in 3D and lines in 2D) — i.e. linear
combinations of the features — this is a linear classifier, when used as a classifier.
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Now, given that:
g(~x, w̃) = P (C1|~x)

the likelihood of our parameters w̃, which is the product of the probabilities of the classes of our
examples given our hypothesis, will be

L(w̃|X) =
N∏

n=1

[
gtnn (1− gn)1−tn

]
and the logarithm of the likelihood is

l(w̃|X) =
N∑

n=1

[tn ln gn + (1− tn) ln(1− gn)]

where gn is the result of g( ~xn, w̃) and tn is the true class of point n, which can be 1 or 0.
Thus, the maximum likelihood solution to this problem is the minimum of this cost function:

E(w̃) = −
N∑

n=1

[tn ln gn + (1− tn) ln(1− gn)]

with
gn =

1

1 + e−(~wT ~xn+w0)

To implement this, we write the logistic and logistic cost functions:

1 def logistic(X):

2 """return logistic function of vector X"""

3 den = 1.0 + np.e ** (-1.0 * X)

4 return 1.0 / den

5
6 def log_cost(theta,X,y):

7 """return logistic error value

8 X is a matrix with one example per row, and a 1 in the last column

9 y is a vector of classes 0 or 1

10 """

11 coefs = np.zeros((len(theta),1))

12 coefs[:,0] = theta

13 sig_vals = logistic(np.dot(X,coefs))

14 log_1 = np.log(sig_vals)*y

15 log_0 = np.log((1-sig_vals))*(1-y)

16 return -np.mean(log_0+log_1)

And then minimize this function instead of the quadratic error. The result is much better, as shown
in Figure 4.6.

4.4 Linear separability, revisited
If the classes are not linearly separable, it is impossible to find a straight line that can separate the two
classes. This is illustrated in Figure 4.7, where the standard logistic regression approach of the last
section results in a decision boundary that cannot discriminate between the two classes. In this case,
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Figure 4.6: Logistic regression on the activity of M83670 and M97496 genes.

Figure 4.7: Attempting to separate classes that are not linearly separable (activity of X53416 and
U37019 genes).

the features are the activity of the actin-binding protein gene (X53416) and the smooth muscle cell
calcium binding protein gene (U37019).

However, we can expand our data with an additional feature obtained by (for example) the product
of the two original gene activity values. This function is easy to implement.

1 def poly_3features(X):

2 """append a column with the product of the two first features

3 """

4 X_exp = np.zeros((X.shape[0],X.shape[1]+1))

5 X_exp[:,:-1] = X



4.4. LINEAR SEPARABILITY, REVISITED 39

6 X_exp[:,-1] = X[:,0]*X[:,1]

7 return X_exp

Nowwe load the data, transform it and use the LogisticRegression class from the sklearn.linear_model
module to find the best plane separating the expanded data.

1 mat = np.loadtxt(’gene_data_2.txt’,delimiter=’\t’)

2 Ys = mat[:,[-1]]

3 Xs = mat[:,:-1]

4 means = np.mean(Xs,0)

5 stdevs = np.std(Xs,0)

6 Xs = (Xs-means)/stdevs

7 X_exp = poly_3features(Xs)

8 reg = LogisticRegression(C=1e12, tol=1e-10)

9 reg.fit(X_exp,Ys[:,0])

Now, our linear discriminant will no longer be a line in two dimensions but a plane in three
dimensions, corresponding to the expanded data, as shown in Figure 4.8

Figure 4.8: Gene activity (X53416 and U37019 genes) data expanded to three dimensions and the
decision plane found by logistic regression.

Projecting this decision plane back into the two dimensional space of the original data, we can find
the corresponding decision boundary which is no longer a straight line. This is a similar approach to
the one we saw with linear regression.

This is still not enough to completely separate the two classes, but we can increase the discrimination
power of the classifier by increasing the dimensions used by the logistical regression. For example,
using 7 dimensions, as shown in the code below and Figure 4.10.

1 def poly_7features(X):

2 """append a five columns with the product,

3 square and cube of the first two features

4 """

5 X_exp = np.zeros((X.shape[0],X.shape[1]+5))
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Figure 4.9: Gene activity (X53416 and U37019 genes), decision boundary obtained using a third
feature value obtained from the product of the first two.

6 X_exp[:,:-5] = X

7 X_exp[:,-3] = X[:,0]*X[:,1]

8 X_exp[:,-2] = X[:,0]**2

9 X_exp[:,-1] = X[:,1]**2

10 X_exp[:,-5] = X[:,0]**3

11 X_exp[:,-4] = X[:,1]**3

12 return X_exp

Figure 4.10: Gene activity (X53416 and U37019 genes), decision boundary obtained using a five
additional features computed from the original two.



4.5. SUMMARY 41

Once again, we need to face the possibility of overfitting our data. This will be covered in the next
lecture.

4.5 Summary
In this chapter we covered the notions of linear separability and linear discriminants. We also saw
that finding linear discriminant by minimizing a simple quadratic error did not place the boundary in
the right position. However, we saw that using a logistic function to model the probability of obtaining
examples of each class as a function of the feature vectors and the discriminant allows us to find the
best discriminant by maximum likelihood. We also saw how expanding our features into a feature
space with more dimensions can allow us to use linear discriminants in higher dimensions to separate
classes that are not linearly separable in the original feature space.

4.6 Further Reading

1. Bishop [4], Sections 4.1.1, 4.1.3 and 4.3.2
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