


Chapter 5

Overfitting Logistic Regression

Classification errors. Cross validation. Model selection with cross validation and Logistic
Regression. Regularization in Logistic Regression

5.1 Scoring binary classifiers
In Chapter 3, we saw the difference between the training error, measured on the set of points used to
fit the model; the validation error, measured outside the training set to estimate the error of each of a
number of hypotheses in order to select the best one; and the test error, measured in an another set of
points and remaining an unbiased estimator of the true error because it is never used to fit or select an
hypothesis. In all these cases, we always measured the quadratic error between the predicted and the
target values:

E(θ|X ) =
n∑
t=1

[yt − g(xt|θ)]2

In regression, we used this function to fit the data, validate and test the regression hypotheses.
However, in Chapter 4, we saw that, for classifying data using a linear discriminant defining a hyperplane,
the quadratic error measured as the distance to the discriminant was not the best cost function for
minimization. In Logistic Regression, we used a logistic function to estimate the probability of each
class and then obtained, by maximum likelihood, a cost function to minimize:

E(w̃) = −
N∑
n=1

[tn ln gn + (1− tn) ln(1− gn)]

with
gn =

1

1 + e−(~wT ~xn+w0)

Since gn is our predicted probability of example n belonging to class t = 1, this is actually the
cross-entropy between the probability distribution of our data and the probability distribution of our
predictions. Averaging over all samples, we get the average cross-entropy. This is called the logistic
loss or log loss function:

L(w̃) =
1

N

N∑
n=1

H(pn, qn) = −
1

N

∑
[tn ln gn + (1− tn) ln(1− gn)]
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The lower the log lossfunction the better our hypothesis is at predicting the training data.
Another possible measure is the quadratic error between the probability prediction given by our

hypothesis gn and the class t ∈ 0, 1. This is called the Brier score:

E(w̃) =
1

N

N∑
n=1

[tn − gn]2

Figure 5.1 shows the surface of the predicted probabilities of each point belonging to class 1 and the
points used to fit this model. The quadratic error will be the sum of the squared differences between
this surface and the class value for each point. Note that, in this case, the error is measured not from
the distance to the frontier but from the difference between the class and the estimated probability of
the point belonging to class 1.

Figure 5.1: Surface representing the predicted probability and the points plotted in their classes with
z=0 or z=1.

Another possible error measure is the accuracy of the classifier. Let us suppose we consider that
any point with gn ≥ 0.5 is predicted to be in class t = 1 and any point with gn < 0.5 is predicted to be
in class t = 0. We can consider four different possibilities:

1. True positive: the example belongs to class 1 and was predicted to belong to class 1.

2. False positive: the example belongs to class 0 and was predicted to belong to class 1.

3. True negative: the example belongs to class 0 and was predicted to belong to class 0.

4. False negative: the example belongs to class 1 and was predicted to belong to class 0.

Schematically, we can represent these four possibilities with a confusion table:

Examples
Class 1 Class 0

Predictions Class 1 True Positive False Positive
Class 0 False Negative True Negative
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The accuracy of a binary classifier over a set of N points is thus:

accuracy =
true positives+ true negatives

N

Considering this classification, we can also define the precision and recall of the classifier:

precision =
true positives

true positives+ false positives
recall =

true positives

true positives+ false negatives

In other words, precision is the fraction of correctly classified positive examples in all examples
classified as positive (correctly or not), whereas recall is the fraction of correctly classified positive
examples from the set of all positive examples. This gives us another useful measure of the performance
of a classifier, the F1 score, which is the harmonic mean of precision and recall:

F1 =
2× true positives

2× true positives+ false positives+ false negatives

F1 = 2
precision× recall
precision+ recall

Although the usual approach is to consider that gn ≥ 0.5 predicts a point in class 1 (positive), we
can change the value of this threshold and consider a more general approach of predicting the positive
class at gn ≥ α, α ∈ [0, 1]. Figure 5.2 shows the effect of drawing the frontier at different values of α
and then plotting the number of true and false positives as a function of α. If α is too small, all points
will be classified as being in the positive class, so there will be a maximum number of true and false
positives. As α increases, the false positives should start decreasing first. When α is too high, then all
points are classified as being in the negative class, which means there are no false positives but no true
positives either.

Figure 5.2: The left panel shows different contours of the probability of finding class 1 (in red). The
right panel shows the true positives and false positives as a function of the threshold α.
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Using this variation in the fraction of true positives and false positives as a function of the threshold,
we can also evaluate a binary classifier by plotting a receiver operating characteristic curve, or ROC
curve1. The ROC curve is plotted by computing the fraction of true positives and false positives at
different score thresholds. A classifier performs all the better the greater the fraction of true positives
relative to the false positives for different threshold levels. In other words, the larger the area below the
ROC curve the better the classifier’s performance. Figure 5.3 shows an example of a ROC curve.

Figure 5.3: A ROC curve.

Classifiers in the Scikit-Learn offer a score(X,Y) method that returns the accuracy score for the
classifier computed on the given data. From this score, we can also compute the error as one minus the
accuracy.

1 from sklearn.linear_model import LogisticRegression

2
3 reg = LogisticRegression()

4 reg.fit(X_r,Y_r)

5 test_error = 1-reg.score(X_t,Y_t)

5.2 Cross-Validation and Model Selection
In Chapter 3 we saw a simple way to solve the overfitting problem, which was to select the hypothesis
that had a smaller validation error. To do this we split our data set into a training set and validation
set (and, if desired, a test set to estimate the true error of the selected hypothesis). However, all these
estimates are random samples from some probability distribution and we can improve them by averaging
over several repetitions. Furthermore, doing validation in that way only allowed us to evaluate specific
hypotheses and not the models themselves. Cross-validation solves these problems.

1The name comes from the original use of this method, which was to optimize the detection rate of aircraft in radar
signals during the second world war
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To do cross-validation, we partition our data into a number of disjoint folds. For example, if we
have 50 points and want to use 5-fold cross-validation, we place 10 points into each fold. Then we
train our model with all folds but one, validate on the fold that was left out, and repeat for all folds. In
the end we average the validation error and this gives us an estimate of the true error that, on average,
hypotheses generated from this model will have on this type of data. Figure 5.4 shows an example of
5-fold cross validation using the gene expression data. Each panel shows an hypothesis obtained by
fitting the model to four of the folds (indicated by the smaller points) and then validating using the fold
left out.

Figure 5.4: Example of 5-fold cross validation, showing the plots for folds 1, 2 and 5. In each panel,
one of the folds is left out for validation, the other folds are used for training. The larger points are
those used for validation in each fold. The training and validation errors are kept for each fold and then
averaged in the end.

In general, k-fold cross-validation can be done with any number of folds from two to the number of
data points. In this last case, it is called leave-one-out cross-validation.

To illustrate this, consider the data set in Figure 5.5. We want to find the best model to separate
these data with a logistic regression. First, we load the data, shuffle the order of the points randomly,
and then we set aside a third of the data points for the final error evaluation (the test set). Ordering the
points at random is often necessary to eliminate any correlations in the data set. For example, in this
case, all positive class examples are first in the file. We also standardize the features.

1 import numpy as np

2 from sklearn.utils import shuffle

3
4 mat = np.loadtxt(’dataset_90.txt’,delimiter=’,’)

5 data = shuffle(mat)

6 Ys = data[:,0]

7 Xs = data[:,1:]

8 means = np.mean(Xs,axis=0)

9 stdevs = np.std(Xs,axis=0)

10 Xs = (Xs-means)/stdevs

Wewill select the best model using 10-fold cross-validation on the training set. The different models
to consider are different expansions of the original data, x1, x2, x1, x2, x1 × x2, x1, x2, x1 × x2, x21, ...,
each resulting in a model with a different number of features. To do this, we expand the original
features polynomially into a matrix of 16 features. Please note that this is not a common use of logistic
regression. Explicitly expanding features like this is not very efficient; there are better algorithms for
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this that we will see later. However, this exercise is useful to help understand the idea of transforming
the examples so that they become linearly separable.

1 def poly_16features(X):

2 """Expand data polynomially"""

3 X_exp = np.zeros((X.shape[0],X.shape[1]+14))

4 X_exp[:,:2] = X

5 X_exp[:,2] = X[:,0]*X[:,1]

6 X_exp[:,3] = X[:,0]**2

7 X_exp[:,4] = X[:,1]**2

8 #... rest of the expansion here

9 return X_exp

As we saw previously, the larger the dimension into which we expand the original data, the easier it
is to separate the classes in the training set but the more likely the model is to overfit the data. So, we
partition the training set into 10 folds, train each model 10 times, leaving out one fold for validation
and average the training and validation error. In this case, we estimate the error using the Brier score,
which is the average square difference between the class value and the predicted probability of each
point being in class 1. This is easy to do with the sklearn library. First we create a function that
returns the training and test error given a data set and the indexes of the training and test points, using
the number of features indicated.

1 from sklearn.linear_model import LogisticRegression

2
3 def calc_fold(feats, X,Y, train_ix,test_ix,C=1e12):

4 """return classification error for train and test sets"""

5 reg = LogisticRegression(penalty=’l2’,C=C, tol=1e-10)

6 reg.fit(X[train_ix,:feats],Y[train_ix,0])

7 prob = reg.predict_proba(X[:,:feats])[:,1]

8 squares = (prob-Y[:,0])**2

9 return (np.mean(squares[train_ix]),

10 np.mean(squares[test_ix]))

This function fits the logistic regression classifier to the training set, then predicts the probabilities
for all the set and returns the mean squared error for the training and test sets. Note that the computation
of the Brier score by subtracting the predicted probability and the class assumes that classes are 0 and
1. If the class labels are not 0 and 1 we must convert them to these values.

Now we use the KFold class to generate an iterator for the training and validation sets. Here is an
example of how a Kfold object works:

1 from sklearn.model_selection import KFold

2
3 x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

4 kf = KFold(n_splits=4)

5 for train, valid in kf.split(x):

6 print (train, valid)

7
8 [ 3 4 5 6 7 8 9 10 11] [0 1 2]

9 [ 0 1 2 6 7 8 9 10 11] [3 4 5]

10 [ 0 1 2 3 4 5 9 10 11] [6 7 8]

11 [ 0 1 2 3 4 5 6 7 8] [ 9 10 11]



5.3. CROSS-VALIDATION AND REGULARIZATION 49

We expand the data to the maximum number of features, leave out one third of the data for testing
and then loop through the range of features. For each model, we iterate through the 10 different folds
to do the cross-validation, printing the average training and validation errors:

1 from sklearn.model_selection import train_test_split, StratifiedKFold

2
3 Xs=poly_16features(Xs)

4 X_r,X_t,Y_r,Y_t = train_test_split(Xs, Ys, test_size=0.33, stratify = Ys)

5 folds = 10

6 kf = StratifiedKFold(n_splits=folds)

7 for feats in range(2,16):

8 tr_err = va_err = 0

9 for tr_ix,va_ix in kf.split(Y_r,Y_r):

10 r,v = calc_fold(feats,X_r,Y_r,tr_ix,va_ix)

11 tr_err += r

12 va_err += v

13 print(feats,’:’, tr_err/folds,va_err/folds)

Figure 5.5 illustrates the ten hypotheses obtained for each of two models, with 2 and 6 features, and
the mean training and validation errors.

Figure 5.5: Example dataset. The first panel shows the full data set, with positive class (1) in red,
negative class (0) in blue. The next two panels show the training set, used in cross-validation. The
lines show the 10 different hypotheses obtained during the 10-fold cross-validation. The training and
validation errors are the average for the 10 folds.

Figure 5.6 shows the average training and validation error measured for the set of models considered,
with expansions of up to 15 features. In this case, we can see that the best model appears to be the one
with 9 features. We now train this model with all the points in the training set and estimate the true
error with the test set. Even though the cross-validation error, by itself, is not biased, since we used
cross-validation to select the best model we now need to estimate the true error of the best model with
examples outside the training set. The hypothesis obtained from the best model trained on the whole
training set and the error estimate obtained with the test set is shown on the right panel of Figure 5.6.

5.3 Cross-Validation and Regularization
We can also use cross-validation to find parameters, such as when optimizing regularization. The
LogisticRegression class can take a regularization parameter, C, which, when using a L2 type
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Figure 5.6: The left panel shows the average training and validation error as a function of the number
of features in the model. The right panel shows the best model (9 features) trained with the whole
training set and tested with the test set (larger points).

regularization, as we saw before with ridge regression, corresponds to 1
λ
. So our regularization term in

this case will be
1

C

m∑
j=1

w2
j

where wj are the coefficients for the hyperplane separating the classes.
Penalizing the hyperplane will force the coefficients of w̃ to be smaller. This affects the slope of the

logistic function:

g(~x, w̃) =
1

1 + e−w̃T ~x

Without regularization, w̃ can be as large as necessary and the logistic function can be very sharply
sloped, allowing the discriminant to be placed very close to the data points. In this example below
we can see that, without regularization, the logistic function is steep enough to separate these classes
perfectly:

However, this is probably over-fitting the data since the sole blue point close to the red class is likely
to be an outlier and not representative of the data in general. If we regularize the logistic regression
classifier, the regularization will force w̃ to be smaller and thus decrease the slope of the logistic function.
This forces the margins around the discriminant to be wider, which in turn forces the discriminant away
from the larger number of red class points:
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Figure 5.7: Arbitrarily steep logistic function, without regularization.

Figure 5.8: Regularization reduces the size of coefficients, making the logistic function less steep.

Figure 5.9 shows the average training and validation error measured for different values of C, from
10−5 to 1015, always using the model with 15 features, for the original data set shown in Figure 5.5. The
right panel shows the result of fitting the model using a C value of 105 to all the points in the training
set and then testing with the test set we left out in the beginning.
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Figure 5.9: The left panel shows the cross-validation error plotted against log10(C) for the 15 features
model. The right panel shows the 15 features model regularized with C = 105 trained on the complete
training set.

5.4 Summary
In this chapter we saw different ways of scoring classifiers, coveredmodel selectionwith cross-validation
and also saw how to use cross-validation to find the best regularization parameter.

5.5 Further Reading

1. Alpaydin [2], Section 2.7
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