

Chapter 7

Naïve Bayes

Bayes Classifier and Naïve Bayes Classifier. Parametric and non-parametric models.
Generative vs Discriminative classifiers. Comparing classifiers.

7.1 Bayes rule
Let us imagine we have two random variables, X and Y . The probability of X = xi and Y = yj is
called the joint probability and is represented as:

p(X = xi, Y = yj)

The probability of X = xi is the sum of the joint probabilities of all Y values and X = xi:

p(X = xi) =
N∑
j=1

p(X = xi, Y = yj)

This is called the sum rule of probability. If we imagine representing the possible values of X and
Y in a matrix counting the probability of each combination, p(X = xi) is obtained by summing the
respective column. This is called the marginal probability because we can imagine summing it on the
margin of the matrix with the joint probabilities, as shown in Table 7.1.

The conditional probability for Y = yj given that X = xi, written p(Y = yj|X = xi), is the
proportion of p(X = xi, Y = yj) to p(X = xi):

p(Y = yj|X = xi) =
p(X = xi, Y = yj)

p(X = xi)

This means that
p(X = xi, Y = yj) = p(Y = yj|X = xi)p(X = xi)

This is the product rule, which relates the joint probability distribution to the conditional and marginal
probabilities. More briefly, these rules can be summarized as follows:

sum rule p(X) =
N∑
j=1

p(X, Yj)

product rule p(X, Y) = p(Y |X)p(X)

61

62 CHAPTER 7. NAÏVE BAYES

Table 7.1: Joint and Marginal probabilities

Y X 1 2 3 4 P(Y)
2 0,06 0,026 0,051 0,012 0,189
3 0,045 0,001 0,046 0,016 0,152
4 0,035 0,015 0,065 0,045 0,218
5 0,006 0,033 0,057 0,039 0,157
6 0,029 0,004 0,054 0,035 0,127
P(X) 0,175 0,079 0,273 0,147

This table shows the joint probabilities for different combinations of X and Y . The marginal
probabilities are computed on the margins by summing the respective rows and columns.

Given that joint distributions are symmetric, p(Y,X) = p(X, Y) (just transpose the matrix on
Table 7.1), applying the product rule we can obtain Bayes’ rule:

p(Y,X) = p(X, Y)⇔ p(Y |X)p(X) = p(X|Y)p(Y)⇔ p(Y |X) =
p(Y)p(X|Y)

p(X)

A frequentist interpretation will see these probabilities as the frequency of random events in the limit
of an infinite number of trials. For example, saying that a coin has a 50% probability of falling “tails”
means that, as the number of trials grows to infinity, the fraction of “tails” will tend towards 0.5. But a
Bayesian interpretation of probabilities sees the probability values as a measure of our knowledge about
the propositions. Under this interpretation, we can see Bayes’ rule as telling us that the probability
of hypothesis Y being true (i.e. our knowledge of Y) given evidence X , which is p(Y |X), has been
modified relative to the prior probability of Y , which is p(Y), by the probability of X given Y , or the
likelihood of Y , written p(X|Y), normalized by the probability of the data X .

This interpretation allows us to consider the probability of an example x belonging to class c as the
conditional probability of class C given the features of x: p(C = c|X = x), which would not make as
much sense in a frequentist interpretation, unless we assumed the class was determined by the features
only with some probability.

7.2 Bayes Classifier
Using Bayes’ rule, we can write that the probability of an example with feature vector x belonging to
class c is:

p(C = c|X = x) =
p(C = c)p(X = x|C = c)

p(X = x)

In other words, the probability of x belonging to c is the prior probability of any point belonging to c
multiplied by the likelihood of C = c and divided by the probability of drawing example x at random.
Since the probability of drawing example x does not depend on our classifier, we can simplify this
expression to:

p(C = c|X = x) ∝ p(C = c)p(X = x|C = c)

But we know from the product rule that p(C = c)p(X = x|C = c) is the joint distribution p(C =

c,X = x). So if we can compute the joint distribution of the classes and examples, we can choose the

7.3. NAÏVE BAYES CLASSIFIER 63

best class for each example. This is the Bayes classifier:

CBayes = argmax
c∈{0,1,...,N}

p(C = c,X = x)

The Bayes classifier is ideal in the sense that it minimizes the probability of misclassifying an example.
However, it is generally not feasible to compute the joint probability of the classes and features. To
understand this, imagine we want to predict if a person has diabetes. We start with a sample of healthy
and diabetic individuals and have each fill in a questionnaire with 20 questions on exercise practices,
food, smoking, other diseases and so on. Even if the questions are only “yes” or “no”, 20 questions gives
us about a million combinations. To obtain a reasonable estimate of the joint probability distribution
of classes (diabetic or healthy) and all combinations of possible answers we would need millions of
volunteers and questionnaires. Without simplifying assumptions we cannot do this. In short, although
the Bayes classifier is the ideal classifier in theory, in practice it is generally impossible to use.

7.3 Naïve Bayes Classifier
In the previous section, we saw that we can predict the class of an example by finding the maximum of
the joint probability of each class and the features of that example. We can decompose this using the
product rule as follows, considering x1, ..., xn to be the components of the feature vector and Ck the
probability of the example being in class k:

p(Ck, x1, x2, ..., xn) = p(Ck)p(x1|Ck)p(x2|Ck, x1)...p(xn|Ck, x1, x2, ..., xn−1)

Variables A,B are conditionally independent given X if:

p(A,B|X) = P (A|X)P (B|X)

That is, if their joint probability conditioned on the other variable is just the product of their probabilities
conditioned on that other variable.

An example of conditional independence could be the time two persons living in the same neigh-
bourhood arrive at home from work. These variables may not be independent because, whenever there
is a strike in the public transport system, both will arrive later. So if one arrives late it is more likely
that the other arrived late too. However, if we know that there was such a strike, then knowing when
one of them arrived home gives us no new information about when the other will arrive, and thus the
two are independent if we know if there was or was not a strike.

So, if we assume that the feature values x1, ..., xn are conditionally independent given the class, it
follows that:

p(xn|Ck, x1, x2, ..., xn−1) = p(xn|Ck)

for any n. This allows us to greatly simplify the computation of the joint distribution:

p(Ck, x1, x2, ..., xn) = p(Ck)
N∏
j=1

p(xj|Ck)

or, if we take the logarithms to prevent numeric overflow or underflow problems:

ln p(Ck, x1, x2, ..., xn) = ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

64 CHAPTER 7. NAÏVE BAYES

This means that our classifier can be:

CNaïve Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

This is called the Naïve Bayes classifier because of the assumption that all features are conditionally
independent on the class. In general, this is not true. However, since we are not concerned with the
absolute probability values but merely with finding the class that maximizes these values, the Naïve
Bayes classifier tends to work rather well. In addition, it is very easy to apply. If we consider again
the diabetes example of the previous section, for a Naïve Bayes classifier we would only need to find
the probability distribution of each feature given the class. So we would only need to compute the
proportions of yes and no for each answer in all questionnaires given to healthy subjects and the same for
all questionnaires given to diabetic subjects. This should easily be done with a few dozen questionnaires
instead of millions.

7.4 Naïve Bayes, example 1: continuous features
Let us consider a data set where each point has two continuous features and belongs to one of two
classes. To train a Naïve Bayes classifier, we need to determine the conditional probability distribution
of each feature given each class. With features that have continuous values we have several options.
One is to use a parametric model. For example, if we assume that a feature is a normally distributed
random variable when conditioned on the class, we can compute its probability distribution using the
normal distribution:

p(xj|Ck) =
1

σk
√
2π
e
− (x−µk)

2

2σ2
k

where µk and σk are, respectively, the mean and standard deviation of the values of feature xj for
all points in class Ck. This is a parametric model because the model is completely determined by
a specific set of parameters, and there are different probability distributions that we can consider.
Alternatively, we can use a nonparametric model for the distribution. This is a model that, even though
it can have parameters, it is not completely determined by the parameters. A histogram is an example
of a nonparametric model. It has one parameter – the size of the bins used to partition the values – but
it cannot be completely determined by that parameter, since we also need to count the values. Another
example of a nonparametric model for these distributions is a Kernel Density Estimator, as we saw in
Section 6.6. Figure 7.1 compares these three models for finding the distribution of one feature from
one of the classes of our data set.

A kernel density estimator seems to be the best option, and it generally is unless we know the
distribution function and can use a parametric model. So now we load the data and find the distributions
for each of the two features in each of the two classes. The product of these distributions, for each class,
is our estimate of the joint probability distribution under the naïve assumption that the features are
conditionally independent given the class, which is the assumption used in the Naïve Bayes classifier.
Figure 7.2 shows the data, the four KDE computed (two classes times two features) and the 3D plot
showing the products of the probability distributions for each class, which, under the assumption of
conditional independence, are the estimates of the joint probability distributions of the features given
each class. The KDE was computed using a gaussian kernel and the Nadaraya-Watson estimator, as
illustrated in Section 6.6.

7.4. NAÏVE BAYES, EXAMPLE 1: CONTINUOUS FEATURES 65

Figure 7.1: Different distribution estimates for one feature in one class of our data set. The data values
are in one dimension, and represented with Y = 0.1 just to make it easier to see them.

Figure 7.2: Kernel density estimation of the four distributions and the estimated joint distributions con-
ditioned on the class (red or blue) under the Naïve Bayes assumption that the features are conditionally
independent given the class. Note that the Z scale in the vertical plot was normalized to a maximum of
1 so the shape of the product plots are easier to see.

Now we just need to consider the proportion of red and blue class points in our data (the p(Ck)

term and find, for each point to classify, the class that maximizes:

CNaïve Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

However, the KDE we used has one parameter h, which determines the width of the kernel function,

66 CHAPTER 7. NAÏVE BAYES

and different values of h lead to different classifiers. Figure 7.3 shows the result of the classifier with
different values of h.

Figure 7.3: The Naïve Bayes classifier trained with this data set using different values of h for the KDE.
In each panel, the top-left plot depicts the kernel function resulting from the respective h value.

To determine the best value we can use cross-validation. Figure 7.4 shows the result of 10-fold
cross validation, depicting the training and validation errors as a function of the value of h. The best
value, minimizing the validation error, was h = 1.8. The right panel shows the classifier retrained with
the complete training set and using h = 1.8 for the kernel density estimators.

Figure 7.4: Cross-validation results and the final Naïve Bayes classifier for h = 1.8.

7.5 Naïve Bayes, example 2: categorical featues
For this example, we will be using a data set describing mushroom samples with 22 categorical features,
each labelled as edible or poisonous1. We will be using a Naïve Bayes classifier to try to predict if a
mushroom is edible. The features are all categorical and described in a features file:

1From the UCI machine learning repository: http://archive.ics.uci.edu/ml/datasets/Mushroom

http://archive.ics.uci.edu/ml/datasets/Mushroom

7.5. NAÏVE BAYES, EXAMPLE 2: CATEGORICAL FEATUES 67

1. cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s

2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

[...]

21. population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y

22. habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d

The data is stored as strings with one sample per line. The first character indicates the class, with
p for poisonous and e for edible. The rest of the line indicates the value for each feature with the
corresponding character codes, separated by commas.

p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u

e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g

e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m

p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u

e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g

[...]

First we will load the information on the possible values for each feature. We will also add a possible
value of “?” because, in some cases, the value is missing and missing values are indicated by this
character. This function reads all the lines in the features file (specially modified so that each feature
description is in a single line in the text file), splits each line on the = character and stores the following
character.

1 def get_features():

2 lines = open(’agaricus-lepiota.features’).readlines()

3 features = []

4 for lin in lines:

5 ft_vals = ’?’

6 fragments = lin.split(’=’)

7 for frag in fragments[1:]:

8 ft_vals = ft_vals+frag[0]

9 features.append(ft_vals)

10 return features

With the list of strings describing the possible values for the features, we can now load the data.
This function removes the commas separating the attribute values then fills in a matrix with the index
of each code. Before returning the features and class matrices, this function also shuffles the ordering
of the rows. The purpose of this is to remove any correlations present in the ordering of the data file.

1 def load_data(features,class_codes):

2 lines = open(’agaricus-lepiota.data’).readlines()

3 feat_vals = np.zeros((len(lines),22)).astype(int) # to store indexes

4 classes = np.zeros(len(lines))

5 for row,lin in enumerate(lines):

6 s = lin.replace(’,’,’’).strip()

7 classes[row] = class_codes.index(s[0])

8 for column,fv in enumerate(s[1:]):

9 feat_vals[row,column] = features[column].index(fv)

10 ixs = list(range(feat_vals.shape[0]))

11 np.random.shuffle(ixs)

12 return feat_vals[ixs,:],classes[ixs]

68 CHAPTER 7. NAÏVE BAYES

Now we can estimate the conditional probability distributions of the values for each feature given
the class. The following function receives the feature value matrix and the list of possible codes for each
feature. Since the features are all categorical, it is best to use histograms. The only detail to remember
here is to avoid having values with a probability of zero. This can happen if the value is absent from the
training set. To prevent this, we can use additive smoothing. Instead of simply computing the fraction
of occurrences of each value, we also add a constant α:

p̂(xj = k) =
count(k) + α

N + αd

where d is the number of possible values in feature j. This function creates a list of vectors, each vector
counting the occurrences of the different possible values of the corresponding feature, starting with 1
as the value of the α constant. After counting, the function computes the logarithm of the fraction for
each value. Logarithms are useful in this case so we can sum instead of multiplying the values.

1 def make_hists(data,features):

2 hists = []

3 for feat in features:

4 hists.append(np.ones(len(feat)))

5 for row in range(data.shape[0]):

6 for column in range(data.shape[1]):

7 hists[column][data[row,column]] +=1

8 for ix in range(len(hists)):

9 hists[ix] = np.log(hists[ix]/float(data.shape[0]+len(features[ix])))

10 return hists

Now we need to load the data and split it into a training and test set. Previously, we have done
this with random sampling, which consists of splitting the sets at random. However, it is best to have
the same proportion of the two classes in the training and test set. So this time we will use stratified
sampling. First we split the data in two sets, corresponding to the edible and poisonous examples.
Then we draw the same fraction of each set for the test set. Since the load_data function shuffles the
examples at random, this is easy to do by simply splitting the matrices in two.

1 def split_data(features,test_fraction):

2 feat_vals,classes = load_data(features,’ep’)

3 edible = feat_vals[classes==0,:]

4 poison = feat_vals[classes==1,:]

5 e_test_points = int(test_fraction*edible.shape[0])

6 e_train = edible[e_test_points:,:]

7 e_test = edible[:e_test_points,:]

8 p_test_points = int(test_fraction*poison.shape[0])

9 p_train = poison[p_test_points:,:]

10 p_test = poison[:p_test_points,:]

11 return e_train,p_train,e_test,p_test

Now all we need is a function to classify examples. The function classify receives the histograms
with the logarithms of the estimated probabilities and the logarithm of the prior probability of an example
belonging to either class, p(Ck) . This is simply the logarithm of the fraction of each class in the data.
This function sums all the terms in this equation:

CNaïve Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

7.6. DISCRIMINATIVE AND GENERATIVE CLASSIFIERS 69

and determines the class according to the maximum value found.

1 def classify(e_class,e_log,p_class,p_log,feat_mat):

2 classes = np.zeros(feat_mat.shape[0])

3 for row in range(feat_mat.shape[0]):

4 e_sum = e_log

5 p_sum = p_log

6 for column in range(feat_mat.shape[1]):

7 e_sum = e_sum + e_class[column][int(feat_mat[row,column])]

8 p_sum = p_sum + p_class[column][int(feat_mat[row,column])]

9 if e_sum<p_sum:

10 classes[row]=1

11 return classes

Now we put it all together and evaluate the performance of our classifier on the test set by computing
the percentage of misclassifications.

1 def do_bayes():

2 features = get_features()

3 e_train,p_train,e_test,p_test = split_data(features,0.5)

4 e_hists = make_hists(e_train,features)

5 p_hists = make_hists(p_train,features)

6 tot_len = e_train.shape[0]+p_train.shape[0]

7 e_log = np.log(float(e_train.shape[0])/tot_len)

8 p_log = np.log(float(p_train.shape[0])/tot_len)

9 c_e = classify(e_hists,e_log,p_hists,p_log,e_test)

10 c_p = classify(e_hists,e_log,p_hists,p_log,p_test)

11 errors = sum(c_e)+sum(1-c_p)

12 error_perc = float(errors)/(len(c_e)+len(c_p))*100

13 print(’%d errors;’ % errors, ’ %.2f%% error rate’ % error_perc)

We can also look at the confusion matrix by counting the correct and incorrect classifications of
edible and poisonous mushrooms:

Real class
Edible Poisonous

Predictions Edible 2089 221
Poisonous 15 1737

From the confusion matrix we can see that most of the mistakes in classification are in classifying as
edible mushrooms that are poisonous. This is a more costly mistake than mistaking edible mushrooms
for poisonous ones, and it suggests one problem that we have not considered so far, which is that
minimizing misclassification alone is not the ideal option when different errors have different costs.

7.6 Discriminative and Generative classifiers
So far we saw three different classifiers. Logistic regression and k-Nearest Neighbours predict the class
of an example from an estimate of the conditional probability of a point belonging to a class given
the features. These are examples of discriminative classifiers. Naïve Bayes is a generative classifier,
because in this case the classifier first estimates the joint probability distribution of the classes and
features values, and then predicts the class from this joint probability. The reason why this type of

70 CHAPTER 7. NAÏVE BAYES

classifier is called generative is that the joint probability distribution can be used to generate synthetic
examples for each class. Figure 7.5 shows an example of training a Naïve Bayes classifier and then
using it to generate synthetic data.

Figure 7.5: Naïve Bayes classifier trained with the data on the left panel, used to generate the set of
points on the right panel.

7.7 Comparing classifiers
Figure 7.6 shows three different classifiers trained and tested on the same data: Logistic Regression, k-
Nearest Neighbours and Naïve Bayes. These classifiers make, respectively, 10, 6 and 1 misclassification
errors on the test set. The question we need to address is whether any of these classifiers is significantly
better than the others. One solution is to use an approximate normal test. Since the number of
errors result from the sum of independent random variables, the number of errors tends towards a
normal distribution with a mean equal to the expected number of errors. If the true probability of
misclassification is p0, then the mean will be Np0 and the standard deviation is

√
Np0(1− p0):

X −Np0√
Np0(1− p0)

≈ Z

where X is the number of misclassified examples and N is the total size of the test set. With this
approximation we can estimate a confidence interval for the expected number of errors in the given
classifiers, Np0. For a 95% confidence interval:

X − 1.96σ < Np0 < X + 1.96σ

with σ =
√
Np0(1− p0), which we can estimate by estimating p0 = X/N . If the intervals computed

for two classifiers do not intersect, we can exclude the hypothesis that they have the same expected
error rate p0. Applying this to our classifiers, we get the following 95% confidence intervals:

XLogReg = 10± 5.4 XkNN = 6± 3.5 XNB = 1± 1.9

7.8. FURTHER READING 71

This means that we cannot exclude the hypothesis that the first two classifiers have the same true error,
since their intervals intersect. Naïve Bayes seems to be a better classifier than Logistic Regression.
However, when X is a very small number, this test is not very reliable. As a rule of thumb, X should be
above 5, approximately, for this test to be useful.

An alternative method is McNemar’s test. Let e01 be the number of examples the first classifier
misclassifies but the second classifies correctly, and e10 be the number of examples the second classifier
classifies incorrectly but the first classifier classifies correctly. The difference divided by the total
follows approximately a chi-squared distribution with one degree of freedom:

(|e01 − e10| − 1)2

e01 + e10
≈ χ2

1

The−1 term is a continuity correction term because the error counts are discrete and the χ2 distribution
is continuous. If the value is greater than 3.84, we can reject the null hypothesis (that the two classifiers
perform identically) with 95% confidence. In our case, the results are:

LogReg vs kNN = 0.8 kNN vs NB = 2.3 NB vs LogReg = 7.1

This means we can conclude there is likely to be a difference between the performance of the Naïve
Bayes and the Logistic Regression classifiers, but that the difference is not significant in the other cases.

Figure 7.6: Three classifiers: logistic regression, k-NN and Naïve Bayes. All were trained on the set
marked as circles and tested on the points marked as crosses.

7.8 Further Reading

1. Bishop [4], Section 1.2

2. Alpaydin [2], Section 14.6

3. Mitchell [18], Section 6.9

4. Marsland [17], Section 8.1.2

Bibliography

[1] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra, Daniel Mack, and
Arnold J Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, 96(12):6745–6750, 1999.

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

[3] David F Andrews. Plots of high-dimensional data. Biometrics, pages 125–136, 1972.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, New York, 1st ed. edition, oct 2006.

[5] Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma, and Ji-Rong Wen. Hierarchical clustering of
www image search results using visual. Association for Computing Machinery, Inc., October
2004.

[6] Guanghua Chi, Yu Liu, and Haishandbscan Wu. Ghost cities analysis based on positioning data
in china. arXiv preprint arXiv:1510.08505, 2015.

[7] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Hand-
written digit recognition with a back-propagation network. In Advances in Neural Information
Processing Systems, pages 396–404. Morgan Kaufmann, 1990.

[8] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning. Stanford CA Morgan Kaufmann, pages 231–238, 2000.

[9] Hakan Erdogan, Ruhi Sarikaya, Stanley F Chen, Yuqing Gao, and Michael Picheny. Using
semantic analysis to improve speech recognition performance. Computer Speech & Language,
19(3):321–343, 2005.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[11] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

181

182 BIBLIOGRAPHY

[12] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[13] Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley. Dna visual
and analytic data mining. In Visualization’97., Proceedings, pages 437–441. IEEE, 1997.

[14] Chang-Hwan Lee, Fernando Gutierrez, and Dejing Dou. Calculating feature weights in naive
bayes with kullback-leibler measure. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1146–1151. IEEE, 2011.

[15] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[16] James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA., 1967.

[17] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC, 1st
edition, 2009.

[18] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

[19] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[20] Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen. Machine learning techniques for face
analysis. In Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques for
Multimedia, Cognitive Technologies, pages 159–187. Springer Berlin Heidelberg, 2008.

[21] Giorgio Valentini and Thomas G Dietterich. Bias-variance analysis of support vector machines for
the development of svm-based ensemble methods. The Journal of Machine Learning Research,
5:725–775, 2004.

[22] Jake VanderPlas. Frequentism and bayesianism: a python-driven primer. arXiv preprint
arXiv:1411.5018, 2014.

	Lazy Learning
	Lazy and Eager Learning
	Classification with K-Nearest Neighbours
	Example of k-NN Classification
	Curse of Dimensionality
	Instance Based Regression
	Kernel Density Estimation
	Summary
	Further Reading

	Bibliography

