
Chapter 11

Multiclass and Bias-Variance decomposition

Multiclass classification. Bootstrapping, Bias-Variance decomposition

11.1 Multiclass classification
So far we have always focused on binary classification but classification problems with more than two
classes are common. A classical example is the classification of flowers of three species of the Iris
genus: Iris setosa, Iris versicolor and Iris virginica, shown in Figure 11.1. The data set describes each
flower with four features: sepal length and width and petal length and width1.

Figure 11.1: Iris flowers: setosa, versicolor and virginica. Images CC BY-SA: Szczecinkowaty; Gordon
abd Robertson; Mayfield

For classifiers like Naïve Bayes or k-Nearest Neighbours the number of classes makes no difference,
since the classifier is used in exactly the same way. For Naïve Bayes, we choose the class that maximizes
the conditional probability of the feature values:

CNave Bayes = argmax
k∈{0,1,...,K}

ln p(Ck) +
N∑
j=1

ln p(xj|Ck)

and for k-Nearest Neighbours we classify each new point according to the majority in its k-
neighbourhood. Figure 11.2 illustrates the data set and its use for creating a k-NN classifier.

1The data set can be downloaded from the MIST repository: https://archive.ics.uci.edu/ml/datasets/
Iris
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Figure 11.2: The left panel shows the Iris data set projected on the sepal length and width features.
The right panel shows the classification with k-NN. Each point is classified according to the majority
of the classes of neighbouring points.

However, for classifiers based on binary discriminant functions, like Logistic Regression, percep-
trons or SVM, extension to more than two classes requires some meta-algorithm to obtain the necessary
binary discriminants. One possible way of separating K classes is to train K − 1 binary classifiers,
each one to discriminate between one class and all other examples. This is an example of a one versus
the rest classification scheme. An example is assigned to the class corresponding to the classifier that
identifies it as being in the classifier’s class, or to class K if none of the K − 1 classifiers identifies it.
Figure11.3 shows this process. One problem with theK − 1 one versus the rest classification scheme
is that there are ambiguous results wherever classifiers overlap. In this example, there are points that
are classified both as setosa and versicolor.

Figure 11.3: One versus the rest with K-1 classifiers. The first two classifiers distinguish, respectively,
setosa and versicolor examples from all others. The last panel shows the final classification.

An alternative is to train binary classifiers to distinguish between all pairs of classes by training
K(K − 1)/2 classifiers and then classifying each new example with a majority vote, assigning it to the
class with the largest number of votes among the classifiers. However, with this approach there are also
ambiguous classifications whenever there is an equal number of votes for more than one class.
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Figure 11.4: One versus one classification schemes. After trainingK(K − 1)/2 classifiers, points are
classified by majority vote.

A better alternative is to use a one versus the rest classification scheme with K classifiers. If
each classifier can provide a value for the decision function, points can be classified according to
the maximum of the decision functions of the K classifiers. This solves the problem of ambiguous
classification, as illustrated in Fig 11.5. However, for the one versus the rest scheme it is necessary to
train each classifier with an unbalanced sample in which the majority of points fall outside the respective
class. For example, if our training set has 10 evenly balanced classes, then each of the 10 classifiers
will have only 10% of the points in the positive class and 90% in the negative class. Furthermore, the
decision function values for the different one-vs-rest classifiers may not be directly comparable, and
these differences may affect the performance of this multiclass classification heuristic.

Figure 11.5: One versus the rest classification scheme withK classifiers. Points are classified by the
maximum value of the decision function.

Some classifiers allow specific alternatives to multiclass classification. For example, Logistic
Regression can be extended to multiclass classification by fitting K discriminant hyperplanes simul-
taneously, by using the cross entropy of all classes and predictions considering, for each of the K
discriminants, that the points belong to class 1 if they are in class k and to class 0 otherwise:

p(T |w1, ..., wK) =
N∏

n=1

K∏
k=1

p(Ck|φn)tnk =
N∏

n=1

K∏
k=1

ytnk
nk

In this expression, the tnk matrix gives this one vs rest classes, assigning a 1 to all elements in class k
and 0 otherwise. In practice, we minimize the logarithm of the cross entropy as an error function.

E(w1, ..., wK) = −
N∑

n=1

K∑
k=1

tnk ln ynk
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With the sklearn library, we can use either the one vs rest classification scheme (’ovr’) or the
cross entropy one (’multinomial’) in the LogisticRegression class:

1 from sklearn.linear_model import LogisticRegression

2
3 #One versus rest, max

4 logreg = LogisticRegression(C=1e5,multi_class=’ovr’)

5 logreg.fit(X, Y)

6 #Cross entropy

7 logreg = LogisticRegression(C=1e5,multi_class=’multinomial’)

8 logreg.fit(X, Y)

The multilayer perceptron also can be easily adapted to multiclass classification by having one
output neuron for each class and training the MLP to output a 1 on the neuron corresponding to the
class of the example and a 0 on all other output neurons. The activation function on the output layer,
in this case, is usually the softmax function, mapping a vector of K input values into a vector of K
values all between 0 and 1 and adding up to 1. This can be interpreted as the probability of the example
belonging to each class.

σ : RK → [0, 1]K σ(~x)j =
exj

K∑
k=1

exk

σj ∈ [0, 1];
K∑
k=1

σk = 1

For binary classifiers in general, the sklearn library offers a useful class to perform one versus
rest classification by training K classifiers and classifying each example according to the maximum of
the decision function:

Figure 11.6: One-vs-rest classifica-
tion of the Iris data set using SVM.

1 from sklearn.multiclass import OneVsRestClassifier

2 ovr = OneVsRestClassifier(SVC(kernel=’rbf’,

3 gamma=0.7, C=10))

4 ovr.fit(X, Y)

5 ovr.predict(test_set)

To use this class, we need only provide it with the class of the binary classifier, whichmust implement
the fit and decision_function methods. The fit method of OneVsRestClassifier gener-
atesK classifiers, training each to distinguish one class from all others. Then the predict method re-
turns the class corresponding to the classifier that outputs the largest value in the decision_function.
Figure 11.6 shows the result of this process using SVM on the Iris dataset.
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11.2 Bias and Variance
Statistically, bias is the difference between the expected value of an estimator and the true value being
estimated. Thus, the bias of a model at some point is the difference between the true value and the
expected prediction of the model for that point. The bias for the model is the average of the bias values
measured for all points::

biasn = (ȳ(xn)− tn)2 bias =
1

N

N∑
n=1

(ȳ(xn)− tn)2

Figure 11.7 shows an example of a model that cannot adequately fit the data. The estimates for the point
marked as a large blue circle are all tendentiously above the true value and thus there is a difference
between the average and the true value.

Figure 11.7: This model cannot adjust to the data and thus has a large bias in some points.

In statistics, variance is a measure of the dispersion of values. Applying this concept to a regression
model, the variance of the model at some point is the expected variance of the predicted values for
that point when the model is trained over any data set. The variance for the model is the average of the
variances for all points. To estimate the variance of a point and on N points of a model trained onM
data sets, we compute:

1

M

∑
(ȳ(xn)− ym(xn)) var =

1

NM

N∑
n=1

M∑
m=1

(ȳ(xn)− ym(xn))2

where ȳ(xn) is the average of the predictions for point xn. Figure 11.8 shows a model that overfits
the data, which results in a large variance, showing that, for the point marked as a large circle, the
predictions of individual hypotheses are spread in a broad range around their average.

11.3 Bootstrapping
To estimate the bias and variance of a model we need to train the model over different training sets.
However, in general we only have one training set, and so we need to resample our training set in
order to generate different sets from the same distribution. One widely used resampling method is
bootstrapping, which consists of creating replicas of the original set by sampling at random with
reposition until we have a new set with the same number of points as the original. On average, the
replica set will have around two thirds of the points of the original set, with some repetitions, leaving
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Figure 11.8: This model overfits the data and thus has a large variance in some points.

out about one third of the original points. With this method we can generate a large number of data
sets and use them to estimate the bias and variance of our model.

The function below shows how we can create a number of replicas from a training set data matrix
using bootstrapping. For each replica, the function generates a random vector with indexes of the rows
of the data matrix to be copied to the replica. This random vector will contain repetitions (sampling
with reposition), so some points will be left out and others may be repeated.

1 def bootstrap(samples,data):

2 train_sets = np.zeros((samples,data.shape[0],data.shape[1]))

3 for sample in range(samples):

4 ix = np.random.randint(data.shape[0],size=data.shape[0])

5 train_sets[sample,:] = data[ix,:]

6 return train_sets

With the replicas, we can now estimate the bias and variance of a model by training on each replica
and evaluating the errors outside the training set, using a separate test set (or validation set if we use it
to select a model). For this example, we’ll use polynomial regression models. We start by creating and
filling a matrix with all the predictions of all polynomials fit to all the replicas of the training set. This
is the predicts matrix in the source code below.

1 def bv_poly(degree, train_sets, test_set):

2 samples = train_sets.shape[0]

3 predicts = np.zeros((samples,test_set.shape[0]))

4 for ix in range(samples):

5 coefs = np.polyfit(train_sets[ix,:,0],

6 train_sets[ix,:,1],degree)

7 predicts[ix,:] = np.polyval(coefs,test_set[:,0])

8 mean_preds = np.mean(predicts,axis=0)

9 bias_per_point = (mean_preds-test_set[:,-1])**2

10 bias = np.mean(bias_per_point)

11 var_per_point = np.mean((predicts-mean_preds)**2,axis=0)

12 var = np.mean(var_per_point)

13 return bias,var

Then we compute the average predicted values over all predictions and use this vector, with one
mean prediction for each point in the test set, to predict the bias values for all points in the test set. The
bias will be the mean of these values. For the variance the procedure is similar, but now the variance for
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each point in the data set is given by the average quadratic distance between each individual prediction
and the mean prediction value.

Since we are estimating bias and variance on each hypothesis with points that were not used to
train that particular hypothesis, our estimates are unbiased. This is why it is important to avoid using
the same examples for training and evaluating bias and variance.

11.4 Bias-variance decomposition
With a quadratic error function, the error is the expected square of the difference between the predicted
values and the true values. This the loss function that is generally used in regression, so in regression
we can decompose the error into:

E
(
(y − t)2

)
= (E(y)− E(t))2 + E

(
(y − E(y))2

)
+ E

(
(t− E(t))2

)
The term (E(y)− E(t))2 is the square of the difference between the expected prediction and the

true value, which is the bias. E
(
(y − E(y))2

)
is the variance and E

(
(t− E(t))2

)
is the expected

squared error between the expected value for each point and the value in the training set. This last
term is the noise in our data set, which we will generally assume to be zero. Thus, assuming there is
no random noise in our data, we can decompose the quadratic error into a sum of bias and variance.
Figure 11.9 shows this decomposition used to examine the source of the error for polynomials of
different degrees.

Figure 11.9: The left panel plots the bias, variance and total error (assuming zero noise). The right
panel shows the result of training the best model.

As we can see in Figure 11.9, there is a trade-off between bias and variance. If the model is
underfitting, unable to adjust to the data, bias is the largest component of the error. But when overfit-
ting, variance becomes the dominant factor. The optimal choice is the one that minimizes the total
contribution of bias and variance.

So far, we’ve seen how to decompose the error into bias and variance for models using a quadratic
error function. However, although this is the norm with regression problems, a quadratic error function
is not ideal for classifiers. In these cases, we generally evaluate the error using a 0/1 loss function,
giving an error of 1 if the predicted class is different from the true class, or 0 if they are equal. With this
error function, the decomposition into bias and variance is different. First of all, the main prediction
in this case is the prediction that is most common, or the mode of the predictions, considering all
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hypotheses. So the bias for example i with a 0/1 loss function is the error of the main prediction with
respect to the true class of point i:

biasi = L(Mo(yi,m), ti)

where Mo(yi,m) is the mode of predictions for point i over all m hypotheses and L is the loss
function returning 0 if the values are equal or 1 if the values differ. The variance is the expected error
of all predictions for example i with respect to the main prediction:

vari = E (L(Mo(yi,m), yi,m))

So far, this is essentially the same as we saw for the quadratic error function used in regression
problems. However, the error decomposition is fundamentally different because whether the variance
increases or decreases the error depends on the bias for that error. If the bias is 0, meaning the
main prediction is correct, then the variance increases the error, since any deviation from the main
prediction increases the error. On the other hand, if the bias is 1, then this means the main prediction
is incorrect and so any deviation from this prediction will decrease the expected total error. Thus, the
error decomposition into bias and variance (assuming no noise in the data) is:

E (L(t, y)) = E (B(i)) + E (Vunb.(i)) ˘E (Vbiased(i))

where Vunb. is the variance for points with bias of 0 and Vbiased corresponds to the variance for points
with bias of 1. Or, alternatively, we can consider the variance to be the net variance Ex (Vunb.(i))−
Ex (Vbiased(i)).

As an example, we’ll decompose the bias and variance of K-Nearest Neighbours classifiers (assum-
ing the data has no noise). We start, as in the regression example, by fitting the classifier to each of the
replicas and storing the predictions.

1 def bv_knn(neighs, train_sets, test_set):

2 samples = train_sets.shape[0]

3 predicts = np.zeros((samples,test_set.shape[0]))

4 for ix in range(samples):

5 sv = KNeighborsClassifier(n_neighbors=neighs)

6 sv.fit(train_sets[ix,:,:-1],train_sets[ix,:,-1])

7 predicts[ix,:] = sv.predict(test_set[:,:-1])

8 main_preds = np.round(np.mean(predicts,axis=0))

9 bias_per_point = np.abs(test_set[:,-1]-main_preds)

10 var_per_point = np.mean(np.abs(predicts-main_preds),axis=0)

11 u_var = np.sum(var_per_point[bias_per_point == 0])/test_set.shape[0]

12 b_var = np.sum(var_per_point[bias_per_point == 1])/test_set.shape[0]

13 print(u_var,b_var)

14 return bias,u_var-b_var

Next, we compute the main prediction for each example, which is the more common prediction.
This can be done by rounding the mean of all predictions for each example to 0 or 1. The bias is
then computed from the difference between the main prediction and the true class, which can be 0
or 1, and the variance from the fraction of predictions that differ from the main prediction. Finally
we average the bias of each point over all the points to estimate the bias of the model. Since this is a
classification problem, we must distinguish the variance contributed by the unbiased points from the
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variance contributed by the biased points, since these affect the error differently. Thus we decompose
these two contributions to compute the net variance.

Figure 11.10 shows the bias and variance decomposition of a K-NN classifier with the number of
neighbours varying from 1 through 17. When the classifier averages classes over a larger neighbourhood
it has a larger bias and tendentiously smaller net variance. With a smaller number of neighbours, the
bias decreases but the variance starts increasing. The right panel shows the classifier that best balances
bias and variance, with 5 neighbours.

Figure 11.10: The left panel plots the bias, variance and total error (assuming zero noise) for different
values of the number of neighbours considered. The right panel shows the result of training the best
model with 5 neighbours.

11.5 Further Reading

1. Alpaydin [2], Section 4.3

2. Bishop [4], 4.1.2, 4.3.4, 7.1.3

3. (Optional: Valentini and Dietterich. Bias-variance analysis of support vector machines for the
development of SVM-based ensemble methods [21])

4. (Optional: Domingos, P. A unified bias-variance decomposition [8])
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