


Chapter 12

Ensemble Methods

Ensemble methods. Bagging and bragging. Boosting and stumping.

12.1 Bagging
Ensemble methods combine different hypotheses, whether from regression models or classifiers, in
order to improve prediction. One way of doing this is to train different instances of some model with
different training sets and then aggregate the response, either with an average, for regression problems,
or with majority voting for classification. We can obtain replicas of the training set with bootstrapping,
as we saw on Chapter 11, and use those to train different hypotheses. In the code below, we first create
a vector pxof x values to plot our polynomial curves and a matrix for all the predictions. Then we fit
the polynomial model to each replica and compute the predicted values. Finally, we compute the mean
of each prediction. This method is called bootstrap aggregating or bagging, for short.

1 train_sets, _ = bootstrap(replicas,data)

2 px = np.linspace(ax_lims[0],ax_lims[1],points)

3 preds = np.zeros((replicas,points))

4 for ix in range(replicas):

5 coefs = np.polyfit(train_sets[ix,:,0], train_sets[ix,:,1],degree)

6 preds[ix,:] = np.polyval(coefs,px)

7 mean = np.mean(preds,axis=0).ravel()

Alternatively, we can also use the median instead of the mean for the ensemble. This variant of
bagging is called bragging. Figure 12.1 compares these two variants on a polynomial regression
problem. The ensemble of curves was computed using the replicas obtained by bootstrapping.

For classification with bagging, instead of averaging the predicted value, the class is predicted by
majority voting among the classifiers in the ensemble. Apart from this, the procedure is identical: train
the model on a number of replicas of the training set, obtained by bootstrapping. Then apply each
resulting classifier and classify according to the class that was given the most times. The code below
shows how to create an ensemble of SVM classifiers and then use it to classify new points.

1 train_sets,_ = bootstrap(replicas,data)

2 gamma = 2

3 C=10000

4 svs = []

107



108 CHAPTER 12. ENSEMBLE METHODS

Figure 12.1: The two panels show the instances obtained by training the polynomial model with different
replicas of the data set. The left panel shows the ensemble predictions using the mean (bagging). The
right panel also shows the result using the median (bragging).

5 pX,pY = np.meshgrid(pxs,pys)

6 pZ = np.zeros((len(pxs),len(pys)))

7 for ix in range(replicas):

8 sv = svm.SVC(kernel=’rbf’, gamma=gamma,C=C)

9 sv.fit(train_sets[ix,:,:-1],train_sets[ix,:,-1])

10 svs.append(sv)

11 preds = sv.predict(np.c_[pX.ravel(),pY.ravel()]).reshape(pZ.shape)

12 pZ = pZ + preds

13 pZ = np.round(pZ/float(replicas))

The meshgrid call on line 5 generates the pX and pY matrices for plotting the contour, along with
the pZ matrix with the prediction values. Then, for each replica, we train a new SVM classifier and add
its predictions to pZ. The majority class, 0 or 1, is computed by rounding the average classification.
Figure 12.2 shows the 50 SVM classifiers computed from the replicas of the data-set and the result of
the ensemble classifier, using the majority vote from the 50 SVM to classify each point.

Figure 12.2: The two panels show the 50 SVM classifiers and the resulting ensemble classifier.

Bootstrap aggregating reduces variance without increasing bias and so it is useful if the base model
has a high variance and low bias. In classification, the probability of the ensemble classifying an
example correctly increases rapidly with the number of classifiers aggregated. For an ensemble of T
classifiers, each with a probability p of correctly classifying an example, the probability of a correct



12.2. BOOSTING 109

classification with majority voting is:
T∑

k=T/2+1

(
T

k

)
pk(1− p)T−k

Figure 12.3 shows this increase for different values of p. Even modest classifiers can become quite
accurate if aggregated in large ensembles.

Figure 12.3: Probability of correct classification for different values of p as a function of the number of
classifiers in the bagging ensemble.

However, this increase in probability presumes that the classifiers are statistically independent. The
more correlation there is between classifiers the smaller the improvement gained by the ensemble.
This is why it is important to use unstable classifiers with a high variance, otherwise they will all be
similar and there will be no advantage to aggregating them. Unstable classifiers are classifiers that are
sensitive to changes in the training set. Stable classifiers, such as SVM with a small regularization
constant (C) or k-NN, are not good choices for bagging.

12.2 Boosting
For boosting we’ll consider the adaptive boosting algorithm, or AdaBoost. This method finds a linear
combination of weak classifiers, where each individual classifier is assigned a weight, so that the
weighted average of the classifier responses minimizes the classification error. This is done by training
each classifier with the same data set but giving different weights to different data points, weighing
more strongly those that were previously misclassified. So, first, we initialize the weights of all N
examples to wn = 1/N . Then we train one classifier so that we minimize the weighted error of the
training set:

Jm =
N∑
n=1

wnmI(ym(x
n) 6= tn)



110 CHAPTER 12. ENSEMBLE METHODS

Then we compute the weighted error of the classifier and the weight of the classifier in the ensemble
classifier.

εm =

N∑
n=1

wnmI(ym(x
n) 6= tn)

N∑
n=1

wnm

αm = ln
1− εm
εm

Then we use αm to update the weights for the data points 1:

wnm+1 = wnm exp (αmI(ym(x
n) 6= tn))

The indicator function I returns 1 if the values are different, 0 if they are equal, so this results in
increasing the weights of misclassified points. Then a new classifier is fitted to the training set with the
updated weights, and the process is repeated until the weighted training error is zero or greater than
0.5. To use the final ensemble classifier obtained with AdaBoost we compute the weighted sum of the

responses of the individual classifiers: f(x) = sign
M∑
m=1

αmym(x)

Decision Trees
For an example of boosting, we will use decision trees as the weak classifier. A decision tree is a
classifier that recursively splits the data into smaller subsets according to feature values, one at a time,
until the sets contain only examples from one class or a predetermined depth is reached. Figure 12.4
shows a decision tree trained for a dataset with two classes and bidimensional features. As we can
see on the diagram, the first rule splits the data set into two subsets depending on the value of the first
feature, x0 being less or equal to -0.819. This results in a set of 25 red examples that do not require
further splitting. The remaining set of 65 examples, now mostly blue, is further split on the second
feature, x1, and so on until all subsets remaining, at the leaves of the tree, have examples from a single
class.

Figure 12.4: Example of a decision tree.

1In the original algorithm, by Freund and Schapire, it was αm = 1
2 ln

1−εm
εm

. However, this 1
2α just affects the weights

of the classifier by a constant and the weights of the points by a value that is independent of the point, so can be omitted



12.2. BOOSTING 111

Stumping
To this end, at each step the decision tree algorithm maximizes a measure of purity of the subsets. This
measure is a function of the proportion of elements of each class, pc, in the data set. Some examples of
purity measures are:

1. Classification error: fraction of misclassified examples assuming most common class in each
subset.

2. Gini Index: G = 1−
∑

c p
2
c

3. Information Entropy: Entropy =
∑

c pc log pc

Stumping
Stumping is an example of adaptive boosting using a decision tree with only one level (called a stump).
This simple classifier consists of finding the threshold value of a single feature in the data that best
splits the classes we wish to separate. For a data set with two dimensions, this means we are creating
horizontal and vertical lines to split the data.

At each iteration of the AdaBoost algorithm, we fit a decision tree classifier with depth of 1 to the
weighted data set (line 7), compute the weighted error (lines 8 and 9) and update the weights, storing
the value of αm, computed in line 12. Line 14 normalizes the weights so that they add up to 1.

1 from sklearn.tree import DecisionTreeClassifier

2 hyps = []

3 hyp_ws = []

4 point_ws = np.ones(data.shape[0])/float(data.shape[0])

5 max_hyp = 50

6 for ix in range(max_hyp):

7 stump = DecisionTreeClassifier(max_depth=1)

8 stump.fit(data[:,:-1], data[:,-1], sample_weight = point_ws)

9 pred = stump.predict(data[:,:-1])

10 errs = (pred != data[:,-1]).astype(int)

11 err = np.sum(errs*point_ws)

12 alpha = np.log((1-err)/err)

13 point_ws = point_ws*np.exp(alpha*errs)

14 point_ws = point_ws/np.sum(point_ws)

15 hyps.append(stump)

16 hyp_ws.append(alpha)

Figure 12.5 shows the first three iterations and the final classifier, after 10 iterations. The points are
shown in different sizes depending on their current weights.

Figure 12.5: Adaptive boosting using decision stumps.



112 CHAPTER 12. ENSEMBLE METHODS

To classify new points and compute the error, we iterate through the stored classifiers, compute the
prediction of each (line 3) and add it, weighted by the respective weight of that classifier (line 4).

1 net_pred = np.zeros(data.shape[0])

2 for ix in range(len(hyps)):

3 pred_n = hyps[ix].predict(data[:,:-1])

4 preds = preds+pred_n*hyp_ws[ix]

5 net_pred[preds<0] = -1

6 net_pred[preds>=0] = 1

7 errors = np.sum((net_pred !=data[:,-1]).astype(int))

AdaBoost can be seen as a sequential minimization of an exponential function of the weighted
error:

E =
N∑
n=1

exp (−tnfm(xn)) f(x)m =
m∑
j=1

αjyj(x)

It is sequential because, at each step m, we assume the classifiers and weights for all steps
1, . . . ,m− 1 are fixed. Since all those base classifiers will be constant, the error function we need to
minimize at each step needs to consider only the base currently at the last positionm:

E =
N∑
n=1

wnm exp (−tnαmym(xn))

We can decompose this expression by separating the terms corresponding to points that are correctly
classified, with tn = ym(xn), and those that are not correcly classified, with tn 6= ym(xn). Letting set
T be the set of points correctly classified by classifierm and setM the set of points misclassified by
classifierm, the error function is:

E =
N∑
n=1

wnm exp

(
−1

2
tnαmym(xn)

)
= e−αm/2

∑
n∈T

wnm + eαm/2
∑
n∈M

wnm

= e−αm/2

N∑
n=1

wnm + (eαm/2 − e−αm/2)
N∑
n=1

wnmI(ym(x
n) 6= tn)

where function I is the indicator function that returns 1 when the point is misclassified or 0 if it is
classified correctly. Minimizing with respect to ym and αm, we obtain the following solutions:

Jm =
N∑
n=1

wnmI(ym(x
n) 6= tn) αm+1 = ln

1− εm
εm

εm =
N∑
n=1

wnmI(ym(x
n) 6= tn) /

N∑
n=1

wnm

which correspond to the weighted error function for AdaBoost and the expression for computing αm.

12.3 Further Reading

1. Alpaydin [2], Sections 17.6 and 17.7

2. Marsland [17], Chapter 7

3. Bishop [4], 14.2, 14.3





Bibliography

[1] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra, Daniel Mack, and
Arnold J Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, 96(12):6745–6750, 1999.

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

[3] David F Andrews. Plots of high-dimensional data. Biometrics, pages 125–136, 1972.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, New York, 1st ed. edition, oct 2006.

[5] Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma, and Ji-Rong Wen. Hierarchical clustering of
www image search results using visual. Association for Computing Machinery, Inc., October
2004.

[6] Guanghua Chi, Yu Liu, and Haishandbscan Wu. Ghost cities analysis based on positioning data
in china. arXiv preprint arXiv:1510.08505, 2015.

[7] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Hand-
written digit recognition with a back-propagation network. In Advances in Neural Information
Processing Systems, pages 396–404. Morgan Kaufmann, 1990.

[8] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning. Stanford CA Morgan Kaufmann, pages 231–238, 2000.

[9] Hakan Erdogan, Ruhi Sarikaya, Stanley F Chen, Yuqing Gao, and Michael Picheny. Using
semantic analysis to improve speech recognition performance. Computer Speech & Language,
19(3):321–343, 2005.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[11] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

179



180 BIBLIOGRAPHY

[12] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[13] Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley. Dna visual
and analytic data mining. In Visualization’97., Proceedings, pages 437–441. IEEE, 1997.

[14] Chang-Hwan Lee, Fernando Gutierrez, and Dejing Dou. Calculating feature weights in naive
bayes with kullback-leibler measure. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1146–1151. IEEE, 2011.

[15] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[16] James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA., 1967.

[17] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC, 1st
edition, 2009.

[18] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

[19] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[20] Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen. Machine learning techniques for face
analysis. In Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques for
Multimedia, Cognitive Technologies, pages 159–187. Springer Berlin Heidelberg, 2008.

[21] Giorgio Valentini and Thomas G Dietterich. Bias-variance analysis of support vector machines for
the development of svm-based ensemble methods. The Journal of Machine Learning Research,
5:725–775, 2004.

[22] Jake VanderPlas. Frequentism and bayesianism: a python-driven primer. arXiv preprint
arXiv:1411.5018, 2014.


	Multiclass and Bias-Variance decomposition
	Multiclass classification
	Bias and Variance
	Bootstrapping
	Bias-variance decomposition
	Further Reading

	Bibliography

