
Chapter 16

Feature Extraction

Dimensionality reduction: feature extraction with PCA; self-organizing maps.

16.1 Dimensionality Reduction
In Chapter 15 we saw how to reduce the dimensionality of a data set by selecting only a subset of
features, whether by filtering, using a wrapper to evaluate the performance of the learner for each subset
of features or using learning algorithms that embed feature selection. In this chapter, we will see a
different approach, feature extraction, which consists of computing new features using a function of the
original features in the dataset. This approach is very useful in many cases, such as image processing,
text mining or voice recognition. The main idea is to transform the original data into a more useful
data set.

There are many domain-specific algorithms for feature extraction. Identifying regions of interest in
an image requires different methods from extracting specific frequencies from a sound file, for example.
But in this chapter we will focus on some generic approaches that do not depend on the type of problem.
One widely used, and useful, approach is Principal Component Analysis (PCA).

16.2 Principal Component Analysis
Formally, PCA is a procedure for finding a transformation of a data set into an orthogonal set of
coordinates chosen so that the values along each new coordinate are linearly uncorrelated. Another
way of imagining PCA, is that we are going to choose the direction along which the data points have
the greatest variance — that is, are more “spread out” — and then project the data in this direction,
the principal component. Then we iteratively choose a new direction, orthogonal to all previous ones,
using the same criterion of maximum variance.

Figure 16.1 illustrates this process. On the left panel, we see a set of points in three dimensions,
and can note that the distributions over the different coordinates are not uncorrelated, since the point
cloud is spread along a diagonal. If we compute the vector along this diagonal, one of the three vectors
represented in red, and project the data in that direction, we can then find the next principal component
by doing the same computation on the projected data. We can imagine repeating this proces until
there is only one orthogonal direction left, giving the third vector in this case, since we started from
three dimensions. The panel on the right shows the result of projecting the three-dimensional data into
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the first two principal components. Note that, after this transformation, the coordinates are no longer
linearly correlated, with the points no longer spread along a diagonal.

Figure 16.1: The left panel shows a three-dimensional data set with correlated coordinates, and
corresponding three principal components. The right panel shows the projection of the original point
into the first two principal components.

In practice, we do not compute the principal components in this iterative manner. This is just to
make it easier to imagine the process. The way PCA is done is by computing the eigenvectors of the
covariance matrix or, more precisely, of the scatter matrix1. The scatter matrix S can be computed by
adding the matrices obtained by the outer products of all data vectors with themselves, after subtracting
the mean vector:

m =
1

n

n∑
k=1

xk S =
n∑

k=1

(xk −m)(xk −m)T

Using the Numpy library, we can compute the scatter matrix by computing the mean vector and then
the outer products of the data points minus the mean vector. Note that, with the Numpy library, the
mean vector cam be computed in a single instruction. This implementation is only to make it clearer
how the vector is computed.

1 import numpy as np

2 mean_x = np.mean(data[0,:])

3 mean_y = np.mean(data[1,:])

4 mean_z = np.mean(data[2,:])

5 mean_v = np.array([[mean_x],[mean_y],[mean_z]])

6 scatter = np.zeros((3,3))

7 for i in range(data.shape[1]):

8 scatter += (data[:,i].reshape(3,1) - mean_v).dot((data[:,i].reshape(3,1) - mean_v).T)

9
10 print mean_v

11 [[ 1.07726488]

1The scatter matrix divided by the number of samples is the maximum likelihood estimator of the covariance matrix
but, for our purposes, this scaling factor is not important, so we can use the scatter matrix directly. This explanation is based
on the PCA demo authored by Sebastian Raschka, available at http://sebastianraschka.com/Articles/2014_
pca_step_by_step.html

http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
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12 [ 1.11609716]

13 [ 1.03600411]]

14 print scatter

15 [[ 110.10604771 39.91266264 52.3183266 ]

16 [ 39.91266264 80.68947748 34.48293948]

17 [ 52.3183266 34.48293948 97.58136923]]

Once we have the scatter matrix, we can compute the eigenvectors and corresponding eigenvalues.
The eigenvectors of a matrix are those vectors which, after multiplication by the matrix, retain the same
direction, changing only by a scalar factor. Thus, if v is an eigenvector of matrix A,

Av = λv

The scaling factor λ is the corresponding eigenvalue, which can be used to sort the eigenvectors in
order to give us the principal components in order of importance. The details of this computation
fall outside the scope of this course, but we can use the eig function from the linalg module in the
Numpy library. This function returns a vector with the eigenvalues and a matrix with the corresponding
normalized eigenvectors, in columns (the first column of the matrix is the eigenvector corresponding to
the first eigenvalue, and so on):

1 eig_vals, eig_vecs = np.linalg.eig(scatter)

2 print eig_vals

3 [ 183.57291365 51.00423734 53.79974343]

4 print eig_vecs

5 [[ 0.66718409 0.72273622 0.18032676]

6 [ 0.45619248 -0.20507368 -0.8659291 ]

7 [ 0.58885805 -0.65999783 0.46652873]]

The two largest eigenvalues are, in order, the first and the third. This means that these are the
first two principal components of our data set, and the two best directions do choose to project the
three-dimensional data into two dimensions, as shown in Figure 16.1. To do this, we combine these
two vectors into a transformation matrix, then transform the data and plot it.

1 transf = np.vstack((eig_vecs[:,0],eig_vecs[:,2]))

2 t_data = transf.dot(data.T)

3 fig = plt.figure(figsize=(7,7))

4 plt.plot(t_data[0,:], t_data[1,:], ’o’, markersize=7, color=’blue’, alpha=0.5)

5 plt.gca().set_aspect(’equal’, adjustable=’box’)

6 plt.savefig(’L16-transf.png’,dpi=200,bbox_inches=’tight’)

7 plt.close()

By plotting the first principal component in the x axis we get most of the variance in this axis, with
the values ranging from -2 to 6. The second principal component, in the y axis, corresponds to the
direction, orthogonal to the first, that has the largest of the remaining variance. In this case, the range
is now only from -3 to 3. It is also worth noting that the projected points are no longer in a diagonal
distribution, as the new coordinates now are linearly uncorrelated due to the transformation using the
principal components.

The decomposition module of the Scikit-Learn library offers classes PCA and RandomizedPCA
for principal component analysis. The RandomizedPCA is suitable for large datasets, using random
samples of the data for the PCA instead of the complete dataset.
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16.3 Self Organizing Maps
Another way of projecting a high dimension data set into a smaller set of dimensions is to use a Self
Organizing Map (SOM). We can imagine the SOM as an artificial neural network whose neurons are
arranged in a two-dimensional matrix, with each neuron in the SOM having a set of coefficients of the
same dimension as the data set. This gives us two distance measures: we can measure the distance
from the coefficients vector of any neuron to any point in the data set, and we can measure the distance
within the neuron matrix from any neuron to its neighbours.

The SOM is trained by first assigning random values to the coefficients of the neurons. Then,
iteratively, we start by finding the neuron closest to a data point, called the Best Matching Unit (BMU),
and shifting the coefficients vector of the BMU neuron closer to the data point. Neurons that are close
to the BMU in the SOM matrix are also moved in the same direction, though by a smaller amount
decreasing with the distance to the BMU in the SOM matrix. The magnitude of these changes is a
function of a learning coefficient that decreases monotonically during training. Figure 16.2

Figure 16.2: Training the SOM. As the coefficient vector of each neuron is changed, it “pulls” on the
vectors of neighbouring neurons, making the neuron matrix adjust to the data set in the space of the
data points. Image source: Wikipedia

To illustrate the use of a SOM, we will project the three-dimensional colour space into a two-
dimensional matrix. Each colour is defined by a vector of 3 values, for the red, green and blue
components. We will use the minisom module2 to train a SOM of 20 by 30 neurons, for a total of 600
neurons3. We start by creating a labelled set of colors,

1 colors = np.array(

2 [[0., 0., 0.],

3 [0., 0., 1.],

4 ...

5 [.5, .5, .5],

6 [.66, .66, .66]])

7 color_names = \

8 [’black’, ’blue’, ’darkblue’, ’skyblue’,

9 ’greyblue’, ’lilac’, ’green’, ’red’,

10 ’cyan’, ’violet’, ’yellow’, ’white’,

11 ’darkgrey’, ’mediumgrey’, ’lightgrey’]

The MiniSom class is initialized by providing the dimensions of the SOM. In order, the number of
neurons in the x and y dimensions and the dimension of the input space. The learning_rate is the

2Available at https://github.com/JustGlowing/minisom
3This example is based on a SOM demo at the Multivariate Pattern Analysis in Python site: http://www.pymvpa.

org/examples/som.html

https://github.com/JustGlowing/minisom
http://www.pymvpa.org/examples/som.html
http://www.pymvpa.org/examples/som.html
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multiplier for the adjustment in the neuron coefficients and sigma is a parameter defining the neighbour-
hood function on the SOM matrix. The methods random_weights_init and train_batch serve,
respectively, to initialize the coefficients and train the SOM. The initialization consists of assigning
random points from the training set to the SOM neurons as coefficients.

1 from minisom import MiniSom

2 import matplotlib.pyplot as plt

3 import numpy as np

4
5 plt.figure(1, figsize=(7.5, 5), frameon=False)

6 som = MiniSom(20, 30, 3, learning_rate=0.5, sigma = 2)

7 som.random_weights_init(colors)

8 som.train_batch(colors,10000)

To view the result, we can draw the matrix using the colours corresponding to the three coefficients
of each SOM neuron, each coefficient corresponding to a colour channel. We can also draw the colour
labels on the SOM matrix by placing them at the position of the SOM neuron whose coefficients are
closer to the colour values. To do this, we use the winner method of the SOM object to obtain the
coordinates, in the SOM matrix, of the Best Matching Unit for the colour vector. The code below
details this process and Figure 16.3 shows the resulting image.

1 for ix in range(len(colors)):

2 winner = som.winner(colors[ix])

3 plt.text(winner[1], winner[0], color_names[ix], ha=’center’, va=’center’,

4 bbox=dict(facecolor=’white’, alpha=0.5, lw=0))

5 plt.imshow(som.weights, origin=’lower’)

6 plt.savefig(’L6-colors.png’,dpi=300)

7 plt.close()

16.4 An example of feature extraction
To illustrate the process of feature extraction and data projection with a SOM, we’ll examine data
from the Gapminder site4. We have data on a set of indicators: per capita GDP, life expectancy, infant
mortality and unemployment. Each indicator is available in an Excel spreadsheet file with one year in
each column and one country in each row. Figure 16.4 illustrates the structure of these files.

The problem here is that the data is not uniform in quality. For each country and indicator there
may be data for some years and not others, so there are different numbers of data points for different
countries, as illustrated in Figure 16.5. This makes it hard to organize the information. So the first step
will be to extract from these heterogeneous sets of data a set of features with a fixed dimension for all
countries. We can do this by fitting each curve with a third degree polynomial. This will allow us to
represent each country as a set of 16 features, with four features for the curve of each four indicators.
Figure 16.6 shows examples of polynomial curves obtained from the standardized indicator values,
with years and indicator values rescaled to a range of [0, 1].

With this dataset with 16 dimensions, with a 16 dimensional vector describing each country, we can
train a SOM in order to project the countries into a two-dimensional image according to their similarity
in the pattern of the four indicators. We start by normalizing these data by subtracting the mean value

4http://www.gapminder.org

http://www.gapminder.org
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Figure 16.3: Result of training the SOMwith the set of colours and labelling the colours at the respective
SOM neurons.

Figure 16.4: Data available for each indicator.

of each feature and dividing by the standard deviation. This is necessary because the coefficients of the
polynomials can span a wide range of values.

1 descs = np.zeros((len(countries),len(data_names)*(degree+1)))

2 features = len(data_names)*(degree+1)

3 for ix in range(len(countries)):

4 c = countries[ix]

5 c_desc = c.descriptors.reshape((1,features))

6 descs[ix,:] = c_desc

7 descs = (descs-np.average(descs,axis=0))/np.std(descs,axis=0)
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Figure 16.5: Examples of the data points available for the four indicators in three different countries

Figure 16.6: Polynomial curves adjusted to the indicator data points

Then we train the SOM and read a list with the set of countries to label on the neuron matrix.

1 som = MiniSom(30, 45, features, learning_rate=0.5, sigma = 2)

2 som.random_weights_init(descs)

3 som.train_batch(descs,10000)

4 to_plot = open(’countries_to_plot.txt’).readlines()

5 for ix in range(len(to_plot)):

6 to_plot[ix]=to_plot[ix].strip()

Finally, we can represent the SOM colouring each neuron on the matrix in a lighter colour the larger
its average distance to its neighbours. Figure 16.7 shows the result, indicating the position in the SOM
of the neurons closest to the selected countries.

1 plt.figure(1, figsize=(7.5, 5), frameon=False)

2 plt.bone()

3 plt.pcolor(som.distance_map()) # average dist. to neighs.

4 for ix in range(len(descs)):

5 if countries[ix].name in to_plot:

6 winner = som.winner(descs[ix])

7 plt.text(winner[1], winner[0], countries[ix].name,

8 ha=’center’, va=’center’,color=’lime’)

9 plt.savefig(’L6-countries_som.png’,dpi=300)

10 plt.close()
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Figure 16.7: SOM with the projected planets.

16.5 Further Reading

1. PCAwith Scikit-Learn: http://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.PCA.html

2. Wikipedia article on Self OrganizingMaps: https://en.wikipedia.org/wiki/Self-organizing_
map

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Self-organizing_map
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