
Chapter 19

Hierarchical clustering

Hierarchical Clustering. Agglomerative and Divisive Clustering. Clustering Features.

19.1 Hierarchical clustering
Deciding the best number of clusters is often difficult, as the structure of the data may not provide an
obvious solution for this problem. For example, if we want to cluster all living organisms, it is not
clear how many clusters we should have. In this case, the reason is that living organisms are related
in a family tree, in a range of degrees of distance. The best option is to represent this structure in a
series of nested clusters, and clusters of clusters, and so on. This is done with hierarchical clustering.
Figure 19.1 shows two examples of hierarchical clustering. The tree of life, a hierarchical clustering of
living species that also represents their evolutionary relations, and hierarchical clustering for analysing
similarities in gene expression patterns in different organisms.

Figure 19.1: Examples of hierarchical clustering. Left panel, hierarchical clustering of living organisms,
indicating evolutionary relations. Image source: Wikipedia. On the right panel, hierarchical clustering
of gene expression data (Mulvey and Gingold, Online Computational Biology Textbook).

A hierarchical clustering can be represented as a dendrogram (a tree) by joining together first the
examples that are more similar and then gradually joining the most similar clusters until all links are
found, as shown in Figure 19.2. This means that we need to define how to measure the similarity, or
dissimilarity, between examples in our dataset but also how to measure similarity between clusters of
examples, because we need to decide how to cluster clusters into sets of larger clusters.
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164 CHAPTER 19. HIERARCHICAL CLUSTERING

Figure 19.2: Hierarchical clustering represented as a dendrogram. Image source: Wikipedia.

There are several ways of thinking about this problem. We can think about proximity between
examples as a generic term of “likeness”, without any precise definition. Similarityis more well defined,
generally a number between 0 and 1 that indicates how alike examples are. Dissimilarity is also a
quantitative measure, in this case of difference between examples, and distance is a special case of
a dissimilarity measure that respects the algebraic properties of a distance. Namely, not negative,
symmetrical and respecting the triangle inequality:

d(x, y) ≥ 0 , d(x, y) = d(y, x) , d(x, z) ≤ d(x, y) + d(y, x)

There are many possible distance measures. Some of the most used are Euclidean, Manhattan and
squared Euclidean distance.

• Euclidean: ‖x− y‖2 =
√∑

d

(xd − yd)2

• Squared Euclidean: ‖x− y‖22 =
∑
d

(xd − yd)2

• Manhattan: ‖x− y‖1 =
∑
d

(xd − yd)2

• Mahalanobis (normalized by variance):
√
(x− y)TCov−1(x− y)

For strings and sequences in general, some useful measures are the Hamming distance, which is the
count of differences between the strings, or the Levenshtein distance, or edit distance, counting the
number of single-character edits (insertions, deletions or substitutions) needed to transform one string
into the other.

Apart from a way to measure similarity or distance between examples, we must also measure
distance between clusters. The method for evaluating cluster distance is the linkage, and there are also
several ways of doing this.

• Single linkage: distance between clusters is the distance between the closest points.

dist(Cj, Ck) = min (dist(x ∈ Cj, y ∈ Ck))

• Complete linkage: distance between the most distant points.

dist(Cj, Ck) = max (dist(x ∈ Cj, y ∈ Ck))
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• Centroid linkage: distance between the centroids of the two clusters.

dist(Cj, Ck) = dist

(∑
x ∈ Cj

|Cj|
,

∑
y ∈ Ck

|Ck|

)
• Average linkage: average distance between all pairs of points from the different clusters.

dist(Cj, Ck) = mean (dist(x ∈ Cj, y ∈ Ck))

• Median linkage: median distance between all pairs of points from the different clusters.

dist(Cj, Ck) = median (dist(x ∈ Cj, y ∈ Ck))

• Ward linkage: join clusters that minimize Sum of Squares Error:

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2

Figure 19-linkage illustrates some examples of linkage methods.

Figure 19.3: Single, complete and centroid linkage methods.

The obvious advantages of hierarchical clustering is avoiding the need to specify a number of
clusters, both before or after clustering, and the possibility of revealing some hierarchical structure in
the data. The disadvantages are that hierarchical clustering must generally be done in a single pass,
with a greedy algorithm, which may introduce errors, and if the hierarchical structure assumed by this
type of clustering does not exist in the data the result may be confusing or misleading.

Agglomerative clustering is a bottom-up approach that begins with singleton clusters and repeatedly
joins the best two clusters, according to the linkage method used, into a higher level cluster until all
elements are joined. The time complexity of agglomerative clustering is generally O(n3), but can be
improved with linkage constraints.

Divisive clustering is a top-down approach that begins with a single cluster containing all examples
and iteratively picks a cluster to split and separates it into smaller clusters until some number of clusters
is reached. The theoretical time complexity for divisive clustering is O(2n) for an exhaustive search
and this approach needs an additional clustering algorithm for splitting each cluster. However, the time
complexity in practice can be lower, depending on the clustering algorithm used, and it may be better
than agglomerative clustering if we only want a few levels of hierarchical clustering.
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19.2 Hierarchical to partitional
Although a hierarchical clustering is a tree of clusters inside other clusters, we can convert it into a
partitional clustering, with a set of clusters at the same level, by cutting some arcs of the tree. The
farther we go from the root of the tree, the greater the number of clusters generated. Figure ?? illustrates
this process.

Two clusters

Five clusters

Figure 19.4: Partitioning a hierarchical clustering by cutting the tree at the desired level.

19.3 Connectivity constraints
In agglomerative clustering, we can restrict which clusters to join by adding connectivity constraints.
These constraints specify which examples are considered connected and only clusters with connected
examples, from one cluster to the other, can be joined into larger clusters. This helps solve some
problems like Figure 19.5 illustrates. The left panel shows the result of agglomerative clustering
without connectivity constraints. Since the linkage method used (Ward) takes into account only
distances between the points, in order to minimize the SSE, the clusters include examples across the gap
separating different stretches of the “ribbon” in which the data is structured. A connectivity constraint
that restricts the connection of each example only to the 10 nearest neighbours creates a graph of
connections that respects the structure of the data and prevents these inadequate clusters from forming.

To create this matrix with the connectivity constraints, we can use the kneighbors_graph function
from the neighbors module of the Scikit-learn, and then use the connectivity constraints matrix in
the AgglomerativeClustering class, as shown below. The result is shown in the right panel of
Figure 19.5.

1 from sklearn.cluster import AgglomerativeClustering

2 from sklearn.neighbors import kneighbors_graph
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Figure 19.5: Agglomerative clustering with Ward linkage, without connectivity constraints (left panel)
and with connectivity constraints connecting only the 10 nearest neighbours of each example.

3
4 connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)

5 ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity,

6 linkage=’ward’).fit(X)

19.4 Choosing the linkage method
Scikit-Learn currently offers three linkage methods for agglomerative clustering: complete, average and
Ward linkage. Figure 19.6 shows an example data set clustered to three clusters using agglomerative
clustering and the three linkage methods. Complete linkage tends to favour larger clusters, so leads to a
poor relation between the clusters and the data structure in some cases, as the figure shows (left panel).
Average linkage is better, in these cases (middle panel), and Ward linkage (right panel), minimizing the
SSE measured in the clusters, seems to work best. However, Ward linkage can only be used when the
dissimilarity measure is the Euclidean distance, so if another measure must be used average linkage
tends to be the best option.

Figure 19.6: Agglomerative clustering of the same data set with (left to right) complete, average and
Ward linkage.

19.5 Bisecting k-means
An example of a divisive hierarchical clustering algorithm is the bisecting k-means. The algorithm is:

1. Start with all the examples in a single cluster.
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Figure 19.7: Some examples from the handwritten digits dataset.

2. Choose the best cluster for splitting (e.g. the largest or the one with the lowest score).

3. Split the best candidate with k-means, using k = 2.

4. Repeat steps 2 and 3 until the desired number of clusters is reached.

Although the time complexity for an exhaustive search in divisive clustering is O(2n), using the
k-means algorithm reduces the complexity (although at the cost of having a more greedy divisive
clustering) and the possibility of stopping at the desired level may make this algorithm preferable to
agglomerative clustering in some cases, since agglomerative clustering must run until the complete
tree is generated.

19.6 Clustering features
Conceptually, clustering features is the same as clustering examples. We need but imagine that we
transpose the matrix with all examples in rows and features in columns and obtain a new matrix were
the examples are in the columns, and are now considered features, and the original features, now in rows,
are examples. Clustering features allows us to identify similar features and reduce the dimensionality
of the data by grouping these together in a single feature. With hierarchical clustering we have a simple
way of controlling how many groups of features we use and thus the dimensionally of the resulting data
set.

To illustrate this, we will simplify the handwritten digits data set, which consists of digitized
handwritten digits into grayscale bitmaps of 64 pixels. Figure 19.7 shows these data.

The data set has a total of 1797 examples with 64 features each so, for feature clustering, we
will convert it into a set of 64 examples each with 1797 features. Then we cluster it into 16 clusters,
corresponding to 16 features in the original data set, which we can extract by averaging all features in
each cluster. We also add a connectivity constraint to restrict clustering to neighbouring pixels in the
original image. Feature clustering is done automatically in the FeatureAgglomeration class, so the
complete code, including loading the data set, is simply:

1 import numpy as np

2 from sklearn import datasets, cluster
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3 from sklearn.feature_extraction.image import grid_to_graph

4
5 digits = datasets.load_digits()

6 images = digits.images

7 X = np.reshape(images, (len(images), -1))

8 connectivity = grid_to_graph(images[0].shape[0],images[0].shape[1])

9 agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=16)

10 agglo.fit(X)

11 X_reduced = agglo.transform(X)

12 X_restored = agglo.inverse_transform(X_reduced)

Lines 5-7 are for loading the data and converting the image matrices into a matrix of examples
(rows) and features (columns). Line 8 is for creating the connectivity matrix with the neighbours of
each pixel in the 64× 64 image matrix. Lines 9 and 10 create the agglomerative clusterer and fit the
data, and the last two lines complete the reduced dataset, with only 16 features, and a 64 features dataset
with the feature values aggregated, averaging the features in the same cluster. Figure 19.8 shows the
result. Although the digits in the reduced dataset are no longer recognizable as digits, it is easy to see
that the patterns are different from digit to digit, so this process reduced the number of features without
losing much information.

Figure 19.8: Feature clustering. The original handwritten digits features were clustered as shown in the
left panel. Using only these 16 clusters as 16 features, the reduced data set is illustrated on the right
panel.

19.7 Further Reading

1. Scikit-learn documentation on clustering:http://scikit-learn.org/stable/modules/
clustering.html

2. Alpaydin [2], Section 7.7

 http://scikit-learn.org/stable/modules/clustering.html
 http://scikit-learn.org/stable/modules/clustering.html
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