) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Parallel Performance

Concurrency and Parallelism — 2019-20
Master in Computer Science
(Mestrado Intfegrado em Eng. Informatica)

Joao Lourenc¢o <joao.lourenco@fct.unl.pt>
Source: Parallel Computing, CIS 410/510, Department of Computer and Information Science

Outline

» Performance scalability
— Analyfical performance measures
- Amdahl’ s law
— Gustafson-Barsis’ law
— Work-span and Brent’'s lemma

- Bl b | |O g a p h y Structured Parallel

Programming

« Chapter 2 of book
McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 2

What is Performance?

* In computing, performance is defined by 2 factors
— Computational requirements (what needs to be done?) Efficacy
— Computing resources (how much will it coste) Efficiency

« Computational problems translate to requirements

« Computing resources interplay and tradeoff
1

Resources for solution

T\ / (\\ . y %? ... and ultimately I@J

Performance ~

Hardware Time Energy Money

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

What is Parallel Performance®?

We are concerned with performance issues when using @
parallel computing environment
— Performance with respect to parallel computation

Performance is the raison d’étre for parallelism
— Parallel performance versus sequential performance
— If the “performance” is not better, parallelism is not necessary

Parallel processing includes technigues and technologies
necessary to compute in parallel

— Hardware, networks, operating systems, parallel libraries, languages,
compilers, algorithms, toaols, ...

Parallelism must deliver performance
— Howe How welle

Performance Expectation (Loss)

e If each processor is rated at “f" MFLOPS and there are
“p" processors, should we see “f x p"" MFLOPS
performancee

— If it fakes 100 seconds on 1 processor, shouldn't it take 10 seconds on
10 processorse

« Several causes affect performance
— Each must be understood separately

— But they interact with each other in complex ways
« Solution to one problem may create another
« One problem may mask another

« Scaling (system, problem size) can change conditions

 Need to understand performance space

Embarrassingly Parallel
Computations

« An embarrassingly parallel computation is one that can
be obviously divided into completely independent parts

that can be executed simultaneously
— In a truly embarrassingly parallel computation there is no interaction

between separate processes
— In a nearly embarrassingly parallel computation results must be
distributed and collected/combined in some way

« Embarrassingly parallel computations have potential to

achieve maximal speedup on parallel platforms
— If it takes T time sequentially, there is the potential to achieve T/P
time running in parallel with P processors

— Why is this not always the case@

Scalabllity

« Can the program scale up o use many processorse
— What does that meane

 How do we evaluate scalabilitye
« How do we evaluate scalability goodness?

« Comparative evaluation
— If double the number of processors, what to expect?
— Is scalability linear?

« Use parallel efficiency measure
— |Is efficiency retained as problem size increasese

« Apply performance metrics

Performance and Scalabllity

« Evaluation
— Sequential runtime (T,eq Or T;) is a function of
« problem size and architecture
— Parallel runtime (Tpo) is a function of

« problem size and parallel architecture
* # processors used in the execution

— Parallel performance is affected by
 algorithm + architecture

« Scalability

— Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem

Performance Metrics and
Formulas

T, Is the execution time on a single processor

* T, Is the execution fime on a “p” processor system

-
* Sy is the speedup Slp)= =+
p
* E, Is the efficiency E(p) = 159_
* C, is the cost Cost(p) =p x T,

« A parallel algorithm is cosf-optimal it
—) Parallel time = sequential fime (E, = 100%, C, =T;)

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

P=1

. i
Serial work l Serial Wo.rk (f) is =16%
of execution time

Parallelizable work

awi|

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

10

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

P=1 p=2
. o
Serial work l l Serial Work (f) is =25%

of execution time
Parallelizable work II

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

awl |

11

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

Serial work l

Parallelizable work

P-4

Serial Work (f) is =40%
of execution time

swl]

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

12

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

Serial work l

Parallelizable work

P-4 P=8

Serial Work (f) is =60%
of execution time

swl]

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 13

Amdahl’ s Law

(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

=3

Serial work l

Parallelizable work

swl]

Mar 04, 2020

1 P=2

P-4

P=8

ksl |l lJ]]

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 14

Amdahl’ s Law
(Fixed Size Speedup)

« Let f be the fraction of a program that is sequential
— 1 — fis the fraction that can be parallelized

* Let T, be the execution fime on 1 processor
- Let T, be the execution time on p processors

* S, Isthe speedup T
S < T1 T]_ 16.00 /,// Paratiel Portion. —1—
p=p = 1—f)T 1400 5
Tp le _|_ % 12.00 /1‘/ it
S < 1 :Exo.oo // ///
PSS ~CHH
P 4.00 //
sz\/s_)oo S - 200 »’:"'—‘
f T T I e o o

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20" ~7T R RS ® 8 58

Number of Processors

Amdahl’ s Law
Fixed Size Speedup)

« Amdhal’s Law:
Maximal Speedup

1000
Serial Speedup 672
fraction
* 0.1%
- 1%
10% 100
30%
< 50%
- 10
3
L,
T T T 1

2 4 8 16 32 64 128 256 512 1024 2048
Number of workers

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

16

Amdahl’ s Law
(Fixed Size Speedup)

« Amdhal’s Law: » Amdahl’s Law:
Maximal Speedup Efficiency

1000 —a 100%
Serial Speedup 672 Efficiency
fraction
* 0.1% 80%
- 1%
2 10% 100
30% 60%
< 50%
Serial
fraction 40%
10 B, 01% \.
1%
3 “-10% 20%
l 2 30%
~<-50%
T T T T T T 1 T T T T T T A‘ 0%
1 2 4 8 16 32 64 128 256 512 1024 2048 1 2 4 8 16 32 123 256 512 1024 2048
Number of workers Number of workers

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 17

Amdahl’ s Law (Example)

« If 90% of the computation can be parallelized,
what is the max. speedup achievable using
3 Processorse

e Solution:;

f=10% =0.1

1
< A
S(8) < o1+ 03 4.7

Amdahl’s Law and Scalabillity

« Scalability

— Ability of parallel algorithm to achieve performance gains
proglor’rioncl to the number of processors and the size of the
proolem

« When does Amdahl’s Law applye
— When the problem size is fixed
— Strong scaling (p—=», Sp =Sw =1 /1)

— Speedup bound is determined by the degree of sequential
execution time in the computation, not # processors!!!

— Uhh, this is not good ... Why?
— Perfect efficiency is hard to achieve

« See original paper by Amdahl| af
— http://inst.eecs.berkeley.edu/~n252/sp07 /Papers/Amdahl.pdf

Gustafson-Barsis’ Law
(Scaled Speedup)

...speedup should be measured by scaling the
problem to the number of processors, not by fixing
the problem size.

— John Gustafson

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1
Serial K Serial Work is = 16% of
erial wor total execution time

Parallelizable work

awil]

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 21

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1 P=2
Serial K Serial Work is = 9% of
erial wor total execution time

Parallelizable work II

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 22

awl |

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1 P 2 P 4
S I k Serial Work is = 5% of
erial wor total execution time

Parallelizable work I II IIII

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 23

awl |

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1 P 2 P 4 P=8
Serial Work is = 3% of

Serial WOl'k total execution time

ParaezabeworkI II IIII IIIIIIII

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

awl |

Gustafson-Barsis' Law

(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=2

P
Serial work l

Parallelizable work

awil]

P=4

P=8

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Gustafson-Barsis’ Law
(Scaled Speedup)

« Execution time of a parallel program: T, =a+b
— a => part not parallelizable
— b => part parallelizable

» Because we are scaling the problem (data being
processed), with “P" processors we have:
Tp = a + P . b

* The wall clock execution time is always the same, so
scaled speedup is calculated on the volume of data
processed (which is proportional to the
total/accumulated execution time):

5,<T,/Ty = (a+ P-b)/(a+ b)

Gustafson-Barsis’ Law
(Scaled Speedup)

*Scaled speedup §,<T,/T;=(a+P-b)/(a+b)

let @ =a/(a+b) be the sequential fraction of
the parallel execution time

* Then the scaled speedup is
S,SA+P-(1-Q)=P- -(P-1)

e |If & =2 0 then S,> P

Gustafson-Barsis’ Law (Example)

« An application executing on 64 processors
spends 5% of the total fime on non-parallelizable
computations. What is the scaled speedup?

e Solution:;

s < P-a-(P—1)
< 64-0.05 (64 — 1)
< 60.85

Gustafson-Barsis' Law

Mar 04, 2020

Speedup - S(P)

100

80

Gustafson's Law: S(P) = P-a*(P-1)

I 1 1 1

57.7

20

x-0.1 *(x-1)
X -0.2*(x-1)

05% (x-1)
X -0.6#(x-1)

Number of Processors - P

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

29

Gustafson-Barsis’ Law and
Scalability

» Scalability

— Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of
the problem

« When does Gustafson's Law applye

— When the problem size can increase when the number of
Processors increases
— Speedup function includes the number of processors!!!

— Can maintain or increase parallel efficiency as the
problem scales

Amdahl versus Gustafson-Baris

Amdahl Gustafson-Baris

serial work I serial work
parallellzable work I III parallelizable work

aLUI_L

* Time: wall clock time * Time: CPU time

« Sequential part tends to * Sequential part tends to
dominate computation become irrelevant

« Upper-bound on * No upper-bound on
scalability scalability

Mar 04, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 31

The END

Mar 04, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

32

