
Parallel Algorithms

Concurrency and Parallelism — 2019-20

Master in Computer Science
(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>

Outline

• Parallel computations as DAGs
– Parallel computing by divide-and-conquer
– Maps and reductions on tree-like DAGs
– The Prefix-Sum (Scan) problem and its parallel solution
– An implementation for the Pack parallel pattern

– Bibliography:
• Chapter 3, 4 and 5 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 31, 2020 2Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

The DAG

• A program execution using fork and join can be
seen as a DAG
– Nodes: Pieces of work
– Edges: Source must finish before destination starts

• A fork “ends a node” and makes two outgoing
edges
– New thread
– Continuation of current thread

• A join “ends a node” and makes a
node with two incoming edges
– Node just ended
– Last node of thread joined on

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 3

The DAG
A program execution using fork and join can be
seen as a DAG
� Nodes: Pieces of work
� Edges: Source must finish before destination starts

A fork "ends a node" and makes
two outgoing edges
� New thread
� Continuation of current thread

A join "ends a node" and makes a
node with two incoming edges
� Node just ended
� Last node of thread joined on

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 5

Our Simple Examples
fork and join are very flexible, but divide-and-conquer
use them in a very basic way:
� A tree on top of an upside-down tree

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 6

base cases

divide

conquer

A simple example

• fork and join are very flexible, but divide-and-
conquer use them in a very basic way:
– A tree on top of an upside-down tree

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 4

What Else Looks Like This?
Summing an array went from O(n) sequential to
O(log n) parallel (assuming a lot of processors and
very large n)

Anything that can use results from two halves and
merge them in O(1) time has the same properties
and exponential speed-up (in theory)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 7

+ + + + + + + +
+ + + +

+ +
+

Another example: reduce

• Summing an array went from O(n) sequential to
O(log n) parallel (assuming a lot of processors
and very large n)

• Anything that can use results from two halves
and merge them in O(1) time has the same
properties and exponential speed-up (in theory)

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 5

Applications of “reduce”

• Maximum or minimum element
• Is there an element satisfying some property?

– e.g., is there a 17?

• Left-most element satisfying some property?
– e.g., index of first occurrence of 17

• Corners of a rectangle containing all points (a
“bounding box”)
• Counts

– e.g., # of strings that start with a vowel
– This is just summing with a different base case

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6

More Interesting DAGs?

• Of course, the DAGs are not always so simple
(and neither are the related parallel problems)

• Example:
• Suppose combining two results might be

expensive enough that we want to parallelize
this combining process
• Then each node in the inverted tree on the

previous slide would itself expand into another
set of nodes for that parallel computation

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 7

Reductions

• Such computations of this simple form are common
enough to have a name: reductions (or reduces?!)
• Reductions produce a single answer from a

collection via an associative operator
– Examples: max, count, leftmost, rightmost, sum, ...
– Non-example: median

• Reduction results don’t have to be single numbers or
strings and can be arrays or objects with fields
– Example: Histogram of test results

• But some things are inherently sequential
– How we process arr[i] may depend entirely on the result of

processing arr[i-1]

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 8

Maps and Reductions on Trees

• Work just fine on balanced trees
– Divide-and-conquer each child
– Example:

Finding the minimum element in an unsorted but balanced
binary tree takes O(log n) time given enough processors

• Parallelism also correct for unbalanced trees but
obviously one gets worse speed-ups

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 9

Sequential cut-off

• Even with infinite processors, usually there is a point
where executing a group of reductions sequentially
is faster than parallelizing the process (by spliting the
group)
• The point (e.g., set size) where to stop parallelizing

and start xecuting sequentially is called the
sequential cut-off
• How to implement the sequential cut-off for

reductions on trees?
– Each node stores number-of-descendants (easy to maintain)
– Or approximate it (e.g., AVL tree height)

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 10

Linked Lists

• Can you parallelize maps or reduces over linked lists?
– Example: Increment all elements of a linked list
– Example: Sum all elements of a linked list

• Nope. Once again, data structures matter!

• For parallelism, balanced trees are generally better than
lists so that we can get to all the data exponentially
faster O(log n) vs. O(n)
– Trees have the same flexibility as lists compared to arrays (i.e., no

shifting for insert or remove)

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 11

Linked Lists
Can you parallelize maps or reduces over linked lists?
� Example: Increment all elements of a linked list
� Example: Sum all elements of a linked list

Nope. Once again, data structures matter!

For parallelism, balanced trees generally better than
lists so that we can get to all the data exponentially
faster O(log n) vs. O(n)
� Trees have the same flexibility as lists compared to arrays

(i.e., no shifting for insert or remove)

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 16

b c d e f

front back

Parallelism:
Division of Responsibility
• Parallel Framework users (e.g., Cilk+, Java ForkJoin)

– Pick a good parallel algorithm and implement it
– Its execution creates a DAG of things to do
– Make all the nodes small(ish) with approximately equal amount

of work

• The framework-writer’s job:
– Assign work to available processors to avoid idling
– Keep constant factors low
– Give the expected-time optimal guarantee assuming

framework-user did his/her job

• Expected TP = O((T1 / P) + T∞)

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 12

Examples: TP = O((T1 / P) + T∞)

• Sum an array
– T1 = O(n) and T∞ = O(log n) => TP = O (n / P + log n)

• Suppose
– T1 = O(n2) and T∞ = O(n) => TP = O (n2 / P + n)

• Of course, these expectations ignore any
overhead or memory issues

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 13

The Prefix (Scan) Sum Problem

• Given int[] input, produce int[] output such
that:
output[i]=input[0]+input[1]+…+input[i]

• A sequential solution in a typical exam problem:

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 14

The Prefix-Sum Problem
Given int[] input, produce int[] output such that:
 output[i]=input[0]+input[1]+…+input[i]

A sequential solution is a typical CS1 exam problem:

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;
}

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 33

The Prefix (Scan) Sum Problem

• Above algorithm does not seem to be
parallelizable!
– Work (T1): O(n) Span (T∞): O(n)

• It isn't. The above algorithm is sequential.

• But a different algorithm gives a span of O(log n)

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 15

The Prefix-Sum Problem
Given int[] input, produce int[] output such that:
 output[i]=input[0]+input[1]+…+input[i]

A sequential solution is a typical CS1 exam problem:

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;
}

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 33

Parallel Prefix-Sum

• The parallel-prefix algorithm does two passes
– Each pass has O(n) work and O(log n) span
– In total there is O(n) work and O(log n) span
– Just like array summing, parallelism is O(n / log n)
– An exponential speedup

• The first pass builds a tree bottom-up

• The second pass traverses the tree top-down
Historical note:
Original algorithm due to R. Ladner
and M. Fischer at the UW in 1977
Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 16

Parallel Prefix: The Up Pass

• We want to build a binary tree where
– Root has sum of the range [x,y]
– If a node has sum of [lo,hi] and hi>lo,

• Left child has sum of [lo,middle]
• Right child has sum of [middle,hi]
• A leaf has sum of [i,i+1], which is simply input[i]

• It is critical that we actually create the tree as
we will need it for the down pass
– We do not need an actual linked structure
– We could use an array as we do for heaps

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

r 0,1
s 6
f

6

Up Pass Example

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 18

4 16 10 16 14 2 8input

output

r 1,2
s 4
f

r 2,3
s 16
f

r 3,4
s 10
f

r 4,5
s 16
f

r 5,6
s 14
f

r 6,7
s 2
f

r 7,8
s 8
f

range 0,2
sum 10
fromleft

range 2,4
sum 26
fromleft

range 4,6
sum 30
fromleft

range 6,8
sum 10
fromleft

range 0,4
sum 36
fromleft

range 4,8
sum 40
fromleft

range 0,8
sum 76
fromleft

0 1 2 3 4 5 6 7

total sum

Parallel Prefix: The Up Pass

• This is an easy fork-join computation:
• buildRange(arr,lo,hi)

– If lo+1 == hi, create new node with sum arr[lo]
– Else, create two new threads:

• buildRange(arr,lo,mid)
• buildRange(arr,mid+1,high)
• Where mid = (low+high)/2

– When threads complete, make new node with
• sum = left.sum + right.sum

• Performance Analysis:
– Work: O(n)
– Span: O(log n)

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 19

Parallel Prefix: The Down Pass

• We now use the tree to get the prefix sums using
another easy fork-join computation

• Starting at the root:
– Root is given a fromLeft of 0
– Each node takes its fromLeft value and:

• Passes to the left child: fromLeft
• Passes to the right child: fromLeft + left.sum

– At leaf for position i, output[i]=fromLeft+input[i]

• Invariant: fromLeft is sum of elements left of the
node’s range

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 20

r 5,6
s 14
f

r 6,7
s 2
f

r 7,8
s 8
f

r 2,3
s 16
f

r 3,4
s 10
f

r 4,5
s 16
f

r 1,2
s 4
f

r 0,1
s 6
f

Down Pass Example

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 21

6 4 16 10 16 14 2 8input

output

r 1,2
s 4
f 6

r 0,1
s 6
f 0

r 2,3
s 16
f 10

r 3,4
s 10
f 26

r 4,5
s 16
f 36

r 5,6
s 14
f 52

r 6,7
s 2
f 66

r 7,8
s 8
f 68

range 0,2
sum 10
fromleft

range 2,4
sum 26
fromleft

range 4,6
sum 30
fromleft

range 6,8
sum 10
fromleft

range 0,4
sum 36
fromleft

range 4,8
sum 40
fromleft

range 0,8
sum 76
fromleft

range 4,6
sum 30
fromleft 36

range 2,4
sum 26
fromleft 10

range 0,2
sum 10
fromleft 0

range 0,4
sum 36
fromleft 0

range 4,8
sum 40
fromleft 36

range 0,8
sum 76
fromleft 0

range 6,8
sum 10
fromleft 66

+

Down Pass Example

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 22

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

input

output

r 1,2
s 4
f 6

r 0,1
s 6
f 0

r 2,3
s 16
f 10

r 3,4
s 10
f 26

r 4,5
s 16
f 36

r 5,6
s 14
f 52

r 6,7
s 2
f 66

r 7,8
s 8
f 68

range 0,2
sum 10
fromleft

range 2,4
sum 26
fromleft

range 4,6
sum 30
fromleft

range 6,8
sum 10
fromleft

range 0,4
sum 36
fromleft

range 4,8
sum 40
fromleft

range 0,8
sum 76
fromleft

range 4,6
sum 30
fromleft 36

range 2,4
sum 26
fromleft 10

range 0,2
sum 10
fromleft 0

range 0,4
sum 36
fromleft 0

range 4,8
sum 40
fromleft 36

range 0,8
sum 76
fromleft 0

range 6,8
sum 10
fromleft 66

+

Parallel Prefix: The Down Pass

• Note that this parallel algorithm does not return
a value
– Leaves result in an output array
– This is a map-like algorithm, not a reduction-like algorithm

• Performance Analysis:
– Work: O(n)
– Span: O(log n)

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 23

Generalizing Parallel Prefix

• Prefix-sum illustrates a pattern that can be used
in many problems
– Minimum, maximum of all elements to the left of i
– Is there an element to the left of i satisfying some

property?
– Count of elements to the left of i satisfying some property!

• That last one is perfect for an efficient parallel
pack that builds on top of the “parallel prefix
trick”

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24

Pack (Think Filtering)

• Given an array input and boolean function
f(e) produce an array output containing only
elements e such that f(e) is true

• Example:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f(e): is e > 10?
output [17, 11, 13, 19, 24]

• Is this parallelizable? Of course!
– Finding elements for the output is easy
– But getting them in the right place seems hard

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 25

Pack: Parallel Map + Parallel
Prefix + Parallel Map
1. Use a parallel map to compute a bit-vector for

true elements
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output
bitsum [17, 11, 13, 19, 24]

Mar 31, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 26

Parallel Map + Parallel Prefix + Parallel Map
1. Use a parallel map to compute a bit-vector for

true elements
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output
 output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
}

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 45

The END

• Sources:

– Parallel Computing, CIS 410/510, Department of Computer
and Information Science

– https://courses.cs.washington.edu/courses/cse332/12su/sli
des/lecture12-parallelism-work-span.pdf

Mar 31, 2020 27Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

