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• Parallel computations as DAGs
– Parallel computing by divide-and-conquer
– Maps and reductions on tree-like DAGs
– The Prefix-Sum (Scan) problem and its parallel solution
– An implementation for the Pack parallel pattern
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The DAG 

• A program execution using fork and join can be 
seen as a DAG 
– Nodes: Pieces of work
– Edges: Source must finish before destination starts 

• A fork “ends a node” and makes two outgoing 
edges
– New thread
– Continuation of current thread 

• A join “ends a node” and makes a 
node with two incoming edges
– Node just ended
– Last node of thread joined on
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Our Simple Examples 
fork and join are very flexible, but divide-and-conquer 
use them in a very basic way: 
� A tree on top of an upside-down tree 
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divide  

conquer 

A simple example

• fork and join are very flexible, but divide-and-
conquer use them in a very basic way: 
– A tree on top of an upside-down tree 
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What Else Looks Like This? 
Summing an array went from O(n) sequential to 
O(log n) parallel (assuming a lot of processors and 
very large n) 
 
 
 
 
 
 

 
Anything that can use results from two halves and 
merge them in O(1) time has the same properties 
and exponential speed-up (in theory) 

August 1, 2012 CSE 332 Data Abstractions, Summer 2012 7 

+ + + + + + + + 
+ + + + 

+ + 
+ 

Another example: reduce

• Summing an array went from O(n) sequential to 
O(log n) parallel (assuming a lot of processors 
and very large n) 

• Anything that can use results from two halves 
and merge them in O(1) time has the same 
properties and exponential speed-up (in theory)
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Applications of “reduce”

• Maximum or minimum element 
• Is there an element satisfying some property?

– e.g., is there a 17? 

• Left-most element satisfying some property?
– e.g., index of first occurrence of 17

• Corners of a rectangle containing all points (a 
“bounding box”) 
• Counts

– e.g., # of strings that start with a vowel
– This is just summing with a different base case 
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More Interesting DAGs? 

• Of course, the DAGs are not always so simple 
(and neither are the related parallel problems) 

• Example: 
• Suppose combining two results might be 

expensive enough that we want to parallelize 
this combining process
• Then each node in the inverted tree on the 

previous slide would itself expand into another 
set of nodes for that parallel computation 
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Reductions 

• Such computations of this simple form are common 
enough to have a name: reductions (or reduces?!) 
• Reductions produce a single answer from a 

collection via an associative operator 
– Examples: max, count, leftmost, rightmost, sum, ... 
– Non-example: median 

• Reduction results don’t have to be single numbers or 
strings and can be arrays or objects with fields 
– Example: Histogram of test results

• But some things are inherently sequential 
– How we process arr[i] may depend entirely on the result of 

processing arr[i-1]
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Maps and Reductions on Trees

• Work just fine on balanced trees 
– Divide-and-conquer each child 
– Example:

Finding the minimum element in an unsorted but balanced 
binary tree takes O(log n) time given enough processors 

• Parallelism also correct for unbalanced trees but 
obviously one gets worse speed-ups
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Sequential cut-off

• Even with infinite processors, usually there is a point 
where executing a group of reductions sequentially 
is faster than parallelizing the process (by spliting the 
group)
• The point (e.g., set size) where to stop parallelizing 

and start xecuting sequentially is called the 
sequential cut-off
• How to implement the sequential cut-off for 

reductions on trees?
– Each node stores number-of-descendants (easy to maintain) 
– Or approximate it (e.g., AVL tree height) 
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Linked Lists 

• Can you parallelize maps or reduces over linked lists? 
– Example: Increment all elements of a linked list
– Example: Sum all elements of a linked list 

• Nope. Once again, data structures matter! 

• For parallelism, balanced trees are generally better than 
lists so that we can get to all the data exponentially 
faster O(log n) vs. O(n)
– Trees have the same flexibility as lists compared to arrays (i.e., no 

shifting for insert or remove) 
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Parallelism: 
Division of Responsibility
• Parallel Framework users (e.g., Cilk+, Java ForkJoin)

– Pick a good parallel algorithm and implement it 
– Its execution creates a DAG of things to do 
– Make all the nodes small(ish) with approximately equal amount 

of work 

• The framework-writer’s job: 
– Assign work to available processors to avoid idling 
– Keep constant factors low 
– Give the expected-time optimal guarantee assuming 

framework-user did his/her job 

• Expected TP = O((T1 / P) + T∞)
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Examples:   TP = O((T1 / P) + T∞)

• Sum an array 
– T1 = O(n)   and   T∞ = O(log n)     =>   TP = O (n / P + log n)

• Suppose
– T1 = O(n2)   and   T∞ = O(n)     =>   TP = O (n2 / P + n)

• Of course, these expectations ignore any 
overhead or memory issues
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The Prefix (Scan) Sum Problem

• Given int[] input, produce int[] output such 
that:
output[i]=input[0]+input[1]+…+input[i]

• A sequential solution in a typical exam problem: 
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The Prefix-Sum Problem 
Given int[] input, produce int[] output such that: 
 output[i]=input[0]+input[1]+…+input[i] 
 

A sequential solution is a typical CS1 exam problem: 
 
 
 
 
 
 

int[] prefix_sum(int[] input){ 
  int[] output = new int[input.length]; 
  output[0] = input[0]; 
  for(int i=1; i < input.length; i++) 
    output[i] = output[i-1]+input[i]; 
  return output; 
} 
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The Prefix (Scan) Sum Problem

• Above algorithm does not seem to be 
parallelizable!
– Work (T1): O(n)       Span (T∞): O(n)

• It isn't. The above algorithm is sequential.

• But a different algorithm gives a span of O(log n) 
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Parallel Prefix-Sum

• The parallel-prefix algorithm does two passes 
– Each pass has O(n) work and O(log n) span 
– In total there is O(n) work and O(log n) span
– Just like array summing, parallelism is  O(n / log n)
– An exponential speedup

• The first pass builds a tree bottom-up

• The second pass traverses the tree top-down 
Historical note:
Original algorithm due to R. Ladner
and M. Fischer at the UW in 1977
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Parallel Prefix: The Up Pass

• We want to build a binary tree where 
– Root has sum of the range [x,y]
– If a node has sum of [lo,hi] and hi>lo, 

• Left child has sum of [lo,middle]
• Right child has sum of [middle,hi]
• A leaf has sum of [i,i+1], which is simply input[i]

• It is critical that we actually create the tree as 
we will need it for the down pass
– We do not need an actual linked structure
– We could use an array as we do for heaps
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s  6
f  

6

Up Pass Example 
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range       0,2
sum           10
fromleft

range       2,4
sum           26
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range       4,6
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sum           10
fromleft

range       0,4
sum           36
fromleft

range       4,8
sum           40
fromleft

range       0,8
sum           76
fromleft

0 1 2 3 4 5 6 7

total sum



Parallel Prefix: The Up Pass

• This is an easy fork-join computation: 
• buildRange(arr,lo,hi)

– If lo+1 == hi, create new node with sum arr[lo] 
– Else, create two new threads: 

• buildRange(arr,lo,mid) 
• buildRange(arr,mid+1,high)
• Where mid = (low+high)/2

– When threads complete, make new node with 
• sum = left.sum + right.sum

• Performance Analysis: 
– Work: O(n)
– Span: O(log n)
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Parallel Prefix: The Down Pass

• We now use the tree to get the prefix sums using 
another easy fork-join computation

• Starting at the root:
– Root is given a fromLeft of 0
– Each node takes its fromLeft value and:

• Passes to the left child: fromLeft
• Passes to the right child: fromLeft + left.sum

– At leaf for position i, output[i]=fromLeft+input[i] 

• Invariant: fromLeft is sum of elements left of the 
node’s range
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Down Pass Example
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Parallel Prefix: The Down Pass

• Note that this parallel algorithm does not return 
a value 
– Leaves result in an output array 
– This is a map-like algorithm, not a reduction-like algorithm

• Performance Analysis:
– Work: O(n) 
– Span: O(log n) 
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Generalizing Parallel Prefix

• Prefix-sum illustrates a pattern that can be used 
in many problems 
– Minimum, maximum of all elements to the left of i
– Is there an element to the left of i satisfying some 

property?
– Count of elements to the left of i satisfying some property! 

• That last one is perfect for an efficient parallel 
pack that builds on top of the “parallel prefix 
trick” 
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Pack (Think Filtering)

• Given an array input and boolean function 
f(e) produce an array output containing only 
elements e such that f(e) is true

• Example:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f(e): is e > 10?
output [17, 11, 13, 19, 24] 

• Is this parallelizable? Of course!
– Finding elements for the output is easy
– But getting them in the right place seems hard
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Pack: Parallel Map + Parallel 
Prefix + Parallel Map
1. Use a parallel map to compute a bit-vector for 

true elements 
input   [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 
bits    [ 1, 0, 0, 0,  1, 0,  1,  1, 0,  1]

2. Parallel-prefix sum on the bit-vector
bitsum [ 1, 1, 1, 1,  2, 2,  3,  4, 4,  5]

3. Parallel map to produce the output
bitsum [ 17, 11, 13, 19, 24]
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Parallel Map + Parallel Prefix + Parallel Map 
1. Use a parallel map to compute a bit-vector for 

true elements 
input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 
bits   [ 1, 0, 0, 0,  1, 0,  1,  1, 0,  1] 

 

2. Parallel-prefix sum on the bit-vector 
bitsum [ 1, 1, 1, 1,  2, 2,  3,  4, 4,  5] 

 

3. Parallel map to produce the output 
 output [17, 11, 13, 19, 24] 
  

 
 

output = new array of size bitsum[n-1] 
FORALL(i=0; i < input.length; i++){ 
  if(bits[i]==1) 
    output[bitsum[i]-1] = input[i]; 
} 
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The END

• Sources: 

– Parallel Computing, CIS 410/510, Department of Computer 
and Information Science

– https://courses.cs.washington.edu/courses/cse332/12su/sli
des/lecture12-parallelism-work-span.pdf
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