) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Solving
Mutual Exclusion (1)

lecture 13 (2020-04-08)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2019-20 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Summary

*Solving Mutual Exclusion

—Mutex based on atomic read-write
reqgisters

» Reading list:

Concurrent

— Chapter 2 of the book Programming:
Raynal M.; Algorithms, Principles,
Concurrent Programming: Algorithms, and Foungggons

Principles, and Foundations;
Springer-Verlag Berlin Heidelberg (2013);
ISBN: 978-3-642-32026-2

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex Based on
Atomic Read/Write Registers

» A register R can be accessed by two base
operations:

* R.read(), which refurns the value of R (also
denoted x «— R where x is a local variable of the

invoking process); and

* R.write(v), which writes a new value into R (also
denoted R «— v, where v is the value to be
written into R).

Mutex Based on
Atomic Read/Write Registers

« An afomic shared register satisfies the following
properties:

« Each invocation op of a read or write operation:

— lAppeors as if it was executed at a single point T(op) of the time
ne,
— T(op) is such that T,(op) < T(op) < T.(op), where T,(op) and T,(op)
enote the time at which the operation op started and finished,
respectively; |
— For any two operation invocations opl and op2: To Tl
(opl#op2) = T(opl)#T(op2).

« Fach read invocation:

- Returns the value written by the closest preceding write
invocation in the sequence defined by the T(...) instants
associated with the operation invocations (or the initial value of

the register if there is no preceding write operation).

Mutex Based on
Atomic Read/Write Registers

R.read() R.read()

R.write(1) R.write(2)

R.write(3) R.read()
P, — >

Mutex Based on
Atomic Read/Write Registers

R.read() \° R.read())
P, >

R.write(1) R.write(2)
Pz = >

P,
R.write(3) @.
P5 >

Omniscient observer’s time line

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex Based on
Atomic Read/Write Registers

R.read() 1 mz
P, >

R.write(1) R.write(2)
Pz = >

R.write(3) @3
P3 / >

_/

Omniscient observer’s time line

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex Based on
Atomic Read/Write Registers

R.write(1)

LT e .
/

Omniscient observer’s time line

‘ HereR=1

HereR=2 HereR=3

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex Based on
Atomic Read/Write Registers

R.read() 1 mg
P, >
R.write(1) R.Write(w
P >
-\ / \ / \ R.write(3) m?.

2
P3

~ >
V VV Omniscient observer’s time line

HereR=1 HereR=2 HereR=3

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex Based on
Atomic Read/Write Registers

>

R.write(1) R. Wr/te(Z)

VAT
e

HereR=1 ere R= HereR=3

Omniscient observer’s time line

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 10

Mutex Based on
Atomic Read/Write Registers

L g 3
>
R.write(1)

RviTie
L

‘ HereR=1 Here R = 3\ HereR=2

Omniscient observer’s time line

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 11

Mutex Based on
Atomic Read/Write Registers

L g 2
>
>
2

R.write(1)

P,
-\ / \ / R.read()
P3 ~ >
v V V\V Omniscient observer’s time line
‘ HereR=1 Here R = 3\ Here R=2

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

12

Mutex for Two Processes:
An Incremental Construction

Does it work concerning mutual exclusion and progress?

operation acquire_mutex; (7) is
AFTER_YOU <« 1; wait (AFTER_YOU # i); return()
end operation.

operation release_mutex; (7) is return() end operation.

Must have contention to have progress G.L. Peterson (1981)
May cause starvation] @i

progress

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex for Two Processes:
An Incremental Construction

Does it work concerning mutual exclusion and progress?

operation acquire_mutex(7) is
FLAG|i] <« up; wait (FLAG|j] = down); return()
end operation.

operation release_mutexx(7) is FLAG|i] < down; return() end operation.

May cause deadlock G.L. Peterson (1981)

mutual exclusion
progress

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 —

Mutex for Two Processes:
An Incremental Construction

while (FLAG[j] = up) do
FLAG|i] < down;
2 pi delays itself for an arbitrary period of time;
° FLAG[i] < up
end while.

operation acquire_mutex»>(z) is
FLAGI|i] « upywait (FLAG|j] = down)l return()
end operation.

operation release_mutexz(2) is FLAG|i] < down; return() end operation.

May cause livelock G.L. Peterson (1981)

v'mutual exclusion
X progress

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex for Two Processes:
An Incremental Construction

operation acquire_mutex(z) is
FLAG|i| <« up;
AFTER_YOU « 1;
wait ((FLAG[j] = down) V (AFTER_YOU # 1i));
return()
end operation.

operation release_mutex(z) is FLAG|i] < down; return() end operation.

Only works for two processes! oL peterson (1981

Can we make it work for more?e | vmutual exclusion
v'progress

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex for n Processes: Generalizing
the Previous Two-Process Algorithm

operation acquire_mutex(7) is mutual exclusion
(1) for /from 1 to (n — 1) do progress

(2) FLAG_LEVEL[i] « ¢;
(3) AFTER_YOU] « i;
(4) wait (Vk#i: FLAG_.LEVEL[k]| <) V (AFTER_YOU (] # 1)
(5) end for;

(6) return()

end operation.

operation release_mutex(z) is FLAG_LEVFELIi| < 0; return() end operation.

. G.L. Peterson (1981)
p.is allowed to progress to level ‘lI+1' if, from its point of view,

: e Either all the other processes are at a lower level
(l.e., VK #i:FLAG_LEVEL [K] <1).

e Or it was not the last one entering level ‘I’ (i.e., AFTER_YOUII] #1i).

APR 08, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 17

The END

APR 08, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

18

