) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Alternative Synchronization
Strategies

lecture 17 (2020-04-29)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2019-20 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Alternative Synchronization
Strategies

« Contents:

— Liveness: Types of Progress

— Coarse-Grained Synchronization \)

— Fine-Grained Synchronization \ Lastlecture
— Optimistic Synchronization - Today
— Lazy Synchronization

— Lock-Free Synchronization - Toie Agr

of
MULTIPROCESSOR
PROGRAMMING

» [/ :
ALY

« Reading list:
— chapter 5 of the Textbook

— Chapter 9 of “The Art of Multiprocessor Programming”
by Maurice Herliny & Nir Shavit (available at clip)

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Concurrent Data Structures

Using locks

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Concurrent Data Structures

Using locks

e Simple programming model
* False conflicts

* Fault-free solutions only

e Sequential bottleneck

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Concurrent Data Structures

Using locks Without locks

data structure

e Simple programming model
* False conflicts

* Fault-free solutions only

e Sequential bottleneck

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Concurrent Data Structures

Apr 29, 2020

Using locks Without locks

Simple programming model e Resilient to failures, etc.

False conflicts e Often (really very) complex
Fault-free solutions only * Memory consuming

Sequential bottleneck Sometimes — weak progress cond.

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Progress in Concurrent Data

Structures

Using locks

Deadlock Starvation
freedom freedom

Fairness

Without locks

data structure

T

Obstruction Lock freedom Wait

freedom

(non-blocking) freedom

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Progress Condifions

Using locks Without locks

data structure

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Obstruction-freedom

1 1 1 1

At any point, a single thread executed in
isolation (i.e., with all obstructing threads
suspended) will complete its operation

in a bounded number of steps;

All lock-free algorithms are obstruction-free.

. I I
v v v

Lock-freedom

Apr 29, 2020

1 1 1 1

When the progrc:am threads oré run sufficien’rly:
long, at least one of the threads makes progress
(for some senmbie definition of progress)

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

10

Wait-freedom

Apr 29, 2020

1 1 1 1

Every operation: hes a bound on the number of
steps the algorithm will take before the
opere’rlon comple’res s’rorvo’rlon freedom for oII
processes in the! sys’rem

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

11

Wait-freedom

1 1 1 1

every opero’rlon has a bound on the number of
steps the algorithm will take before the
opero’rlon comple’res s’rorvo’rlon freedom for oII
processes in the, sys’rem

: : : ;

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Lock-free Data Structures

Obstruction-freedom Lock-freedom Wait-freedom

® strong enough
e too weak progress condition * not so complex ® strong/desirable

e not complex * in limited contention e complex/less efficient
behaves as wait-free

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 13

Synchronization strategies

» Coarse-Grained Synchronization
» Fine-Grained Synchronization

» Optimistic Synchronization

* Lazy Synchronization

« Lock-Free Synchronization

Coarse-Grained
Synchronization

« Use a single lock...

v Methods are always executed in mutuadl

exclusion
v Methods never conflict

XEliminates all the concurrency within the object

Fine-Grained Synchronization

 Instead of using a single lock...

 Split object into multiple
iIndependently-synchronized components

v'"Methods only conflict when they access
— The same component...
— (And) at the same timel

XLots and lots of lock acquire/release

Alternative
Synchronization
Strategies

Optimistic Synchronization

« Check if the operation can be done

— E.g., toremove a value from the seft, search if present without
locking...

* If the op can be done, lock and check again...

— E.g., if element was found, lock predecessor and current nodes and
check again

« Act upon status (of last check)
— Failure: start over again (opftionally with another locking strategy)
— Success: execute the operation (locks were already acquired)

« Evaluation/considerations on this strategy
Has to recheck (e.g., repeat the search) after locking
Usually cheaper than hand-over-hand locking
X Mistakes are expensive (safety easily compromised)
X Is not starvation free (liveness compromised)

Lazy Synchronization

» Procrastinate! Procrastinate! Procrastinate!l ©
« Make common operations fast

» Postpone hard work

— E.g., removing components is tricky... use two phases:

* Logical removal
- Mark component to be deleted

* Physical removal
- Do what needs to be done to remove the component

« Evaluation
v'Recheck after locking is simpler (just check nodes are unmarked)
v Also usually cheaper than hand-over-hand locking
X Mistakes are expensive (safety easily compromised)
X Is not starvation free on add and remove (liveness compromised)
v (List is starvation free on contains)

Lock-Free Synchronization

* Don’t use locks at all... never!
— Use compareAndSet() & relatives ...

« Advantages
v'"No scheduler assumptions/support

» Disadvantages
XVery complex
XSometimes high overhead
XMistakes are very expensive (safety and liveness)

Linked List

o [llustrate these patterns ...

» Using a list-based Set
— Common application
— Building block for other apps

= {@3—»@3—»
(=[]

Sorted with Sentinel nodes (min & max possible keys)

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2015--u 21

Set Interface

 Unordered collection of items
* No duplicates
e Methods

— add(x) put x in seft frue if x was not in the set
—remove(x) take x out of set frue if x was in the set
— contains(x) tests if x in seft frue if xis in the seft

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

22

List-Based Sets

public interface Set<T> {

pub |
pub |

pub |
}

Apr 29, 2020

1C boo]
1C boo]

1C boo]

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

ean add(T x);
ean remove(T X);
ean contains(T X);

List-Based Sets

public interface Set<T> {

public boolean add(T x);
' remov);

ntains(T X);

public boolean

}

Add item to set

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

24

List-Based Sets

public interface Set<T> {

ublic boolean add(T X):
public boolean remove(T x);
i ntain ;

}

Remove item from set

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

25

List-Based Sets

public interface Set<T> {
public boolean add(T x);

ublic boolean remove(T X):
public boolean contains(T x);

¥

Is item in set?

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

26

List Node

public class Node {
public T 1tem;
public 1nt key;
public Node next;

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 27

List

Node

public class Node {

Apr 29, 2020

public T 1tem;
.. "
public Node™e

item of interest

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

28

List

Node

pub11c c1ass Node {

Apr 29, 2020

pub11c int key,

Usually hash code

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

29

List Node

public class Node {
public T 1tem;

public 1nt key;
public Node next;l

}

Reference to next node

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 30

Optimistic Concurrency List

 Traverse the list without locking until location is
found

* Lock node(s)
* Validate

— Traverse again to confirm that the locked nodes are still in
the list

* Do the operation

Optimistic Add

public boolean add(T item) {

int key = item.hashCode():

_ Calculate hash

Node pred head;

Node curr = pred.next;
while (curr.key <= key)
pred = curr;

curr curr.next;

}
pred.lock();
curr.lock
try {

)

if (curr.key ==

} else {
Node node
node.next
pred.next
return true;

}

} finally {
pred.unlock();
curr.unlock();

return false;

{

if (validate(pred, curr)) {

key) {

new Node(item);
curr;
node;

Apr 29, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Try until
success or failure

32

Optimistic Add

public boolean add(T item) {
int key = item.hashCode();
while (true) {

Initialize pointers
to traverse the list

Traverse the list

—__ looking for ‘item’

Node pred = head; }:=====’-———
Node curr = pred.next;
while (curr.key < key) { A\

pred = curr;

curr = curr.next; f

gred.lock R }::===="'-—-
curr.lockég;
try { \

Lock the nodes

Try the operation
and either succeed

if (validate(pred, curr)) {
if (curr.key == key) {
return false;

} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;

return true;

}
t

} finally {
pred.unlock();

curr.unlock();

or fail

})]/\ Always unlock

Apr 29, 2020

(with both success and failure)

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Optimistic Add

public boolean add(T item) {
int key = item.hashCode();
while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {
pred = curr;

) curr = curr.next;

pred.lock();

$

curr.lock
v

)

% oo

If the locked nodes are still accessible,

L

f (validate(pred, curr)) {

?.——— that means they are still in the list

if (curr.key == key) {
_return false;

> If item already in list, fail

} else {
@ Node node = new Node(1tem)
node.next = curr;
pred.next = node;
\ return true;

If item not present, create new node
insert into the list, and succeed

b
} fi%allv {

pred.unlock();
curr.unlock();

_

Apr 29, 2020

Remember: always unlocking
(with both success and failure)

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Optimistic Validate

public boolean add(T item) { private boolean validate (Node pred,
int key = item.hashCode(); Node curr) {
while (true) { Node node = head;
Node pred = head; Traverse the list f while (node.key <= pred.key) {
Node curr = pred.next; looking for both if (node == pred) {
”hllgpééuirg5ﬁ¥;< key) { ‘ored’ and ‘curr’ return pred.next curr;
) curr = curr.next; . node = node.next;
pred.lock(); Fcnlf pred urn talse,
CUPP-10C|<8; is not found 4
try {

if (validate(pred, curr)) {
if (curr.key == key) {
return false;

} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}

}

} finally {
pred.unlock();
curr.unlock();

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 35

Opftimistic Remove

pub11c boolean remove(T item) {
= item.hashCode(); = Calculate hash

Try until
success or failure

Node pred head;

Node curr = pred.next;
while (curr key < key) {
pred = curr;

curr = curr.next;

}
pred.lock§g;
curr.lock
try {
if (validate(pred, curr)) {
if (curr.key == key) {
pred.next = curr.next;
return true;
} else {
y return false;

} finally {
pred.unlock();
curr.unlock();

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Opftimistic Remove

public boolean remove(T item) {

int_key = item.hashCode(); Initialize pointers
while (true) { to fraverse the list
Node pred = head; }======’-——— .
Node curr = pred.next; Traverse the list
while (curr.key < key) { —__ looking for ‘item’
pred = curr;

curr

3
curr.next;

} J Lock the nodes

pred.locké;; }:::====--—-

curr.lock(); Try the operation

try { .
if (validate(pred, curr)) { N\ and either succeed

if (curr.key == key) { or fail
pred.next = curr.next;
return true;

} else {

y return false;

}
} finally {
pred.unlock();

curr.unlock();

I
} \
} Always unlock

(with both success and failure)

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 37

Opftimistic Remove

public boolean remove(T item) {
int key = item.hashCode();
while (true) {
Node pred head;
Node curr = pred.next;
while (curr.key < key) {
pred = curr;

curr curr.next;
}
pred.lock§g; _)
curr.lock(); If the locked nodes are still accessible,
try { that means they are still in the list
if (validate(pred, curr)) { 3 Y
if (curr.key == key) { E::::=== : e
pred.next = curr.next; If item already in list,
. return true:) remove node and succeed
T else 1
return false; . .
. } > If item not present, fail
}
(¥ finally {)
pred.unlock();

y curr.unlock();
S j\ Remember: always unlocking

} (with both success and failure)

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 38

Optimistic Contains

public boolean contains(T item) {

while (true) {
Node pred = head;
Node curr = pred.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {
if (validate(pred, curr)) {
return (curr.key == key);

} fi%ally {
pred.unlock();
}
}

curr.unlock();
Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

int key = item.hashCode(); p——— Cdlculate hash

Try until
success or failure

39

Optimistic Contains

public boolean contains(T item) {

int key = item.hashCode();
while (true) {

Initialize pointers

Node pred = head; % to fraverse the list
Node curr = pred.next; Traverse the list
(while (curr.key < key) { A\ looking for ‘item’
pred = curr;
curr = curr.next;
> . Try the operation
(" pred. lock(); A\ and either succeed
curr.lock(); or fail
try {
if (validate(pred, curr)) {
return (curr.key == key);
_ _
} finally {
pred.unlock();
curr.unlock();
} Always unlock
h (with both success and failure)

}

Apr 29, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Optimistic Contains

public boolean contains(T item) {

}

int key = item.hashCode();
while (true) {
Node pred = head;
Node curr = pred.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

} Lock the nodes
pred.lock(); }:=====——— If the locked nodes
curr.lock(): are still accessible,

try { _ that means they
if (validate(pred, curr)) { f-":====-_-____cyesmunfhenﬁ

return_(curr.key == key); g\ Return success if

_ t I item found
(} finally { und, ,
pr‘Ed.unlock(); and failure otherwise
curr.unlock();

} Remember: always unlocking
J (with both success and failure)

\,
s

Apr 29, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 41

The END

Apr 29, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

42

