) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Alternative Synchronization
Strategies — Lazy Locking

lecture 18 (2020-05-05)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2019-20 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Alternative Synchronization
Strategies

« Contents:

— Liveness: Types of Progress

— Coarse-Grained Synchronization
— Fine-Grained Synchronization

— Optimistic Synchronization

— Lazy Synchronization > Today

» Past lectures

— Lock-Free Synchronization ; The Aw

MULT]PI‘OCES OR
PROGRAMMING

« Reading list:
— chapter 5 of the Textbook

— Chapter 9 of “The Art of Multiprocessor Progrommlng” by
Maurice Herlihy & Nir Shavit (available at clip)

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Lazy Synchronization

Procrastinate!l Procrastinate!l Procrastinate!l ©
Make common operations fast

Postpone hard work

— E.g., removing components is tricky... use two phases:

* Logical removal
- Mark component to be deleted

* Physical removal
- Do what needs to be done to remove the component

Evaluation
v Recheck after locking is simpler (just that nodes are unmarked)
v Also usually cheaper than hand-over-hnand locking
X Mistakes are expensive (safety easily compromised)
X Is not starvation free on add and remove (liveness compromised)
v/ Is starvation free on contains

Linked List

o [llustrate these patterns ...

» Using a list-based Set
— Common application
— Building block for other apps

= {@3—»@3—»
(=[]

Sorted with Sentinel nodes (min & max possible keys)

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2015--u 4

Set Interface

 Unordered collection of items
* No duplicates
e Methods

— add(x) put x in seft frue if x was not in the set
—remove(x) take x out of set frue if x was in the set
— contains(x) tests if x in seft frue if xis in the seft

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove(T Xx);
public boolean contains(T x);

}

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

List-Based Sets

public interface Set<T> {

public boolean add(T x);
' remov);

ntains(T X);

public boolean

}

Add item to set

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

List-Based Sets

public interface Set<T> {

ublic boolean add(T X):
public boolean remove(T x);
i ntain ;

}

Remove item from set

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

List-Based Sets

public interface Set<T> {
public boolean add(T x);

ublic boolean remove(T X):
public boolean contains(T x);

¥

Is item in set?

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

List Node

public class Node {
public T 1tem;
public 1nt key;
public Node next;

}

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 10

List

p

Node

ublic class Node {

May 05, 2020

public T 1tem;
.. "
public Node™e

item of interest

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

11

List

p

May 05, 2020

Node

ub11c c1ass Node {

pub11c int key,

Usually hash code

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

12

List Node

public class Node {
public T 1tem;

public 1nt key;
public Node next;l

}

Reference to next node

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 13

Optimistic Concurrency List

« Works best if the cost of traversing the list twice
without locking is significantly less than the cost
of traversing the list once with locking.

* One drawback of this Optimistic Concurrency
List algorithm is that contains () needs to acquire
locks, which is unattractive since contains()
calls are likely to be much more common than

calls to other methods.

Lazy Concurrency List

» Refine the Optimistic Concurrency List algorith so
that...

» Calls to contains () are wait-free

* The add() and remove () methods, while sfill

blocking, fraverse the list only once (in the
absence of contention)

Lazy Concurrency List HOWTO

« We add to each node a Boolean marked field indicating whether
that (physical) node is in (logically) the set

« Traversals do not need to lock the tfarget node, and there is no need
to validate that the node is reachable by retraversing the whole list

- Instead, the algorithm maintains the invariant that every unmarked
node is reachable

- If a traversing thread does not find a node, or finds it marked, then
that item is not in the set

« As aresult, contains() needs only one wait-free traversal

 To add an element to the list, add () traverses the list, locks the
target’s predecessor and sucessor, and inserts the node

» The remove() method is lazy, taking two steps: first, mark the ’rorge’r
node, logically removing it, and second, redirect its predecessor’s
next fiel , physically removing it

Lazy Concurrency List HOWTO

+ All methods traverse the list (possibly traversing logically and
physically removed nodes) ignoring the locks

* The add() and remove() methods lock the pred, and curr,
nodes as before, but validation does not retraverse the entire
ist to determine whether a node is in the set.

» Instead, because a node must be marked before being
phymcolly removed, validation need only check that curr, has
not been marked

« However, for insertion and deletion, since pred, is the one
being modified, one must also check that pr‘ed itself is noft
marked, and that it points to curr,

« Logical removals require a small change to the abstraction
map: an item is in the set, if and only if it is referred to by an
unmarked reachable node

Lazy Validate

o

J

rivate boolean validate(Node pred, Node curr) {

return lpred.marked && lcurr.marked
&& pred.next == curr;

N

J

X

Validate do not traverse the list anymore.

Just check if nodes are nor marked as deleted

and that ‘pred.next’ still points to ‘curr’

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

18

Lazy Add

publ}c boolefn.add(T item) E): Calculate hash

while (true
Node pred = head; .
Node curr = head.next; Try until
while (curr.key < key) { success or failure
pred = curr;
curr curr.next;

}
pred.lockég;
curr.lock
try {
if (validate(pred, curr)) {
if (curr.key == key) {
return false;
} else {
Node node
node.next
pred.next
return true;

3

new Node(item);
curr;
node;

}

}

} finally {
curr.unlock();
pred.unlock();

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

19

Lazy Add

public boolean add(T item) { o _
int key = item.hashCode(); Initialize pointers

while (true) {

Node pred = head;

{ to traverse the list
Node curr = head.next: Traverse the list

el L= ealle AL —— . ¥ :
while (curr.key < key) { \ looking for ‘item
pred = curr;
curr = curr.next; I
- . Lock the nodes
pred.lock§g; }:======'-—-
curr.lock

7 tr ' Try the operation
Y if (validate(pred, curr)) { \ Y P

if (curr.key == key) {

and either succeed

return false; or fail
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;
) }
} finally {
curr.unlock();
pred.unlock();
Always unlock

May 05, 2020

(with both success and failure)

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

20

Lazy Add

public boolean add(T item) {
int key = item.hashCode();

while (true) {

Node pred = head;

Node curr = head.next;
while (curr.key < key) {

If any of the nodes is marked as deleted

pred = curr;
) curr = curr.next;
pred.lockég;
curr.lock();
trv { .
if (Vglidate(pr‘ed, curr)) { ?’— then restart the operation
if (curr.key == key) { > : o .
return false; If item alreadly in list, fail
4 T else {
Node node = new Node(item);
node.next = curr; . . .
pred.next = node; insert info the list, and succeed
\ return true;
s
3
} finally {
curr.unlock();
pred.unlock();
}
}
May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

f item not present, create new node

21

Lazy Remove

publ}c boolefn.add(T item) E): Calculate hash

while (true
Node pred = head; .
Node curr = head.next; Try until
while (curr.key < key) { success or failure
pred = curr;
curr curr.next;

}
pred.lockég;
curr.lock
try {
if (validate(pred, curr)) {
if (curr.key != key) {
return false;
} else {
curr.marked = true;
pred.next = curr.next;
return true;

3

}
} finally {
curr.unlock&%;
pred.unlock

)

}

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Lazy Remove

public boolean add(T item) { o]
int key = item.hashCode(); Initialize pointers
while (true) { to traverse the list
Node pred = head; }======-——— .
Node curr = head.next; Traverse the list
7 while (curr.key < key) { = looking for ‘item’

pred = curr;

__1 /

curr curr.next;
__J Lock the nodes
pr‘ed.lockx; Z’
curr.lock();
f try { . Try the operation
if (validate(pred, curr)) { \ and either succeed
if (curr.key != key) { .
return false; or fail
} else {

curr.marked = true;
pred.next = curr.next;
return true;

}
}
T finally {
curr.unlock§;;
pred.unlock();
}
} Always unlock

(with both success and failure)

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 23

Lazy Remove

public boolean add(T item) {
int key = item.hashCode();
while (true) {
Node pred = head;
Node curr = head.next;
while (curr.key < key) {

pred = curr;
) curr = curr.next;
pred.lockég;
;‘rf\';"f“k : If any of the nodes is marked as deleted
if (v;g_lidate(pred, curr)) { = thenrestart the operation
if (curr.key != ke . - .
(r-eturn ¥a15e; y) 1 i If item not in list, fail
(" } else {
curr.marked = true; If item is preserﬂ-,
pred.next = curr.next; first mark it as deleted (logical delete)
_ } ’ and then remove it (physical dele)
i
} finally {
curr.unlock&%;
pred.unlock();
}

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 24

Optimistic Contains

public boolean contains(T item) {

Node curr = head;
while (curr.key < key) {
curr = curr.next;

}

return (curr.key == key)
\\¥ && !curr.marked;

/~ int key = item.hashCode();

/

}

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

No while (ture) loop
anymore!
Contains always returns.

25

Optimistic Contains

public boolean contains(T item) { Calculate hash
int key = i’cem.hashCode();:F==ST—’;::'V;“9.The”ST
NOde curr = head; from the beinning
(: T the list
while (curr.key < key) { e o e
curr = curr.next;
\ } <
return (curr.key == key) N
Return true is item was
&& !curr.marked; ~~ found and is nor

marked as deleted

}

May 05, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Why validation is still necessarye

(a) pred, CUITy
N O A N
1 R R i
V__J Y | Spp—
0 11 ——> a |0 —> 0
head tail

« Thread A is attempting to remove node a. After it reaches
the point where pred, refers to curr,, and before it
acquires locks on these nodes, the node pred, is logically
and physically removed. After A acquires the locks,
validation will detect the problem and A's call to
remove () will be restarted.

Why validation is still necessarye

(b) pred, CUIT
8 e} 'an 8
| (R (1 |
v | Sp—— Y | Sp—
o |o 78 > 3 o] 4> [0

a
head i g tail
O —

« Thread A is attempting to remove node a. After it reaches
the point where pred, refers to curr,, and before it
acquires locks on these nodes, a new node is added
between pred, and curr,. After A acquires the locks,
even though neither pred, or curr, are marked,
validation detects that pred,.NEXT is not the same as
curr,, and A’s call to remove () will be restarted.

Lazy List linearization points

* add () — linearized when the first lock is removed
(before returning)

 Failed remove() — linearized when the first lock is
removed (before returning)

» Successful remove () — linearized when the mark
s seft

» Successful contains() — linearized when an
unmarked matching node is found

 Failed contains() — @@

Lazy List linearization of a
falled contains()

(a) predy,

head Y tail

0| —> 0| 3 >

A

Curr4

« While thread A is tfraversing the list, a concurrent remove() call
disconnects the sublist referred to by curr. Nofice that nodes
with items a and b are still reachable, so whether an item is
actually in the list depends only on whether it is not marked.
Thread A’s call is linearized at the point when it sees that node
a is marked and is no longer in the abstract set.

Lazy List linearization of a
falled contains()

(b)

a |0
head /_’ \» tail
o = o blo > o

Curr4

« While thread A is tfraversing the list leading to marked node a,
another thread adds a new node with key a. It would be
wrong to linearize thread A’'s unsuccessful contains() call to
when it found the marked node a, since this point occurs after
the insertion of the new node with key a to the list.

Lazy List linearization of a
falled contains()

(b)

a |0
head /_’ \» tail
0 0 blo > o

—

Curr4

« An unsuccessful contains() method call is linearized within its
execution interval at the earlier of the following points:

— (1) the point where a removed matching node, or a node with @
key greater than the one being searched for is found, and

— (2) the point immediately before a new matching node is added
to the list

The END

May 05, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

33

